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Abstract

In many different fields such as hydrology, telecommunications, physics of condensed matter

and finance, the gaussian model results unsatisfactory and reveals difficulties in fitting

data with skewness, heavy tails and multimodality. The use of stable distributions allows

for modelling skewness and heavy tails but gives rise to inferential problems related to

the estimation of the stable distributions’ parameters. Some recent works have proposed

characteristic function based estimation method and MCMC simulation based estimation

techniques like the MCMC-EM method and the Gibbs sampling method in a full Bayesian

approach. The aim of this work is to generalise the stable distribution framework by

introducing a model that accounts also for multimodality. In particular we introduce a

stable mixture model and a suitable reparametrisation of the mixture, which allow us to

make inference on the mixture parameters. We use a full Bayesian approach and MCMC

simulation techniques for the estimation of the posterior distribution. Finally we propose

some applications of stable mixtures to financial data.

Keywords: Mixture model, Stable distributions, Bayesian inference, Gibbs sampling.

1 Introduction

In many different fields such as hydrology, telecommunications, physics and finance, Gaussian

models reveal difficulties in fitting data that exhibits a high degree of heterogeneity; thus stable

distributions have been introduced as a generalisation of the Gaussian model. Stable distributions
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allow also for infinite variance, skewness and heavy tails. The tails of a stable distribution

decay like a power function, allowing extreme events to have higher probability mass than in

Gaussian model. For a summary of the properties of the stable distributions see Zoloratev [42]

and Samorodnitsky and Taqqu [36], which provide a good theoretical background on heavy-

tailed distributions. The practical use of heavy-tailed distributions in many different fields is

well documented in the book of Adler, Feldman and Taqqu [1], which also reviews the estimation

techniques.

In finance, the first studies on the hypothesis of stable distributed stock prices can be

attributed to Mandelbrot [22], Fama [13], [14] and Fama and Roll [15], [14]. They propose

stable distributions and give some statistical instruments for the inference on the characteristic

exponent. The use of stable distributions has been motivated also on the basis of empirical

evidence from financial markets. Brenner [5] uses the notion of stationarity of the time series to

explain stability of stock prices. An illuminating work on inference for stable distributions is due

to Buckle [6], who makes also an empirical analysis on daily stock prices, using a full Bayesian

approach to estimate stable distributions parameters and finding significant evidence of the stable

distribution hypothesis.

There are many recent works treating the use of stable distributions in finance. For example

see Bradley and Taqqu [4] and Mikosch [26] for an introduction to the use of stable distributions

in financial risk modelling. The work of Mittnik, Rachev and Paolella [25] and of Rachev and

Mittnik [31] provides a quite complete analysis of the theoretical and empirical aspects of the

stable distributions in finance.

Other early studies, performing empirical analysis on stocks prices, suggest to use mixtures

of distributions in order to modelling the financial markets heterogeneity. Barnes and Downes

[2] use the same estimation techniques of Fama and Roll [16] in order to discuss the results

of Teichmoeller [39]. They find that for some stock the property of stability does not hold

and that the characteristic exponent varies across the stocks. In order to account for this kind

of heterogeneity of the stock prices the authors suggest mixture of stable distributions as an

alternative hypothesis. Simkowitz and Beedles [3] perform an empirical analysis focusing on

the asymmetry of stock returns. They find that the skewness of the stock returns is frequently

positive and dependent on the level of the characteristic exponent. They conclude that securities

distributions may be better modelled through mixtures of stable distributions. Finally an

extensive empirical analysis due to Fieltz and Rozelle [17] shows that mixtures of Gaussian,

or non-Gaussian distributions can better describe stock prices. In particular the authors suggest

to use non-Gaussian stable mixtures model with changing scale parameter because it directly

accounts for skewness. We can conclude that the problem of multimodality and in general of

heterogeneity is well documented in the financial literature, also from the earlier studies on the
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stable distributions. Thus an appropriate modelling is needed.

Observe that, in order to account for heterogeneity and non-linear dependencies exhibited

by the data, stable distributions have been already introduced in different kind of statistical

models. For instance in survival models, the heterogeneity within survival times of a population

are modelled trough common latent factors, which follow stable distributions, see for example

Qiou, Ravishanker and Dey [29]. Stable distributions are also used to model heterogeneity over

time. For an introduction to time series models with stable noises, see Qiou and Ravishanker

[30] and Mikosch [26].

Different estimation methods for stable distributions have been proposed in the literature. For

a full Bayesian approach see Buckle [6], for a maximum likelihood approach see DuMouchel [11]

and for MCEM approach with application to time series with symmetric stable innovations see

Godsill [21].

The first aim of our work is to propose a stable distributions mixture model in order to capture

the heterogeneity of data. In particular we want to account for multimodality, which is present,

for example, in financial data. The second goal of the work is to provide some inferential tools

for stable distributions mixtures. As suggested in the literature on Gaussians mixtures (see for

example Robert [34]), we propose a particular reparameterisations of the mixture model in order

to make more easy the statistical inference on the mixture parameters. Furthermore we use both

a full Bayesian approach and MCMC simulation techniques in order to estimate the parameters.

The maximum likelihood approach (see for example McLachlan and Peel [23]) to the mixture

model implies numerical difficulties, which rely on the fact that for many parametric density

family the likelihood surface has singularities. Furthermore, as pointed out by Stephens [38], the

likelihood may have several local maximum and it will be difficult to justify the choice of one of

these point estimates. The presence of several local maximum and of singularities implies that

the standard asymptotic theory for maximum likelihood estimation and the test theory do not

apply in the mixture context. The Bayesian approach avoids these problem as parameters are

random variables, with prior and posterior distributions defined on the parameter space. Thus

it is no more necessary to choose between several local maximum, because point estimates are

obtained by averaging over the parameter space, weighting by the posterior distribution of the

parameters or by the simulated posterior distribution.

The structure of the work is as follows. Section 2 defines a stable distribution and the method to

simulate from a stable. Section 3 provides an introduction to some basic Markov Chain Monte

Carlo(MCMC) methods for mixtures and exhibits the Bayesian model and the Gibbs sampler for

a stable distribution. Section 4 describes the Bayesian model for stable mixtures, with particular

attention to the missing data structure of the stable mixture model and the Gibbs sampler

for stable mixture is developed in the case where the number of components is fixed. Section
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5 provides some results of the Bayesian stable mixture model on financial dataset. Section 6

concludes.

