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Abstract

In many economic settings, the variable of interest is often a fraction or a propor-

tion, being defined only on the unit interval. The bounded nature of such variables

and, in some cases, the possibility of nontrivial probability mass accumulating at

one or both boundaries raise some interesting estimation and inference issues. In

this paper we: (i) provide a comprehensive survey of the main alternative models

and estimation methods suitable to deal with fractional response variables; (ii) pro-

pose a full testing methodology to assess the validity of the assumptions required

by each alternative estimator; and (iii) examine the finite sample properties of most

of the estimators and tests discussed through an extensive Monte Carlo study. An

application concerning corporate capital structure choices is also provided.
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1 Introduction

In many economic settings, the variable of interest () is often a proportion, being defined

and observed only on the standard unit interval, i.e. 0 ≤  ≤ 1. Examples include pension
plan participation rates, firm market share, proportion of debt in the financing mix of

firms, fraction of land area allocated to agriculture, and proportion of exports in total

sales. The bounded nature of such variables and, in some cases, the possibility of nontrivial

probability mass accumulating at one or both boundaries raise some interesting estimation

and inference issues. In particular, the standard practice of using linear models to examine

how a set of explanatory variables influence a given proportional or fractional response

variable is not appropriate in general, since it does not guarantee that the predicted

values of the dependent variable are restricted to the unit interval. Nevertheless, only

in the last decade have researchers begun to take seriously the functional form issues

raised by fractional data, proposing the so-called fractional regression models that take

into account the specific characteristics of fractional response variables; see Papke and

Wooldridge’s (1996) seminal paper.

Frequently, in applied work, researchers’ main interest lies in the estimation of the

conditional mean of , given a set of regressors.1 In this case, practitioners face two main

decisions: (i) which functional form to assume for the conditional expectation of ; and

(ii) which method to employ in the estimation of the resulting model. In addition, in

case of boundary observations, practitioners have also to decide whether one- or two-part

models should be used. So far, most authors have chosen to assume a logistic form for the

conditional mean of , without assessing whether alternative functional forms are more

appropriate, and to use the robust quasi-maximum likelihood (QML) method suggested

by Papke and Wooldridge (1996), without checking whether a more efficient estimation

method could be used. However, in both cases, there are a number of alternatives that

may be employed and various simple test procedures that may be used to assess their

adequacy. Similarly, the option between a single and a two-part model is usually made a

priori and, as far as we known, has never been tested.

In this paper we survey the main alternative regression models and estimation meth-

ods that are available for dealing with fractional response variables and propose a full

1Other examples include the estimation of quantiles for fractional data, recently discussed in Machado

and Santos Silva (2008).

2



testing methodology to assess the validity of the assumptions required by each estimator.

We briefly discuss tests for distributional assumptions and examine in detail tests for con-

ditional mean assumptions, which may be also used for choosing between one-part and

two-part models. In addition to the tests that are commonly employed in the econometrics

literature (RESET tests) or in the statistics literature of binary models (goodness-of-link

tests), we suggest a new class of tests that are valid for testing the correct specification

of any conditional mean model (including two-part models) and investigate the applica-

tion of non-nested tests in this framework. We provide an integrated approach for all

conditional mean tests, implementing all of them as Lagrange Multiplier (LM) tests for

omitted variables, which are calculated using simple artificial regressions.

To the best of our knowledge, no simulation study concerning fractional response vari-

ables has ever been undertaken. Therefore, in this paper we also carry out an extensive

Monte Carlo simulation study that evaluates the finite sample properties of most of the

estimation methods and tests discussed in the paper under many alternative data gener-

ating processes. To illustrate the usefulness in empirical work of the various techniques

discussed in the paper, we apply some of them to the analysis of corporate capital struc-

ture decisions, where the variable of interest is usually a leverage (debt to capital assets)

ratio, which is defined only on the unit interval and is often null for many firms.

The paper is organized as follows. Section 2 describes the notational framework and

discusses the main issues raised when the variable of interest is fractional. Section 3 exam-

ines the main alternative regression models and estimation methods that are commonly

used with fractional response variables. Section 4 discusses some specification tests for

those models and methods. The Monte Carlo simulation study is described in section

5. Section 6 is dedicated to the empirical application. Finally, section 7 contains some

concluding remarks and suggestions for future research. An appendix summarizing some

practical procedures for dealing with fractional responses is also provided.

2 Framework

Consider a random sample of  = 1   individuals and let  be the fractional variable

of interest, 0 ≤  ≤ 1, and  a vector of  covariates. Let  be the vector of parameters

to be estimated and  (| ) denote the conditional density of , which may be known
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or unknown.

For many years, three main approaches have been followed to model fractional response

variables. The first of them, still used by many empirical researchers, is simply to ignore

the bounded nature of  and assume a linear conditional mean model for :

 (|) = . (1)

However, given that  is strictly bounded from above and below, it is in general unreason-

able to assume that the effect of any explanatory variable is constant throughout its entire

range. Moreover, this linear specification cannot guarantee that the predicted values of 

lie between 0 and 1 without severe constraints on the range of  or ad hoc adjustments

to fitted values outside the unit interval.

Aware of these problems, some empirical researchers opted for assuming the logistic

relationship

 (|) = 

1 + 
, (2)

which is indeed a natural choice for modelling proportions since it ensures that 0 

 (|)  1. However, instead of estimating (2) directly, which would require some

nonlinear technique, most authors prefer to estimate by least squares the log-odds ratio

model defined by



µ
log



1− 

¯̄̄̄


¶
= , (3)

which basically corresponds to the linearization of the equation that results from solving

 = 
±¡
1 + 

¢
with respect to . This approach has two main drawbacks. On the one

hand, from (3) it would not be straightforward to recover  (|) and, thus, to interpret
the estimates of , which would still be the main interest of the analysis; see inter alia

Papke and Wooldridge (1996) for details. On the other hand, the transformed dependent

variable in (3) is not well defined for the boundary values 0 and 1 of , requiring ad

hoc adjustments if such values are observed in the sample (such as adding an arbitrarily

chosen small constant to all observations of ).

Finally, when there are many observations at the upper and/or lower limits of the

response variable, it is relatively common to use tobit models for data censored at one

and/or zero. Again, there are some problems with this approach. First, only in the

two-limit tobit model are in fact the predicted values of  restricted to the unit interval.

However, that model can only be applied when we have observations in both limits, which
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often is not the case. Second, conceptually, as some authors argue (e.g. Maddala 1991), a

tobit model is appropriate to describe censored data in the interval [0,1] but its application

to data defined only in that interval is not easy to justify: observations at the boundaries

of a fractional variable are a natural consequence of individual choices and not of any type

of censoring. Third, the tobit model is very stringent in terms of assumptions, requiring

normality and homoskedasticity of the dependent variable, prior to censoring.

Given the limitations of these models, some alternative approaches that account for

the bounded nature of the variable of interest have recently been proposed. Some of them

can only be used when there are no observations at the boundaries, while others may

also be employed when one or both the limits are observed with a positive probability.

However, all of them have in common the utilization of functional forms for the conditional

mean of  that enforce the conceptual requirement that  (|) is in the unit interval. In
the next section we discuss the main alternative functional forms and regression models

suggested in prior research.

3 Regression models for fractional response variables

Two main approaches for modelling fractional data without boundary observations have

been proposed so far. The first only requires the correct specification of the (nonlinear)

conditional expectation of the fractional response variable. The second alternative is a

fully parametric approach, where a particular conditional distribution is assumed for the

fractional dependent variable. Only the first approach can also be, in general, applicable

to cases where there is a finite number of boundary observations, although in such cases

it is often a better choice to use a two-part model, where first a discrete choice model is

assumed to describe the fact that  is a boundary observation or not, and then, only for

those individuals with  ∈ (0 1), a conditional mean or a parametric model is employed.
Next, we discuss these three alternative approaches and discuss in which cases ‘one-part’

or two-part models should be used for modeling fractional responses characterized by a

large cluster of data at zero.
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3.1 Nonlinear models for the conditional mean

The simplest solution for dealing with fractional response variables only requires the as-

sumption of a functional form for  that imposes the desired constraints on the conditional

mean of the dependent variable:

 (|) =  () , (4)

where  (·) is a known nonlinear function satisfying 0 ≤  (·) ≤ 1. This approach was
first formally proposed by Papke and Wooldridge (1996), which suggested as possible

specifications for  (·) any cumulative distribution function. An obvious choice for  (·)
is the logistic function (2) which, however, instead of being first linearized as discussed

above, must be directly estimated using nonlinear techniques.

In Table 1 we present some popular choices for  (·) and corresponding derivatives
with respect to the index ,  () =

()


, and the so-called link functions,  (), which

will be defined later on. As illustrated in Figure 1, while the logistic, standard normal,

and Cauchy specifications for  (·) are symmetric about the point 05 and, consequently,
approach 0 and 1 at the same rate, the loglog and complementary loglog models are not

symmetric: the former increases sharply at small values of  (·) and slowly when  (·) is
near 1, while the latter exhibits the opposite behaviour. The Cauchy distribution presents

the heaviest tails, which implies that this specification is more robust to outliers than the

logistic and standard normal formulations.

Table 1 about here

Figure 1 about here

The model defined by (4) may be consistently estimated by nonlinear least squares

(NLS), as in Hermalin and Wallace’s (1994) empirical application, or, as suggested by

Papke and Wooldridge (1996), by QML. The latter authors proposed a particular QML

method based on the Bernoulli log-likelihood function, which is given by

 () =  log [ ()] + (1− ) log [1− ()] . (5)

As the Bernoulli distribution is a member of the linear exponential family (LEF), the

QML estimator of  defined by

̂ = argmax


X
=1

 () (6)
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is consistent and asymptotically normal, regardless of the true distribution of  conditional

on , provided that  (|) in (4) is indeed correctly specified (see Gourieroux, Monfort
and Trognon 1984 for details). Moreover, see Papke and Wooldridge (1996), there are

some cases where this QML estimator is efficient in a class of estimators containing all

LEF-based QML and weighted NLS estimators. The asymptotic distribution of the QML

estimator is given by
√

³
̂ − 0

´
→ N (0  ) , (7)

where  = −1−1, with  =  [−∇0 ()] and  =  [∇ ()∇0 ()]. Con-

sistent estimators for  and  are given by ̂ = −1P

=1 ̂
2
 
0


h
̂

³
1− ̂

´i−1
and

̂ = −1P

=1 ̂
2
 ̂
2
 
0


h
̂

³
1− ̂

´i−2
, respectively, where ̂ = 

³
̂
´
, ̂ = 

³
̂
´

and ̂ =  − ̂.

For some examples of applications where these methods have been employed, see Haus-

man and Leonard (1997), Wagner (2001), and Czarnitzki and Kraft (2004), who use the

QML method based on the logistic specification to estimate regression models for, respec-

tively, television rating on NBA games, the proportion of exports in a firm production,

and the share of turnover with new and improved products. An earlier application, based

on NLS and the cumulative normal function, may be found in Hermalin and Wallace

(1994).

3.2 Parametric models: the beta fractional regression model

Even when interest is confined to the parameters of the conditional mean function (4),

in addition to assuming a given functional form for  (|) the researcher may be also
willing to specify the conditional distribution  (| ) in order to obtain more efficient
estimators. There are several statistical distributions that are appropriate for data con-

fined to the unit interval and, hence, may be used in this context. However, all the most

commonly used distributions suffer from two drawbacks: (i) as they do not belong to the

LEF, the resulting estimators may be non-robust to deviations from the assumed distri-

bution; and (ii) they are defined only in the open interval (0,1) and, therefore, cannot be

used when there are limit observations.

Due to its known flexibility that allows a great variety of asymmetric forms, the most

popular choice for  (| ) is the beta distribution; see inter alia Brehm and Gates

(1993), Haab and McConnell (1998) and Paolino (2001) for some applications of the beta

7



fractional regression model.2 Although the beta distribution has been used extensively in

statistics for more than a century, the literature on the beta regression model is scarce

and very recent. Indeed, only in the past decade does the beta regression model seem to

have been used for the first time, see inter alia Brehm and Gates (1993). Their approach

was based on the standard beta density function, which is given by

 (;  ) =
Γ (+ )

Γ ()Γ ()
−1 (1− )

−1
, (8)

where Γ (·) denotes the gamma function, 0    1 and   0 and   0 are shape para-

meters, both of which were specified by Brehm and Gates (1993) as exponential functions

of the covariates. However, estimating a covariate’s relationship to a shape parameter is

rarely of interest. Therefore, the most recent approaches to the beta regression model

work with a different parameterization of the beta density, the same that we adopt in this

paper.

As found independently by Paolino (2001) and Ferrari and Cribari-Neto (2004), the

interpretation of the parameters of the beta regression model is greatly simplified if a

mean-dispersion parameterization of the beta density is used. Let  =  and  =

(1− ). Then, it follows that

 (; ) =
Γ ()

Γ ()Γ [(1− )]
−1 (1− )

(1−)−1
, (9)

which implies

 () =


+ 
=  (10)

and

  () =


(+ )
2
(+  + 1)

=
 (1− )

+ 1
, (11)

so that  is the mean of the response variable and  can be interpreted as a precision

parameter in the sense that, for fixed , the larger the value of , the smaller the variance

of . A similar approach was followed by Haab and McConnell (1998) and Kieschnick

and McCullough (2003), which, however, kept  in the model instead of introducing the

precision parameter.

Based on this approach, two different beta regression models have been proposed.

In the simplest case, we simply assume  =  () as in the models discussed in the

2The only alternative to the beta regression model considered so far is based on the simplex distri-

bution developed by Barndorff-Nielsen and Jorgensen (1991). See Song and Tan (2000) and Kieschnick

and McCullough (2003) for applications of this distribution in a regression framework.
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previous section and treat  (or ) as a nuisance parameter. Alternatively, considering

that a researcher may be interested in analyzing whether a variable contributes to the

variance of  beyond its effect upon the mean, Paolino (2001) and also Smithson and

Verkuilen (2006) assume  =  () and  = exp (), where  is a set of independent

variables, potentially distinct from those included in , and  is a vector of parameters. In

both cases, consistent and efficient estimators for the parameters of interest are obtained

by maximizing the log-likelihood function based on (9) with respect to  and  or . The

asymptotic distribution of the resulting ML estimators is similar to that given in (7) but

with  defined as the information matrix, which corresponds simply to either −1 or .

3.3 Two-part models

The parametric model described in the previous section is not defined at the boundary

values of fractional response variables. Moreover, although most conditional mean models

may be used in applications where some portion of the sample is at the extreme values

of 0 and/or 1, this may not be the best option for modelling cases where the number

of corner observations is large. For such cases, where the observations at one or both

boundaries occur with too large a frequency than seems to be consistent with a simple

model, a better approach may be the employment of two-part models, where the discrete

component is modelled as a binary or multinomial model and the continuous component

as a fractional regression model.3

In this framework, three distinct situations may arise, depending on whether the

outcomes are restricted to the intervals [0,1], (0,1] or [0,1). In this paper, for expository

purposes, we consider only the last case but adapting the model discussed below for the

other two cases is straightforward. We chose to focus our attention on the [0,1) case

because it is probably the most common one in Economics. Indeed, most of the examples

cited in the introduction of the paper, namely firm market share, proportion of debt in

the financing mix of firms, fraction of land area allocated to agriculture and proportion

of exports in total sales, may be modeled using the approach described next.

