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I. Introduction  

In audit or correspondence studies, fictitious individuals who are identical except for 

race, sex, or ethnicity apply for jobs.  Group differences in outcomes – for example, blacks 

getting fewer job offers than whites – are interpreted as reflecting discrimination.  Across a wide 

array of countries and demographic groups, audit or correspondence studies find evidence 

consistent with discrimination, including discrimination against blacks, Hispanics, and women in 

the United States (Mincy 1993; Neumark 1996; Bertrand and Mullainathan [BM] 2004), 

Moroccans in Belgium and the Netherlands (Smeeters and Nayer 1998; Bovenkerk, Gras, and 

Ramsoedh 1995), and lower castes in India (Banerjee et al. 2008).  These “field experiments” are 

widely viewed as providing the most convincing evidence on discrimination (Pager 2007; Riach 

and Rich 2002), and U.S. courts allow organizations that conduct audit or correspondence studies 

to file claims of discrimination based on the evidence they collect (U.S. Equal Employment 

Opportunity Commission 1996).  Yet audit or correspondence studies have been sharply 

criticized by Heckman and Siegelman [HS] (HS 1993; Heckman 1998).  Perhaps the most 

damaging criticism is that when the variance of unobserved productivity differs across groups – 

as in the standard statistical discrimination model (Aigner and Cain 1977) – audit or 

correspondence studies can generate spurious evidence of discrimination in either direction or of 

its absence; equivalently, discrimination is unidentified in these studies.  Although this critique 

has been ignored in the literature, it clearly casts serious doubt on the validity of the evidence 

from these studies.  This paper addresses the unobserved variance critique of audit and 

correspondence studies, proposing a method of collecting and analyzing data from these studies 

that can correctly identify discrimination.   

The HS criticism that has received the most attention is that audit studies – which use 

“live” job applicants – fail to ensure that applicants from different groups appear identical to 
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employers.  Many of these criticisms can be countered by using correspondence studies, which 

use fictitious applicants on paper, or more recently the internet, whose qualifications can be 

made identical across groups.  However, the Heckman and Siegelman (1993) critique applies 

even in the ideal case in which both observed and unobserved group averages are identical.   

This paper develops and implements a method of using data from audit or 

correspondence studies that accomplishes two goals.  First, it provides a statistical test of 

whether HS’s unobservable variance critique applies to the data from a particular study.  Second, 

and more important, it develops a statistical estimation procedure that identifies the effect of 

discrimination.  The method requires the study to have variation in applicant characteristics that 

affect hiring.  It is a simple matter to collect the requisite data in future correspondence studies, 

and as an illustration the method is implemented using data from a correspondence study (BM 

2004) that has the requisite data.   

The method rests on three types of assumptions.  First, it is based on an assumed binary 

threshold model of hiring that asks whether the perceived productivity of a worker exceeds a 

standard.  Second, it imposes a parametric assumption about the distribution of unobservables 

that is necessary for identification in this case.  The model and parametric assumption parallel 

exactly the setting used by HS to interpret data from these types of studies; but there may of 

course be other contexts where this method is useful.  Finally, to solve the identification problem 

highlighted by HS, it relies on an additional identifying assumption that some applicant 

characteristics affect the perceived productivity of workers, and hence hiring, and that the effects 

of these characteristics on perceived productivity do not vary with group membership (for 

example, race).  This identifying assumption has testable implications in the form of 

overidentifying restrictions.  The estimation procedure is assessed via Monte Carlo simulations.   
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II. Background on Audit and Correspondence Studies  

Earlier research on labor market discrimination focused on individual-level employment 

or earnings regressions, with discrimination estimated from the race, sex, or ethnic differential 

that remains unexplained after including many proxies for productivity.  These analyses suffer 

from the obvious criticism that the proxies do not adequately capture group differences in 

productivity, in which case the “unexplained” differences cannot be interpreted as 

discrimination.   

Audit or correspondence studies are a response to this inherent weakness of the 

regression approach to discrimination.  These studies are based on comparisons of outcomes 

(usually job interviews or job offers) for matched job applicants differing by race, sex, or 

ethnicity (see, for example, Turner, Fix, and Struyk 1991; Neumark 1996; BM 2004).  Audit or 

correspondence studies directly address the problem of missing data on productivity.  Rather 

than trying to control for variables that might be associated with productivity differences 

between groups, these studies instead create an artificial pool of job applicants, among whom 

there are intended to be no average differences by group.  By using either applicants coached to 

act alike, with identical-quality resumes (an audit study), or simply applicants on paper who have 

equal qualifications (a correspondence study), the method is largely immune to criticisms of 

failure to control for important differences between, for example, black and white job applicants.  

As a consequence, this strategy has come to be widely used in testing for discrimination in labor 

markets (as well as housing markets).  Thorough reviews are contained in Fix and Struyk (1993), 

Riach and Rich (2002), and Pager (2007).   

