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Abstract 
 
 A growing literature reports the conclusions that: (a) expected utility theory does not provide a 
plausible theory of risk aversion for both small-stakes and large-stakes gambles; and (b) this 
decision theory should be replaced with an alternative theory characterized by loss aversion. This 
paper explains that the arguments in previous literature fail to support these conclusions. Either 
concavity calibration has no general implication for expected utility theory or it has problematic 
implications for all decision theories that involve concave transformations (utility or value 
functions) of positive money payoffs, which makes loss aversion irrelevant to the argument.  
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1. Introduction 

Von Neumann and Morgenstern (1947) developed a theory of utility as an essential 

component of a theory of play for strategic games. Their utility theory, now known as expected 

utility theory, is based on a set of axioms for a preference ordering of probability distributions of 

“prizes.” The set of axioms includes the independence axiom which gives an expected utility 

functional representing the axioms its defining characteristic of linearity in probabilities. It was 

clearly understood in classic work (e.g., Luce and Raiffa, 1957, Ch. 2) that the axioms do not 

specify the identity of the prizes, such as scalar amounts of terminal wealth or income or, 

alternatively, commodity vectors. A difference in the assumed identity of the prizes is the 

characteristic that distinguishes one expected utility model from another. Failure in recent 

literature to distinguish between expected utility theory  all models based on a set of axioms 

that includes the independence axiom  and a specific expected utility model has led to incorrect 

conclusions.  

For example, Rabin and Thaler (2001, p. 221)  building on earlier work by Rabin 

(2000)  state that they “… establish the implausibility of expected utility theory by showing 

that absurd large-stakes risk aversion … follow inherently from non-negligible modest-scale risk 

aversion ….” Validity of this Rabin-Thaler conclusion has been accepted in the academic 

literature (Kahneman, 2003; Camerer and Thaler, 2003) and general readership literature (The 

Economist, 2001) and in the award literature for the 2002 Nobel Prize in Economic Sciences 

(Royal Swedish Academy of Sciences, 2002, p. 16).  

This paper explains that the concavity-calibration argument, as developed by Rabin 

(2000), does not logically support the implausibility conclusion about expected utility theory. Our 
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explanation in section 2 begins with the original Rabin (2000) assumption that an agent will reject 

a 50-50 small-stakes gamble at all positive initial wealth levels. The section 2 explanation 

continues by providing: (a) an accessible demonstration that this small-stakes risk aversion 

assumption and globally-concave utility do imply implausible large-stakes risk aversion for the 

expected utility of terminal wealth model (see Rabin, 2000 for an original proof); and (b) a 

counterexample to illustrate that the small-stakes risk aversion assumption and global concavity 

do not imply implausible large-stakes risk aversion for the expected utility of income model. 

Since this small-stakes risk aversion assumption of Rabin (2000) does not imply implausible 

large-stakes risk aversion for the expected utility of income model, the conclusion by Rabin and 

Thaler (2001) that their arguments “establish the implausibility of expected utility theory” does 

not stand. Rubinstein (2001, 2004) presents a critique in a similar spirit. 

The expected utility of income model is widely used in the theory of auctions. 1 However, 

the model does not provide an explanation of how an agent’s initial wealth affects its attitude 

towards risk. In order to be able to analyze the effects of initial wealth on risk-taking behavior, 

one needs a model in which risk attitude does depend on initial wealth. In order for a model to 

withstand the Rabin critique, initial wealth must not be additive to income in the utility function. 

This is our motivation for introducing, in section 3, an expected utility model in which the 

arguments of the utility function are ordered pairs of initial wealth and income. To demonstrate 

that this new model, the expected utility of initial wealth and income model, may have fruitful 

applications we extend the Arrow (1971) and Pratt (1964) characterization of comparative risk 

aversion to it. The new expected utility model is not subject to Rabin’s (2000) critique because 

his risk aversion assumption does not imply implausible large-stakes risk aversion for this model, 

as we illustrate with a counterexample. 

 Explaining that Rabin’s (2000) small-stakes risk aversion assumption has no general 

implication for expected utility theory is the first topic addressed. Another topic addressed in this 

paper is exploring general implications of concavity calibration for decision theory. Many 
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decision theories with “utility functionals” that are not linear in probabilities involve concave 

transformations (utility or value functions) of positive money payoffs, and therefore they may be 

vulnerable to an extended concavity calibration critique. Section 4 addresses this question. We 

present a more-general concavity calibration proposition that does not assume linearity in 

probabilities. Using this concavity calibration result, we identify an alternative small-stakes risk 

aversion assumption that implies that decision theories which involve concave transformations of 

positive money payoffs have implausible large-stakes risk aversion. Whether or not this pattern of 

small-stakes risk aversion has empirical validity is a question best addressed elsewhere, but the 

analysis of its implications demonstrates the following insights. The logic of concavity calibration 

has no special implication for expected utility theory. The implications for decision theory of the 

issues raised by Rabin are either much narrower or much broader than Rabin’s (2000) and 

Rabin’s and Thaler’s (2001) conclusions suggest. Either concavity calibration has no general 

implication for expected utility theory (if only the Rabin calibration is considered), or there are 

problematic implications for any decision theory that involves concave transformation of positive 

money payoffs (if other calibrations, such as ours in section 4, are considered). In the latter case, 

expected utility theory, cumulative prospect theory (Tversky and Kahneman, 1992) and other 

decision theories are subjected to a concavity-calibration critique. Furthermore, loss aversion is 

not a solution to the problems for decision theory that may follow from concavity calibration 

because our alternative small-stakes risk aversion assumption (in section 4) holds in the domain 

of positive money payoffs, which makes loss aversion irrelevant to the argument.2 This finding 

contradicts a conclusion by Rabin and Thaler (2001, p. 230) that loss aversion is a “key 

component” of a decision theory that can survive concavity calibration critique.  