With two-part models for response variables observed on the interval [0,1), the first

part consists of a standard binary choice model and governs participation, i.e. the prob-

3These two-part, hurdle or discrete-continuous mixture models are relatively common in the econo-

metric literature of count data; see Mulhahy (1986) for a seminal paper.
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ability of observing a positive outcome. Define

∗ =

⎧⎨⎩ 0 for  = 0

1 for  ∈ (0 1)
(12)

Then,

Pr (∗ = 1|) =  (∗|) =  (1 ) , (13)

where 1 is a vector of variable coefficients and  (·) is, usually, one of the distribution
functions described in Table 1. The resulting model may be estimated by ML using the

whole sample.

The second part of the model governs positive choices, i.e. the magnitude of nonzero

outcomes. In this case, a function similar to that defined in (4) is also a valid specification:

 [|  ∈ (0 1)] = (2 ) . (14)

As before, (2 )may be estimated by QML or, if a conditional distribution is assumed

for , by ML. In both cases, estimation is based on the subsample that comprises only the

individuals with positive outcomes. For simplicity, we assume that the same regressors

appear in both parts of the model but this can relaxed and, in fact, should be if there are

obvious exclusion restrictions.

Noting that  (|) may be decomposed as

 (|) =  (|  = 0) · Pr ( = 0|) + [|  ∈ (0 1)] · Pr [ ∈ (0 1) |]

and that the first term on the right-hand side of this expression is identically zero, the

two-part model may be described simply by

 (|) =  [|  ∈ (0 1)] · Pr [ ∈ (0 1) |]
=  (2 ) ·  (1 ) , (15)

where its two components are to be estimated separately. Naturally, misspecification of

either (2 ) or  (1 ) leads to misspecification of the conditional mean (15). More-

over, comparing (4) and (15) shows that one-part and two-part decision mechanisms yield

different functional forms for the conditional mean. Hence, using (4) overlooking the two-

part decision mechanism produces a serious misspecification problem and leads to results

that are of little use: the parameters  appearing in (4) are a mixture of the parameters
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1 and 2 in (15) and have no clear interpretation. A similar misspecification problem

arises if the data are described by a one-part model, and a two-part model is used.

From (15), we can calculate the effect on  of a unitary change in :

 (|)


=
 (2 )


 (1 ) + (2 )

 (1 )


. (16)

Thus, the total change in  can be disaggregated in two parts: (i) the change in  of those

that have positive outcomes, weighted by the probability of having positive outcomes;

and (ii) the change in probability of having positive outcomes, weighted by the expected

value of  for those that have positive outcomes. This decomposition is similar to that

found by McDonald and Moffitt (1980) for the tobit model.

As both 1 and 2 are estimated separately, 1 (2 ) will have the typical as-

ymptotic distribution of ML (QML or ML) estimators. See Ramalho and Silva (2009)

and Cook, Kieschnick and McCullough (2008) for empirical applications of the two-part

fractional regression model using, respectively, conditional mean and beta models in the

second part.

3.4 One-part versus two-part models

As discussed above, there are many examples of fractional data characterized by a large

number of observations at zero. In such cases, practitioners have to decide whether one-

or two-part models should be used. Clearly, this decision depends crucially on the inter-

pretation placed upon the observed zeros. On the one hand, the zeros may be interpreted

as the result from an utility-maximising or a similar decision, in which case a one-part

model is the appropriate model; for an example, see Wagner (2001), who argues that

firms choose the profit maximizing volume of exports, which might be zero or a positive

quantity and, therefore, uses a one-part model to explain the exports/sales ratio. In other

cases, the zeros and the positive values may be best described by different mechanisms,

in which case it is more reasonable to model separately the participation and the amount

decisions using two-part models. For instance, consider the relationship between smoking

and cigarettes price (Madden 2008): while it is likely that some individuals decide not

to smoke no matter how cheap cigarettes are, it is expected that for the sub-sample of

smokers an increase in cigarette prices may lead to a reduction on the consumption of

cigarettes.
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In contrast to these examples, in many cases we cannot establish a priori, using only

theoretical economic arguments, whether one- or two-part models should be used. That

is, some of the competing theories may imply the use of one-part models, while others

may favour the use of two-part models. For an example of such a case, see the empirical

application described in section 6. Thus, in addition to the role of theoretical economic

reasoning in deciding between one- and two-part models, it is essential to have available a

set of statistical tests that might help discriminate between those models. However, to the

best of our knowledge, the option between a single and a two-part fractional regression

model has never been tested. In the next section we propose various specification tests

for fractional regression models, some of which may be used for choosing between one-

and two-part models.

4 Specification testing

The alternative estimators for fractional regression models described in the previous sec-

tion are based on different assumptions. Next, we analyze several statistics for testing

some of those assumptions and, thus, the statistical validity of those models. As all

models require the correct specification of the conditional mean of , we focus primarily

on functional form tests, i.e. tests for assessing assumption (4) in one-part models and

assumptions (13), (14) and (15) in two-part models. Note that, in spite of the functional

form assumed for the conditional mean of  being the basic assumption of any fractional

regression model, very rarely has it been tested in applied work. At the end of this section,

tests for assessing the distributional assumptions made in the parametric beta regression

model are also briefly discussed.

4.1 Tests for conditional mean assumptions

In this section we propose four alternative classes of tests for assessing conditional mean

assumptions. All those tests are valid for testing the functional form assumed for both

one-part models and the two components of two-part models. Therefore, to simplify the

exposition, below we focus on tests for 0 :  (|) =  () but their adaptation for

testing 0 :  (
∗|) =  (1 ) or 0 :  [|  ∈ (0 1)] = (2 ) is straightforward.

In addition, we show that one of the tests suggested may also be adapted for testing the
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full specification of two-part models, 0 :  (|) = (2 ) ·  (1 ).
The four classes of tests discussed below are the following: (i) RESET-type tests,

where polynomials in the fitted  values are included in  (·) to detect general kinds of
functional formmisspecification; (ii) goodness-of-link tests, which are based on generalized

link functions that incorporate one or more of the links associated with the competing  (·)
functions as particular cases; (iii) goodness-of-functional form tests, based on generalized

functional forms which encompass (·) as a special case; and (iv) generic non-nested tests,
where the alternative competing specifications for  (·) are tested one against the others
and which may also be used for testing the full specification of two-part models. To the

best of our knowledge, only the RESET test has already been applied in the framework

of fractional regression models.

Below, we provide an integrated approach for all tests, implementing all of them as

LM statistics for omitted variables, which are calculated using simple artificial regressions.

Therefore, before presenting each test in detail, we first discuss the general form of those

artificial regressions.

4.1.1 Artificial regressions for LM test statistics

All the four classes of conditional mean tests suggested in this paper may be interpreted as

tests for the omission of a -dimensional vector  in the model  (| ) =  ( + ),

where  is the vector of parameters associated to  and  (·) is the postulated functional
form. Under the null hypothesis 0 :  = 0,  is not relevant and  () is an appropriate

specification for  (|). As we show below, the only thing that distinguishes each one of
the LM tests proposed is the composition of the vector . To test for 0 :  = 0, all the

LM tests may be evaluated at NLS, QML or ML estimators and have a 2 distribution.

According to the estimator considered, different the artificial regression that is more

appropriate to compute the tests.

For the case of ML estimation of the binary component of two-part models, Davidson

and MacKinnon (1984) show that an LM statistic for the omission of  with good small-

sample properties may be simply computed as  = , where  is the explained

sum of squares of the auxiliary regression

̃ = ̃∗ + , (17)

̃ = ̂̂, ̃ = ̂̂, ̂ =
h
̂
³
1− ̂

´i−05
, ·̂ indicates evaluation under 0 at ̂ =

³
̂ 0
´
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and ∗ = (0 0). This artificial regression may also be used for testing the functional

form of one-part or the second component of two-part fractional regression models by

computing  = 2, where 2 is the constant-unadjusted -squared from regression

(17), if assumption (16) of Papke and Wooldridge (1996) is satisfied, that is   (| ) =
 () [1− ()],   0; see also Wooldridge (1991a). This is the case when these tests

are evaluated at ML estimators based on the beta distribution, under which  = (1 + )
−1
,

see (11).

Evaluating the tests at ML estimators based on the beta model has the drawback of

requiring a particular heteroskedasticity assumption for the conditional variance of . If

this assumption fails, the tests may lead to the rejection of 0 even though  (|) is
correctly specified. Therefore, in general, it is preferable to evaluate the tests at QML or

NLS estimators and compute heteroskedasticity-robust LM statistics. In the former case,

the tests may be calculated as  =  = −, where  is the sum of squared
residuals from the artificial regression

1 = ̃̃11 + ̃̃22 + + ̃̃ +  (18)

and ̃ are the residuals that result from regressing each element ̃,  = 1   , on the

entire vector ̃; see Wooldridge (1991a,b) and Papke and Wooldridge (1996) for details.

In the NLS case, a similar computation may be used for the LM statistic but based on

the artificial regression

1 = ̂̂11 + ̂̂22 + + ̂̂ +  (19)

which differs from the previous one by setting ̂ = 1; see Wooldridge (2002, p. 368).

4.1.2 RESET-type tests

The RESET test was proposed originally by Ramsey (1969) as a general test for functional

form misspecification for the linear regression model but, as shown by Pagan and Vella

(1989), it can be applied to any type of index models. Indeed, using standard approxima-

tion results for polynomials, it can be shown that any index model of the form  (|) =
 () can be arbitrarily approximated by 

³
 +

P

=1  ()
+1
´
for  large enough.

Therefore, testing the hypothesis  (|) =  () is equivalent to test for  = 0 in the

augmented model  (| ) =  ( + ), where  =

∙³
̂
´2

 
³
̂
´+1¸

. The first
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few terms in the expansion are the most important and, in practice, only the quadratic

and cubic terms are usually considered.

4.1.3 Goodness-of-link tests

Testing the functional form  (·) is equivalent to test the so-called ‘link’ function. The
link function, from now on denoted by  (·), is a widely used concept in the generalized
linear models (GLM) literature, and may be simply defined as the function that relates

the linear predictor  to the conditional expected value  =  (|), that is  () = ;

see McCullagh and Nelder (1989) for details. Thus, to each particular link function  ()

corresponds a different functional form  () and vice-versa. The link functions for the

cauchit, logit, probit, loglog and complementary loglog functional forms were given in

Table 1.

In the GLM framework, the most common approach to test the adequacy of a given

link function involves the construction of a generalized link function indexed by some

vector of parameters , which includes the hypothesized link function as a special case

for some specific values of . Following Pregibon (1980), let  (;) be a generalized link

function that embeds both the hypothesized link,  () =  (;), and the (unknown)

true link, 0 () =  (;0). A first-order Taylor series expansion of  (;0) around 

yields the approximation

 (;0) '  (;) +∇ (;) (0 − ) . (20)

Replacing the correct link function  (;0) by  and solving for  (;), gives rise to

the following approximation for the postulated link:

 () =  + , (21)

where  =  − 0 and

 = ∇ (;) , (22)

which are usually known in the GLM literature as carrier functions. If the assumed link

function is correct, then  = 0 and  = 0.

So far, goodness-of-link tests for 0 :  = 0 have been directly based on (21) and

used exclusively with binary models estimated by ML. Here, in order to allow straightfor-

ward computation of robust versions based on NLS or QML estimation, we suggest the
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implementation of those tests using the LM statistics outlined above. That is, instead

of working directly with (21), we test for the relevance of  in the generalized functional

form  (| ) =  ( + ) that corresponds to the approximate link function (21).

The GLM literature provides many alternative generalized link functions, especially

for the logit model. In this case, we have available, among others, the generalizations

proposed by Prentice (1976), Pregibon (1980), Aranda-Ordaz (1981), Whitemore (1983),

Stukel (1988) and Czado (1994). In contrast, only a few generalizations for the other

specifications analyzed in this paper have been proposed so far, such as Stukel’s (1988)

model that also encompasses the probit, loglog, and complementary loglog links, and

Koenker and Yoon’s (2009) augmented model that nests the cauchit link. In the simulation

study of section 5 we merely consider tests based on Stukel’s (1988) and Koenker and

Yoon’s (2009) generalized link functions, since the former is the most encompassing one

and the latter is the only one that allows the assessment of cauchit models. The carrier

functions for these tests for the cauchit, logit, probit, loglog and complementary loglog

specifications are, respectively,

 = ∇()
−1 () |=1

 =

∙
05
³
̂
´2

(̂≥0) ; −05
³
̂
´2

(̂≤0)

¸
 =

∙
1

0165

µ
ln



1− 
−0165̂ − ̂

¶
(≥0) ;

1

0165

µ
ln



1− 
0165̂ + ̂

¶
(≤0)

¸
 =

½
− 1

0037

∙
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1− 

³
1 + 0037̂

´
− ̂

¸
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1
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1− 
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∙
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4.1.4 Goodness-of-functional form tests

While each goodness-of-link test is valid for testing the functional form of particular

fractional regression models, the two tests that we propose next may be applied to test

the specification of any model. As the new tests are based on direct generalizations

of  (), we call them ‘goodness-of-functional form tests’, although they may be also

interpreted as goodness-of-link tests, as shown next. We first present the two generalized

functional forms proposed and discuss briefly their characteristics, and then derive the

corresponding link functions. Following the approach of the previous section, we obtain

the resulting carrier functions  in (22), which in this case can be substantially simplified.
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The first generalized functional form proposed extends for other models a general-

ization of the type that is usually employed to introduce asymmetry in the logit model,

which consists simply on raising the logit functional form to a positive constant . See

inter alia Poirier (1980), Smith (1989) and Nagler (1994), who called the resulting model

generalized logistic model, Burrit model and scobit model, respectively. In this paper we

propose applying this extension of the logit model to any functional form  (·):

 (|) =  ()

, (23)

where   0 such that 0   (|)  1. As (23) describes only some particular forms of
asymmetry, we also propose the alternative specification

 (|) = 1− [1− ()]

, (24)

where the form of asymmetry is complementary.

Figure 2 contains representations of both (23) and (24) for several values of  for the

logit and loglog cases. In (23) the curve of the functional form is shifted to the right and

to the left for   1 and 0    1, respectively, the impact being more substantial on the

left tail. It is clear that the behaviour of the curves described by (24) is complementary

to that of (23). As both (23) and (24) reduce to  (·) when  = 1, testing whether  ()
is the correct specification of  (|) corresponds to test for 0 :  = 1 in both cases.

Figure 2 about here

Models (23) and (24) give rise to the generalized link functions  (;) = 
³

1


´
and

 (;) = 
h
1− (1− )

1


i
, respectively, for  =  (|). Using the procedures described

in the previous section, two new goodness-of-link tests for checking the relevancy of carriers

 given in (22) may be straightforwardly derived. In this case, as we are testing for  =

1, those carriers may be greatly simplified, not involving the calculation of link functions

or its derivatives. Define ∗ as the argument of  (;) such that  (;) =  (∗), where

∗ = 
1
 and ∗ = 1 − (1− )

1
 for models (23) and (24), respectively. As the carriers

(22) may be written as  = ∇∗ (
∗) |=1∇

∗|=1 and it is straightforward to show that
∇∗ (

∗) |=1 = [∇|=1]−1 = ̂−1 and ∇
∗|=1 = ∇|=1, they can be simplified to

 = ∇|=1̂−1, (25)
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where ∇|=1 = ̂ ln
³
̂
´
and ∇|=1 = −

³
1− ̂

´
ln
³
1− ̂

´
for tests based on,

respectively, (23) and (24).