Despite the widely-held view that audit or correspondence studies are the best way to test 

for labor market discrimination, critiques of these studies challenge their conclusions (HS 1993; 

Heckman 1998).  Many of these criticisms have been acknowledged by researchers as potentially 
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valid, and subsequent research has adapted.  For example, HS noted that in the prominent audit 

studies carried out by the Urban Institute (for example, Mincy 1993), white and minority testers 

were told, during their training, about “the pervasive problem of discrimination in the United 

States,” raising the possibility that testers subconsciously took actions in their job interviews that 

led to the “expected” result (HS 1993).  A constructive response to this criticism has been the 

move to correspondence studies, which focus on applications on paper and whether they result in 

job interviews, thus cutting out the influence of the individual job applicants used in the test. 

However, a fundamental critique of audit or correspondence studies has not been 

addressed by researchers.  In particular, HS consider what most researchers view as the ideal 

conditions for an audit or correspondence study – when not only are the observable average 

differences between groups eliminated, but in addition the observable characteristics used in the 

applications are sufficiently rich that it is reasonable to assume that potential employers believe 

there are no average differences in unobservable characteristics across groups.  HS show that, 

even in this case, audit or correspondence studies can generate evidence of discrimination (in 

either direction) when there is none, and can also mask evidence of discrimination when it in fact 

exists.  Given the pervasive use of audit and correspondence studies, the failure of any research 

to address this critique is a significant gap in the social science and legal literature.   

III. The Heckman-Siegelman Critique  

 I first set up the analytical framework that parallels the one used in HS’s critique of 

evidence from audit and correspondence studies.  This framework is used to illustrate the 

problem of identifying discrimination when there are group differences in the variance of 

unobservables.  Then, in the following section, I show how discrimination can be identified in 

this setting.  

Suppose that productivity depends on two individual characteristics, X’ = (XI,XII).  Let R 
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be a dummy for race, with R = 1 for minorities and 0 for non-minorities (which I will refer to as 

“black” and “white” for short).  Allow productivity also to depend on a firm-level characteristic 

F, so that productivity is P(X’,F).  Let the treatment of a worker depending on P and possibly R 

(if there is discrimination) be denoted T(P(X’,F),R).  For now, think of this treatment as 

continuous, even though that is not the usual outcome for an audit or correspondence study; 

suppose the treatment is, for example, the wage offered, set equal to a worker’s productivity 

minus a possible discriminatory penalty for blacks as in Becker’s (1971) employer taste 

discrimination model.   

Define discrimination as 

(1) T(P(X’,F)|R = 1) ≠ T(P(X’,F)|R = 0). 
 
Assume that P(.,.) and T(P(.,.)) are additive, so 

(2) P(X’,F) = βI’XI + XII + F  

(3) T(P(X’,F),R) = P + γ’R.1 

Thus, discrimination against blacks implies that γ’ < 0, so that blacks are paid less than 

equally-productive whites at the same firm. 

In an audit or correspondence study, two testers (or applications) or multiple pairs of 

testers (one with R = 1 and one with R = 0 in each pair) are sent to firms to apply for jobs.  The 

researcher attempts to standardize their productivity based on observable productivity-related 

characteristics.  Denote expected productivity for blacks and whites, based on the productivity-

related characteristics that the firm observes, as PB
* and PW

*; these are not necessarily based on 

both XI and XII, as we may want to treat XII as unobserved by firms.  The goal of the audit or 

correspondence study design is to set PB
* = PW

*.  Given these observables, the outcome T is 

observed for each tester.  So based on Equation 3, each test – thought of as the outcome of 

applications to a firm by one black and one white tester – yields an observation  
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(4) T(PB
*,1) − T(PW

*,0) = PB
* + γ’ − PW

*. 
 

If PB
* = PW

*, then averaging across tests yields an estimate of γ’.  In this case, we can also 

estimate the mean difference between the outcome T for blacks and white by a regression of T 

on a constant and the race dummy, or  

(5) T(R) = α’ + γ’Ri + εi 

where the first argument of T(.,.) is suppressed because it is assumed the same for all applicants.2   

Now consider explicitly the two components of productivity, XI and XII.  Suppose the 

audit or correspondence study controls only XI in the resumes or interviews.3 Denote by XB
j and 

XW
j the values of XI and XII for blacks and whites, j = I, II.  Suppose that the audit or 

correspondence study, as is usually done, sets XB
I = XW

I; the level at which they are set is later 

denoted as XI*, the level at which XI is “standardized” across applicants.  Then for the test 

resulting from the application of a pair of black and white testers to a firm, PB
* and PW

* are 

(6) PB
* = βI’XB

I + E(XB
II) + F 

(7) PW
* = βI’XW

I + E(XW
II) + F. 

(For simplicity, I suppress the conditioning on XB
I or XW

I.  Both Pk
* and E(Xk

II), k = B, W, can 

be interpreted as conditional on Xk
I.) 