 

2. Implications of the Rabin Risk Aversion Assumption for Expected Utility Theory  

In this section we re-examine the Rabin-Thaler (2001) conclusion, based on Rabin’s 

(2000) calibration, that their arguments “…establish the implausibility of expected utility 



 6

theory…” We provide straightforward demonstrations that Rabin’s assumed pattern of small-

stakes risk aversion: (a) does imply implausible large-stakes risk aversion for the expected utility 

of terminal wealth model; but (b) does not have an analogous implausible risk aversion 

implication for the expected utility of income model.  

Rabin’s (2000) analysis of the implications of small-stakes risk aversion begins with the 

assumption that an agent with (weakly) concave Bernoulli utility function will reject a small-

stakes gamble with even odds of winning or losing relatively small amounts, and that the agent 

will do this at all positive initial wealth levels.3 We examine the implications of this assumption: 

(a) when the prizes are amounts of terminal wealth; and (b) when the prizes are amounts of 

income.  

 

2.1. Implications for the Expected Utility of Terminal Wealth Model  

Consider the expected utility of terminal wealth model, the model based on the expected 

utility axioms and the assumption that the prizes are amounts of terminal wealth. An accessible 

demonstration of the logic of concavity calibration for a differentiable utility function is as 

follows. 

Assume that an agent rejects the gamble that involves a monetary gain of 110 and loss of 

100, with even odds, for all values of initial wealth w  greater than 100.4 According to the 

expected utility of terminal wealth model, a necessary condition for rejecting the gamble is that 

the increase in utility by having 110 more is not larger than the decrease in utility by having 100 

less, that is5 

(1) )100()()()110( −−≤−+ wuwuwuwu , for all 100>w .    

We shall show that statement (1) and concavity of )(⋅u  imply that an agent will reject any even 

odds gamble with a loss of at least 1,680 no matter how large is the gain amount. This 
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demonstrates how a pattern of plausible small-stakes risk aversion implies implausible large-

stakes risk aversion for this model. 

The driving mechanism of the concavity-calibration critique is that an implication of 

statement (1) and concavity of )(⋅u  is geometrically diminishing marginal utility:   

(2)  ( ) )(110/100)210( wutwu t ′≤+′ , for all w >100 and ⋅⋅⋅= ,2,1t      

In order to derive inequalities (2) first recall that, from the concavity of )(⋅u , any straight line that 

connects two different points on the graph of the function has a weakly larger (smaller) slope than 

the tangent line at the largest (smallest) point. Hence, }110/)]()110({[ wuwu −+  

)110( +′≥ wu and )100(}100/)]100()({[ −′≤−− wuwuwu . Therefore the term on the left-

hand-side of inequality (1) is at least )110('110 +wu  whereas the term on the right-hand-side is 

at most )100('100 −wu . Thus, inequality (1) and concavity of )(⋅u  imply that  

(3)  )100(100)110(110 −′≤+′ wuwu , for all 100>w .  

Inequality (3) shows that the marginal utility of getting ))100(110(210 −−+= ww  more 

money is not larger than )110/100(  times the marginal utility of the original amount. Since 

inequality (3) holds for all 100>w , it holds for 210+w  as well, and therefore the marginal 

utility at 210)210( ++w  is at most ( )110/100  of the marginal utility at 210+w , which is at 

most ( )110/100  of the marginal utility at .w  Thus the marginal utility at 2210×+w  is at most 

( )2110/100  of the marginal utility at .w  Continuing the argument, one finds that for any given 

positive integer t , the marginal utility at tw ×+ 210  is at most t)110/100(  of the marginal 

utility at w , and therefore inequality (2) is shown to hold.  

Implications of inequality (2) and global concavity of )(⋅u  are as follows. From 

concavity, the increase in utility from having 210  more than some initial wealth w  is bounded 

from above by 210  times the marginal utility at ,w  i.e. )(210)()210( wuwuwu ′≤−+ . 
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Similarly, if initial wealth is 210+w  then )210()2210( +−×+ wuwu  ).210(210 +′≤ wu  

The two immediately-preceding inequalities together with inequality (2), written for 1=t , imply 

the following inequality: ).(]110/1001[210)()2210( wuwuwu ′+≤−×+  Hence, by iteration 

≤−×+ )()210( wuJwu ).(])110/100()110/100(110/1001[210 12 wuJ ′+⋅⋅⋅+++ −  Note that 

the preceding summation in brackets can never be larger than 11 )).110/1001/(1( −=  This result 

and positive monotonicity of )(⋅u  imply: (*) the increase in utility from receiving any addition G 

to initial wealth w >100 can never be larger than )(]11210[ wu′× , which becomes 11210×  if we 

normalize the utility function so that .1)( =′ wu  On the other hand, for any positive integer k such 

that 100210 >− kw , writing inequality (2) for wealth equal to kw 210−  and 1=t  yields 