Analyzing the structure of (25), it is clear that among the functional forms considered

in this paper and described in Table 1, the tests based on (23) and (24) cannot be applied

to, respectively, loglog and complementary loglog models when the index includes a con-

stant term. Indeed, in such cases  = −1, since ̂ = −̂−
−̂

and ̂ = ̂−
̂

equal,

respectively, −̂ ln ̂ and
³
1− ̂

´
ln
³
1− ̂

´
.

When a logit specification is used for  (), the carrier functions  used separately

by our two tests coincide with the two carrier functions that define Prentice’s (1976)

goodness-of-link test for logit models, which were derived from a generalized link function

indexed by two additional parameters (12). Actually, in the logit case, Prentice’s

(1976) generalized link function incorporates as special cases both (23), for 2 = 1, and

(24), for 1 = 1. Therefore, on the one hand, Prentice’s (1976) approach may be seen

as a generalization of ours in the logit case and, on the other hand, his approach is more

limited since, unlike ours (with the two exceptions already referred to), it cannot be easily

applied to other possible specifications for  ().

4.1.5 P test for non-nested hypotheses

As the alternative functional forms available for fractional regression models are non-

nested, the various test procedures for non-nested regression models proposed in the

econometric literature can be used to test alternative competing specifications for  (|).
Here, we focus on the  test statistic proposed by Davidson and MacKinnon (1981),

which is probably the simplest way of comparing nonlinear regression models; see inter

alia Gourieroux and Monfort (1994) for other alternatives. As far as we known, the 

test has never been applied in a context similar to ours before; see, however, the recent

paper by Santos Silva, Tenreyro and Windmeijer (2008) for a related approach.

Suppose that () and  () are admissible functional forms for  (|) and assume
homoskedasticity and NLS estimation. In this framework, as shown by Davidson and

MacKinnon (1981), testing0 :  () against1 :  (), i.e. checking whether () is

an appropriate specification for  (|) after taking into account the information provided
by the alternative model, is equivalent to test the null hypothesis 0 : 2 = 0 in the
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auxiliary regression ³
 − ̂

´
= ̂1 + 2

³
̂ − ̂

´
+  (26)

where 2 is a scalar parameter and ·̂ means evaluation at the NLS estimators ̂ or ̂, which
are obtained by estimating separately the models defined by  (·) and  (·), respectively.
To test 0 :  () against 1 :  (), we need to use another  statistic, which is

calculated using a similar auxiliary regression to (26) but with the roles of the two models

interchanged. Comparing (17) and (26), we see that testing for 0 : 2 = 0 in the latter

equation corresponds to test for the relevance of  =
³
̂ − ̂

´
̂−1 in  ( + ). With

fractional regression models, which are typically heteroskedastic and usually are estimated

by QML or ML, it is in general preferable to test the relevance of this  variable as

explained in section 4.1.1.

In contrast to the previous classes of tests, which may only be applied to assess the

correctness of the functional form assumed in one-part models or in the two separate

components of two-part models, the  test may also be applied to test the full specifi-

cation of two-part models,  (|) = (2 ) ·  (1 ), both against one-part models,
 (|) =  (), and other two-part models, say  (|) =  (2 ) ·  (1 ), and
vice-versa. To check whether  (|) =  () is appropriate after taking into account

the information provided by the alternative  (|) = (2 ) · (1 ) and vice-versa,
the artificial regression (26) must be re-expressed as³

 − ̂
´
= ̂1 + 2

³
̂ · ̂ − ̂

´
+  (27)

and ³
 − ̂ · ̂

´
= ̂̂11 + ̂̂12 + 2

³
̂− ̂ · ̂

´
+ , (28)

respectively, where ̂ and ̂ are the partial derivatives of  and  with respect to,

respectively, 1 and 2 . Similarly, to check whether  (|) =  (2 ) ·  (1 )
is appropriate after taking into account the information provided by the alternative

 (|) = (2 ) ·  (1 ) and vice-versa, the artificial regression of interest are³
 − ̂ · ̂

´
= ̂̂11 + ̂̂12 + 2

³
̂ · ̂ − ̂ · ̂

´
+  (29)

and ³
 − ̂ · ̂

´
= ̂̂11 + ̂̂12 + 2

³
̂ · ̂ − ̂ · ̂

´
+ , (30)

respectively, where ̂ and ̂ are the partial derivatives of  and  with respect to, respec-

tively, 2 and 1 .
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4.2 Tests for distributional assumptions

Testing the correct specification of  (|) is clearly the most important issue in fractional
regression models. However, once the functional form is selected, it is also important to

examine whether the beta distribution is appropriate for modeling the fractional response

variable in order to obtain efficient ML estimators. The standard test for misspecifica-

tion of a parametric likelihood function is the information matrix (IM) test introduced

by White (1982), which, however, can be very burdensome to compute. Moreover, the

simplified OPG version proposed by Chesher (1983) and Lancaster (1984) possesses an

asymptotic distribution that is, in general, a very poor approximation to its finite-sample

distribution. Therefore, many other forms of the IM test have been proposed and most

authors advocate the use of bootstrap-based critical values. The investigation of the per-

formance of alternative IM tests in the framework of the beta fractional regression model

would deserve a paper on its own and, hence, we do not pursue this line of research here.

In the empirical application carried out later on, we use the bootstrapped OPG informa-

tion matrix test analyzed by Horowitz (1994), which he found to work very well in tobit

and binary probit models. In our case, in each bootstrap replication we generate values

for  by random sampling from the beta distribution based on the actual values of  and

the ML parameter estimates from the actual sample.

5 Monte Carlo simulation study

In this section we investigate the finite sample performance of most of the estimators and

tests discussed throughout this paper in a Monte Carlo simulation study. All experiments

consider a single covariate 1 generated from the normal distribution with mean zero

and variance 1 and are based on 10 000 replications, which were performed using the 

software.

5.1 Performance of alternative estimation methods

In our first set of experiments we compare the performance of three alternative estimation

methods (NLS, QML, and ML) in terms of bias and precision under the assumptions that

both the functional form of the conditional mean and the distribution of  given  was

correctly specified by the analyst. We consider four different functional forms (cauchit,
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logit, probit, and loglog) for the conditional mean of the response variable and generate

samples of  = {100 200 500 1000} according to the beta distribution.
In order to mimic a wide class of datasets that may be available for empirical work,

for each functional form assumed for  (|) we simulated samples characterized by dif-
ferent means, variances and levels of asymmetry; see the histograms in Figure 3 for sam-

ples of 500000 observations generated using the true value of the parameters of interest

 = (0 05) and the shape parameter . The distribution of the data is approximately

symmetric for 0 = 0, apart from the loglog case, and is clearly asymmetric for the other

values considered for 0. Increasing , the variance of  given  is reduced as well as the

weight of observations with small values of , which makes the distribution of  range

from U- to a inverted-U shaped curves for 0 = 0. For loglog models, instead of fixing

0 = −1 as in the other models, we considered 0 = −05, so that the distribution of
 given  was more similar to that of the other models.

Figure 3 about here

Table 2 reports the mean and standard deviation across replications of the alternative

estimators of 1 for the experiments illustrated in Figure 3 for  = {200 500}, while
Figure 4 displays the RMSE of those estimators for a shape parameter  ranging from 05

to 20 for  = {100 500}. We find that, in terms of bias, the three estimators displayed a
very similar performance, being in general approximately unbiased. In all cases, the ML

estimator presents the smallest standard deviation and RMSE, while the QML estimator

is clearly more precise than the NLS estimator. However, Figure 4 suggests that those

differences vanish as  and  increase.

Table 2 about here

Figure 4 about here

Next, we generate the response variable according to the simplex distribution.4 The

shape parameter of this distribution was chosen in order to produce a similar range of

4The simplex density function is  (; ) =
exp


−05 (−)2

(1−)2(1−)2


√
2[(1−)]3

, 0    1,   0; see footnote 2

for some references on this distribution. Although not reported below, we also computed a ML estimator

based on the simplex distribution. The results obtained, which lead to similar conclusions to those

described in this paper for the ML estimator based on the beta distribution, are available from the

authors upon request.
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distributions to those obtained for the beta case; see Figure 5. In particular, the means and

variances are identical to those simulated before. As the generation of simplex-distributed

data is very time-consuming, we considered only the logit case. Table 3, which displays

various summary statistics for each estimator, clearly shows that the performance of the

QML and NLS estimators hardly changes relative to that documented in Table 2. In

contrast, the ML estimator based on the beta distribution is no longer unbiased. In fact,

despite the well known ability of the beta distribution to describe a variety of shapes,

as this distribution does not belong to the LEF, the beta ML estimators are not robust

to deviations from the assumed distribution. However, since in most cases its standard

deviation is again the lowest, the ML estimator still displays the smallest RMSE in some

cases for = 200. This advantage of the ML estimator seems to disappear as increases,

since for  = 500 its bias remains approximately unchanged, while the dispersion of all

estimators gets closer.

Figure 5 about here

Table 3 about here

5.2 Effects of the misspecification of the conditional mean

To analyze the effects of the misspecification of the conditional mean, we focus on QML

estimators, since they do not require distributional assumptions and performed better

than NLS estimators in the former experiments. Moreover, as the distribution assumed

for the data is irrelevant in QML estimation, we merely generate response data from the

beta distribution. As the QML estimators for  are not directly comparable for the four

different forms of  (|) under analysis, we measure the effects of assuming a misspecified
functional form by comparing the partial effects computed both for the model used for

generating the data and for the other three (misspecified) models.

The partial effects of a covariate  on the outcome are given by 
³
̂
´
̂, see Table

1, and their mean across replications is represented in Figure 6 for  = 500 and  = 5

for the {0 002 004  098 1} population quantiles of 1. Clearly, apart from cases

where a logit functional form is used in estimation but data is generated according to

the probit model and vice-versa, misspecification of the functional form may produce

very important distortions in the estimation of partial effects. In particular, note that
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the deviations between the partial effects estimated by cauchit and loglog models may be

tremendous. Nevertheless, the direction of the partial effects is always correctly estimated.

Figure 6 about here

In addition to measuring partial effects for individuals with specific characteristics, as

we did in Figure 6, in empirical work it is customary to present also the average response of

all individuals, −1̂
P

=1 
³
̂
´
, and the response of the average individual, 

³
̄̂
´
̂,

where ̄ denotes the mean of the covariates. In Table 4 we report the results obtained

for  = 500 and  = 5. The values underlined denote the partial effect estimated for

the true models. In the case of the response of the average individual, we achieve similar

conclusions to those of Figure 6, i.e. the bias can be very large in some cases. For example,

when  = (−05 05) and the loglog model is used to generate the data, the biases of the
partial effects estimated according to the cauchit, logit and probit model are, respectively,

41.5%, 11.9% and 7.5%. In contrast, the estimation of average sample effects seems to

be much more robust to misspecification of the functional form, especially when logit or

probit models are employed. Indeed, in these experiments the bias for these two models

is always less than 1%, while the maximum bias for the loglog and cauchit models is,

respectively, 3.5% and 10.0%.

Table 4 about here

5.3 Tests for the functional form when there are no boundary

observations

Given the results of the previous section, the selection of the correct functional form for

the conditional mean of  is clearly a very relevant issue in modelling fractional data.

Therefore, next we investigate the finite-sample properties of the four classes of tests

for conditional mean assumptions discussed before. In particular, we compute; (i) two

versions of the RESET test, RESET2 and RESET3, which are based on the addition of,

respectively, two and three powers of ̂ the first being the most widely used in empirical

work and the second the version automatically calculated by the package STATA in linear

models; (ii) a goodness-of-link test (GOL), either that of Koenker and Yoon (2009) for

cauchit models or that of Stukel (1988) for logit, probit and loglog models; (iii) the
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two tests for the goodness-of-functional form proposed in this paper based on the general

functional forms (23) and (24), which are designated, respectively, as GOFF1 and GOFF2;

and (iv) three non-nested  tests, which differ only on the alternative model considered

for testing each null hypothesis. We use the same design as in previous sections and,

again, focus on QML estimation and beta-distributed response variables.

Table 5 contains the results for the size analysis for  = {500 1000}. Clearly, ir-
respective of the version considered, the RESET test displays the poorest finite-sample

properties, its estimated size being different from the nominal size at the 5% level in

most of the cases simulated. The performance of the GOL test was also relatively modest

in logit and probit models characterized by an asymmetric distribution of the response

variable, being undersized in 11 out of the 12 cases analyzed. With regard to the  test,

its behaviour appears to be somewhat sensitive to the alternative hypothesis considered:

in some cases (e.g. 1 : Cauchit), it revealed some tendency to over-reject the null hy-

pothesis; in others, its performance was very good (e.g. 1 : Loglog). Finally, both the

GOFF tests exhibited estimated sizes very close to the nominal one in most cases.

Table 5 about here

The results of the power analysis are reported on Tables 6-9. In each table we display

the percentage of rejections of the three false null hypotheses considered for each one of

the four alternative models simulated. In general, the power of all tests increases when

the sample size or the level of asymmetry in the distribution of  (0 6= 0) increase or

the conditional variance of  decreases ( increases). All tests display very satisfactory

power properties in the two sets of cases where the differences between the functional

form assumed in the data generation and that used in the estimation are substantial: (i)

the true conditional mean is of the loglog form and one of the three symmetric models

is assumed (Table 9) and vice versa (last six columns of Tables 6-8); and (ii) both the

true and the hypothesized models are symmetric about  = 0 but the distribution of 

is asymmetric (all columns of Tables 6-8 relative to 0 = −1). In these two sets of cases,
the only (expected) exceptions to this good behaviour of all tests occur when the data is

generated according to a logit model and a probit model is estimated or, in some cases,

when the variability of  is very large ( = 1). Moreover, note that in these cases the

 test is, in general, the most powerful one and that, in spite of the fact that we are
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considering uncorrected powers, the GOFF tests (especially the GOFF1 version) display

better power properties than RESET tests in many experiments.

Table 6 about here

Table 7 about here

Table 8 about here

Table 9 about here

A very different scenario arises when we consider the remaining cases, that is when

both the true and the postulated models are symmetric about  = 0 and the distribution

of the response variable is also approximately symmetric (all columns of Tables 6-8 relative

to 0 = 0 except those concerning the loglog model). In this case, the power properties

of all tests are much more modest than in the previous experiments. In particular, the

GOFF tests have very low power, which is not surprising since both of them are based on

generalizations that introduce asymmetry in the cauchit, logit and probit models, which is

not present in these experiments. For similar reasons, the power of the  test is now much

lower when the alternative is the asymmetric loglog model instead of another symmetric

specification. In contrast, when two symmetric models are contrasted, the  test is again

the most powerful of all tests in most cases.

Overall, these experiments show that GOFF and  tests are indeed good alternatives

to the more popular RESET and GOL tests to assess conditional mean assumptions in

fractional regression models: the GOFF tests are the best in terms of size and often

they are among the most powerful tests, while the  tests, despite over-rejecting the true

null hypothesis in some cases, display clearly the best power properties in most cases.