In this case, each individual test provides an observation equal to  

(8) T(PB
*,1) − T(PW

*,0) = PB
* + γ’ − PW

* = βI’XB
I + E(XB

II) + γ’ − (βI’XW
I + E(XW

II))  

   = γ’ + E(XB
II) − E(XW

II). 

Clearly observations from a sample of such tests identify γ’ only if E(XB
II) = E(XW

II).  

Thus, a key assumption in an audit or correspondence study is that all productivity-related 

factors not controlled for in the test have the same mean for blacks and whites.  Heckman (1998) 

and HS (1993), in critiques unrelated to the focus of this paper (group differences in the variance 
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of unobservables), offer a detailed discussion of the reasons why this assumption might be 

violated in audit studies.  Specifically, despite researchers’ best efforts to standardize applicants, 

differences remain that may be observed by employers.  And HS further show that even when 

these differences are weakly related to productivity, they can lead to large biases, precisely 

because the applicants are standardized on other productivity-related characteristics.  Moreover, 

the design of an audit study allows for experimenter effects that can – through information 

conveyed to employers in the job interview – generate differences between E(XB
II) and E(XW

II).  

Correspondence studies are a response to these criticisms of audit studies (see, for 

example, BM, p. 994).  In contrast to audit studies, they do not entail face-to-face interviews that 

might convey mean differences on uncontrolled variables between blacks and whites, and hence 

the researcher can eliminate differences observed by employers that are not controlled in the 

study.  In addition, a correspondence study, by its very nature, avoids potential experimenter 

effects.   

 Even in a correspondence study, though, differences in employer estimates of mean 

unobserved characteristics for blacks and whites can affect the results, as in Equation 8.  The 

difference, in this case, is one of interpretation, and even when this possibility arises, 

correspondence studies still have an important advantage.  Regarding interpretation, because 

employers are not allowed to make assumptions about race or sex differences in characteristics 

not observed in the job application or interview process (U.S. Equal Employment Opportunity 

Commission, n.d.), any role of assumed mean differences in characteristics in affecting the 

outcomes from a correspondence study can be interpreted as statistical discrimination.  

Consequently, we can interpret the estimate of the expression in Equation 8 from a 

correspondence study as capturing the combined effects of taste discrimination (γ’) and statistical 

discrimination (E(XB
II) − E(XW

II)).  But in a correspondence study, the estimate of the combined 
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effects of the two types of discrimination is still more reliable than in an audit study, because of 

the absence of experimenter effects.   

In other words, correspondence studies succeed, where audit studies may fail, in 

providing unbiased estimates of what the law recognizes as discrimination.  However, they are 

not necessarily better at isolating taste discrimination.  Nonetheless, when a correspondence 

study includes a rich set of applicant characteristics, it becomes less likely that statistical 

discrimination plays much of a role in group differences in outcomes.4 

Turning to the main focus of this paper, HS show that a more troubling result emerges in 

audit or correspondence studies because the relevant treatment is not linear in productivity as it 

might be for a wage offer, but instead is non-linear.  That is, we think that in the hiring process 

firms evaluate a job applicant’s productivity relative to a standard, and offer the applicant a job 

(or an interview) if the standard is met.  In this case, HS show that, even when there are equal 

group averages of both observed and unobserved variables, an audit or correspondence study can 

generate biased estimates, with spurious evidence of discrimination in either direction, or of its 

absence – or, in other words, discrimination is unidentified.  Because this critique applies even to 

correspondence studies, which meet higher standards of validity, the remainder of the discussion 

refers exclusively to correspondence studies. 

The intuitive basis of the HS critique is as follows.  Consider the simplest case in which 

E(XB
j) = E(XW

j), j = I, II, and the only difference between blacks and whites is that the variance 

of unobserved productivity is higher for whites than for blacks, for example.  The 

correspondence study controls for one productivity-related characteristic, XI, and standardizes on 

a quite low value of XI (that is, the study makes the two groups equal on characteristic XI, but at 

a low value XI*).  The correspondence study does not convey any information on a second, 

unobservable productivity-related characteristic, XII.  Because an employer will offer a job 
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interview only if it perceives or expects the sum βI’XI + XII to be sufficiently high, when XI* is 

set at a low level the employer has to believe that XII is high (or likely to be high) in order to 

offer an interview.  Even though the employer does not observe XII, if the employer knows that 

the variance of XII is higher for whites, the employer correctly concludes that whites are more 

likely than blacks to have a sufficiently high sum of βI’XI + XII, by virtue of the simple fact that 

fewer blacks have very high values of XII.  Employers will therefore be less likely to offer jobs to 

blacks than to whites, even though the observed average of XI is the same for blacks and whites, 

as is the unobserved average of XII.  The opposite holds if the standardization is at a high value 

of XI; in the latter case the employer only needs to avoid very low values of XII, which will be 

more common for the higher-variance whites.   