2 Simulating from a Stable Distribution

The existence of simulation methods for stable distributions opens the way to Bayesian inference

on the parameters of this distribution family. In this section we define a stable random variable

and briefly describe the method to simulate from a stable distribution, first proposed by Chamber,

Mallows and Stuck [8] and then discussed also in Weron [41]. We use this method in our work,

to generate dataset to test the efficiency of the MCMC based Bayesian inference approach. In

the following we denote a stable distribution by Sα(β, δ, σ). Stable distributions do not generally

have an explicit probability density function and are thus conveniently defined through their

characteristic function. The most well known parametrisation is defined in Samorodnitsky and

Taqqu [36].

Definition 1 (Stable distribution)

A random variable X has stable distribution Sα(β, δ, σ) if its parameters are in the following

ranges: α ∈ (0, 2], β ∈ [−1, +1], δ ∈ (−∞, +∞), σ ∈ (0, +∞) and if its characteristic function

can be written as

E[exp(i ϑ x)] =

{

exp(−|σϑ|α)(1 − i β(sign(ϑ))tan(πα/2) + iδϑ) if α 6= 1;

exp(−|σϑ|(1 + 2 i βln|ϑ|sign(ϑ)/π) + iδϑ) if α = 1.
(1)

where ϑ ∈ R.

The stable distribution is thus completely characterised through the following four parameters:

the characteristic exponent α, the skewness parameter β, the location parameter δ and finally the

scale parameter σ. An equivalent parametrisation is proposed by Zoloratev [42]. For a review on

all the equivalent definitions of stable distribution and on all their properties see Samorodnitsky,

Taqqu [36]. The distribution Sα(β, 0, 1) is usually called standard stable and when α ∈ (0, 1) it

is called positive stable because the support of the density is the positive half of the real line. In

this case the characteristic function reduces to

E [exp(iθx)] = e−|θ|α (2)

Stable distributions admit explicit representation of the density function only in the following

cases: the Gaussian distribution S2(0, σ, δ), the Cauchy distribution S1(0, σ, δ) and the Lévy

distribution S1/2(1, σ, δ).

The algorithm we used for simulating a standard stable (see Chamber, Mallows and Stuck [8]

and Weron [41]) is the following
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(i) Simulate

V ∼ U[−π
2
, π
2
] (3)

W ∼ εxp(1); (4)

(ii) If α 6= 1 then

Z = Sα,β
sin(α(V + Bα,β))

cos(V )1/α

(

cos(V − α(V + Bα,β))

W

)
1−α

α

(5)

Bα,β =
arctan(βtan(πα

2 ))

α

Sα,β = (1 + β2tan2(
πα

2
))

1
2α

If α = 1 then

Z =
2

π

[

(
π

2
+ βV ) tan(V ) − β log(

W cos(V )
π
2 + βV

)

]

(6)

Once a value Z from a standard stable Sα(β, 0, 1) has been simulated, in order to obtain a value

X from a stable distribution with scale parameter σ and location parameter δ, the following

transformation is required

X =

{

Z + δ if α 6= 1

σZ + 2
πβσ log(σ) + δ if α = 1

Fig. 1 exhibits simulated data from a stable distribution. We use the parameters estimated by

Buckle [6] on financial time series.

3 Bayesian Inference for Stable Distributions

In order to make inference on the parameters of a stable distribution in a Bayesian approach

it is necessary to specify a hierarchical model on the parameters of the distribution. Often, the

resulting posterior distribution of the Bayesian model cannot be calculated analytically, thus it

is necessary to chose a numerical approximation method. Monte Carlo simulation techniques

provide an appealing solution to the problem because, in high dimensional space, they are

more efficient than traditional numerical integration methods and furthermore they require the

densities involved in the posterior to be known only up to a normalising constant. In the following

the basic Markov Chain Monte Carlo (MCMC ) techniques will be introduced and the Gibbs

sampler for a stable distribution will be discussed.
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Figure 1: Simulation from stable distribution S1.65(−0.8, 0.00053, 0.0079).

3.1 MCMC Methods for Bayesian Models

As evidenced in Chapter ??, in Bayesian inference many quantities of interest can be represented

in the integral form

I(θ) = Eπ(θ|x){f(θ)} =

∫

X
f(θ)π(dθ|x) (7)

where π(θ|x) is the posterior distribution of the parameter θ ∈ X given the observed data

x = (x1, . . . , xk). In many cases to find an analytical solution to the integration problem is

difficult and a numerical approximation is needed. A way to approximate the integral is to

simulate the posterior distribution and to average the simulated values of f(θ). In particular the

MCMC methods consist in the construction of a Markov chain
{

θ(t)
}n

t=1
and in the following

approximation of the integral given in Eq. (7)

In(θ) =
1

n

n
∑

t=1

f(θ(t)) (8)

which is a consistent estimator of the quantity of interest

In(θ)
a.s.−→ Eπ(θ|x){f(θ)} (9)

In some cases, as in mixture models, is not possible to simulate directly from the posterior
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distribution and a further simulation step (completion step) is needed. All MCMC algorithms

are based on the construction of a discrete time Markov Chain, through the specification of its

transition kernel. Thus the properties of this kind of stochastic process are useful in order to

study the convergence of the MCMC simulation algorithms.

We recall that the irreducibility of the chain is a sufficient condition in order to guarantee the

convergence of In to the quantity of interest given in Eq. (7).

Theorem 1 (Law of Large Numbers)

If the Markov chain {Θ}∞t=0 is irreducible and has σ-finite invariant measure π, then ∀f, g ∈
L1(π), with

∫

g(θ)dπ(θ) 6= 0

lim
n→∞

In(f)

In(g)
=

∫

f(θ)dπ(θ)
∫

g(θ)dπ(θ)
(10)

where In(h) = 1
n

∑n
i=1 h(Θi).

For a brief introduction to Markov chains and to Markov Chain Monte Carlo methods we refer

to Chapter ??. Further details on Markov chains can be found for example in Meyn and Tweedie

[24], other theoretical results on convergence are in Tierney [40], finally Robert and Casella [35]

provides some techniques for monitoring convergence.

3.2 The Gibbs Sampler

The Gibbs sampler has been introduced in image processing by Geman and Geman [19] (see also

Chapter ?? for a general introduction to MCMC methods and to Gibbs sampling) and it is a

method of construction of a Markov Chain {Θ(t)}∞t=0 with multivariate stationary distribution

π(θ|(x)), where θ ∈ χ. This simulation method is particularly useful when the posterior density

is defined on a high dimension space. If the random vector θ can be written as θ = (θ1, . . . , θp)

and if we can simulate from the full conditional densities

(θi|θ1, . . . , θi−1, θi+1, . . . , θp) ∼ πi(θi|θ1, . . . , θi−1, θi+1, . . . , θp,x) (11)

then the associated Gibbs sampling algorithm is given by the following transition kernel from θ(t)

to θ(t+1):

Definition 2 (Gibbs Sampler)

Given the state Θ(t) = θ(t) at time t, generate the state Θ(t+1) as follows

1. Θ
(t+1)
1 ∼ π(θ1|θ(t)

2 , . . . , θ
(t)
p ,x)

2. Θ
(t+1)
2 ∼ π(θ2|θ(t+1)

1 , θ
(t)
3 , . . . , θ

(t)
p ,x)

7



3. . . .