( )210)210( +−′ kwu  ( ) )210(110/100 kwu −′≤ . Hence the marginal utility at kw 210−  is at 

least )100/110(  of the marginal utility at 210210 +− kw  ))1(210( −−= kw . By repeating 

this argument, one finds that the marginal utility at kw 210−  is at least k)100/110(  of the 

marginal utility at w . Following the same logic as above, and for ,1)( =′ wu  one observes that 

the utility of 1210×  less than w  is at least 210 less than the utility of w; the utility of 2210×  

less than w  is at least )100/1101(210 + less than the utility of w, and by iteration the utility of 

K×210  less than w  is at least ])100/110(100/1101[210 1−+⋅⋅⋅++ K  less than the utility of 

w. The summation in brackets is strictly larger than 11 for all positive integers 7>K ; therefore 

11210)210()( ×>−− Kwuwu , for all such .K  This result and positive monotonicity of )(⋅u  

imply: (**) the decrease in utility from any subtraction 680,1≥L  ( 2108×= ) from initial wealth 

w > L is larger than 11210 × . Statements (*) and (**) and transitivity imply that the increase in 

utility from a gain of any amount G , no matter how large, is strictly smaller than the decrease in 

utility from a loss of 680,1 (or any larger loss) at any w bigger than the loss amount. This is a 

sufficient condition for rejection of any even-odds gamble, no matter how large the gain, that 
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involves a loss of 680,1 (or more). Therefore, the assumed pattern of plausible small-stakes risk 

aversion implies implausible large-stakes risk aversion for the expected utility of terminal wealth 

model. 

 

2.2 Implications for the Expected Utility of Income Model 

Now consider the expected utility of income model, the model based on the expected 

utility axioms and the assumption that the prizes are amounts of income (or changes in wealth). 

We shall demonstrate that the Rabin (2000) small-stakes risk aversion assumption does not imply 

implausible large-stakes risk aversion for this model.  

  Let μ  denote the agent’s Bernoulli utility function for income. A necessary condition for 

rejecting an even-odds gamble with loss amount  and gain amount g at all wealth levels >w  

is: 

(4) )()0()0()( −−≤− μμμμ g .   

It should be expected that the Rabin concavity calibration has no large-stakes risk aversion 

implications for this model because inequality (4) does not depend on w . In order to explicate 

comparison with the terminal wealth model, we consider the same small-stakes gamble as in 

section 2.1: receive -100 or +110 with even odds. An example of a Bernoulli utility function μ  

for income y that rejects the gamble with outcomes -100 or +110 with even odds, for all 

100>w , and has plausible large-stakes risk aversion is: 

(5)  1.09.0)( += yyμ , for 1<y , 

 9.0y= , otherwise.         

 Using utility function (5), define )(g  as the amount of gain that makes the agent 

indifferent between accepting and rejecting the even-odds gamble with loss amount ,  that is 

)(g  satisfies weak inequality (4) with an equality. Straightforwardly, if 1>  then 
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9
10

)9.01.0()( +=g  as a solution to the equation ( ) ( )1.0)(9.01.01.0)( 9.0 +−×−=−g . 

An even odds gamble with loss amount  and gain amount G will be rejected (accepted) for all 

gain amounts G strictly smaller (larger) than )(g . Hence, the even-odds lottery with outcomes 

of -100 and +110 is rejected since the gain amount 110 is strictly smaller than 149)100( ≈g . 

However, in contrast to the terminal wealth model, the agent with utility of income function (5) 

would accept an even-odds gamble with loss 1,680 and gain at least 3,412 since that is strictly 

larger than .411,3)680,1( ≈g 6 Thus, the assumed pattern of risk aversion over small-stakes 

gambles does not imply implausible risk aversion over large-stakes gambles with this expected 

utility model. 

  

3. Expected Utility of Initial Wealth and Income Model 

The expected utility of income model is widely used in the theory of auctions but this 

model does not provide an explanation of how an agent’s initial wealth affects its attitude towards 

risk. In this section we consider a model in which risk attitude depends on initial wealth but 

income is not additive to initial wealth.  

Assume that the arguments of the utility function are ordered pairs of initial wealth and 

income. Let υ  denote the agent’s “Bernoulli” utility function for initial wealth and income. For 

any integrable probability distribution function G  for random income y , the expected utility 

functional for this model is written as 

(6) )),,((),( ywEdGyw G υυ =∫        

where the function υ  is strictly increasing in both arguments and (resp. strictly) concave in its 

second argument if the agent is (resp. strictly) risk averse. Although, in this model, risk attitude 

depends on initial wealth, the model is not called into question by the type of global small-stakes 

risk aversion assumed in previous literature, as we shall now demonstrate. 
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3.1 Rationalizing Small- and Large-Stakes Risk Aversion 

For the model of initial wealth and income, a necessary condition for rejecting an even-

odds gamble with loss amount  and gain amount g  for all positive w  is 

(7) ),()0,()0,(),( −−≤− wwwgw υυυυ , for all .0>w       

We present an example of a “Bernoulli” function utility υ  that both satisfies inequality (7) for 

small-stakes risky lotteries and has plausible large-stakes risk aversion implications. To keep 

things comparable among the three expected utility models, we consider the same small-stakes 

gamble as in sections 2.1 and 2.2, the even-odds gamble with outcomes -100 and +110.  

Consider the following “Bernoulli” utility function υ  for initial wealth w  and income 

:y 7 

(8) 
( )

,1,
1

)1.09.0(),( 1.0 <
−

−+
=

−

−

y
e

eyyw
w

w

υ  

9.0)( wey −−= , otherwise.      