The idea that the variances of unobservables differ across groups has a long tradition in 

research on discrimination, stemming from early models of statistical discrimination.  For 

example, Aigner and Cain (1977) discuss these models and suggest that a higher variance of 

unobservables for blacks compared to whites is plausible, and Lundberg and Startz (1983) study 

how such an assumption can lead to an equilibrium with lower investment in human capital by 

blacks.  On the other hand, Neumark (1999) finds no evidence that employers have better labor 

market information about whites than blacks, and if anything the estimates – although imprecise 

– indicate the opposite.  

To see the bias formally, suppose that a job offer or interview is given if a worker’s 

perceived productivity exceeds a certain threshold c’.  As before, suppose that P is determined as 

a linear sum of XI, XII, and F (Equation 2), with XII (and F) statistically independent of XI.5  The 

hiring rules for blacks and whites (with the possibility of discrimination) are  

(9) T(P(XI*,XB
II)|R = 1) = 1 if βI’XI* + XB

II + γ’ + F > c’ 
 

(9’)     T(P(XI*,XW
II)|R = 0) = 1 if βI’XI* + XW

II + F > c’. 
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Discrimination may lead employers to “discount” the productivity of a black worker, as 

captured in γ’.   

To get to an econometric specification, assume that the unobservables XB
II and XW

II are 

normally distributed, with equal means (set to zero, without loss of generality), and standard 

deviations σB
II and σW

II.  Finally, as long as the firm-specific productivity shifters F are normally 

distributed and independent of XII, and because they have the same distribution for blacks and 

whites, we can ignore them and focus solely on the unobserved variation in XII (effectively 

redefining the random variable in what follows as XII + F).  Under these assumptions, the 

probabilities that blacks and whites get hired are 

(10)     Pr[T(P(XI*,XB
II)|R = 1) = 1] = 1 − Φ[(c’  − βI’XI* − γ’)/σB

II] =  Φ[( βI’XI* + γ’ – c’)/σB
II] 

(10’)   Pr[T(P(XI*,XW
II) |R = 0) = 1] = 1 − Φ[(c’  −  βI’XI*)/σW

II] =  Φ[( βI’XI* − c’)/σW
II],  

where Φ denotes the standard normal distribution function.   

There is a potential difference between audit and correspondence studies in terms of how 

we might think about what is observable to the econometrician and the firm.  In an audit study, 

the simplest characterization might by that both the firm and the econometrician observe XB
I and 

XW
I, but the firm also observes XB

II and XW
II.  In a correspondence study, however, both the firm 

and the econometrician observe only XB
I and XW

I, with no variation in XB
II and XW

II observed by 

employers.  However, the distinction between audit and correspondence studies is not quite this 

sharp, because even though an employer interviews an applicant in an audit study, some (perhaps 

many) determinants of productivity remain unobserved when a job offer is made.   

This issue is relevant to thinking about how we arrive at a statistical model of hiring, such 

as the probit specifications in Equations 10 and 10’.  In an audit study, variables unobserved by 

the econometrician but observed by the firm can generate variation in hiring.  In a 

correspondence study, however, if firms observe only XB
I and XW

I, then the decision about who 
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to hire should be deterministic.  Given XB
I and XW

I (assumed equal), the employer hires the 

higher variance group if the level of standardization is low, and vice versa, so all firms 

evaluating identical job applicants should make the same decisions about hiring whites and 

blacks.  One way to introduce unobservables that generate random variation, with variances that 

differ by race as above, is to assume that there are random productivity differences across firms 

that are multiplicative in the unobserved productivity of a worker.  In that case, the differences in 

the variances of XB
II and XW

II map directly into unobservables that vary across firms with 

relative variances proportional to the relative variances of XB
II and XW

II.  Alternatively, 

employers may make expectational errors and rather than assigning a zero expectation to the 

unobservable assign a random draw based on the distribution of unobservables.   

Returning to the main line of argument, the difference between Equations 10 and 10’ – 

the success rates for black and white job applicants – is intended to be informative about 

discrimination.  However, even if γ’ = 0, so there is no discrimination, these two expressions 

need not be equal because σB
II and σW

II, the standard deviations of XB
II and XW

II, can be unequal.  

The earlier intuition about relative variance of the unobservables and the level of standardization 

of XI can be made more precise.  Consider the earlier case with γ’ = 0, but σW
II > σB

II.  Then if 

XI* is set at a low level – that is, the standardization level is low – characterized by βI’XI* < c’, 

σW
II > σB

II implies that Φ[( βI’XI* + γ’ – c’)/σB
II] < Φ[( βI’XI* − c’)/σW

II], generating spurious 

evidence of discrimination against blacks.  When βI’XI* > c’, we instead get spurious evidence of 

discrimination in favor of blacks, and switching the relative magnitudes of σW
II and σB

II reverses 

these results.6   

Thus, even if the means of the unobserved productivity-related variables are the same for 

each group, and firms use the same hiring standard (that is, γ’ = 0), correspondence studies can 
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generate evidence consistent with discrimination against blacks (or, alternatively, in their favor).  