4. Θ
(t+1)
p ∼ π(θp|θ(t+1)

1 , θ
(t+1)
2 , . . . , θ

(t+1)
p−1 ,x)

Under some regularity conditions the Markov chain produced by the algorithm converges to the

desired stationary distribution (see Robert and Casella [35]).

3.3 The Gibbs Sampler for Univariate Stable Distributions

In this paragraph we give a description of the Gibbs sampler proposed by Buckle [6] in order to

estimate the characteristic exponent α of a stable distribution. It is known (see Section 1 ) how

to simulate values from a stable distribution; furthermore it is possible to represent the stable

density in integral form, by introducing an auxiliary variable y, as suggested by Buckle [6]. The

stable density is obtained by integrating with respect to y the bivariate density function of the

pair (x, y)

f(x, y|α, β, σ, δ) =
α

|α − 1| exp

{

−| z

τα,β(y)
|α/(α−1)

} ∣

∣

∣

∣

z

τα,β(y)

∣

∣

∣

∣

α/(α−1) 1

|z| (12)

(x, y) ∈ (−∞, 0) × (−1/2, lα,β) ∪ (0,∞) × (lα,β , 1/2) (13)

τα,β(y) =
sin(παy + ηα,β)

cos(πy)

[

cos(πy)

cos(π(α − 1)y) + ηα,β

](α−1)/α

(14)

ηα,β = β min(α, 2 − α)π/2 (15)

lα,β = −ηα,β/πα (16)

where z = x−δ
σ . Previous elements allow to perform simulation based Bayesian inference on the

parameters of the stable distribution. The Bayesian model is described through the Directed

Acyclic Graph (DAG) in Fig. 2. Suppose to observe n realizations x = (x1, . . . , xn) from a stable

distribution Sα(β, σ, δ) and simulate a vector of auxiliary variables y = (y1, . . . , yn), then the

completed likelihood and the completed posterior distribution are respectively

L(x,y|θ) =
n
∏

i=1

f(xi, yi|θ) (17)

π(θ|x,y) =
L(x,y|θ)π(θ)

∫

Θ L(x,y|θ)π(θ)dθ
∝

n
∏

i=1

f(xi, yi|θ)π(θ) (18)

where θ = (α, β, δ, σ) is the stable parameter vector varying in the parameter space Θ.

In the following we suppose to observe n values from a standard stable distribution Sα(β, 1, 0) and

we assume the other parameters to be known. Parameters α and β are estimated by simulating
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β

1b1a 1a 4b4a3b3a2b2a

σδα

x

y

Uniform Uniform Normal Inverse Gamma

Figure 2: DAG of the Bayesian model for inference on stable distributions. It exhibits the

hierarchical structure of priors, and hyperparameters. A single box around a quantity indicates

that it is a known constant, a double box indicates the variable is observed and a circle indicates

the random variable is not observable. The directed arrows show the dependence structure of the

model. We use the the prior suggested by Buckle [6].

from the complete posterior distribution and by averaging simulated values. Simulations from

the posterior distribution are obtained by iterating the following steps of the Gibbs sampler

(i) Update the completing variable

π(yi|α, β, δ, σ, zi) ∝ exp

{

1 −
∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α
(α−1)

}

∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α
(α−1)

(19)

with i = 1, . . . , n.

(ii) Simulate from the complete full conditional distributions

π(α|β, δ, σ,x,y) ∝ αn

|α − 1|n exp

{

−
n
∑

i=1

∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α
(α−1)

}

n
∏

i=1

∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α
(α−1)

π(α) (20)

π(β|α, δ, σ, zi, yi) ∝ exp

{

−
n
∑

i=1

∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α
(α−1)

}

n
∏

i=1

∣

∣

∣

∣

1

τα,β(yi)

∣

∣

∣

∣

α
(α−1)

π(β) (21)
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π(δ|α, β, σ, zi, yi) ∝ exp

{

−
n
∑

i=1

∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α
(α−1)

}

n
∏

i=1

∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α
(α−1) 1

|xi − δ| π(δ) (22)

π(σ|α, β, σ, zi, yi) ∝
(

1

σα/(α−1)

)n

exp

{

− 1

σα/(α−1)

n
∑

i=1

∣

∣

∣

∣

(xi − δ)

τα,β(yi)

∣

∣

∣

∣

α/(α−1)
}

π(σ) (23)

where π(α), π(β), π(δ), π(σ) are the prior distributions on the parameters, y is a vector of

auxiliary variables (y1, . . . , yn) and τα,β is a function of y defined in Eq. (14).

In order to simulate from the density function given in equation (19) we apply the accept reject

method (see Devroye [9]), because the density is proportional to a function which has finite

support (−1
2 , 1

2) and which is bounded with value 1 at the maximum y∗, where y∗ is such that

τα,β(y∗) = x. To emphasize numerical problems which arise in making inference on stable

distributions, we plot in Fig. 4 the density function of y for different values of x. Note that

for all values of α ∈ (0, 1), high values of x make the density function spiked around the mode.

Thus the basic accept method performs quite poorly. A way to improve the simulation method

is to build a histogram with the rejected values and to use it as an envelope in the accept reject

algorithm.

Due to the way the parameter α enters in the likelihood, the densities given in Equations (20),

(21), (22) and (23) are undulating and rather concentrated, therefore as suggested by Buckle [6]

and Ravishanker and Qiou [30] we introduce the following reparametrisations which give a more

manageable form of the conditional posteriors of α, β and δ

vi = τα,β(yi) (24)

φi =
τα,β

xi − δ
(25)

the resulting posteriors are

π(α|β, δ, σ,x,v) ∝ αn

|α − 1|n exp

{

−
n
∑

i=1

∣

∣

∣

∣

zi

vi

∣

∣

∣

∣

α
(α−1)

}

n
∏

i=1

∣

∣

∣

∣

zi

vi

∣

∣

∣

∣

α
(α−1)

∣

∣

∣

∣

dτα,β

dy

∣

∣

∣

∣

−1

τα,β(y)=vi

π(α) (26)

π(β|α, δ, σ, zi, vi) =
n
∏

i=1

∣

∣

∣

∣

dτα,β

dy

∣

∣

∣

∣

−1

τα,β(y)=vi

π(β) (27)

π(δ|α, β, σ, zi, vi) ∝
n
∏

i=1

∣

∣

∣

∣

dτα,β

dy

∣

∣

∣

∣

−1

τα,β(y)=φi(xi−δ)

π(δ) (28)

At each step of the reparametrised Gibbs sampler, the Jacobian of the transformation,
∣

∣

∣

dτα,β

dy

∣

∣

∣

−1
,

must be evaluated in yi = τ−1
α,β(vi). Due to the complexity of the function τα,β , its inverse has not
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an analytical expression. Therefore, following Buckle [6], the inverse transformation is determined

numerically. We use the modified safeguard Newton algorithm proposed in Press et al. [28].