This utility function satisfies the pattern of risk aversion assumed by Rabin (2000) and at the 

same time it has plausible large-stakes risk aversion, as shown below. 

For the utility function (8), the amount of gain ),( wg  that makes the agent indifferent 

between accepting and rejecting the even-odds gamble with loss amount 1>  is given by 

),( wg ,])1/()1.09.0[( 9
101.0www eee −−− −−++=  which is derived by solving weak 

inequality (7) with equality. An even-odds gamble with outcomes −  and g+  will be rejected 

(accepted) for g  strictly smaller (larger) than ),( wg . Note that for initial wealth w >100 and 

loss amount ,100=  one has .149),100( ≈wg  Therefore ),100(110 wg<  for all w >100, 

which implies rejection of the even-odds gamble with outcomes -100 and +110. However, in 

contrast to the terminal wealth model’s prediction, the agent would accept an even-odds gamble 
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with loss 1,680 and gain at least 3,412 since 411,3),1680( ≈wg  for all .0>w  Thus the 

assumed pattern of risk aversion over small-stakes gambles does not imply implausible risk 

aversion over large-stakes gambles with the expected utility of initial wealth and income model.  

 

3.2 Comparative Risk Aversion 

Having observed that the expected utility of initial wealth and income model is not called 

into question by the type of global small-stakes risk aversion assumed in previous literature, the 

next question is whether this model can be used in applications in which the central questions are 

concerned with the implications of different attitudes towards risk and their possible dependence 

on initial wealth. We address this question by extending the Arrow-Pratt characterization of 

comparative risk aversion to the new model. 

The “Bernoulli” utility functions for two agents can be written as ),( ywjυ , for .,βα=j  

The measure of absolute risk aversion for this model is 

(9) 
),(
),(),(

2

22

yw
ywywA j

j
j

υ
υ

−= .  

Let y  be the mean value of income for the distributionG ; then the risk premium, jπ  is defined 

by 

(10) )),(()),(,( ywEGwyw j
G

jj υπυ =− .   

Given that the function jυ  is strictly increasing in its second argument, y  there exists a y-

inverse function jφ  defined by 

(11) )),(,( ywwy jj υφ= .  

Define the function g  as follows: 

(12) )).,(,(),( uwwuwg βα φυ=  
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The measures of comparative risk attitudes for agents α  and β  are as given in the 

following proposition, which states that: (i) the absolute risk aversion measure for agent α is 

greater than the absolute risk aversion measure for agent β , if and only if, (ii) the risk premium 

for agent α  is greater than the risk premium for agent β , if and only if, (iii) the utility function 

for agent α  is a strictly increasing and strictly concave transformation of the utility function of 

agent β  of the form given by the definition in equation (12). 

 

Proposition 1. If αυ  and βυ are strictly increasing in y  and twice differentiable then the 

following statements are equivalent: 

(i) ),(),( ywAywA βα > , for all ),( yw ; 

(ii) ),(),( GwGw βα ππ > , for all w and G; 

(iii) )),(,(),( ywwgyw βα υυ = , 0),(2 >uwg , 0),(22 <uwg , for all ),( uw . 

Proof: See appendix B. 

Proposition 1 makes clear that the Arrow-Pratt characterization of agents’ comparative 

risk aversion can be extended from the expected utility of terminal wealth model to the two-

argument, expected utility of initial wealth and income model which is not called into question by 

Rabin’s (2000) concavity-calibration arguments. Hence, rather than using the expected utility of 

income model, agents’ risk-avoiding behavior can be modeled with the new model.8  

 

4.  More Implications of Concavity Calibration for Decision Theory 
 

In sections 2 and 3, we demonstrated that the Rabin (2000) small-stakes risk aversion 

assumption has implausible large-stakes risk aversion implications for only one of the three 

expected utility models that we examined. This was the first question addressed in this paper. 

This section addresses another question: What are the possible implications of concavity 
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calibration for decision-theoretic models other than the expected utility of terminal wealth model? 

We present a concavity calibration proposition for functionals that represent preferences on a 

lottery space that may not be linear in probabilities (as are expected utility functionals). This more 

general concavity calibration proposition identifies small-stakes risk aversion assumptions for 

which all decision theories that involve concave transformations of positive money payoffs have 

implausible large-stakes risk aversion. This alternative pattern of small-stakes risk aversion may 

or may not have empirical validity, but the analysis makes it clear that the logic of concavity 

calibration has no unique implication for expected utility theory; either concavity calibration has 

no general implication for expected utility theory (because it does not apply to the expected utility 

of income model nor to the expected utility of initial wealth and income model), or it has 

problematic implications for all decision theories that involve concave transformations of positive 

money payoffs.  

 

4.1 Implications for Decision Theory of an Alternative Pattern of Risk Aversion 

Consider binary gambles that pay the amount of income x  with probability p  and the 

amount of income y  with probability ,1 p−  where ].1,0[∈p  Denote such a gamble by 

},;{ yxp . Consider a decision theory D that represents a preference ordering of these binary 

gambles with a functional ),( fhFD =  given as  

(13)  )())(1()()(),;( yfphxfphyxpFD −+= . 

That is, according to decision theory D, lottery },;{ bap=γ  is preferred to lottery },;{ dcq=δ  

if and only if ),()( δγ DD FF >  which using (13) can be written as 

(14) δγ  iff )())(1()()()())(1()()( dfqhcfqhbfphafph −+>−+ . 