Although demonstrated in the case of normally distributed unobservables, the argument holds for 

symmetric distributions (Heckman 1998).  This is the basis for HS’s claim that even under ideal 

conditions correspondence (or audit) studies are uninformative about discrimination.   

IV. Detecting Discrimination  

With the right data from a correspondence study, the framework from the preceding 

section can be used to recover an unbiased estimate of discrimination, conditional on an 

identifying assumption.  The intuition is as follows.  The HS critique rests on differences 

between blacks and whites in the variances of unobserved productivity.  The fundamental 

problem, as Equations 10 and 10’ show, is that we cannot separately identify the effect of race 

(γ’) and a difference in the variance of the unobservables (σB
II/σW

II).  But a higher variance for 

one group (say, whites) implies a smaller effect of observed characteristics on the probability 

that a white applicant meets the standard for hiring.  Thus, information from a correspondence 

study on how variation in observable qualifications is related to employment outcomes can be 

informative about the relative variance of the unobservables, and this, in turn, can identify the 

effect of discrimination.  Based on this idea, the identification problem is solved by invoking an 

identifying assumption – specifically, that there is variation in some applicant characteristics in 

the study that affect perceived productivity and have effects that are homogeneous across the 

races.   

More formally, Equations 10 and 10’ imply that the difference in outcomes between 

blacks and whites is  

(11)    Φ[( βI’XI* + γ’ – c’)/σB
II] − Φ[( βI’XI* − c’)/σW

II].   

In a standard probit, we can only identify the coefficients relative to the standard 

deviation of the unobservable, so we normalize by setting the variance of the unobservable to 
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equal one.  In this case, impose the normalization for whites only, or σW
II = 1.  The parameter 

σB
II is then the variance of the unobservable for blacks relative to whites.  To make this clear, 

replace σB
II with σBR

II = σB
II/σW

II.  The normalization σW
II = 1 is equivalent to defining all of the 

coefficients in Equation 11 as their ratios relative to σW
II.  Dropping the prime subscripts to 

indicate that the coefficients are now defined in relative terms, with this normalization Equation 

11 becomes  

(11’)    Φ[(βIXI* + γ − c)/σBR
II] − Φ[βIXI* − c]. 

As Equation 11’ shows, without knowing σBR
II we cannot tell whether the intercepts of 

the two probits – and hence the hiring probabilities – differ because γ ≠ 0 or because σBR
II ≠ 1.  

However, if there is variation in the level of qualifications used as controls (XI*), and these 

qualifications affect hiring outcomes, then we can identify βI/σBR
II and βI in Equation 11’, and 

the ratio of these two estimates provides an estimate of σBR
II.  This lets us test the hypothesis of 

equal standard deviations (or variances) of the unobservables.  Finally, identification of σBR
II 

implies identification of γ.  Without meaningful variation in XI* (that is, the variation that affects 

hiring) this is not possible, since in that case all we have in the model are different intercepts 

with different parameters in both the numerators and the denominators ((γ − c)/σBR
II and c).   

The critical assumption to identify σBR
II and hence γ is that βI is the same for blacks and 

whites.  Otherwise, the ratio of the two coefficients of XI* for blacks and whites does not identify 

σBR
II.  As HS point out, the constancy of βI is assumed in the Urban Institute studies that they 

critique, with discrimination entering through an intercept shift in the evaluation of a worker’s 

productivity, depending on their race.  It is not hard to come up with reasons why the coefficients 

relating XI to productivity might differ by race.  For example, blacks and whites on average 

attend different schools, and if whites’ schools are higher quality, a given number of years of 
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schooling may do more to increase white productivity than black productivity.  But in a 

correspondence or audit study, it should be possible to control for these kinds of differences; for 

example, in this case one can control for the area where applicants live, and hence hold school 

district constant (for example, BM 2004).  In other words, in these field experiments the 

researcher has the capacity to generate data making it more likely that the identifying assumption 

holds.   

HS raise other possibilities.  One is that there is discrimination in evaluating particular 

attributes of a group.  For example, employers may discriminate against high-education blacks 

but not low-education blacks.  It is not possible to rule out differences in coefficients arising for 

these reasons.  Finally, HS also suggest that differences in coefficients may reflect “statistical 

information processing,” given incomplete information about productivity, as in statistical 

discrimination models.  Of course this is the idea underlying the identification strategy suggested 

above, as the difference in βI for blacks and whites is assumed to reflect precisely the accuracy 

with which XI signals productivity for each race.  However, as discussed below, when there is 

data on multiple productivity-related characteristics, there is more one can do to test whether 

there is homogeneity in the coefficients that allows identification of σBR
II and hence γ.   