In order to simulate from the posteriors given in Equations (26), (27) and (28) we use Metropolis-

Hastings algorithm (see Chapter ?? for an introduction to Monte Carlo Markov Chain methods)

Given θ
(k−1)
i

(i) Generate from the proposal distribution θ∗i ∼ q(θi|θ(k−1)
i )

(ii) Take:

θ
(k)
i =

{

θ∗i with probability ρ(θ
(k−1)
i , θ∗i )

θ
(k−1)
i with probability 1 − ρ(θ

(k−1)
i , θ∗i )

where: ρ(θ
(k−1)
i , θ∗i ) = 1 ∧

{

π(θ∗i |θ−i)

π(θ
(k−1)
i |θ−i)

q(θ
(k−1)
i )

q(θ∗i )

}

.

In order to simulate the full conditional posteriors given in Eq. (26) and (27), we use a beta

distribution, Be(a, b) as proposal. The sample generated from the beta distribution is not

independent because in order to simulate the k-th value of the M.-H. chain, we pose the mean

of the beta distribution to be equal to the (k − 1)-th value of the chain. In setting a and b, the

parameters of the proposal distribution we distinguish the following cases

{

a =
α2

k−1 (1−αk−1)−v αk−1

v

b = a
1−αk−1

αk−1

when α ∈ [0, 1)

and

{

a =
(αk−1−1)2 (2−αk−1)−v (αk−1−1)

v

b = a
2−αk−1

(αk−1−1)

when α ∈ (1, 2]

where αk−1 is the value generated by the Metropolis-Hastings chain at step (k − 1) and v is the

variance of the proposal distribution. This parameters choice allows us also to avoid numerical

problems related to the evaluation of the Metropolis-Hastings acceptance ratio in the presence of

fat tailed and quite spiked likelihood functions.

We use a gaussian random walk proposal to simulate the full conditional posterior of the location

parameter (Eq. (28)).

In order to complete the description of the hierarchical model and of the associated Gibbs sampler,

we consider the following joint prior distribution
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I(α)(1,2]
1

2
I(β)[−1,1]

1√
2πb3

e
−

(δ−a3)2

2b3 I(δ)(−∞,+∞)
ba4
4

Γ(a4)

e−
b4
θ

θa4+1
I(θ)[0,∞) (29)

where θ = σ
α

α−1 . We use informative priors for the location and scale parameters. For δ we assume

a normal distribution. Note that the prior distribution of θ is the inverse gamma distribution

IG(a4, b4), which is a conjugate prior of the distribution given in equation (23). Simulations

of the parameter σ can be obtained from the simulated values of θ by a simple transformation.

Finally for parameters α and β we assume non informative priors.

We show the efficiency of the MCMC based Bayesian inference, running the Gibbs sampler on

simulated dataset. In the following examples we discuss the numerical results and also some

computational remarks related to different values of the characteristic exponent.

Example 1 - (Positive α-Stable Distributions)

Fig. 5, in Appendix A, exhibits the dataset of 1,000 observations generated from the positive stable

distribution S0.5(0.9, 0, 1). Figures 6, 7 give the results of 15, 000 iterations of the Gibbs sampler

relative to the characteristic exponent α, and the asymmetry parameter β, for an increasing

number of simulations. Figures 8, 9 exhibit the ergodic averages. Note that convergence has

been achieved after 6,000 iterations. In the first experiment we use uniform priors for α and β.

We set the variance of the proposal distribution (see Eq. 46) at v = 0.0001 for α, at v = 0.0009 for

β and the starting values of the Gibbs sampler at α = 0.2 and β = 0.5. Figures 10 and 11 exhibit

the estimated acceptance rate for the M.-H. steps in the Gibbs sampler, for an increasing number

of simulations. The histograms of the posteriors are depicted in figures 12 and 13. Note that

through the Gibbs sample it is also possible to obtain the confidence intervals for the estimated

parameters and to perform a goodness of fit test.

Example 2 - (α-Stable Distributions with α > 1)

Note that in the first dataset α is less than 1, therefore the moment of order less than two are

infinite. In some applications like in finance, in order to give an interpretation to the result it

is preferable to work at least with finite first order moments. Therefore we verify the efficiency

of the Gibbs sampler also on a sample generated from a stable distribution with α ∈ (1, 2]. Fig.

14 in Appendix A exhibits the dataset of 1,000 values simulated from the stable distribution

S1.5(0.9, 0, 1). Gibbs sampler realisations and ergodic averages are represented respectively in

figures 15, 16 and in figures 17, 18. Convergence has been achieved after 6,000 iterations. In the

experiment we use uniform priors for α and β and set the variance of the proposal distribution
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at v = 0.0005 for α, at v = 0.0009 for β and the starting values of the Gibbs sampler at α = 1.2

and β = 0.2. Figures 19, 20 exhibit the estimated acceptance rate, for an increasing number of

simulations. Finally, posterior distributions are depicted in figures 21 and 22.

For each dataset, Table 1 summarizes the estimated parameters, the standard deviations and

the estimated acceptance rates of the M.-H. steps of the Gibbs sampler. Results are obtained

on a PC with Intel 1063 MHz processor, using routines implemented in C/C++. We validate

the MCMC code by checking that without any data the estimated joint posterior distribution

correspond to the joint prior.

Table 1: Numerical results - Ergodic Averages over 15,000 Gibbs realisations.

First Dataset: S0.5(0.9, 0, 1)

Parameter True Value Starting Value Estimate(∗) Std.Dev. Acc. Rate

α 0.5 0.2 0.54 0.02 0.11

β 0.9 0.5 0.95 0.07 0.14

Second Dataset: S1.5(0.9, 0, 1)

Parameter True Value Starting Value Estimate(∗∗) Std.Dev. Acc. Rate

α 1.5 1.2 1.46 0.04 0.49

β 0.9 0.2 0.96 0.04 0.21

(*)Time (sec): 4259

(**)Time (sec): 4128

4 Bayesian Inference for Mixtures of Stable Distributions

In this section we extend the Bayesian framework, introduced in the previous section, to the

mixtures of stable distributions. In many situations data may exhibit simultaneously: heavy

tails, skewness, and multimodality. In time series analysis, the multimodality of the empirical

distribution can also find a justification in a heterogeneous time evolution of the observed

phenomena. For example, the distribution of financial time series like prices or prices volatility

may have many modes because the stochastic process evolves over time following different regimes.