For a functional representation ),( fhFD = , function h  is commonly called a probability 

transformation function and function f  is called a money transformation (or utility or value) 
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function. In the case of expected utility theory, the probability transformation function is the 

identity map: ,)( pph =  for all ].1,0[∈p   

We define a gamble },;{ gxxp +−  to be D-favorable if it satisfies 

(15)  xgxphxph >+−+− )))((1())(( . 

Then one has the following proposition.9 

 

Proposition 2. Let an agent’s preference ordering be represented according to some decision 

theory D by a functional ).,( fhFD =  Let g<<0  be given and f be increasing, concave and 

differentiable for positive amounts of money. Suppose that the agent prefers a certain positive 

amount of  money x to a D-favorable lottery },;{ gxxp +−  for all ).,( +∞∈x  Then 

according to decision theory D there exists a finite positive *L  such that for all *LL >  and 

Lz >  the agent will prefer the certain positive amount of money z  to lottery },,;{ GLzp −  for 

all G.  

 
Proof: See appendix C, part C.1. 

 

Interpretation of the definition of D-favorable lottery in inequality (15) for the special case of 

expected utility theory is that the gamble has positive expected value. In order to further explicate 

which lotteries are D-favorable, note that a risky lottery },;{ gxxp +−  is D-favorable if and 

only if ( ) .0)()(1 >×−−× phphg  Since the last inequality does not depend on x , one has: if 

},;{ ** gxxp +− is D-favorable for some ),(* +∞∈x  then },;{ gxxp +−  is D-favorable 

for all ).,( +∞∈x  

 

4.2 Interpretations with Alternative Decision Theories 
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We here offer some interpretations of Proposition 2 for models from two alternative 

decision theories, expected utility theory and cumulative prospect theory. First consider the three 

expected utility models discussed in sections 2 and 3 of this paper, the terminal wealth model, the 

income model, and the initial wealth and income model. Let the preference ordering over lotteries 

according to any of these three models be represented by the functional ),( UidE = , where 

id denotes the identity map which is the probability transformation for expected utility theory. 

The concave money payoff transformation function U is the Bernoulli utility function for 

income )(xμ , or terminal wealth )( xwu + , or initial wealth and income ),( xwυ , depending on 

which model is considered. Binary lottery }110,100;5.0{ +− xx  is an E-favorable risky gamble. 

For all three expected utility models discussed above, applying Proposition 2 and using the 

constructive proof in appendix C, part C.2, one has: rejection of this risky gamble in favor of a 

certain amount of income x, for all x >100, implies rejection of any even-odds lottery that 

involves a lower outcome less than z-1,680 in favor of receiving a certain amount z (z >1,680), no 

matter how large is the high outcome. An example is: 6,000 for sure is preferred to an even-odds 

lottery with low outcome of 4,000 and any arbitrarily-large high outcome. Thus we have the 

following corollary.  

  

Corollary 1. Any of the three expected utility models predict: if },110,100;5.0{ +− xxx  

,100>∀x  then 680,1≥∀L  and Lz >∀ , },;5.0{ GLzz −  for all G. 

 

Note that the examples of utility functions given in equations (5) and (8) do not satisfy the 

antecedent statement in Corollary 1 and, therefore, the corollary does not apply to those 

preferences. 

Next consider cumulative prospect theory (Tversky and Kahneman, 1992). Let P = (W,v) 

denote the functional that represents the preference ordering according to this theory. Since all 
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outcomes are positive, the relevant money transformation function is the concave value function 

for gains and the relevant probability transformation function is given by the probability 

weighting function for gains ,+W  with 58.0)5.0( =+W  (Tversky and Kahneman, 1992, p. 312). 

First, consider the gamble }110,75;5.0{ +− xx . This gamble is P-favorable, as defined in 

statement (15), because xxx >++− )110(42.0)75(58.0 . Applying Proposition 2 for decision 

theory P (see appendix C, part C.3), one gets: if the certain amount of money x  is preferred to 

},110,75;5.0{ +− xx  for all ,75>x  then for all 850,1>L  and ,Lz >  the certain amount of 

money z  is preferred to },;5.0{ GLz −  no matter how large is G.10 The example reported for the 

expected utility models can be used here as well. That is, the derivation in part C.3 of appendix C 

implies that any even-odds gamble with lower outcome of 4,000, no matter how large the other 

outcome may be, is rejected in favor of receiving 6,000 for sure. Alternatively, consider the 

gamble }110,100;36.0{ +− xx . Gonzales and Wu (1999, p. 157) report on persistence across 

studies of the estimate ,5.0)36.0( =+W  and therefore the gamble }110,100;36.0{ +− xx  is P-

favorable as defined in statement (15). Applying Proposition 2, one finds that rejection of gamble 

}110,100;36.0{ +− xx  in favor of a certain amount of money x , for all 100>x , implies 

rejection of 0},,;36.0{ >∀− GGLz  in favor of receiving z  for sure, for all 680,1>L  and 

Lz >  (see appendix C, part C.3). Again, the example reported above survives (in a more extreme 

form): the gamble of receiving 4,000 with probability 0.36 or any positive amount with 

probability 0.64 is rejected in favor of receiving 6,000 for sure. The following corollary 

summarizes these findings.  