The estimation of βI/σBR
II and βI, and inference on their ratio (σBR

II = σB
II/σW

II), can be 

done via a heteroskedastic probit model (for example, Williams 2009), which allows the variance 

of the unobservable to vary with race.  To do this, pool the data for blacks and whites.  Similar to 

Equation 5, letting i denote applicants and j firms, there is a latent variable for perceived 

productivity relative to the threshold, assumed to be generated by 

(12) T(Pij
*) = − c + βIXij

I* +  γRi + εij. 

As is standard, it is assumed that E(εij) = 0.  But the variance is assumed to follow 
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(13) Var(εij) = [exp(µ + ωRi)]2. 

This model can be estimated via maximum likelihood.  The observations should be 

treated as clustered on firms to obtain a variance-covariance matrix that is robust to the 

dependence of observations across firms.  The normalization μ = 0 can be imposed, given that 

there is an arbitrary normalization of the scale of the variance of one group (in this case whites, 

with Ri = 0).  Then the estimate of exp(ω) is exactly the estimate of σBR
II. 

In this heteroskedastic probit model, the assumption that βI is the same for blacks and 

whites identifies γ.7  Observations on whites identify –c and βI, and observations on blacks 

identify (–c + γ)/exp(ω) and βI/exp(ω).  Thus, the ratio of βI/{βI/exp(ω)} identifies exp(ω), 

which, from Equation 13, is the ratio of the standard deviation of the unobservable for blacks 

relative to whites and is, as before, identified from the ratio of the effect of XI* on blacks relative 

to its effect on whites.  With the estimate of exp(ω) (or equivalently σBR
II), along with the 

estimate of c identified from whites, the expression (–c + γ)/exp(ω) identified from blacks 

identifies γ as well.8 

If σBR
II = 1, then there is no bias from differences in the distribution of unobservables.  

Alternatively, if σBR
II ≠ 1, but we had some evidence on how the level of standardization XI* 

compares to the relevant population of job applicants, we could determine the direction of bias.  

For example, if the study points to discrimination and there is a bias against this finding – based 

on the estimate of the ratio of variances and information about XI*, then the evidence of 

discrimination is not spurious, because it would be even stronger absent this bias.  But because 

we can identify γ directly under the assumptions above, we can recover an estimate of 

discrimination that is not biased by the difference in the variances of the unobservables.  And we 

can do this without determining whether XI* used in the study is a high or low level of 
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standardization, which may be impossible to establish.   

The identification of γ and σBR
II depends on the assumption that the unobservables are 

distributed normally.  However, the approach need not be couched solely in terms of normally 

distributed unobservables and the probit specification.  What is required is the separate 

identification of the effect of race in the latent variable model and the relative variance of the 

unobservables for blacks and whites.  Although typically (for example, Maddala 1983) the logit 

model is not written with the standard deviation of the error term appearing, it is possible to 

rewrite it in this way, in which case the difference in coefficients would again be informative 

about the ratio of the variances of the unobservables (Johnson and Kotz 1970, p. 5).   

On the other hand, in the specific setting of this paper – a discrete outcome (hiring) and a 

discrete treatment (race) – there is no clear way to separately identify how race affects the latent 

variable and the variance without distributional assumptions.  This case is covered most 

explicitly in Manski (1988), who shows that when – in this context – the distribution of the 

unobservable differs by race, identification of the “structural” coefficient (γ, in this case) requires 

a parametric specification of the unobservable distribution unless various kinds of continuity 

assumptions are imposed on the distribution of the observables (with a tradeoff between the 

tightness of the restrictions on the distribution of the unobservables and on the observables); but 

the latter do not hold for a discrete treatment.9  There is a budding literature on identification of 

variables with dichotomous outcomes with non-parametric or semi-parametric methods.  Most 

prominently, perhaps, Matzkin (1992) shows how this kind of model can be identified non-

parametrically in contexts where restrictions from economic theory (concavity, homogeneity of 

degree one) apply.  But these types of restrictions do not apply here.   

Moreover, a specific form of the hiring rule is assumed.  Different hiring rules are 

possible, such as one that minimizes the distance between a worker’s skill level and the required 
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skill level on the job (for example, Rothschild and Stiglitz 1982).  There is no claim being made 

that the identification result or the conclusions about discrimination that follow are invariant to 

different assumptions about the distribution of the unobservables or the hiring rule.  Rather than 

deriving general results, the goal is to show that, in the specific context explored by HS in which 

they showed that it was impossible to identify discrimination, an additional assumption – which 

itself has testable implications that are discussed next – permits the identification of 

discrimination.  It remains a question for future research whether it is possible to treat the data 

from a correspondence study in a less restrictive manner and still learn something about the 

effects of interest.   