Stable distributions allow for skewness and heavy tails, but not for multimodality. Thus a way to

model these features of the data, is to introduce stable mixtures. Furthermore the use of stable

mixtures is appealing also because they have normal mixtures as special case, which is a widely

studied topic (see for example Stephens [38], Richardson and Green [32]). Other relevant works

on the Bayesian approach to the mixture models estimation are Diebolt and Robert [10], Escobar
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and West [12] and Robert [34], [33]. In Appendix C some examples of two components stable

mixtures are exhibited. We simulate stable mixtures with different parameters setting, in order

to understand the influence of each parameter on the shape of the mixture’s distribution.

4.1 The Missing Data Model

In the following we define a stable mixture model, while assuming to known the number of

mixture components. Under a practical point of view the number of components may be detected

by looking at the number of modes in the distribution or by performing a statistical test, see

section 5. Let L be the finite number of mixture components and f(x|αl, βl, δl, σl) the l-th stable

distribution in the mixture, then the mixture model m(x|θ, p) is

m(x|θ, p) =
L
∑

l=1

plf(x|θl) (30)

with
L
∑

l=1

pl = 1, pl ≥ 0, l = 1, . . . , L

where θl = (αl, βl, δl, σl), l = 1, . . . , L are the parameter vector and θ = (θ1, . . . , θL) . In

the following we suppose L to be known. In order to perform Bayesian inference two steps

of completion are needed. First, we adopt the same completion technique used for stable

distributions. The auxiliary variable, y, is introduced in order to obtain an integral representation

of the mixture distribution

m(x|θ, p) =
L
∑

l=1

pl

∫ 1/2

−1/2
f(x, y|θl) dy. (31)

The second step of completion is introduced in order to reduce the complexity problem, which

arises in simulation based inference for mixtures. The completing variable (or allocation variable),

ν = {ν1, . . . , νL} is defined as follow

νl =

{

1 if x ∼ f(x, y|θl)

0 otherwise
with l = 1, . . . , L (32)

and is used to select the mixture component. The allocation variable is not observable and this

missing data structure can be estimated by following a simulation based approach. Simulations

from the mixture model can be performed in two step: first, simulating the allocation variable;

second, simulating a mixture component conditionally on the allocation variable. The resulting

demarginalized mixture model is
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Figure 3: DAG of the Bayesian hierarchical model for inference on stable mixtures. Note that

the completing variable ν is not observable. Thus, two levels of completion, y and ν, are needed

for a stable mixture model.

m(x, ν|θ, p) =
L
∏

l=1

(

pl

∫ 1/2

−1/2
f(x, y|θl) dy

)νl

,
L
∑

l=1

νl = 1 (33)

This completion strategy is now quite popular in Bayesian inference for mixtures (see Robert [33],

Robert and Casella [35], Escobar and West [12] and Diebolt and Robert [10]). For an introduction

to Monte Carlo methods in Bayesian inference from data modeled by mixture of distributions

see also Neal [27] and for a discussion of the numerical and identifiability problems in mixtures

inference see Richardson and Green [32], Stephens [37] and Celeux, Hurn and Robert [7].

4.2 The Bayesian Approach

The Bayesian model for inference on stable mixtures is represented through the DAG in Fig.

3. Before specifying the Bayesian model we introduce two distributions that are quite useful in

Bayesian inference form mixtures: the multinomial distribution and the Dirichlet distribution.

Definition 3 (Multinomial distribution)

The random variable X = (x1, . . . , xL) has L dimensional multinomial distribution if its density

function is

M(n, p1, ..., pL) =

(

n

x1 . . . xL

)

px1
1 · . . . · pxL

L I
∑

xl=n (34)

where
∑L

l=1 pl = 1 and pl ≥ 0, l = 1, . . . , L.
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As suggested in the literature on gaussian mixtures, in the following we assume a multinomial

prior distribution for the completing variable ν: V ∼ fV (ν) = ML(1, p1, . . . , pL).

Definition 4 (Dirichlet distribution)

The random variable X = (x1, . . . , xL) has L dimensional Dirichlet distribution if its density

function is

D(δ1, ..., δL) =
Γ(δ1 + ... + δL)

Γ(δ1) · . . . · Γ(δL)
xδ1−1

1 · . . . · xδL−1
L IS(x) (35)

where δl ≥ 0, l = 1, . . . , L and S = {x = (x1, . . . , xL) ∈ R
L|∑xl = 1, xl > 0 l = 1, . . . , L} is the

simplex of R
L.

We assume that the parameters of the discrete part of the mixture distribution has the standard

conjugate Dirichlet prior: (p1, . . . , pL) ∼ DL(δ1, . . . , δL), with hyperparameters δ1 = . . . = δL =
1
L .

Observing n independent values, x = (x1, . . . , xn), from a stable mixture, the likelihood and the

completed likelihood are respectively

L(x,y|θ, p) =
n
∏

i=1

L
∑

l=1

pl

∫ 1/2

−1/2
f(xi, yi|θl)dyi (36)

L(x,y, ν|θ, p) =
n
∏

i=1

L
∏

l=1

(plf(xi, yi|θl))
νil (37)

where y = (y1, . . . , yn) and ν = (ν1, . . . , νn) are respectively the auxiliary variable and the

allocation variable vectors and θ = (θ1, . . . , θL) and p = (p1, . . . , pL) are the mixture’s parameters

vectors. From the completed likelihood and from the priors it follows that the complete posterior

distribution of the Bayesian mixture model is:

π(θ, p|x,y, ν) ∝
n
∏

i=1

{

L
∏

l=1

(f(xi, yi|θl))
νil π(νi)

}

π(θ)π(p). (38)

Bayesian inference on the mixture parameters requires the calculation of the expected value

from the posterior distribution. A closed form solution of this integration problem does not

exist, thus numerical methods are needed. The introduction of auxiliary variables, that are not

observable, simplifies inference for mixtures and also suggests the way to approximate numerically

the problem. In fact the auxiliary variables can be replaced by simulated values and the simulated

completed likelihood can be used for calculating the posterior distributions. Furthermore in order

to approximate numerically the posterior means is necessary to perform simulations from the

posterior distributions of the parameters and to average the simulated values.
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4.3 The Gibbs Sampler for Mixtures of Stable Distributions