However, in case the response variable is symmetrically-distributed, the GOFF tests have

the important drawback of failing too often to reject symmetric but ill-specified models

for the conditional mean of .

5.4 Tests for the functional form when there are boundary ob-

servations

Finally, we investigate the ability of the functional form tests to detect specification

failures in the conditional mean due to the estimation of one-part models when the data

generating process is governed by two-part models, and vice-versa. In this context, a

25



large number of combinations of functional forms for  (),  (1 ) and  (2 )

could have been considered but, both in terms of the data generating process and of the

null hypothesis to be tested, we restricted our attention to the case where a logit functional

form is adopted for  () in one-part models and for both  (1 ) and  (2 ) in

two-part models. Although this setup corresponds to a very simple case, it is probably the

most usual approach in applied work; see for example Cook, Kieschnick and McCullough

(2008) and Ramalho and Silva (2009).

In order to generate samples of fractional data with a given proportion of zero out-

comes, we used two distinct data generating processes. For one-part logit models, as the

ratio of a bounded integer variable and its upper limit  is a fractional variable, we first

generated a binomial-distributed variable ∗ with parameters  = 16 and mean  ()

and then obtained a fractional variable  ∈ [0 1] by calculating  = ∗. For two-part

logit models, we first generated a binary variable ∗ according to the functional form

specified for  (1 ) and then, only for the sampling units for which ∗ = 1, we used a

beta distribution based on  (2 ) and a shape parameter  = 15 for generating the

positive, fractional outcomes. In both cases, we considered  = {500 1000}.
Let 1 =

¡
10 11

¢
and 2 =

¡
20  21

¢
. We set 1 = 11 = 21 = 1 and chose

0 and 10 in such a way that the proportion of zero outcomes in each model was 10%,

30% or 50%. The value of the remaining parameter, 20, was chosen in order to obtain

identical values for the conditional mean and variance of  in both one-part and two-part

logit models. We computed two distinct sets of tests. On the one hand, we computed the

same tests considered in the previous section, which were applied separately to one-part

models and the two components of two-part models. On the other hand, we used the

 test to compare both one-part models and the full specification of two-part models

(and vice-versa) and alternative full specifications of two-part models. For computing

this test, we considered nine alternative full specifications for two-part models, each of

which corresponding to a different combination of the cauchit, logit and loglog functional

forms.

Table 10 reports the results obtained for the size analysis. As in the previous section,

the empirical size of the GOFF tests is not significantly different from the nominal one in

most cases, the GOL test is undersized most of the time, and the RESET statistics are

clearly oversized, especially the RESET3 version. With regard to the  test, on the one
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hand, it continues to display some tendency to over-reject the null hypothesis in some

cases and, on the other hand, it seems to be much less reliable when applied to binary

models and to be slightly under-sized when used to test alternative full specifications of

two-part models.

Table 10 about here

The finite-sample power properties of the tests are documented in Table 11. Note

that we have restricted this analysis to two simple cases: estimation of a one-part logit

model when the true model is a two-part logit model (first panel of Table 11); and (ii)

the opposite case (second panel). Again, most of the highest percentage of rejections of

the false null hypothesis is obtained by some versions of the  test. However, the power

of this statistic is very low when we test the full specification of the two-part logit model

against either alternative one-part models or other two-part models. This implies that

when using the  statistic for testing two-part models it will be better, in general, to

focus on the separate analysis of the two components of those models. With regard to

the other tests, all of them display very satisfactory power properties. Note that with

boundary observations the distribution of  will be, in general, asymmetric, and, hence,

the GOFF tests are particularly useful in this framework.

Table 11 about here

6 Empirical application: the determinants of corpo-

rate capital structure

In this section we apply the techniques described so far to the regression analysis of the

capital structure decisions of Portuguese small and medium enterprises (SMEs), that is

their option between debt and equity. First, we discuss the main characteristics of our

data and variables, then we discuss briefly some alternative capital structure theories, and

finally we present the econometric results of our analysis.

6.1 Data and variables

We consider as a measure of financial leverage the ratio of long-term debt (LTD, defined as

the total company’s debt due for repayment beyond one year) to long-term capital assets
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(defined as the sum of LTD and equity); see Rajan and Zingales (1995) for an extensive

discussion on this and other alternative measures of leverage and for a survey of capital

structure theories. We use the definition of SMEs adopted by the European Commission

(recommendation 2003/361/EC), including in this category enterprises that employ fewer

than 250 persons and have either an annual turnover not exceeding 50 million euros or

an annual balance sheet total not exceeding 43 million euros.

We use a subset of the data considered by Ramalho and Silva (2009), which included

also information on large firms. Our dataset is relative to the year of 1999 and comprises

4421 SMEs, among which 74.8% present a null leverage ratio. Other studies have also

documented that a substantial proportion of firms in most countries follow a zero-debt

policy; see inter alia Petersen and Rajan (1994), Brounen, Jong and Koedik (2005) and

Strebulaev and Yang (2007). The high percentage of firms that do not use debt at all

makes the standard practice of using linear regression models to explain capital structure

decisions (which is still used in most empirical studies) clearly inappropriate. Therefore,

a few authors (e.g. Rajan and Zingales 1995 and Cassar 2004) have opted for using a

tobit approach for data censored at zero. However, as we argue in section 2, the stringent

assumptions associated with the tobit model and the impossibility of using a two-limit

tobit model (there are no ‘zero-equity’ firms), make it clear that the use of fractional

regression models is a better option for modelling leverage ratios.

In all the alternative regression models considered below we used similar explanatory

variables to those employed by Ramalho and Silva (2009), although in some cases we

opted for different proxies: non-debt tax shields (NDTS), measured by the ratio between

depreciation and earnings before interest, taxes and depreciation; tangibility (TANGIB),

the proportion of tangible assets; size (SIZE), the natural logarithm of total assets; prof-

itability (PROFITAB), the ratio between earnings before interest, taxes and depreciation

and total assets; growth (GROWTH), the yearly percentage change in total assets; age

(AGE), the number of years since the foundation of the firm; liquidity (LIQUIDITY),

the sum of cash and marketable securities, divided by current assets; and four industry

dummies.
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6.2 Alternative one- and two-part capital structure theories

Up to date, most capital structure empirical studies have focussed on the use of one-part

models to explain leverage ratios, which follows directly from the fact that most capital

structure theories provide a single explanation for all possible values of leverage ratios.

This is the case, for example, of the two most popular explanations of capital structure

decisions, the trade-off and the pecking-order theories. According to the former, firms

choose the proportion of debt in their capital structure that maximizes their value, which

may imply for leverage ratios any value in the unit interval, including zero. Regarding

the latter, the pecking-order theory argues that firms do not possess an optimal capital

structure. Instead, the firm leverage at each moment merely reflects its external financing

requirements, which may be null or any positive amount. For more details, see the recent

survey by Frank and Goyal (2008).

In contrast to these traditional approaches, Strebulaev and Yang (2007), in a very

recent paper suggestively entitled “The mystery of zero-leverage firms”, argues that zero-

leverage behaviour is a persistent phenomenon and that standard capital structure theories

are unable to provide a reasonable explanation for it. Another interesting recent finding

about capital structure decisions is that while larger firms are more likely to have some

debt, conditional on having some debt, larger firms are less levered. In particular, Faulk-

ender and Petersen (2006) found that excluding zero-debt firms from leverage regressions

changes the sign of the coefficient associated to the variable size from positive to negative,

while Kurshev and Strebulaev (2007) argue that ‘the positive relationship (between firm

size and leverage) is an artifact of the presence of small unlevered firms in the economy.

When we control for unlevered firms, the relationship between firm size and leverage be-

comes slightly but statistically significant negative’. Clearly, firm size seems to affect in

an inverse way the decisions on: (i) to issue or not to issue debt; and (ii) (for those firms

that do decide to use debt) how much debt to issue.

Kurshev and Strebulaev (2007) put forward a theoretical explanation for these opposite

effects of firm size on leverage. They conjecture that it is the presence of fixed costs of

external financing, and the consequent infrequent refinancing of firms, that causes these

differences between small and large firms, since the former are much more affected in

relative terms. According to these authors: (i) small firms choose higher leverage at the

moment of refinancing to compensate for less frequent rebalancing, which explains why,
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conditional on having debt, they are more levered than large firms; (ii) as they wait longer

times between refinancings, small firms, on average, have lower levels of leverage; and (iii)

in each moment, there is a mass of firms opting for no leverage, since small firms may

find it optimal to postpone their debt issuances until their fortunes improve substantially

relative to the costs of issuance. Clearly, a two-part fractional regression model may be

the best option for modelling leverage ratios: first, a binary choice model is used to explain

the probability of a firm raising debt; then, a fractional regression model is employed to

explain the relative amount of debt issued by firms that do use debt. Indeed, with this

type of model the variable size (and others) is allowed to influence each decision in a

different fashion.

Based on these conjectures, Ramalho and Silva (2009) decided to use a two-part frac-

tional regression model to explain capital structure decisions. Cook, Kieschnick and

McCullough (2008) have also used a similar model but did not provide any theoretical

justification for their option. In both papers a logistic specification was adopted for the

two levels of the model. Ramalho and Silva (2009) considered uniquely QML estimation

and used only the RESET test to assess the specification of their model, while Cook,

Kieschnick and McCullough (2008) estimated a one-part model by QML and a two-part

model by ML (based on the beta distribution) and did not perform any test, using the

Spearman rank correlation between predicted and actual leverage ratios to choose their

final model.

Since both one- and two-part models provide plausible theoretical explanations for

capital structure decisions, next all the alternative formulations for one-part and two part

models and specification tests discussed before are applied to the analysis of the capital

structure decisions of Portuguese SMEs.

6.3 Econometric analysis

We consider five alternative specifications for the  (),  (1 ) and  (2 ) func-

tional forms: cauchit, logit, probit, loglog and complementary loglog. Given the existence

of zero outcomes, only conditional mean models may be used for  (). We consider

only QML estimation, since our simulation study revealed that in no case is its perfor-

mance inferior to that of NLS estimators. In two-part models,  (1 ) is estimated in

all cases by ML based on the Bernoulli distribution and  (2 ) is estimated by both
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Bernoulli-based QML and beta-based ML. The specification test strategy proposed in the

paper is then employed to select the best model(s).

Tables 12 and 13 report the results obtained for one-part and two-part models, respec-

tively. For comparison purposes, we report also the results obtained for a one-part linear

regression model. The tests that appear in Table 13 are relative to the specification of

the individual components of two-part models. In addition, for beta regression models we

report also the results of the bootstrapped OPG information matrix statistic described in

section 4.2, which was based on 999 bootstrap samples.

Table 12 about here

Table 13 about here

The first striking point to emerge from the analysis of these results is that all the

five QML/ML estimators considered for  (|),  (∗ = 1|) and  (|   0) produce
the same conclusions in terms of the sign and significance of the regression coefficients

in each model, with only one exception (in the one-part cauchit model the variable AGE

is not statistically significant). This result was somewhat expected since in Figure 6 we

had already found that misspecification of the functional form, although creating serious

distortions in the magnitude of partial effects, does not affect the correct estimation of

their direction. Similarly, in the fractional component of two-part models, using QML or

ML is indifferent in terms of the sign and significance of the regression coefficients but

not in terms of their magnitude: in almost all cases the absolute value of the coefficient

estimates yielded by the beta model are less than those obtained by the corresponding

conditional mean model estimated by QML. Moreover, ML estimators display the least

standard errors in almost all cases. Finally, note that the linear model is the only model

that indicates that the variable NDTS is statistically significant and that (apart from the

cauchit model) the variable AGE is not.

While the choice of a specific functional form for each one of the three conditional

means of  in analysis seems to be important only for calculating the magnitude of par-

tial effects, the choice between a one-part and a two-part model is clearly a very important

issue. Indeed, in the two-part model some variables are important only for one of the two

sequential leverage decisions made by firms (TANGIB, GROWTH, AGE and LIQUID-

ITY), while the variable SIZE displays opposite effects on the two levels of the model. If

our specification tests reveal that a two-part model is preferable over a single model, then
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the empirical evidence provided in this paper will clearly favour the recent theoretical

arguments put forward by both Strebulaev and Yang (2007) and Kurshev and Strebulaev

(2007) over traditional capital structure approaches.

The analysis of the results of the specification tests indicates clearly that only a few

specifications are correct. For one-part models, the hypothesis of correct specification of

the linear regression model is clearly rejected by all tests. Actually, only the loglog speci-

fication for  () is never rejected. Given that leverage ratios are clearly asymmetrically

distributed and that the number of zero outcomes is very large, a loglog functional form

would indeed be our first choice for a one-part model. With regard to two-part models,

in the first level, again, only one specification seems to be appropriate to describe the

probability of a firm using debt: the logistic functional form. In contrast, for explaining

 (|   0) all functional form tests fail to reject any of the five models estimated for

both QML and ML estimators. Similarly, the information matrix test provides no evi-

dence of the unsuitability of the beta distribution to describe the conditional distribution

of LTD. Therefore, given their superior efficiency properties, we consider only the ML

estimators for two-part models from now on.

Tables 12 and 13 also contain an 2-type measure for each model, which was computed

as the square of the correlation between the predicted and actual values of LTD and, thus,

is comparable across any model and estimation method. The values found for 2 are very

similar in most cases but nevertheless they give further evidence that the selected models

provide a better fit than or a similar fit to the competitor models. Indeed, the highest 2

in one-part and the first component of two-part models are displayed by the selected loglog

and logit models, respectively. On the other hand, the 2 of the alternative specifications

considered for the second stage of two-part models are virtually identical. Note also

that the 2 of the linear regression model is about 18% smaller than that of the one-part

loglog model, in spite of OLS choosing ̂ to maximize the 2 over all linear functions of the

covariates, while the QML/ML methods does not maximize it given the functional form

assumed in each case. Moreover, the linear regression model yields predicted outcomes

below zero for 7.6% of the firms in our sample, which is a clear indicator of its unsuitability

for modeling leverage ratios.

Given that the results of the functional form tests that assess separately  (),

 (1 ) and  (2 ) suggest that 1 one-part model and 5 alternative two-part models
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may be suitable to describe our data, in the next stage of our specification analysis we

applied the versions of the  test that allow for the testing of one-part models against

the full specification of two-part models, and vice-versa, and of alternative full specifi-

cations for two-part models, one against the others. We tested only the specifications

previously selected by the other tests. In Table 14 we report the p-values of the  test

for the one-part loglog model against 25 alternative two-part models and for each one

the five two-part models previously selected against 5 alternative one-part models and 24

alternative two-part models.

Table 14 about here

The first panel of Table 14 shows clearly that one-part models are not at all appropriate

for modelling leverage ratios. Indeed, the correct specification of the one-part loglog model

was rejected against most of the alternative two-part models considered.5 On the other

hand, the new set of tests provided no evidence against some of the five alternative

two-part models selected before, which allows us to conclude that two-part models are,

undoubtedly, the best choice for modelling capital structure decisions. Noting that the

two-part models that use a probit or loglog specification in their second level are never

(the latter) or almost never (the former) rejected, we opted for them as the best two-part

models for explaining the capital structure decisions of Portuguese SMEs.