The assumption that βI is the same for blacks and whites cannot be tested if there is only 

one productivity control.  With more controls, however, there is a testable restriction, because if 

the effects on hiring of multiple productivity controls differ between blacks and whites only 

because of the difference in the variance of the unobservables, the ratios of the estimated probit 

coefficients for blacks and whites, for each variable, should be the same.  Consider the case with 

two observables XI and ZI, modifying Equation 11’ to be  

(11’’)    Φ[( βI
BXI* +  δI

BZI* +  γ − c)/σBR
II] − Φ[( βI

WXI* +  δI
WZI* − c)], 

where the coefficients on the observables have B and W superscripts to denote possible 

differences by race.  Normalize the coefficients in the first expression so that β� I
B = βI

B/σBR
II and 

δ�I
B = δI

B/σBR
II.  If the coefficients in Equation 11’’ do not differ by race, but only the variances 

of the unobservables differ, then   

(14) β� I
B/βI

W = δ�I
B/δI

W. 

 In other words, the black/white ratios of the coefficients from separate probits for blacks 

and whites, or from a probit with a full set of race interactions, differ from 1 only because σBR
II ≠ 
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1, and hence should be equal.  Thus, the restrictions implied by homogeneity of effects but 

unequal variances of the unobservables can be tested.  Of course failure to reject the restrictions 

does not decisively rule out the possibility that σBR
II = 1, with the coefficients differing by race 

for other reasons but Equation 14 still holding.  With a larger number of control variables, 

however, it seems unlikely that this alternative scenario would explain failure to reject the 

restrictions in Equation 14.  It is also possible to choose – as an identifying assumption – a subset 

of the observable characteristics for which Equation 14 holds, and to identify σBR
II only from the 

coefficients of this subset of variables, or to do this and then test the restriction on the other 

coefficients as overidentifying restrictions.   

 A final issue concerns the interpretation of the coefficients from the heteroskedastic 

probit model.  Consider a model with generic notation, where the latent variable depends on a 

vector of variables S and coefficients ψ, and the variance depends on a vector of variables T, 

which includes S, with coefficients θ.  The elements of S are indexed by k.  For a standard probit, 

coefficient estimates are translated into estimates of the marginal effects of a variable using  

 (15) ∂P(hire)/∂Sk = ψkφ(Sψ), 

where Sk is the variable of interest with coefficient ψk, φ(.) is the standard normal density, and 

the standard deviation of the unobservable is normalized to one.  Typically this is evaluated at 

the means of S.  When Sk is a dummy variable such as race, the difference in the cumulative 

normal distribution functions is often used instead, although the difference is usually trivial.   

The marginal effect is more complicated in the case of the heteroskedastic probit model, 

because if the variances of the unobservable differ by race, then when race “changes” both the 

variance and the level of the latent variable that determines hiring can shift.  As long as we use 

the continuous version of the partial derivative to compute marginal effects from the 

heteroskedastic probit model, there is a natural decomposition of the effect of a change in a 
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variable Sk that also appears in T into these two components.  In particular, generalize the 

notation of Equation 13 to  

(13’) Var(ε) = [exp(Tθ)]2,10 

with the variables in T arranged such that the kth element of T is Sk.  Then the overall partial 

derivative of P(hire) with respect to Sk is   

(16) ∂P(hire)/∂Sk = φ(Sψ/exp(Tθ))∙{(ψk – Sψ∙θk)/exp(Tθ)}.11    

 This expression can be broken into two pieces.  First, the partial derivative with respect to 

changes in Sk affecting only the level of the latent variable – corresponding to the counterfactual 

of Sk changing the valuation of the worker without changing the variance of the unobservable – 

is equal to  

(16’)  φ(Sψ/exp(Tθ)) ∙{ψk/exp(Tθ)}.   

Second, the partial derivative with respect to changes via the variance of the 

unobservable is equal to 

(16’’) φ(Sψ/exp(Tθ))∙{(–Sψ∙θk)/exp(Tθ)}. 

 In the analysis below, these two separate effects are reported as well as the overall 

marginal effect, and standard errors are calculated using the delta method.  The effect of race via 

how it shifts the latent variable – or how race shifts the employer’s valuation of worker 

productivity – is of greatest interest.  The point of the HS critique is that differential treatment of 

blacks and whites based only on differences in variances of the unobservable should not be 

interpreted as discrimination.  And moreover, as argued in Section VI, the effect of race via the 

latent variable captures discrimination likely to be manifested in the real economy, whereas its 

effect through the variance is more of an artifact of the study.   