Gibbs sampling allows us to simulate from the posterior distribution avoiding computational

difficulties due to the dimension of the parameter vector. Due to the ergodicity of the Markov

chain generated by the Gibbs sampler, the choice of the initial values is arbitrary. In particular

we choose to simulate them from the prior. The steps of the Gibbs sampler for a mixture model

can be grouped in: simulation of the full conditional distributions and augmentation by the

completing variables

(i) Simulate initial values: ν
(0)
i , y

(0)
i , i = 1, . . . , n and p(0) respectively from

ν
(0)
i ∼ ML(1, p1, . . . , pL) (39)

y
(0)
i ∼ f(yi|θ, ν, xi) ∝ exp{1 −

∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α/(α−1)

}
∣

∣

∣

∣

zi

τα,β(yi)

∣

∣

∣

∣

α/(α−1)

(40)

p(0) ∼ DL(δ, . . . , δ). (41)

(ii) Simulate from the full conditional posterior distributions

π(θl|θ−l, p,x,y,v) ∝
n
∏

i=1

{f(xi, yi|θl) pl}νil π(θl) l = 1, . . . , L (42)

π(p1, . . . , pL|θ,x,y,v) = D(δ + n1(ν), . . . , δ + nL(ν)) (43)

(iii) Update the completing variables

π(yi|θ, p,x,y−i,v) ∝ exp

{

1 −
∣

∣

∣

∣

xi

τα,β(yi)

∣

∣

∣

∣

α/(α−1)
}

∣

∣

∣

∣

xi

τα,β(yi)

∣

∣

∣

∣

α/(α−1)

(44)

π(νi|θ, p,x,y,v−i) = ML(1, p∗1, . . . , p
∗
L) (45)

for i = 1, . . . , n, where

z =
x − δ

σ

nl(ν) =

n
∑

i=1

νil , l = 1, . . . , L

p∗l =
plf(xi, yi|θl)

∑L
l=1 f(xi, yi|θl)pl

, l = 1, . . . , L.

Steps (43) and (45) of the Gibbs sampler are proved in Appendix D. Observe that simulations from

the conditional posterior distribution of Eq.(43) can be obtained by running the Gibbs sampler

given in equations (20)-(23), conditionally to the value of the completing variable ν. To simulate
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from the Dirichlet posterior distribution given in Eq. (43), we use the algorithm proposed by

Casella and Robert [35], while to draw value from the multinomial posterior distribution of Eq.

(45), we use the algorithm proposed by Fishman [18].

In Examples 4.3 and 4.3, we verify the efficiency of the Gibbs sampler on some test samples

simulated from stable mixtures. For each mixture’s component we assume the joint prior

distribution given in equation (29). Furthermore, for the shake of simplicity, we consider

L = 2. Because of the quite irregular form of the density f(xi, yi|θl), during the MCMC based

estimation, some computational difficulties were encountered in evaluating the probability p∗l
of each mixture’s component. Thus we introduce the following useful reparameterisation and

approximation

q∗l =











eg1(xi,yi)−g2(xi,yi)

eg1(xi,yi)−g2(xi,yi)+1
if g1 > g2 or g1 ≤ g2

1 if g1 � g2

0 otherwise

where gl(xi, yi) = log(pl f(xi, yi|θl)), with l = 1, 2.

Table 2: Numerical results - Ergodic Averages over 15,000 Gibbs realisations.

Dataset: 0.5S1.7(0.3, 1, 1) + 0.5S1.3(0.5, 30, 1)

Par. True Value Starting Value Estimate(∗) Std.Dev. Acc. Rate

α1 1.7 1.9 1.66 0.09 0.32

α2 1.3 1.9 1.36 0.07 0.41

β1 0.3 0.8 0.28 0.09 0.41

β2 0.5 0.8 0.37 0.10 0.42

p1 0.5 0.4 0.52 0.02 -

Dataset: 0.5S1.3(0.3, 1, 1) + 0.5S1.3(0.8, 30, 1)

Par. True Value Starting Value Estimate(∗∗) Std.Dev. Acc. Rate

α 1.3 1.7 1.25 0.08 0.23

β1 0.3 0.5 0.15 0.03 0.11

β2 0.8 0.5 0.95 0.05 0.13

p1 0.5 0.5 0.75 0.09 -

p2 0.5 0.5 0.25 0.09 -

(*)Time (sec):9249

(**)Time (sec):9525
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Example 3 - (α-Stable Mixture with varying β and α)

In this example, we apply the Gibbs sampler to a synthetic dataset of 1,000 observations generated

from the stable mixture: 0.5S1.7(0.3, 1, 1)+0.5S1.3(0.5, 30, 1). Fig. 29 in Appendix E exhibits the

dataset. In the M.-H. step of the Gibbs sampler, we set v=0.0001 for β and v=0.005 for α.

Result are briefly represented in Table 4.3 and graphically described in Figg. 30-33. Note that

the presence in the mixture model, of distribution with different tails behaviour, produces some

problems in the convergence of the ergodic averages, due to the label switching of the observations.

Example 4 - (α-Stable Mixture with constant α and varying β)

In this experiment we keep α fixed over the mixture components. First we generate 1,000

observations from the following mixture 0.5S1.3(0.3, 1, 1) + 0.5S1.3(0.8, 30, 1). Secondly we apply

the Gibbs sampler for stable mixture and obtain the results given in Table 4.3. The graphical

description of the results is in Figg. 35-38 of Appendix E and exhibits a more appreciable mixing

of the chain associated to the Gibbs sampler.

To conclude this section, we remark that in developing the Gibbs sampler for α-Stable mixtures

and also in previous Monte Carlo experiments the number of components of the mixture is

assumed to be known. Thus our research framework can be extended in order to make inference

on the number of components. For example, Reversible Jump MCMC (RJMCMC) or Birth and

Death MCMC (BDMCMC) could be applied in this context.

5 Application to Financial Data

Introducing two level of auxiliary variables in the stable mixture model allows us to infer all

the parameters of mixture from the data. Gaussian distribution is usually assumed in modelling

financial time series, but it performs poorly when data are heavy-tailed and skewed. Moreover the

assumption of unimodal distribution becomes too restrictive for some financial time series. In this

section, we illustrate how stable mixtures may result particularly useful in modelling different

kind of financial variables and present estimates obtained with the MCMC based inferential

technique proposed in the previous section.