In Table 15 we present estimates of the partial effects for the two models selected. We

computed partial effects for the first and second-part of the model, given by
 Pr(∗=1|)


=

1 (1 ) and
[|∈(01)]


= 2 (2 ), respectively, and total partial effects, given

by (16). These three types of partial effects describe the effect of an unitary change in

the covariate  on the conditional probability of using LTD, on the proportion of LTD

used by the firms that already use it, and on the proportion of LTD used by all firms,

respectively. In each case, we calculated average sample effects and population partial

effects evaluated at the mean of the covariates (̄)6, which were calculated as, respectively,

[ = ̂1
1


P

=1 
³
̂1

´
and [ = ̂1

³
̄̂1

´
for

 Pr(∗=1|)


and similarly for

the other partial effects. As seen in Table 15, the two alternative models yield very similar

5Although not reported, application of similar versions of the  test to other one-part models con-

firmed categorically their unsuitability for describing the Portuguese SMEs capital structure choices.
6Except for the industry dummies. We set the dummy relative to the industry comprising the highest

percentage of firms at one and the others at zero.
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total partial effects. Note that the total partial effect of the variable  is positive,

which is in accordance with the positive relationship between firm size and leverage that

is found systematically by empirical studies based on one-part models.

Table 15 about here

Finally, in Table 16, for comparison purposes, we report estimates of partial effects

computed from linear and fractional one-part models. Naturally, only total partial effects

can be computed in this case. The linear model clearly underestimates all partial effects,

in particular those of TANGIB, PROFITAB and LIQUIDITY, where the bias in the esti-

mations of the s is about 26%, 51% and 47%, respectively. On the other hand, while

the s estimated by some one-part models (logit, probit, cloglog) are not very different

from those produced by the selected two-part models, the differences in the estimation

of the s are much more important, with all one-part models underestimating most

partial effects (e.g. for LIQUIDITY, TANGIB and PROFITAB the bias is above 16.8%,

8.5% and 7.9% in all cases, respectively).

Table 16 about here

7 Concluding remarks

This paper focused on models, estimators, and specification tests for fractional response

variables. Particular attention was dedicated to issues overlooked so far, like the rele-

vance of choosing the most suitable specification for the conditional mean of the response

variable instead of choosing a priori the logit or other specific model, the failure in the

specification of that conditional mean when one-part decisions mechanisms are misspec-

ified as two-part models and vice-versa, and the use of GOL and non-nested tests in

this framework. New goodness-of-functional form tests were also proposed and simple

procedures for computing LM versions of all tests were discussed.

The extensive Monte Carlo simulation study carried out provided very useful infor-

mation on the finite sample performance of the alternative estimators and tests analyzed

in the paper. First, we confirmed that QML is more attractive than NLS estimation in

this framework and that beta-based ML estimators are not robust to deviations from the

assumed distribution. In case the beta assumption is valid, we find that ML outperforms
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in a sizeable way QML estimation only when the sample size is small and/or the vari-

ance of  given  is very large. Second, we showed that for estimating the magnitude of

partial effects it is in general very important to choose the correct specification for the

conditional mean of . Finally, we found that both the RESET and GOL tests, which are

the most popular tests for assessing the conditional mean assumption made in the related

binary regression models in the econometrics and statistics literature, respectively, are

not the best option for dealing with fractional regression models. Indeed, the GOFF tests

are clearly the best in terms of size and often they are among the most powerful tests,

while the  tests, despite over-rejecting the true null hypothesis in some cases, display

the best power properties in most cases. However, in cases where the response variable is

symmetrically-distributed, the GOFF tests exhibit very low power when applied to other

symmetric but ill-specified models for the conditional mean of .

All the techniques discussed in the paper where applied to the regression analysis of

the capital structure decisions of Portuguese SMEs. We confirmed recent conjectures by

Strebulaev and Yang (2007) that traditional capital structure theories, which consider

a single model to explain all financial leverage decisions made by firms, are unable to

provide a reasonable explanation for the high percentage of firms that do not use debt at

all. Indeed, the specification tests used in our empirical application revealed clearly that

the capital structure decisions of Portuguese SMEs, 74.8% of which do not use debt, are

best represented by two-part fractional regression models, which is in accordance with

the recent papers by Kurshev and Strebulaev (2007) and Ramalho and Silva (2009), who

argue that the mechanisms that determine whether or not a firm uses debt at all are

different from the mechanisms that determine the proportion of debt used by firms that

do use debt. In particular, we found that firm size may have opposite effects on the two

levels of the model, while other variables are important only for one of the two sequential

financial leverage decisions made by firms.

Finally, it is important to stress that this paper merely considered estimation and

inference of cross-sectional fractional regression models when the outcome is univariate.

Therefore, issues like the internalization of heterogeneity though the use of panel data

models (see the recent papers byWagner 2003 for the logit case and Papke andWooldridge

2008 and Wagner 2008 for the probit case) or the use of models suitable to deal with

multivariate fractional outcomes (e.g. the proportion of income spent in different classes
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of goods) were not investigated and are important avenues for future research.

Appendix: practical procedures

The aim of this appendix is to provide practitioners with a simple guide for dealing with

fractional responses.

A1: Model estimation

The results reported in this paper were obtained using the statistical software R, which

requires some programming experience. However, Stata possesses already canned com-

mands that allow most of the models discussed in the paper to be computed in a single

command line, as described next.

Stata command line for estimating conditional mean models by QML:

glm  1  , link() family(binomial) robust

where ,  = 1  , denotes the explanatory variables and  is the designation of the

functional form chosen for  (·) (probit, logit, loglog or cloglog - without programming,
it is not possibly to consider a cauchit specification in Stata). When used in the second

stage of two-part models:

glm  1   if   0, link() family(binomial) robust

Stata command line for estimating the beta regression model:

betafit , muvar(1  )

which requires the previous installation of the package betafit.ado. It is also possible

to estimate the variant of the beta regression model considered by Paolino (2001) and

Smithson and Verkuilen (2006) using

betafit , muvar(1  ) phivar(1  )

where ,  = 1 , are the variables that enter in the specification of the shape

parameter.
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A2: LM statistics

All the tests for conditional mean assumptions may be implemented as LM statistics,

which require only the computation of linear regressions and, hence, may be performed in

a straightforward way using Stata or any other statistical software. Next, we summarize

the computation of these statistics.

Binary and beta regression models:

1. Obtain the predicted outcomes ̂, the derivatives ̂ and the residuals ̂ from the

null model;

2. Construct the weights ̂ =
h
̂
³
1− ̂

´i−05
, the variables ̃ = ̂̂ and ̃ = ̂̂ and

the vectors ̃ and ̃, where  denotes the covariates from the null model and 

the omitted variables that characterize the tests discussed in section 4.1;

3. Regress ̃ on ̃ and ̃;

4. Compute  =  (binary model) or  = 2 (beta model).

Fractional regression models estimated by QML:

1. Obtain the predicted outcomes ̂, the derivatives ̂ and the residuals ̂ from the

null model;

2. Construct the weights ̂ =
h
̂
³
1− ̂

´i−05
, the variables ̃ = ̂̂ and ̃ = ̂̂ and

the vectors ̃ and ̃;

3. Regress separately each element of the -dimensional vector ̃ on the entire vector

̃ and save the residuals from each regression (denote them by ̃,  = 1  );

4. Find the products between ̃ and ̃ (for all observations) and form the -dimensional

vector ̃̃;

5. Run the regression of 1 on ̃̃ without an intercept;

6. Compute  =  = − .
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Table 1: Alternative nonlinear conditional mean specifications for fractional response variables

Model designation Distribution function  ()  ()  ()

Cauchit Cauchy 1
2
+ 1


arctan () 1


1

()2+1
tan [ (− 05)]

Logit Logistic 

1+
 () [1− ()] ln 

1−
Probit Standard normal Φ ()  () Φ−1 ()
Loglog Extreme maximum −

−
− () − ln [− ln ()]

Complementary loglog Extreme minimum 1− −


 [1− ()] ln [− ln (1− )]
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Table 2: Monte Carlo parameter estimates for 1 (beta-distributed response variable; 1 = 05)

N = 200 N = 500

0  NLS QML Beta-ML NLS QML Beta-ML

Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev. Mean St.Dev.

Link function: cauchit

0 1 0.511 0.117 0.510 0.115 0.505 0.096 0.503 0.071 0.503 0.071 0.501 0.060

2.5 0.508 0.086 0.507 0.085 0.505 0.079 0.503 0.054 0.503 0.053 0.502 0.050

5 0.504 0.066 0.504 0.065 0.503 0.063 0.502 0.041 0.502 0.041 0.502 0.040

20 0.502 0.035 0.501 0.035 0.501 0.035 0.501 0.022 0.501 0.022 0.501 0.022

-1 1 0.514 0.147 0.512 0.142 0.509 0.111 0.504 0.091 0.504 0.089 0.503 0.071

5 0.504 0.083 0.504 0.081 0.504 0.077 0.502 0.052 0.502 0.051 0.502 0.048

10 0.503 0.061 0.502 0.060 0.503 0.058 0.501 0.038 0.501 0.037 0.501 0.036

40 0.501 0.031 0.501 0.031 0.501 0.031 0.500 0.020 0.500 0.019 0.500 0.019

Link function: logit

0 1 0.506 0.113 0.506 0.112 0.500 0.092 0.502 0.069 0.502 0.068 0.499 0.056

2.5 0.502 0.084 0.502 0.083 0.500 0.077 0.501 0.053 0.501 0.052 0.500 0.048

5 0.502 0.064 0.502 0.063 0.500 0.061 0.501 0.040 0.501 0.040 0.500 0.039

20 0.501 0.034 0.501 0.034 0.501 0.034 0.501 0.022 0.501 0.021 0.500 0.021

-1 1 0.506 0.127 0.505 0.122 0.500 0.088 0.502 0.079 0.501 0.076 0.499 0.054

5 0.503 0.073 0.502 0.070 0.501 0.063 0.500 0.046 0.500 0.044 0.499 0.040

10 0.501 0.053 0.501 0.052 0.501 0.049 0.501 0.034 0.501 0.033 0.500 0.031

40 0.500 0.028 0.500 0.027 0.500 0.026 0.500 0.017 0.500 0.017 0.500 0.017

Link function: probit

0 1 0.505 0.076 0.504 0.073 0.495 0.052 0.502 0.047 0.502 0.045 0.496 0.032

2.5 0.503 0.057 0.502 0.055 0.499 0.046 0.501 0.035 0.500 0.034 0.499 0.028

5 0.502 0.043 0.502 0.042 0.500 0.038 0.501 0.027 0.501 0.026 0.500 0.024

20 0.501 0.023 0.501 0.022 0.500 0.022 0.500 0.014 0.500 0.014 0.500 0.014

-1 1 0.509 0.100 0.505 0.085 0.498 0.042 0.503 0.062 0.502 0.054 0.499 0.026

5 0.503 0.057 0.502 0.049 0.500 0.036 0.501 0.036 0.500 0.031 0.500 0.022

10 0.502 0.041 0.501 0.036 0.500 0.030 0.500 0.026 0.500 0.023 0.500 0.019

40 0.500 0.022 0.500 0.019 0.500 0.018 0.500 0.014 0.500 0.012 0.500 0.011

Link function: loglog

0 1 0.506 0.083 0.505 0.076 0.496 0.046 0.502 0.051 0.502 0.047 0.498 0.028

2.5 0.503 0.061 0.503 0.057 0.497 0.041 0.501 0.039 0.501 0.036 0.499 0.025

5 0.502 0.047 0.502 0.044 0.499 0.035 0.501 0.029 0.501 0.027 0.499 0.022

20 0.501 0.025 0.501 0.023 0.500 0.022 0.500 0.016 0.500 0.015 0.500 0.014

-0.5 1 0.509 0.093 0.507 0.077 0.490 0.032 0.504 0.057 0.504 0.048 0.491 0.020

5 0.502 0.052 0.502 0.044 0.496 0.027 0.501 0.034 0.501 0.028 0.497 0.016

10 0.501 0.039 0.501 0.032 0.498 0.023 0.501 0.025 0.501 0.021 0.498 0.014

40 0.500 0.020 0.500 0.017 0.500 0.015 0.500 0.013 0.500 0.011 0.500 0.009
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Table 3: Monte Carlo parameter estimates for 1 (simplex-distributed response variable; logit model; 1 = 05)

0  NLS QML Beta-ML

Mean Median St.Dev. RMSE Mean Median St.Dev. RMSE Mean Median St.Dev. RMSE

N = 200

0 48 0.502 0.503 0.117 0.117 0.501 0.503 0.114 0.114 0.411 0.413 0.079 0.119

12 0.504 0.503 0.082 0.082 0.503 0.503 0.080 0.080 0.456 0.457 0.066 0.079

4.8 0.501 0.501 0.066 0.066 0.500 0.502 0.064 0.064 0.476 0.478 0.059 0.063

1 0.501 0.501 0.032 0.032 0.501 0.501 0.031 0.031 0.495 0.495 0.031 0.031

-1 69 0.503 0.501 0.135 0.135 0.499 0.500 0.126 0.126 0.325 0.326 0.078 0.192

6.5 0.502 0.502 0.075 0.075 0.501 0.501 0.069 0.069 0.430 0.429 0.060 0.092

3 0.499 0.501 0.066 0.066 0.498 0.500 0.061 0.061 0.456 0.458 0.057 0.072

0.6 0.501 0.501 0.028 0.028 0.501 0.500 0.025 0.025 0.490 0.490 0.025 0.027

N = 500

0 48 0.493 0.499 0.091 0.091 0.493 0.499 0.090 0.090 0.405 0.411 0.066 0.116

12 0.501 0.501 0.056 0.056 0.500 0.501 0.055 0.055 0.454 0.455 0.046 0.065

4.8 0.497 0.500 0.056 0.056 0.496 0.500 0.055 0.055 0.473 0.477 0.051 0.058

1 0.501 0.501 0.021 0.021 0.501 0.500 0.020 0.020 0.495 0.495 0.020 0.021

-1 69 0.489 0.497 0.106 0.106 0.488 0.497 0.102 0.103 0.318 0.324 0.064 0.193

6.5 0.500 0.501 0.054 0.054 0.499 0.501 0.050 0.050 0.427 0.429 0.043 0.085

3 0.492 0.500 0.065 0.066 0.492 0.500 0.064 0.064 0.450 0.457 0.059 0.077

0.6 0.500 0.500 0.022 0.022 0.500 0.500 0.020 0.020 0.489 0.490 0.020 0.023
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Table 4: Monte Carlo partial effects (beta-distributed response variable;  = 500;  = 05)

True model Average response of all individuals Response of the average individual
Cauchit Logit Probit Loglog Cauchit Logit Probit Loglog

 = (0 05)
Cauchit 0.134 0.134 0.134 0.132 0.159 0.145 0.142 0.138

(0.008) (0.008) (0.008) (0.008) (0.013) (0.010) (0.010) (0.009)
Logit 0.117 0.118 0.118 0.117 0.134 0.125 0.124 0.121

(0.008) (0.008) (0.008) (0.008) (0.012) (0.010) (0.010) (0.009)
Probit 0.175 0.179 0.179 0.175 0.234 0.205 0.200 0.192

(0.007) (0.008) (0.008) (0.007) (0.016) (0.011) (0.010) (0.010)
Loglog 0.158 0.164 0.165 0.164 0.180 0.182 0.181 0.184

(0.008) (0.008) (0.008) (0.007) (0.012) (0.010) (0.010) (0.010)
 = (−1 05) or  = (−05 05)

Cauchit 0.085 0.085 0.085 0.082 0.080 0.087 0.086 0.085
(0.008) (0.008) (0.008) (0.008) (0.007) (0.009) (0.009) (0.009)

Logit 0.092 0.096 0.096 0.094 0.087 0.098 0.098 0.099
(0.008) (0.008) (0.008) (0.008) (0.007) (0.009) (0.009) (0.009)

Probit 0.108 0.120 0.120 0.117 0.073 0.115 0.121 0.127
(0.008) (0.007) (0.007) (0.007) (0.005) (0.007) (0.008) (0.009)

Loglog 0.127 0.140 0.141 0.140 0.093 0.140 0.147 0.159
(0.008) (0.007) (0.007) (0.007) (0.007) (0.008) (0.008) (0.009)

Note: below the partial effects we report standard errors in parentheses.