 

Corollary 2. Cumulative prospect theory P with the probability transformation function W, as 

reported in the literature, predicts: 

(i) if },110,75;5.0{ +− xxx  for all 75>x , then 850,1≥∀L  and Lz >∀  
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},;5.0{ GLzz − , for all G; 

(ii)  if },110,100;36.0{ +− xxx  for all 100>x , then 680,1≥∀L  and Lz >∀  

},;36.0{ GLzz − , for all G.  

 

Therefore, the presently-assumed global small-stakes risk aversion and concavity of the value 

function for positive amounts of money imply implausible large-stakes risk aversion with 

cumulative prospect theory.  

The assumption in Proposition 2 that an agent prefers the certain amount of money x to a 

D-favorable lottery },;{ gxxp +− , for all >g  and 0>>x , implies that the money 

transformation (utility or value) function f is bounded (see appendix C, part C.4).11  However, the 

implication of implausible large-stakes risk aversion in Proposition 2 and its corollaries does not 

require bounded money transformation functions. Implausible large-stakes risk aversion is also 

implied by an assumption that a certain amount of money x is preferred to a D-favorable lottery 

},;{ gxxp +− , for all x in a sufficiently large finite interval, and this alternative assumption 

does not imply bounded money transformation functions. (A proof of this alternative version of 

Proposition 2 is available upon request to the authors.) 

 
5. Concluding Remarks 

This paper explains that the type of global small-stakes risk aversion assumed in previous 

literature (Rabin, 2000; Rabin and Thaler, 2001) has no implication for the expected utility of 

income model, hence no general implication for expected utility theory. However, an agent’s risk 

attitude with the income model does not depend on initial wealth. This is our motivation for 

discussion of a two-argument model for which risk attitude does depend on initial wealth. We 

show that this model is immune to the concavity-calibration critique in previous literature. An 
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extension of the Arrow-Pratt characterization of comparative risk aversion to this new model is 

presented, demonstrating that this two-argument model may have fruitful applications. 

In order to explore the implications of concavity calibration for decision theory, we 

present a concavity calibration proposition that does not assume linearity in probabilities. This 

proposition, together with an alternative pattern of global small-stakes risk aversion, provides a 

concavity-calibration critique that applies to all expected utility models reported in this paper, to 

cumulative prospect theory, and to other decision theories that involve concave money 

transformation functions for positive money payoffs.12 The alternative assumed pattern of risk 

aversion holds in the domain of gains, which makes loss aversion irrelevant to the argument. This 

makes it clear that loss aversion does not provide a way around any problems for decision theory 

that follow from concavity calibration. This new pattern of small-stakes risk aversion, as assumed 

in Proposition 2, may or may not have empirical validity; the central role of Proposition 2 in the 

analysis is to make clear that concavity calibration has no unique implication for expected utility 

theory.13 Instead, concavity calibration either has no general implication for expected utility 

theory or it has problematic implications for all decision theories with concave transformation 

(utility or value) functions for positive money payoffs. 
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Endnotes 
 
1. Vickrey (1961) first developed Nash equilibrium bidding theory based on the expected utility 

axioms. He mainly developed the theory for the special case of risk neutral bidders, for which 

there is no essential distinction between the expected utility of terminal wealth model and the 

expected utility of income model. Later authors used the expected utility of income model to 

develop Nash equilibrium bidding theory for risk averse agents. See, for examples: Holt (1980), 

Harris and Raviv (1981), Riley and Samuelson (1981), Cox, Smith, and Walker (1982), Milgrom 

and Weber (1982), Matthews (1983), Maskin and Riley (1984), and Moore (1984). The bid 

functions for risk averse bidders presented in these papers do not satisfy the best reply property of 

Nash equilibrium if one assumes that the argument of the utility function is terminal wealth rather 

than income. Appendix A provides an illustration.  

2. Loss aversion can be incorporated into a decision-theoretic model by assuming a utility or 

value function for income that has a kink at zero income and is steeper in the loss domain than in 

the gain domain (Kahneman and Tversky, 1979). While it has been featured in discussions of 

prospect theory, loss aversion is also consistent with the expected utility of income model and the 

new expected utility model introduced in this paper. 

3. Rabin (2000) examines the implications of rejection of this small-stakes gamble for all 

,Iw∈ where I  is either an infinite or sufficiently large finite interval. We focus on the infinite 

interval in order to simplify the exposition of concavity calibration.  

4. The wealth levels at which the small-stakes gamble is assumed to be rejected are required to be 

greater than the loss amount in the gamble (here, 100) because negative terminal wealth is not 

well-defined. 
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5. According to the expected utility of terminal wealth model, a necessary condition for rejecting 

gambles with outcomes x  and y−  at even-odds is )()(5.0)(5.0 wuywuxwu ≤−++ , which is 

equivalent to )()()()( ywuwuwuxwu −−≤−+ . Strict inequality gives a sufficient condition. 

We use this characterization for rejection (or acceptance for the opposite inequality sign) of even-

odds lotteries for the rest of the paper. 

6. Examples of other gambles that would be accepted include: }4150,2000;5.0{ +− ; 

}24760,10000;5.0{ +− ; and }.53470,20000;5.0{ +−  

7. This function is risk neutral for income less than 1, otherwise it exhibits absolute risk aversion 

(as defined in statement (9)) that is decreasing in both income and wealth. 

8. Note that, as presently developed this model shares some limitations with the expected utility 

of income model, prospect theory, and other models defined on income: it does not rule out 

certain types of anomalies (see Rubinstein (2004) for an illustration). Detailed analysis of 

possible “money pump” preference cycles and other violations of full rationality are beyond the 

scope of the present paper, which is concerned with the implications of concavity calibration for 

decision theories. 