Example 5 - (Stock Market)
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In this example we analyse the return rate of the S&P500 composite index from 01/01/1990

to 27/01/2003. The return on the index is defined as: rt = (pt − pt−1)/pt−1. Alternatively,

logarithmic returns could be used. The number of observations is 3410. Fig. 39 shows the data

histogram and the best normal which is possible to estimate. The QQ-plot in Fig. 40 reveals

that data are not normally distributed. We apply the Gibbs sampler for α-Stable mixtures to

this dataset. The result is in Tab. 5. Parameter estimates are ergodic averages over the last

10,000 values of the 15,000 Gibbs sampler realisations. Note that index return distribution has

tails heavier than Gaussian, because α̂ = 1.674.

Table 3: Parameter Estimates on S&P 500 Index daily returns.

Starting Value Estimate Std.Dev. Acc. Rate

α 1.8 1.674 0.005 0.2

β 0.2 0.159 0.004 0.1

σ 0.01 0.070 0.002 -

δ 0.0001 0.000091 0.0001 0.1

Example 6 - (Bond Market)

Our second dataset (source: DataStream) contains daily price returns on the J.P. Morgan’s

indexes concerning following countries: France, Germany, Italy, United Kingdom, USA and

Japan, between 01/01/1988 and 13/01/2003. Denoting with pt the price index at time t. The

return on the index is defined as: rt = (pt − pt−1)/pt−1. Fig.41 in Appendix E exhibits jointly

the histogram, the best Gaussian approximation and the density line of the returns distribution.

All time series exhibit a certain degree of kurtosis and skewness. Estimation result on the J.P.

Morgan Great Britain index is in Tab. 5.

Table 4: Parameter Estimates on JP Morgan - Great Britain index daily returns.

Starting Value Estimate Std.Dev. Acc. Rate

α 1.5 1.95 0.004 0.2

β 0.02 0.013 0.001 0.2

σ 0.01 0.270 0.003 -

δ 0.005 0.0062 0.02 0.1
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Example 7 - (3 Months Euro-Deposits Interest Rate)

Our third dataset (source: DataStream) contains daily 3-Months Interest Rates on Euro-Deposits

concerning following countries: France, Germany, Italy, United Kingdom, USA and Japan,

between 01/01/1988 and 13/01/2003. Fig.43 in Appendix E exhibits jointly the histogram, the

best Gaussian approximation and the density line of the returns distribution. Quite all time

series of this dataset exhibit multimodality.

Estimation result on the 3-month Interest Rate for France is in Tab. 5

Table 5: Parameter Estimates on Interest Rates - France. Two components α-stable mixture.

Starting Value Estimate Std.Dev. Acc. Rate

α1, α2 1.5 1.2 0.003 0.15

β1 0.01 0.02 0.001 0.1

β2 0.01 0.04 0.001 0.1

σ1 1.5 0.307 0.002 -

σ2 1.5 0.873 0.001 -

δ1 4 3.012 0.02 0.1

δ2 10 7.301 0.03 0.1

6 Conclusion

In this work we propose a α-Stable mixture model. As result in the literature from many empirical

evidences, α-Stable distributions are particularly adapted for modelling financial variables.

Moreover some financial empirical studies evidence that mixture models are needed in many

cases, due to the presence of multi-modality in the asset returns distribution. We chose Bayesian

inference due to the flexibility of the approach, that allows to simultaneously estimate all the

parameters of the model. Furthermore we introduce a suitable reparameterisation of the α-Stable

mixture in order to perform Bayesian inference. The proposed approach to α-Stable mixture

models estimation is quite general and worked well in our simulation analysis, but it needs

much more evaluation, with a particular attention to the case of symmetric stable mixtures.

Furthermore the Bayesian approach used in this work allows to perform goodness of fit tests and

also to use RJMCMC and BDMCMC techniques in order to make inference on the number of

components of the mixture.
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Appendix A - Bayesian Inference for Stable Distributions
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Figure 4: The density function of y for different values of x (0.04,...,0.14) and of α (0.2,...,0.9).
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Figure 5: Simulated dataset, 1,000 values from S0.5(0.9, 0, 1).
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Figure 6: Gibbs sampler realisations, characteristic exponent α.
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Figure 7: Gibbs sampler realisations, asymmetry parameter β.
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Figure 8: Gibbs sampler, ergodic averages for the characteristic exponent α.
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Figure 9: Gibbs sampler, ergodic averages for the asymmetry parameter β.
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Figure 10: Gibbs sampler, acceptance rate of the M.-H. step, parameter α
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Figure 11: Gibbs sampler, acceptance rate of the M.-H. step, parameter β
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Figure 12: Gibbs sampler, histogram of the posterior π(α|x)
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Figure 13: Gibbs sampler, histogram of the posterior π(β|x)
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Figure 14: Simulated dataset, 1,000 values from S1.5(0.9, 0, 1).
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Figure 15: Gibbs sampler realisations, characteristic exponent α.
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Figure 16: Gibbs sampler realisations, asymmetry parameter β.
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Figure 17: Gibbs sampler, ergodic averages for the characteristic exponent α.
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Figure 18: Gibbs sampler, ergodic averages for the asymmetry parameter β.
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Figure 19: Gibbs sampler, acceptance rate of the M.-H. step, parameter α
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Figure 20: Gibbs sampler, acceptance rate of the M.-H. step, parameter β
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Figure 21: Gibbs sampler, histogram of the posterior π(α|x)
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Figure 22: Gibbs sampler, histogram of the posterior π(β|x)
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Appendix B - Proposal Distributions for the Metropolis-Hastings

Algorithm

The shape of the stable distribution and the presence of skewness suggest us to use a Beta

distribution Be(a, b) as proposal for the Metropolis-Hastings algorithm

α|αk−1 ∼ Be(a, b) =
1

B(a, b)
αa−1(1 − α)b−1

I(α)(0,1). (46)

We assume that the mean of the distribution is equal to the (k − 1)-th value of the M.-H. chain

and set exogenously the variance equal to v. Through the parameter v it is thus possible to

control the acceptance rate of the Metropolis-Hastings algorithm. When α ∈ (0, 1) the value of

the parameters of the proposal is

{

a
a+b = αk−1

ab
(a+b)2(1+a+b)

= v
⇔

{

a =
α2

k−1 (1−αk−1)−v αk−1

v

b = a
1−αk−1

αk−1

where αk−1 is the (k − 1)-th value of the M.-H. chain and v is the variance. In addition to the

previous system of equations, also the positivity constraint on the Beta’s parameters: a > 0 and

b > 0 must hold. Thus at each iteration of the M.-H. algorithm the following constraint must be

satisfied

αk−1 ∈
(

3 − v

2
−

√
v2 − 8v + 1

2
,
3 − v

2
+

√
v2 − 8v + 1

2

)

. (47)