Table 5: Monte Carlo estimated sizes (%) for a nominal size of 5% for tests for the functional form

H0: Cauchit Logit

0= 0 0= −1 0= 0 0= −1
: 1 5 20 1 10 40 1 5 20 1 10 40

N = 500

RESET2 6.0∗ 5.1 5.0 5.8∗ 4.4∗ 4.4∗ 6.0∗ 5.0 4.6 6.2∗ 4.9 4.3∗
RESET3 6.0∗ 4.6 4.4∗ 6.4∗ 4.2∗ 3.9∗ 5.6∗ 4.2∗ 4.0∗ 6.6∗ 4.5∗ 3.9∗
GOL 5.6∗ 5.1 5.0 5.4 4.8 4.8 5.7∗ 4.9 5.0 4.1∗ 2.8∗ 3.0∗
GOFF1 4.9 4.8 5.1 5.3 4.7 4.8 4.9 5.2 4.6 5.3 4.8 4.7

GOFF2 4.9 4.7 5.2 5.3 4.3∗ 4.5∗ 4.9 5.1 4.8 5.1 4.7 4.7

P tests

H1: Cauchit – – – – – – 5.6∗ 4.8 4.8 5.7∗ 4.8 4.7

H1: Logit 5.5∗ 5.5∗ 5.1 5.3 4.8 4.9 – – – – – –

H1: Probit 5.5∗ 5.5∗ 5.1 5.3 4.8 4.8 5.6∗ 4.8 4.8 5.9∗ 4.9 4.8

H1: Loglog 5.2 4.9 4.9 5.2 4.8 4.8 4.8 5.3 4.6 5.6∗ 4.9 4.8

N = 1000

RESET2 5.5∗ 5.5∗ 5.0 5.3 4.8 4.6 5.3 4.6 4.7 5.7∗ 5.4 4.6

RESET3 5.8∗ 5.1 4.5∗ 6.0∗ 4.8 4.4∗ 5.4 4.5∗ 4.4∗ 6.4∗ 5.0 4.3∗
GOL 4.9 5.2 5.1 4.7 5.1 5.0 5.0 4.8 4.8 3.6∗ 3.8∗ 3.3∗
GOFF1 4.5∗ 5.2 4.6 4.7 5.0 5.1 4.8 4.9 4.8 4.8 5.2 4.7

GOFF2 4.6 5.3 4.8 4.7 4.7 5.0 4.9 5.0 4.9 4.9 5.1 4.9

P tests

H1: Cauchit – – – – – – 4.7 5.2 4.9 4.8 5.3 4.8

H1: Logit 5.1 5.5∗ 5.1 5.0 5.2 4.9 – – – – – –

H1: Probit 5.3 5.4 5.0 5.0 5.3 5.0 5.0 5.3 4.7 5.0 5.2 4.9

H1: Loglog 5.2 5.4 5.1 5.1 5.3 4.9 4.7 4.9 4.7 4.8 5.1 4.6

H0: Probit Loglog

0= 0 0= −1 0= 0 0= −05
: 1 5 20 1 10 40 1 5 20 1 10 40

N = 500

RESET2 7.0∗ 6.0∗ 4.8 6.8∗ 5.8∗ 5.0 6.5∗ 5.4 5.6∗ 6.3∗ 5.6∗ 5.5∗
RESET3 6.8∗ 5.5∗ 4.5∗ 7.5∗ 6.9∗ 5.2 5.8∗ 5.6∗ 5.3 4.8 6.7∗ 5.9∗
GOL 5.3 5.4 4.7 4.1∗ 3.7∗ 3.3∗ 5.0 4.9 5.3 5.2 4.6 4.8

GOFF1 4.7 5.0 4.7 4.7 5.2 5.2 – – – – – –

GOFF2 4.8 4.7 4.7 5.1 5.2 5.1 5.2 4.8 5.2 5.2 5.1 5.3

P tests

H1: Cauchit 5.9∗ 5.3 5.0 5.6∗ 5.6∗ 5.1 5.9∗ 5.3 5.7∗ 5.8∗ 6.5∗ 6.5∗
H1: Logit 6.4∗ 5.7∗ 5.0 5.8∗ 5.5∗ 5.3 5.4 5.0 5.3 5.5∗ 5.8∗ 5.6∗
H1: Probit – – – – – 5.3 4.8 5.2 5.2 5.4 5.4

H1: Loglog 4.8 4.8 4.6 4.8 5.1 5.2 – – – – – –

N = 1000

RESET2 6.8∗ 5.5∗ 5.4 7.4∗ 5.7∗ 5.2 6.9∗ 5.9∗ 5.3 6.6∗ 5.7∗ 5.5∗
RESET3 7.9∗ 5.6∗ 5.0 8.8∗ 6.8∗ 5.4 7.4∗ 6.5∗ 5.7∗ 6.9∗ 7.0∗ 6.7∗
GOL 5.4 5.0 5.1 5.0 4.1∗ 4.0∗ 5.0 4.9 4.8 5.0 4.7 4.4∗
GOFF1 5.0 5.0 5.2 5.4 5.1 5.1 – – – – – –

GOFF2 4.8 4.9 5.1 5.7∗ 4.9 5.2 5.1 5.1 4.9 4.9 5.0 4.9

P tests

H1: Cauchit 5.8∗ 4.9 4.9 6.2∗ 5.1 5.3 6.2∗ 5.7∗ 5.3 5.8∗ 6.7∗ 6.2∗
H1: Logit 5.9∗ 5.0 4.9 6.0∗ 4.9 5.3 5.6∗ 5.4 5.0 5.3 5.4 5.2

H1: Probit – – – – – – 5.0 5.1 4.8 5.0 4.9 4.8

H1: Loglog 4.8 4.9 5.0 5.4 4.8 5.2 – – – – – –

Note: the values starred are significantly different from the nominal size at the 5% level (95% confidence

interval limits: 4.58 and 5.43)



Table 6: Monte Carlo estimated powers (%) for a nominal size of 5% for tests for the functional form - true model: cauchit

H0: Logit Probit Loglog

0= 0 0= −1 0= 0 0= −1 0= 0 0= −1
: 1 5 20 1 10 40 1 5 20 1 10 40 1 5 20 1 10 40

N = 500

RESET2 4.7 6.9 20.9 9.6 43.2 96.6 4.6 8.1 28.0 11.5 57.4 99.4 8.1 20.3 65.1 17.5 82.9 100.0

RESET3 4.0 5.3 15.5 8.4 35.1 94.6 3.8 6.2 21.6 9.7 48.0 98.8 6.9 16.5 60.5 14.2 74.7 100.0

GOL 5.0 7.9 23.7 8.6 44.1 97.0 5.5 9.4 27.4 12.4 57.7 97.0 8.9 21.6 68.4 14.5 59.4 98.8

GOFF1 4.9 4.5 5.3 13.6 58.5 98.9 5.0 4.4 5.0 17.4 71.8 99.8 – – – – – –

GOFF2 5.0 4.4 5.1 14.3 57.8 98.6 4.9 4.5 5.2 16.7 71.8 99.8 10.9 26.4 69.1 25.3 91.1 100.0

P tests

H1: Cauchit 6.2 11.9 34.2 13.4 59.1 99.0 6.6 14.9 44.9 17.1 72.6 99.8 10.2 30.1 80.4 27.0 91.6 100.0

H1: Logit – – – – – – 5.6 13.3 42.8 14.7 70.0 99.7 10.9 26.4 69.7 25.9 91.2 100.0

H1: Probit 5.2 10.4 31.7 11.1 55.1 98.6 – – – – – – 11.2 24.6 63.0 26.2 91.3 100.0

H1: Loglog 4.8 4.6 5.8 11.8 56.8 98.8 4.8 4.5 5.2 16.2 71.5 99.8 – – – – – –

N = 1000

RESET2 5.0 12.6 44.9 16.5 79.2 100.0 5.4 16.6 59.4 22.2 90.4 100.0 13.4 44.7 94.9 37.2 99.2 100.0

RESET3 4.3 9.4 35.8 14.3 72.0 100.0 4.5 12.2 50.5 18.2 86.2 100.0 11.2 38.2 93.5 31.0 98.3 100.0

GOL 5.7 14.8 48.3 16.9 79.8 100.0 6.7 17.2 54.6 24.3 90.4 99.9 15.2 46.6 95.5 25.9 90.4 100.0

GOFF1 4.4 5.4 5.0 24.9 87.5 100.0 4.4 5.4 5.3 32.1 95.2 100.0 – – – – – –

GOFF2 4.5 5.4 5.4 25.2 86.8 100.0 4.3 5.4 5.0 31.5 95.2 100.0 18.4 49.5 94.4 49.0 99.7 100.0

P tests

H1: Cauchit 8.2 21.3 62.5 24.8 88.0 100.0 10.0 28.1 76.5 32.3 95.4 100.0 20.0 60.1 98.1 51.1 99.8 100.0

H1: Logit – – – – – – 8.6 26.2 75.0 29.8 94.9 100.0 18.6 50.1 94.8 49.9 99.8 100.0

H1: Probit 7.1 19.3 59.6 22.1 86.2 100.0 – – – – – – 17.6 44.9 91.1 50.5 99.8 100.0

H1: Loglog 4.5 5.6 6.2 23.3 86.9 100.0 4.4 5.5 5.0 31.0 95.2 100.0 – – – – – –
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Table 7: Monte Carlo estimated powers (%) for a nominal size of 5% for tests for the functional form - true model: logit

H0: Cauchit Probit Loglog

0= 0 0= −1 0= 0 0= −1 0= 0 0= −1
: 1 5 20 1 10 40 1 5 20 1 10 40 1 5 20 1 10 40

N = 500

RESET2 8.8 9.6 17.3 19.0 59.5 98.8 5.6 4.6 4.5 5.5 4.9 8.6 7.4 10.8 30.0 6.2 18.0 65.4

RESET3 8.2 7.8 13.0 18.4 53.1 97.9 5.2 3.9 4.0 5.5 4.4 6.8 6.3 8.5 23.8 5.8 13.6 55.3

GOL 8.3 10.5 22.9 17.9 63.7 99.2 5.4 4.9 5.0 4.3 4.1 8.2 5.4 8.6 23.9 6.9 14.8 45.0

GOFF1 5.0 5.1 4.8 16.4 61.6 98.9 4.8 4.9 4.7 5.2 6.1 12.4 – – – – – –

GOFF2 5.0 4.9 5.0 13.0 51.9 96.7 4.9 5.1 4.7 5.1 6.0 12.5 7.5 14.7 41.6 7.1 27.6 78.8

P tests

H1: Cauchit – – – – – – 5.5 4.7 4.7 5.5 6.2 12.9 5.6 10.2 29.2 7.7 27.8 78.7

H1: Logit 9.2 11.3 23.4 21.9 69.7 99.5 5.8 4.7 4.6 5.4 5.8 12.1 7.4 14.6 41.5 7.4 27.9 78.7

H1: Probit 9.5 11.5 23.4 22.3 69.8 99.5 – – – – – – 8.2 15.3 41.9 7.8 28.1 78.8

H1: Loglog 7.4 8.4 12.6 22.2 69.6 99.6 4.8 5.3 4.8 5.1 6.0 12.5 – – – – – –

N = 1000

RESET2 9.0 13.7 30.0 28.1 87.7 100.0 5.0 4.3 4.7 5.3 6.9 15.7 9.1 19.2 57.5 8.7 39.1 94.7

RESET3 9.0 12.0 24.5 26.8 83.8 100.0 4.9 4.1 4.3 5.9 5.8 12.4 8.5 15.9 49.2 8.3 31.4 91.0

GOL 8.7 15.5 36.9 28.5 89.6 100.0 4.8 4.6 5.3 4.7 6.6 14.8 6.9 15.4 48.5 8.6 27.8 78.6

GOFF1 5.0 5.1 5.1 26.3 88.0 100.0 4.8 4.8 4.9 5.3 9.3 21.8 – – – – – –

GOFF2 4.9 5.2 5.1 29.0 80.3 100.0 4.7 4.8 4.8 5.1 9.0 22.1 10.6 25.8 70.8 12.0 52.3 97.8

P tests

H1: Cauchit – – – – – – 4.7 5.0 5.4 5.2 9.2 22.5 7.2 18.0 55.8 12.3 52.6 97.8

H1: Logit 9.7 16.8 39.1 34.0 93.0 100.0 4.8 4.9 5.1 5.1 8.8 22.3 10.4 25.7 70.7 12.1 52.5 97.8

H1: Probit 9.8 16.9 39.2 34.2 93.0 100.0 – – – – – – 11.4 26.4 70.3 12.5 52.8 97.8

H1: Loglog 7.6 10.3 19.7 34.2 93.0 100.0 4.7 4.8 4.7 5.1 9.0 22.2 – – – – – –
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Table 8: Monte Carlo estimated powers (%) for a nominal size of 5% for tests for the functional form - true model: probit

H0: Cauchit Logit Loglog

0= 0 0= −1 0= 0 0= −1 0= 0 0= −1
: 1 5 20 1 10 40 1 5 20 1 10 40 1 5 20 1 10 40

N = 500

RESET2 27.8 52.5 93.3 86.7 100.0 100.0 9.4 9.4 10.6 13.5 27.7 64.0 18.0 44.7 93.9 7.9 35.7 93.5

RESET3 26.6 46.9 89.8 85.3 100.0 100.0 9.0 8.4 8.8 15.6 27.6 59.1 16.2 38.0 90.2 5.9 26.5 88.7

GOL 24.0 53.0 95.5 76.7 100.0 100.0 7.9 8.4 10.0 8.3 21.5 59.3 12.0 34.8 88.3 7.2 20.1 62.3

GOFF1 5.5 6.3 7.2 76.4 100.0 100.0 5.0 5.2 5.1 9.2 25.7 66.6 – – – – – –

GOFF2 5.4 6.4 6.9 53.8 99.9 100.0 4.9 5.3 4.9 7.3 20.9 58.7 18.5 53.7 96.9 9.6 49.9 97.4

P tests

H1: Cauchit – – – – – – 7.6 8.6 12.2 11.4 29.7 70.6 8.0 24.8 73.3 8.5 42.8 93.1

H1: Logit 29.9 60.1 97.0 90.2 100.0 100.0 – – – – – – 16.4 50.5 95.3 9.2 47.5 96.5