9. Proposition 2 holds for non-differentiable f as well. Furthermore, implausible large-stakes risk 

aversion is implied even if small-stakes risk aversion is assumed to hold in a (large enough) finite 

interval instead of the infinite one. An alternative proposition (and proof) that relaxes 

differentiability of f and the infinite interval assumption is available upon request to the authors.  

10. The lower outcome Lz −  is required to be positive in order to make loss aversion irrelevant 

to the argument. 

11. We thank Martin Dufwenberg for bringing this to our attention. 
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12. An example of a decision theory that does not involve concave transformation of money 

payoffs is provided by Yaari’s (1987) dual theory of choice under risk. The “utility functional” 

that represents the dual theory preference ordering is always linear in money payoffs but is linear 

in probabilities only if the agent is risk neutral.  

13. The empirical credibility of Rabin’s (2000) risk aversion assumption is disputed in Palacios-

Huerta, Serrano, and Volij (2003) and in Cox and Sadiraj (2001). In ongoing empirical research, 

we are attempting to obtain data that can shed light on the empirical validity of Rabin’s 

assumption and the alternative risk aversion assumption in Proposition 2. 
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Appendix A. Bidding Theory for Risk Averse Agents Works with the Expected Utility of 

Income Model 

In order to appreciate that the terminal wealth model is not used in the literature on 

bidding theory, consider a special case example from the theory of first-price sealed-bid auctions 

of single items with independent private values (Cox, Smith, and Walker, 1982). Let private 

values be drawn from the uniform distribution on ]1,0[ . Let the preferences of 2 bidders be 

represented by the Bernoulli utility function for income :y  ryyu =)(  for ).1,0(∈r  Then the 

Nash equilibrium bid function is: )(∗ )1/( rvb ii += . Now consider the terminal wealth model 

instead. For this model the best reply property of Nash equilibrium is violated. Indeed, since the 

v–inverse of bid function )(∗  is ii brv )1( += , the probability that bidder 1 will bid less than 2b  

is 2)1( br+ , given that bidder 1 bids according to bid function ).(∗  Using the terminal wealth 

model, the expected utility of bidder 2 from bidding amount 2b  is 

.])1(1[)()1()( 22222
rr wbrbvwbrbU +−+−++=  It can be easily verified that )1/(22 rvb +=  

does not satisfy the first order condition for a maximum of )( 2bU  given that 10 << r . 

Furthermore, replacing iv  by ii vw + in bid function )(∗  does not yield a bid function with the 

mutual best reply property, nor does replacing iv  by ivw +  for the special case www == 21 . 

Examples using other Nash equilibrium bid functions in the literature lead to the same conclusion 

that the required best reply property is not satisfied if one uses the expected utility of terminal 

wealth model rather than the expected utility of income model.  
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Appendix B. Proof of Proposition 1  

Note that )),(,(),( ywwgyw βα υυ =  is true by construction (see statements (11) and 

(12)). Furthermore, ),,( ,0),(2 uwuwg ∀>  because βα υυ 222 g= , and 0),(2 >ywαυ  and 

0),(2 >ywβυ , ),( yw∀ .  

We first show that statements (i) and (iii) in Proposition 1 imply each other: (i) ↔  (iii). 

Differentiation of the functions in statement (iii) with respect to y  yields 

(b.1)  βα υυ 222 g= , and 

(b.2) ββα υυυ 222
2

22222 )( gg += . 

The definition of ),( ywA j  and statements (b.1) and (b.2) imply 

(b.3) 
( ) ( )

[ ]
( )

.     A                 
   

2
2

2
2

2

2

2
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g −=⎥

⎦

⎤
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⎣

⎡
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−
=  

Statement (b.3) implies that ),,( ,0),(22 uwuwg ∀<  if and only if 

).,( ),,(),( ywywAywA ∀> βα   

We next show that statement (iii) in Proposition 1 implies statement (ii) in the 

proposition: (iii) →  (ii). Jensen’s inequality and the definitions imply 

(b.4) 
)).,(()))),(,(,(())),(,((

))),((,()))),((,(,(

ywEywwwEywwgE

ywEwgywEww GG
αββαβ

βββα

υυφυυ

υυφυ

==>

=
 

Therefore 

(b.5) 
).,()())),((,(

))))),((,(,(,())),((,(),()(

GwyEywEw

ywEwwwywEwGwyE

GG

GGG

ααα

ββααβββ

πυφ

υφυφυφπ

−=>

==−
 

Therefore statement (iii) implies statement (ii) in Proposition 1.  

We next show that statement (ii) in Proposition 1 implies statement (iii) in the 

proposition: (ii)→  (iii). Statement (ii) and the definitions imply 
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 (b.6) 
)).,(()),()(,(

)),()(,()))),((,(,(

ywEGwyEw

GwyEwywEww
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GG
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Hence 

(b.7) 
))).,(,(()))),(,(,(()),((

)))),((,(,())),((,(

ywwgEywwwEywE

ywEwwywEwg

GGG

GG

βββαα
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==>

=
 

Therefore, g  is strictly concave in ).,( ,0),(  : 22 uwuwgu ∀<  
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Appendix C. Proof of Proposition 2 and Corollaries 1 and 2  

C.1 Proof of Proposition 2 

Let a decision theory D with functional ),( fhFD =  be given.  Let money 

transformation function f have the following properties for positive amounts of money: 

increasing, concave and differentiable.  Let g<<0  be given. Suppose that the agent prefers a 

positive amount of money x  for sure to a D-favorable lottery, },;{ gxxp +−  for all 

).,( +∞∈x  This assumption and statement (14) in the text for decision theory D imply  

(c.1) )())(1()()()( gxfphxfphxf +−+−≥ , for all >x . 