When α ∈ (1, 2] we use a translated Beta distribution

α|αk−1 ∼ Be(a, b) =
1

B(a, b)
(α − 1)a−1(2 − α)b−1

I(α)(1,2). (48)

By imposing the usual constraints on the mean and the variance we obtain the values of the

proposal’s parameters

{

2a+b
a+b = αk−1

ab
(a+b)2(1+a+b)

= v
⇔

{

a =
(αk−1−1)2 (2−αk−1)−v (αk−1−1)

v

b = a
2−αk−1

(αk−1−1)

Also in this case the positivity constraints on the Beta’s parameters must be considered. We

proceed in a similar way for the proposal distribution of the skewness parameter β.
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Appendix C - Mixtures of Stable Distributions

C.1 Mixtures with varying α

Observe that in all dataset exhibited in the histograms, N=100,000 values from right skewed

(β = 1) standard stables have been simulated.
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Figure 23: Stables mixtures, with equally weighted components.
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Figure 24: Stables mixtures, with unequally weighted components.
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C.2 Mixtures with varying β

Simulated samples of N = 100, 000 stable values are exhibited in the following histograms. In

all the samples the location and the scale parameters of the mixture are: δ1 = 1, δ2 = 40,

σ1 = σ2 = 7.
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Figure 25: Stables mixtures, with equally weighted components.
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Figure 26: Stables mixtures, with unequally weighted components.
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C.3 Mixtures with varying σ

Simulated samples of N=100,000 stable values are exhibited in the following histograms. In all

the samples the location and the skewness parameters of the mixture are: δ1 = 1, δ2 = 40,

β1 = β2 = 1.
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Figure 27: Standard stables mixtures, with equally weighted components.
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Figure 28: Standard stables mixtures, with unequally weighted components.
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Appendix D - The Gibbs Sampler for a Stable Distributions

Mixture

Proof (Allocation Probabilities Posterior Distribution)

The posterior distribution of probabilities (p1, . . . , pL), given in Eq. (43), is a Dirichlet and is

derived in the following

π(p1, . . . , pL|θ,x,y, ν) =
L(x,y, ν|θ, p)π(θ)π(p)

∫

L(x,y, ν|θ, p)π(θ)π(p)dp
=

=

∏n
i=1

∏L
l=1 (plf(xi, yi|θl))

νil π(θ)π(p)
∫
∏n

i=1

∏L
l=1(plf(xi, yi|θl))νilπ(θ)π(p)dp

=

=

∏n
i=1

∏L
l=1 pνil

l π(p)
∫
∏n

i=1

∏L
l=1 pνil

l
Γ(δ)···Γ(δ)

Γ(L δ) pδ−1
1 , · · · , pδ−1

L dp1, · · · , dpL

=

=

∏n
i=1

∏L
l=1 pνil

l π(p)
∫
∏n

i=1
Γ(δ)···Γ(δ)

Γ(L δ)

∏L
l=1 pνil+δ−1

l dp1 · · · dpL

= (49)

=

∏n
i=1

∏L
l=1 pνil

l π(p)
∫
∏L

l=1 p
∑n

i=1 νil+δ−1
l

Γ(δ)···Γ(δ)
Γ(L δ) dp1, · · · , dpL

=

=
Γ (δ +

∑n
i=1 νi1) · · ·Γ (δ +

∑n
i=1 νiL)

Γ (δ L +
∑n

i=1(νi1 + . . . + νiL))
p
∑n

i=1 νi1+δ−1
1 · · · p

∑n
i=1 νiL+δ−1

L =

= DL(
n
∑

i=1

νi1 + δ, . . . ,
n
∑

i=1

νiL + δ) =

= DL(n1(ν) + δ, . . . , nL(ν) + δ)

where nl(ν) =
∑n

i=1 νil, with l = 1, . . . , L.

�

Proof (Allocation Variables Posterior Distribution)

The posterior distribution of the allocation variables given in Eq.(45) is a Multinomial and follows

from
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π(ν1, . . . , νn|θ, p,x,y) =
L(x,y, ν|θ, p)π(θ)π(p)

∫

L(x,y, ν|θ, p)π(θ)π(p)dν
=

=

∏n
i=1

{

∏L
l=1(f(xi, yi|θl))

νil
∏L

l=1 pνil

l

}

π(θ)π(p)
∫
∏n

i=1

∏L
l=1(f(xi, yi|θl))νil

∏L
l=1 pνil

l π(θ)π(p)dν
=

=
n
∏

i=1

∏L
l=1 (f(xi, yi|θl)pl)

νil

∫
∏L

l=1 (f(xi, yi|θl)pl)
νil dνi

= (50)

=
n
∏

i=1

L
∏

l=1

(

f(xi, yi|θl)pl
∑L

l=1 f(xi, yi|θl)pl

)νil

=

=
n
∏

i=1

ML(1, p∗1, . . . , p
∗
L)

where p∗l = f(xi,yi|θl)pl
∑L

l=1 f(xi,yi|θl)pl

, for l = 1, . . . , L.

�
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Appendix E - Bayesian Inference for Stable Distributions

Mixtures

E.1 Mixtures with varying α and β
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Figure 29: Simulated dataset, 1,000 values from 0.5S1.7(0.3, 1, 1) + 0.5S1.3(0.5, 30, 1)
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Figure 30: Gibbs sampler realisations and ergodic averages for α1 and α2.
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Figure 31: Gibbs sampler realisations and ergodic averages for β1 and β2.
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Figure 32: Gibbs sampler realisations and ergodic averages for p1 and p2.
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Figure 33: Acceptance rates for α1, α2, β1 and β2
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E.2 Mixtures with fixed α and varying β
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Figure 34: Simulated dataset, 1,000 values from 0.7S1.3(0.3, 1, 1) + 0.3S1.3(0.8, 30, 1)
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Figure 35: Gibbs sampler realisations and ergodic averages for α
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Figure 36: Gibbs sampler realisations and ergodic averages for β1 and β2.
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Figure 37: Gibbs sampler realisations and ergodic averages for p1 and p2.
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Figure 38: Acceptance rates for α, β1 and β2
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E.3 Stock price indexes
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Figure 39: Dataset of daily price returns
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Figure 40: QQ-plot of daily price returns distribution against a normal distribution with the

same mean and variance
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E.4 Bond Indexes
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Figure 41: Dataset of daily price returns
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Figure 42: QQ-plots of daily price returns distribution against a normal distribution with the

same mean and variance
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E.5 3-Months Interest Rates
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Figure 43: Dataset of daily interest rates
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Figure 44: QQ-plots of daily interest rates distribution against a normal distribution with the

same mean and variance
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