H1: Probit 30.6 60.5 97.0 90.5 100.0 100.0 9.0 9.6 13.1 12.3 30.9 72.2 19.9 55.0 96.6 10.1 49.7 97.3

H1: Loglog 21.2 38.9 80.8 90.0 100.0 100.0 5.2 5.3 5.3 10.7 28.9 70.5 – – – – – –

N = 1000

RESET2 42.4 80.3 99.9 98.9 100.0 100.0 10.0 10.9 16.9 17.7 43.7 91.2 32.1 76.2 100.0 13.8 71.4 99.9

RESET3 41.9 76.5 99.7 98.5 100.0 100.0 11.0 10.2 14.2 20.4 42.2 88.8 29.4 70.2 99.8 11.1 62.0 99.9

GOL 40.4 81.6 99.9 96.7 100.0 100.0 8.0 9.2 14.8 12.2 36.8 89.9 23.2 65.4 99.7 10.8 39.9 92.3

GOFF1 5.6 6.5 9.5 96.8 100.0 100.0 4.8 5.1 5.1 12.9 42.4 92.6 – – – – – –

GOFF2 5.8 6.8 9.4 85.2 100.0 100.0 5.0 5.1 5.2 10.2 35.5 87.4 36.7 83.5 100.0 18.7 82.8 100.0

P tests

H1: Cauchit – – – – – – 8.0 10.2 19.0 15.7 46.9 94.3 14.9 49.6 95.0 14.8 74.7 98.4

H1: Logit 47.3 86.5 100.0 99.4 100.0 100.0 – – – – – – 33.5 80.6 99.4 17.3 80.4 99.6

H1: Probit 47.8 86.7 100.0 99.5 100.0 100.0 8.9 11.3 20.3 16.8 49.0 95.0 38.0 84.0 99.8 18.9 82.3 99.9

H1: Loglog 30.3 62.4 98.0 99.4 100.0 100.0 5.0 5.3 5.6 14.8 46.9 94.8 – – – – – –
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Table 9: Monte Carlo estimated powers (%) for a nominal size of 5% for tests for the functional form - true model: loglog

H0: Cauchit Logit Probit

0= 0 0= −05 0= 0 0= −05 0= 0 0= −05
: 1 5 20 1 10 40 1 5 20 1 10 40 1 5 20 1 10 40

N = 500

RESET2 71.7 98.5 100.0 98.9 100.0 100.0 28.8 59.9 97.8 43.8 96.0 100.0 21.0 42.8 89.8 23.7 69.3 99.3

RESET3 70.0 97.7 100.0 98.7 100.0 100.0 28.4 56.0 96.4 45.7 95.0 100.0 19.7 39.1 85.5 23.0 67.6 98.9

GOL 66.1 97.9 100.0 95.3 100.0 100.0 24.1 56.1 97.6 34.5 94.6 100.0 11.3 26.7 75.6 11.8 45.8 96.3

GOFF1 59.4 96.5 100.0 94.8 100.0 100.0 28.0 64.5 98.9 39.5 96.9 100.0 18.6 46.7 93.3 20.1 72.8 99.8

GOFF2 43.3 88.2 100.0 80.2 100.0 100.0 22.2 57.5 97.9 30.7 93.9 100.0 21.7 50.4 94.2 23.7 75.9 99.8

P tests

H1: Cauchit – – – – – – 30.1 61.0 96.5 46.4 97.9 100.0 22.0 43.1 85.4 28.3 77.7 99.5

H1: Logit 76.2 99.2 100.0 99.4 100.0 100.0 – – – – – – 24.3 45.1 86.0 29.0 77.2 99.6

H1: Probit 77.0 99.2 100.0 99.4 100.0 100.0 33.5 63.8 97.0 48.9 97.6 100.0 – – – – – –

H1: Loglog 78.9 99.5 100.0 99.5 100.0 100.0 31.3 67.7 99.1 44.3 97.4 100.0 21.0 49.4 94.0 22.8 74.9 99.8

N = 1000

RESET2 94.6 100.0 100.0 100.0 100.0 100.0 46.8 87.4 100.0 67.4 99.9 100.0 33.4 70.4 99.7 36.6 93.5 100.0

RESET3 93.6 100.0 100.0 100.0 100.0 100.0 45.8 84.8 100.0 67.7 99.9 100.0 32.6 66.1 99.4 37.6 92.1 100.0

GOL 91.8 100.0 100.0 99.9 100.0 100.0 41.8 85.6 100.0 59.7 99.9 100.0 19.1 50.0 97.4 19.2 78.8 100.0

GOFF1 88.4 100.0 100.0 99.9 100.0 100.0 48.5 90.6 100.0 65.8 100.0 100.0 33.7 76.0 99.8 35.1 96.0 100.0

GOFF2 73.7 99.4 100.0 98.3 100.0 100.0 41.7 86.4 100.0 55.9 99.9 100.0 37.3 78.1 99.8 39.2 96.5 100.0

P tests

H1: Cauchit – – – – – – 47.9 85.8 100.0 71.9 100.0 100.0 33.8 66.8 98.6 44.4 95.8 100.0

H1: Logit 96.2 100.0 100.0 100.0 100.0 100.0 – – – – – – 36.2 68.1 98.5 43.9 95.9 100.0

H1: Probit 96.4 100.0 100.0 100.0 100.0 100.0 51.1 86.9 100.0 73.4 100.0 100.0 – – – – – –

H1: Loglog 97.0 100.0 100.0 100.0 100.0 100.0 51.9 91.9 100.0 70.1 100.0 100.0 36.4 77.5 99.8 37.8 96.3 100.0
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Table 10: Monte Carlo estimated sizes (%) for a nominal size of 5%
for tests for the functional form in presence of boundary observations

N = 500 N = 1000

% 0’s: 10% 30% 50% 10% 30% 50%

H0: one-part logit model

RESET2 5.2 5.4 5.9∗ 5.2 5.5∗ 4.8

RESET3 5.4 7.3∗ 9.4∗ 5.6∗ 6.5∗ 7.1∗
GOL 4.5∗ 3.1∗ 5.3 4.4∗ 2.8∗ 4.5∗
GOFF1 5.2 5.0 5.2 5.4 5.1 4.7

GOFF2 5.2 4.8 4.7 5.4 4.9 4.1∗
P tests (H1: one-part model)

H1: Cauchit 5.5∗ 5.3 6.0∗ 5.3 5.4 5.1

H1: Probit 5.5∗ 5.1 5.4 5.4 5.2 5.0

H1: Loglog 5.4 5.0 5.3 5.3 5.2 5.0

P tests (H1: two-part model)

H1: Cauchit+Cauchit 5.9∗ 5.5∗ 5.8∗ 5.8∗ 6.0∗ 5.0

H1: Cauchit+Logit 5.7∗ 4.9 5.3 5.1 5.0 4.8

H1: Cauchit+Loglog 5.4 5.1 5.4 5.5∗ 5.0 4.7

H1: Logit+Cauchit 5.8∗ 6.0∗ 6.1∗ 5.5∗ 6.0∗ 5.5∗
H1: Logit+Logit 5.5∗ 4.9 5.3 5.5∗ 4.9 4.9

H1: Logit+Loglog 5.4 5.1 5.2 5.5∗ 5.0 4.9

H1: Loglog+Cauchit 5.7∗ 5.9∗ 5.8∗ 5.5∗ 5.7∗ 5.5∗
H1: Loglog+Logit 5.4 4.8 5.3 5.3 5.1 4.7

H1: Loglog+Loglog 5.5∗ 5.0 5.2 5.5∗ 5.1 4.8

H0: two-part logit model

First part

RESET2 4.8 5.1 5.0 4.8 4.9 5.2

RESET3 4.8 6.4∗ 6.0∗ 4.8 5.9∗ 5.8∗
GOL 4.4∗ 5.1 4.9 3.9∗ 4.9 5.3

GOFF1 5.2 5.1 4.8 4.9 5.1 5.0

GOFF2 5.2 5.0 4.9 4.8 5.1 5.1

P tests

H1: Cauchit 6.3∗ 6.5∗ 6.4∗ 6.2∗ 6.5∗ 6.1∗
H1: Probit 5.7∗ 6.7∗ 7.7∗ 6.0∗ 6.4∗ 6.5∗
H1: Loglog 5.0 5.3 4.9 5.1 5.0 5.1

Second part

RESET2 5.2 5.3 5.3 6.0∗ 5.3 5.8∗
RESET3 5.1 6.5∗ 6.1∗ 5.9∗ 6.3∗ 7.8∗
GOL 4.5∗ 3.1∗ 4.1∗ 5.6∗ 2.8∗ 3.6∗
GOFF1 4.6 5.2 4.8 5.3 4.7 5.4

GOFF2 4.8 4.9 4.5∗ 5.2 4.7 4.9

P tests

H1: Cauchit 4.8 5.3 5.4 5.5 5.1 5.3

H1: Probit 4.7 5.2 5.0 5.6∗ 5.0 5.6∗
H1: Loglog 4.6 5.0 4.7 5.4 4.9 5.4

Full specification

P tests (H1: one-part model)

H1: Cauchit 4.6 5.0 4.7 5.0 5.4 5.1

H1: Logit 4.3∗ 5.2 4.9 5.2 5.1 4.9

H1: Probit 4.5∗ 5.0 4.6 5.0 4.8 4.7

H1: Loglog 4.3∗ 4.7 4.7 4.7 4.1∗ 4.5∗
P tests (H1: two-part model)

H1: Cauchit+Cauchit 4.6 4.8 4.7 5.1 5.1 5.0

H1: Cauchit+Logit 4.7 4.7 5.1 4.7 4.6 4.8

H1: Cauchit+Loglog 4.3∗ 4.9 4.5∗ 4.9 4.7 4.7

H1: Logit+Cauchit 4.7 4.9 4.8 5.0 4.9 4.7

H1: Logit+Loglog 4.2∗ 4.7 4.5∗ 4.5∗ 4.3∗ 4.4∗
H1: Loglog+Cauchit 4.6 5.1 4.9 5.0 5.0 5.0

H1: Loglog+Logit 4.5∗ 5.0 4.9 5.2 4.9 4.6

H1: Loglog+Loglog 4.3∗ 4.6 4.7 4.6 4.4∗ 4.6

Note: the values starred are significantly different from the nominal size at the

5% level (95% confidence interval limits: 4.58 and 5.43)



Table 11: Monte Carlo estimated powers (%) for a nominal size of 5%
for tests for the functional form in presence of boundary observations

N = 500 N = 1000

% 0’s: 10% 30% 50% 10% 30% 50%

H0: one-part logit model

RESET2 16.5 33.5 33.4 26.6 56.3 54.7

RESET3 17.8 36.2 38.4 26.4 56.0 55.9

GOL 12.5 24.5 28.8 21.8 47.8 46.8

GOFF1 14.5 29.1 28.3 24.6 53.1 51.0

GOFF2 11.1 22.6 21.7 19.2 42.8 41.2

P tests (H1: one-part model)

H1: Cauchit 18.8 37.3 39.4 30.8 62.1 62.2

H1: Probit 19.4 36.7 35.6 31.4 61.2 59.9

H1: Loglog 16.4 34.5 34.5 27.7 59.1 59.0

P tests (H1: two-part model)

H1: Cauchit+Cauchit 11.5 18.4 20.1 19.6 36.4 41.5

H1: Cauchit+Logit 24.2 38.5 32.0 35.6 62.2 55.7

H1: Cauchit+Loglog 17.1 34.9 32.3 28.4 59.1 56.8

H1: Logit+Cauchit 14.6 24.2 19.7 25.0 47.3 40.3

H1: Logit+Logit 20.0 37.0 34.7 32.3 61.7 59.0

H1: Logit+Loglog 16.3 33.5 33.1 27.4 58.3 57.4

H1: Loglog+Cauchit 13.9 21.5 15.5 24.1 41.6 32.5

H1: Loglog+Logit 21.2 39.6 39.1 33.6 63.9 62.6

H1: Loglog+Loglog 16.4 34.5 34.8 27.5 59.1 59.4

H0: two-part logit model

First part

RESET2 20.4 27.6 19.2 44.9 58.2 43.4

RESET3 18.5 24.7 16.6 40.1 51.0 36.2

GOL 24.8 31.4 20.6 51.4 62.2 44.8

GOFF1 32.0 38.9 28.4 55.9 65.8 52.1

GOFF2 34.9 42.4 30.2 63.6 73.4 57.8

P tests

H1: Cauchit 50.9 50.2 10.4 84.2 75.1 11.0

H1: Probit 50.3 51.3 11.7 77.9 74.5 11.8

H1: Loglog 15.6 28.9 21.8 43.1 61.7 48.0

Second part

RESET2 92.9 99.8 98.4 99.9 100.0 100.0

RESET3 91.1 99.6 96.6 100.0 100.0 100.0

GOL 85.4 99.3 97.7 99.3 100.0 100.0

GOFF1 84.5 98.9 96.7 99.0 100.0 100.0

GOFF2 72.6 97.1 94.2 94.8 99.9 99.8

P tests

H1: Cauchit 92.1 98.9 91.3 99.8 100.0 99.7

H1: Probit 95.5 99.8 98.6 100.0 100.0 100.0

H1: Loglog 91.9 99.8 98.7 99.7 100.0 100.0

Full specification

P tests (H1: one-part model)

H1: Cauchit 6.3 4.9 4.5 4.8 3.4 2.8

H1: Logit 6.0 4.3 3.7 4.3 3.3 3.3

H1: Probit 4.7 3.8 3.7 3.5 4.6 6.0

H1: Loglog 3.8 3.0 4.5 6.0 4.4 3.0

P tests (H1: two-part model)

H1: Cauchit+Cauchit 3.6 4.1 3.4 3.3 5.0 3.8

H1: Cauchit+Logit 3.9 5.0 4.0 4.5 5.8 5.4

H1: Cauchit+Loglog 4.7 5.3 4.6 5.8 7.5 7.4

H1: Logit+Cauchit 4.2 5.3 2.9 6.3 10.4 3.9

H1: Logit+Loglog 3.9 3.9 3.1 6.6 7.2 4.6

H1: Loglog+Cauchit 5.2 4.5 2.5 5.1 4.8 2.6

H1: Loglog+Logit 3.4 2.6 2.8 2.5 5.4 5.5

H1: Loglog+Loglog 3.7 3.8 2.9 6.8 9.2 6.3



Table 12: Regression results for one-part models

OLS QML

Cauchit Logit Probit Loglog Cloglog

NDTS -0.001∗∗ -0.101 -0.045 -0.021 -0.015 -0.042

(0.000) (0.073) (0.029) (0.014) (0.010) (0.027)

TANGIB 0.071∗∗∗ 2.274∗∗∗ 1.219∗∗∗ 0.627∗∗∗ 0.470∗∗∗ 1.122∗∗∗
(0.014) (0.391) (0.181) (0.095) (0.074) (0.167)

SIZE 0.027∗∗∗ 0.696∗∗∗ 0.369∗∗∗ 0.193∗∗∗ 0.149∗∗∗ 0.340∗∗∗
(0.002) (0.060) (0.024) (0.012) (0.009) (0.022)

PROFITAB -0.132∗∗∗ -7.453∗∗∗ -3.369∗∗∗ -1.688∗∗∗ -1.227∗∗∗ -3.141∗∗∗
(0.022) (1.298) (0.457) (0.230) (0.173) (0.428)