We shall show that (c.1) and the concavity property of f  imply that for all positive z and 

positive integers j,  

(c.2) )(
)(1

)())(( zf
gph

phgjzf
j

′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≤++′ . 

Note that 1)( ≠ph  since },;{ gxxp +− is a D-favorable lottery.  

We shall also show that there exists a *K  such that for all positive integers *KK > , for 

all Kgz )( +> ,  

(c.3) [ ] [ ])())(())(1())(()()( zfJgzfphKgzfzfph −++−>+−− , 

for all positive integers .J  This will give us our result because statement (14) and inequality (c.3) 

imply that for all ,*KK >  and for all ,)( Kgz +>  the agent prefers the positive amount of 

money z  for sure to the lottery })(,)(;{ JgzKgzp +++−  for all J. This preference for z, 

together with positive monotonicity of ,f  implies Proposition 2 with ** )( KgL += . 

To derive (c.2), note that inequality (c.1) holds for all >x , and thus it holds for +z   

(c.4) )())(1()()()( gzfphzfphzf ++−+≥+ , for all positive z .  

Substituting )())(1()()()( +−++=+ zfphzfphzf in (c.4) and rewriting it, one has  
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(c.5) )]()()][(1[)]()()[( +−++−≥−+ zfgzfphzfzfph , for all positive z .  

Inequalities [ ] )('/)()( gzfgzfgzf ++≥+−++  and [ ] ),('/)()( zfzfzf ≤−+  

(both following from the concavity property of f ) and inequality (c.5) imply  

(c.6) )(
)(1

)())(( zf
gph

phgzf ′⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≤++′ , for all positive z . 

Iterative application of the logic used to derive (c.6) implies 

),(
)(1

)()))(1((
)(1

)())(( zf
gph
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gph

phgjzf
j
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−
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⎝

⎛
−

≤++′ …  which  

gives statement (c.2).  

To derive statement (c.3) note that for all positive integers ,J  and for all positive z , one 

has 

(c.7) 
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where the first inequality follows from the concavity property of f and the second one follows 

from statement (c.2). Similarly, for any given positive integer K  and for all z  larger than 

,)( Kg+  

(c.8)  
kK

k

g
ph

phzfgKgzfzf ∑
−

=
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−′+≥+−−
1

0 )(
)(1)()())(()( . 

Note that 0)( ≠ph  follows from inequality (c.1) and f being an increasing function.  Showing 

that there exists a positive *K  such that for all positive integers *KK > ,  
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(c.9) ))(1( ph− ∑
−

=
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, for all ,1≥J  

completes the proof since then (c.7), (c.8) and (c.9) imply (c.3). Inequality (c.9) is a direct 

implication of the binary lottery },;{ gxxp +−  being a D-favorable one. Indeed, statement 

(15) in the text implies ( ) ( ) 1/))(1/()( <×− gphph , and hence for all values of J  the term on 

the left-hand-side of (c.9) is strictly smaller than the finite number S defined as 

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
×

−
−−=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
×

−
−≡ ∑

∞

= gph
phph

gph
phphS

j

j

)(1
)(1/)(1

)(1
)())(1(

0
; whereas the term on the 

right-hand-side of inequality (c.9) is unbounded from above as ∞→K  

(since ( )( ) 1)/()(/)(1 >×− gphph ). Therefore, there exists a positive integer *K  that makes 

the right-hand-side term in (c.9) larger than S , and hence strictly larger than the left-hand-side 

term for all J .  

 

C.2. Proof of Corollary 1  

For ,100= ,110=g 5.0=p  and 5.0)5.0( =h , one has 5.5=S , and the right hand side of 

inequality (c.9) is larger than 5.5  for all .8* =≥ KK  Hence, Proposition 2 applies with 

8)100110(* ×+=L . 

 

C.3. Proof of Corollary 2. 

Part (i). For this case, ,75=  ,110=g  5.0=p  and 58.0)5.0()5.0( == +Wh  and hence 

2.7≈S , and the right hand side of inequality (c.9) becomes larger than 2.7  for all 

10* =≥ KK . Then, apply Proposition 2 with 10)75110(* ×+=L . 
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Part (ii). For this case, ,100=  ,110=g 36.0=p  and 5.0)35.0()36.0( == +Wh , and one 

can verify that 5.5=S  and that the right hand side of inequality (c.9) is larger than 5.5  for all 

.8* =≥ KK  Then apply Proposition 2 with 8210* ×=L .  

 

C.4. Note about Bounded Money Transformation Functions  

Assumption (c.1) and concavity imply that function f is bounded from above as follows. For any 

given x , there exists a positive integer J  such that ( )( )Jgx ++≤ 1 , and therefore 

( )( )Jgfxf ++≤ 1)( . The right-hand-side of the last inequality is smaller than 

( )[ ])(1/)1()()1( phSfgf −′++   which follows from inequality (c.7) and the definition of .S  

Denoting the last expression by M, one has Mxf ≤)( for all x . 

 