GROWTH 0.000 0.003 0.001 0.000 0.000 0.001

(0.000) (0.002) (0.001) (0.001) (0.000) (0.001)

AGE 0.000 -0.005 -0.005∗∗∗ -0.003∗∗∗ -0.002∗∗∗ -0.004∗∗∗
(0.000) (0.004) (0.002) (0.001) (0.001) (0.002)

LIQUIDITY -0.051∗∗∗ -4.848∗∗∗ -1.331∗∗∗ -0.620∗∗∗ -0.422∗∗∗ -1.286∗∗∗
(0.011) (0.947) (0.255) (0.122) (0.087) (0.243)

CONSTANT -0.259∗∗∗ -12.413∗∗∗ -7.141∗∗∗ -3.857∗∗∗ -2.806∗∗∗ -6.814∗∗∗
(0.025) (1.000) (0.380) (0.192) (0.146) (0.352)

RESET2 test 0.000∗∗∗ 0.000∗∗∗ 0.004∗∗∗ 0.186 0.593 0.000∗∗∗
RESET3 test 0.000∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.087∗ 0.434 0.000∗∗∗
GOL test – 0.000∗∗∗ 0.001∗∗∗ 0.048∗∗ 0.684 0.187

GOFF1 test – 0.000∗∗∗ 0.001∗∗∗ 0.092∗ – 0.000∗∗∗
GOFF2 test – 0.000∗∗∗ 0.001∗∗∗ 0.110 0.864 –

P test

H1: OLS – 0.000∗∗∗ 0.000∗∗∗ 0.023∗∗ 0.528 0.000∗∗∗
H1: Cauchit 0.000∗∗∗ – 0.002∗∗∗ 0.167 0.747 0.000∗∗∗
H1: Logit 0.000∗∗∗ 0.000∗∗∗ – 0.141 0.770 0.000∗∗∗
H1: Probit 0.000∗∗∗ 0.000∗∗∗ 0.001∗∗∗ – 0.827 0.000∗∗∗
H1: Loglog 0.000∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.102 – 0.000∗∗∗
H1: Cloglog 0.000∗∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.111 0.806 –

R2 0.100 0.097 0.116 0.117 0.118 0.115

Notes: below the coefficients we report standard errors in parentheses; for the test

statistics we report p-values; ∗∗∗, ∗∗ and ∗ denote coefficients or test statistics which
are significant at 1%, 5% or 10%, respectively; all regressions include industry dummies.



Table 13: Regression results for two-part models

1st part 2nd part

ML QML ML

Cauchit Logit Probit Loglog Cloglog Cauchit Logit Probit Loglog Cloglog Cauchit Logit Probit Loglog Cloglog

NDTS -0.078 -0.053 -0.028 -0.024 -0.044 -0.000 0.001 0.001 0.002 0.001 0.001 0.003 0.002 0.003 0.002

(0.053) (0.033) (0.018) (0.015) (0.027) (0.022) (0.027) (0.017) (0.019) (0.021) (0.022) (0.025) (0.016) (0.017) (0.020)

TANGIB 2.103∗∗∗ 1.708∗∗∗ 0.948∗∗∗ 0.822∗∗∗ 1.341∗∗∗ 0.056 0.094 0.061 0.078 0.056 -0.045 -0.016 -0.006 0.010 -0.031

(0.247) (0.202) (0.116) (0.107) (0.158) (0.146) (0.159) (0.097) (0.099) (0.127) (0.133) (0.146) (0.090) (0.091) (0.117)

SIZE 0.688∗∗∗ 0.598∗∗∗ 0.345∗∗∗ 0.300∗∗∗ 0.469∗∗∗ -0.116∗∗∗ -0.128∗∗∗ -0.078∗∗∗ -0.081∗∗∗ -0.098∗∗∗ -0.097∗∗∗ -0.107∗∗∗ -0.066∗∗∗ -0.068∗∗∗ -0.082∗∗∗
(0.043) (0.030) (0.017) (0.016) (0.023) (0.021) (0.023) (0.014) (0.014) (0.019) (0.020) (0.022) (0.013) (0.014) (0.017)

PROFITAB -3.105∗∗∗ -2.502∗∗∗ -1.383∗∗∗ -1.163∗∗∗ -1.982∗∗∗ -2.510∗∗∗ -2.747∗∗∗ -1.677∗∗∗ -1.694∗∗∗ -2.170∗∗∗ -2.175∗∗∗ -2.365∗∗∗ -1.441∗∗∗ -1.443∗∗∗ -1.883∗∗∗
(0.664) (0.515) (0.287) (0.248) (0.420) (0.404) (0.408) (0.245) (0.238) (0.335) (0.401) (0.412) (0.249) (0.243) (0.336)

GROWTH -0.000 -0.001 -0.000 -0.001 -0.000 0.003∗∗∗ 0.004∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.003∗∗∗
(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

AGE 0.002 -0.001 -0.000 0.000 -0.001 -0.005∗∗∗ -0.005∗∗∗ -0.003∗∗∗ -0.003∗∗∗ -0.004∗∗∗ -0.005∗∗∗ -0.005∗∗∗ -0.003∗∗∗ -0.003∗∗∗ -0.004∗∗∗
(0.003) (0.003) (0.001) (0.002) (0.002) (0.002) (0.002) (0.001) (0.001) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001)

LIQUIDITY -2.513∗∗∗ -1.602∗∗∗ -0.828∗∗∗ -0.589∗∗∗ -1.439∗∗∗ -0.192 -0.175 -0.103 -0.081 -0.169 -0.170 -0.158 -0.094 -0.078 -0.147

(0.358) (0.247) (0.135) (0.113) (0.209) (0.195) (0.206) (0.125) (0.124) (0.168) (0.171) (0.186) (0.114) (0.115) (0.148)

CONSTANT -10.620∗∗∗ -9.326∗∗∗ -5.386∗∗∗ -4.379∗∗∗ -7.675∗∗∗ 1.578∗∗∗ 1.651∗∗∗ 0.998∗∗∗ 1.360∗∗∗ -0.925∗∗∗ 1.330∗∗∗ 1.374∗∗∗ 0.830∗∗∗ 1.184∗∗∗ 0.721∗∗∗
(0.670) (0.464) (0.258) (0.233) (0.363) (0.338) (0.370) (0.226) (0.228) (0.296) (0.310) (0.341) (0.209) (0.212) (0.271)

RESET2 test 0.000∗∗∗ 0.835 0.109 0.000∗∗∗ 0.003∗∗∗ 0.523 0.672 0.680 0.770 0.418 0.641 0.633 0.627 0.605 0.591

RESET3 test 0.000∗∗∗ 0.406 0.036∗∗ 0.000∗∗∗ 0.001∗∗∗ 0.371 0.259 0.235 0.188 0.246 0.702 0.639 0.627 0.609 0.615

GOL test 0.000∗∗∗ 0.464 0.061∗ 0.000∗∗∗ 0.018∗∗ 0.557 0.270 0.174 0.951 0.153 0.394 0.500 0.445 0.604 0.355

GOFF1 test 0.000∗∗∗ 0.689 0.101 – 0.003∗∗∗ 0.313 0.651 0.659 – 0.268 0.370 0.371 0.366 – 0.353

GOFF2 test 0.000∗∗∗ 0.903 0.058∗ 0.000∗∗∗ – 0.276 0.579 0.713 0.819 – 0.360 0.370 0.366 0.328 –

P test

H1: Cauchit – 0.623 0.794 0.011∗∗ 0.606 – 0.749 0.637 0.355 0.359 – 0.350 0.335 0.275 0.326

H1: Logit 0.000∗∗∗ – 0.043∗∗ 0.013∗∗ 0.001∗∗∗ 0.334 – 0.906 0.652 0.202 0.376 – 0.356 0.312 0.336

H1: Probit 0.000∗∗∗ 0.497 – 0.242 0.004∗∗∗ 0.301 0.916 – 0.739 0.221 0.372 0.368 – 0.320 0.344

H1: Loglog 0.000∗∗∗ 0.797 0.086∗∗ – 0.003∗∗∗ 0.164 0.539 0.598 – 0.176 0.342 0.368 0.365 – 0.333

H1: Cloglog 0.000∗∗∗ 0.996 0.129 0.016∗∗ – 0.914 0.615 0.790 0.644 – 0.394 0.370 0.365 0.309 –

IM test – – – – – – – – – – 0.516 0.230 0.188 0.104 0.380

R2 0.208 0.211 0.210 0.205 0.210 0.176 0.176 0.176 0.176 0.176 0.175 0.175 0.175 0.174 0.174

Notes: below the coefficients we report standard errors in parentheses; for the test statistics we report p-values; ∗∗∗, ∗∗ and ∗ denote coefficients or test statistics which are significant at 1%, 5% or 10%,

respectively; all regressions include industry dummies.
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Table 14: P tests involving the full specification of two-part models (p-values)

H0: loglog one-part model

H1: 1st part\2nd part Cauchit Logit Probit Loglog Cloglog

Cauchit 0.362 0.278 0.265 0.205 0.352

Logit 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
Probit 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
Loglog 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗ 0.000∗∗∗
Cloglog 0.006∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.000∗∗∗ 0.005∗∗∗

H0: logit + cauchit two-part model

H1: one-part Cauchit Logit Probit Loglog Cloglog

0.135 0.613 0.017∗∗ 0.075∗ 0.728

H1: 1st part\2nd part Cauchit Logit Probit Loglog Cloglog

Cauchit 0.007∗∗∗ 0.009∗∗∗ 0.010∗∗∗ 0.011∗∗ 0.010∗∗∗
Logit – 0.064∗ 0.051∗ 0.033∗∗ 0.128

Probit 0.021∗∗ 0.010∗∗∗ 0.009∗∗∗ 0.007∗∗∗ 0.001∗∗∗
Loglog 0.037∗∗ 0.024∗∗ 0.022∗∗ 0.017∗∗ 0.028∗∗
Cloglog 0.117 0.790 0.962 0.438 0.537

H0: logit + logit two-part model

H1: one-part Cauchit Logit Probit Loglog Cloglog

0.092∗ 0.329 0.092∗ 0.063∗ 0.265

H1: 1st part\2nd part Cauchit Logit Probit Loglog Cloglog

Cauchit 0.013∗∗ 0.017∗∗ 0.019∗∗ 0.025∗∗ 0.016∗∗
Logit 0.158 – 0.044∗∗ 0.040∗∗ 0.092∗
Probit 0.397 0.047∗∗ 0.031∗∗ 0.012∗∗ 0.194

Loglog 0.185 0.073∗ 0.061∗ 0.031∗∗ 0.143

Cloglog 0.041∗∗ 0.022∗∗ 0.057∗ 0.731 0.033∗∗
H0: logit + probit two-part model

H1: one-part Cauchit Logit Probit Loglog Cloglog

0.301 0.312 0.972 0.398 0.282

H1: 1st part\2nd part Cauchit Logit Probit Loglog Cloglog

Cauchit 0.184 0.206 0.216 0.249 0.192

Logit 0.401 0.196 – 0.148 0.177

Probit 0.812 0.402 0.320 0.131 0.746

Loglog 0.582 0.400 0.362 0.231 0.573

Cloglog 0.199 0.095∗ 0.154 0.665 0.101

H0: logit + loglog two-part model

H1: one-part Cauchit Logit Probit Loglog Cloglog

0.995 0.608 0.603 0.913 0.621

H1: 1st part\2nd part Cauchit Logit Probit Loglog Cloglog

Cauchit 0.645 0.547 0.535 0.517 0.574

Logit 0.612 0.919 0.996 – 0.989

Probit 0.449 0.577 0.595 0.560 0.650

Loglog 0.480 0.565 0.577 0.548 0.620

Cloglog 0.798 0.881 0.818 0.796 0.864

H0: logit + cloglog two-part model

H1: one-part Cauchit Logit Probit Loglog Cloglog

0.044∗∗ 0.351 0.041∗∗ 0.047∗∗ 0.222

H1: 1st part\2nd part Cauchit Logit Probit Loglog Cloglog

Cauchit 0.005∗∗∗ 0.010∗∗∗ 0.012∗∗ 0.019∗∗ 0.009∗∗∗
Logit 0.220 0.019∗∗ 0.011∗∗ 0.008∗∗∗ –

Probit 0.136 0.007∗∗∗ 0.005∗∗∗ 0.003∗∗∗ 0.023∗∗
Loglog 0.079∗ 0.019∗∗ 0.014∗∗ 0.007∗∗∗ 0.041∗∗
Cloglog 0.007∗∗∗ 0.754 0.548 0.047∗∗ 0.025∗∗

Note: ∗∗∗, ∗∗ and ∗ denote coefficients or test statistics which are significant
at 1%, 5% or 10%, respectively.



Table 15: Partial effects for the models selected

Average sample effects Population partial effects

1st part 2nd part Total 1st part 2nd part Total

Logit Probit Loglog Logit + Probit Logit + Loglog Logit Probit Loglog Logit + Probit Logit + Loglog

NDTS -0.008 0.001 0.001 -0.003 -0.003 -0.008 0.001 0.001 -0.003 -0.003

TANGIB 0.255 -0.002 0.003 0.096 0.097 0.267 -0.002 0.004 0.094 0.096

SIZE 0.089 -0.024 -0.024 0.028 0.028 0.094 -0.024 -0.025 0.028 0.028

PROFITAB -0.373 -0.531 -0.511 -0.273 -0.271 -0.391 -0.535 -0.531 -0.242 -0.242

GROWTH 0.000 0.001 0.001 0.000 0.000 0.000 0.001 0.001 0.000 0.000

AGE 0.000 -0.001 -0.001 0.000 0.000 0.000 -0.001 -0.001 0.000 0.000

LIQUIDITY -0.239 -0.034 -0.028 -0.099 -0.097 -0.250 -0.035 -0.029 -0.095 -0.095
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Table 16: Partial effects for one-part models

Average sample effects Population partial effects

OLS Cauchit Logit Probit Loglog Cloglog OLS Cauchit Logit Probit Loglog Cloglog

NDTS -0.001 -0.003 -0.003 -0.003 -0.003 -0.004 -0.001 -0.001 -0.003 -0.003 -0.003 -0.003

TANGIB 0.071 0.074 0.095 0.094 0.090 0.094 0.071 0.033 0.072 0.079 0.086 0.068

SIZE 0.027 0.023 0.029 0.029 0.029 0.028 0.027 0.010 0.022 0.024 0.027 0.021

PROFITAB -0.132 -0.244 -0.262 -0.252 -0.236 -0.263 -0.132 -0.108 -0.199 -0.214 -0.223 -0.192

GROWTH 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

AGE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

LIQUIDITY -0.051 -0.158 -0.104 -0.093 -0.081 -0.108 -0.051 -0.070 -0.079 -0.078 -0.077 -0.078
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Figure 1: Alternative specifications for E(Y|X)
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Figure 2: Generalized functional forms for E(Y|X)
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Figure 3: Simulation data structures for beta−distributed response variables (based on single 500 000−observation draws)
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Figure 3: Continued
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Figure 4: RMSE comparison of alternative estimators for fractional regression models (beta−distributed response variable)
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Figure 5: Simulation data structures for simplex−distributed fractional response variables − logit model
(based on single 500 000−observation draws)
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Figure 6: Partial effects (beta−distributed response variable; N =  500; φφ == 5)