 

 



 
20 

 

V. Evidence, Implementation, and Assessment 

A. Existing Evidence  

 As the preceding discussion shows, we need information on the effects of productivity-

related characteristics on hiring or callbacks, estimated separately for blacks and whites (or other 

groups), to identify discrimination in an audit or correspondence study, or even to assess likely 

biases.  Reporting of such evidence is rare in the literature, because these studies typically create 

one “type” of applicant for which there is only random variation in characteristics that does not 

(or is not intended to) affect outcomes.  However, BM’s well-known correspondence study of 

race discrimination is unusual in that – for reasons unrelated to the concerns of this paper – it 

uses two types of applicants.12 

 Part of their analysis studies callback differences by race for resumes that they 

constructed to be low versus high quality, to ask whether blacks and whites have different 

incentives to invest in skills, as in Lundberg and Startz (1983).  White callback rates are higher 

for both types of resumes.  But although white callback rates increase significantly with resume 

quality (from 8.5 to 10.8 percent), black callback rates increase only slightly (from 6.2 to 6.7 

percent) and the change is not statistically significant.  Similar qualitative conclusions are 

reached based on an analysis that measures resume quality for one part of the sample based on 

the predicted probability of callbacks estimated from another part of the sample.  In this analysis, 

both groups experience an increase in callback rates from higher-quality resumes, but the effect 

is larger for whites.   

Similarly, BM report probit models estimated for whites and blacks separately (their 

Table 5).  These estimates reveal substantially stronger effects of measured qualifications for 

whites than for blacks.  Among the estimated coefficients that are statistically significant for at 

least one group, effects are larger for whites for experience,13 having an email address, working 
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while in school, academic honors, and other special skills (such as language).  The only 

exception is for computer skills, which inexplicably have a negative effect on callback rates for 

whites.14   

As the present paper suggests, an alternative interpretation of smaller estimated probit 

coefficients or marginal effects for blacks than for whites is a difference in the variance of the 

unobservables.  In particular, the lower coefficients for blacks are consistent with a larger 

variance for blacks, or σBR
II > 1.  If it is also true that BM standardized applicants at low levels 

of the control variables, then the HS analysis would imply that there is a bias towards finding 

discrimination in favor of blacks; that is, the evidence of discrimination against blacks would be 

even stronger absent the bias from differences in the distribution of unobservables.  BM 

explicitly state that they tried to avoid overqualification even of the higher-quality resumes (p. 

995).  But it is very difficult to assess whether the characteristics of applicants were low, since 

there is no way to identify the population of applicants.  Hence, implementation of the estimation 

procedure proposed in this paper is likely the only way even to sign the bias, let alone to recover 

an unbiased estimate of discrimination.   

B. Implementation Using Bertrand and Mullainathan Data 

Because BM’s data include applicants with different levels of qualifications, and the 

qualifications predict callbacks, their data can be used to implement the methods described 

above.  Table 1 begins by simply presenting probit estimates for the probability of a callback.  

Marginal effects are reported for specifications with no controls except a dummy variable for 

females, adding controls for the individual characteristics included on the resumes, and finally 

adding also neighborhood characteristics for the applicant’s zip code; the specific variables are 

listed in the footnote to the table.  Estimates are shown for males and females combined, and for 

females only; as the sample sizes indicate, the male sample is considerably smaller.15  Aside 
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from the estimated effects of race, estimates are shown for a few of the resume characteristics 

capturing applicants’ qualifications.   

Echoing BM’s conclusions, there is a sizable and statistically significant difference 

between the callback rates for blacks and whites, with the rate for blacks lower by 3-3.3 

percentage points (or about 33 percent relative to the white callback rate of 9.65 percent).  The 

estimated race differences are robust to the inclusion of the different sets of control variables, 

which is what we should expect since the resume characteristics are assigned randomly.   

Interestingly, in light of the results of other audit and correspondence studies, there is no 

evidence of lower callback rates for females than for males.  And although not reported in the 

tables, this was true if the same methods used below to recover unbiased estimates of race 

discrimination were applied to the estimation of sex discrimination.  However, BM’s study was 

to a large extent focused on jobs typically held by females, and was not designed to test for sex 

discrimination.16  Table 1 also shows that a number of the resume characteristics have 

statistically significant effects on the callback probability; this, of course, is an essential input for 

using the methods described above to recover an unbiased estimate of discrimination.  

The main analysis is reported beginning in Table 2, for the specifications with the full set 

of individual resume controls, and then adding as well the full set of neighborhood controls.  

Panel A simply repeats the estimated race effects from Table 1, for comparison.  Panel B begins 

by reporting the estimated overall marginal effects of race from the heteroskedastic probit model 

(Equation 16).  As the table shows, these estimates are slightly smaller (in absolute value) than 

the estimates from the simple probits.  They remain statistically significant and indicate callback 

rates that are lower for blacks by about 2.4-2.5 percentage points (or about 25 percent).   

Decomposing the marginal effect, the effect via the level of the latent variable is larger 

than the marginal effect from the probit estimation, ranging from −0.054 to −0.086.  The effect 
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of race via the variance of the unobservable, in contrast, is positive, ranging from 0.028 to 0.062.  

(This latter effect is not statistically significant.)  The implication is that race discrimination is 

more severe than indicated by the analysis that ignores differences in the variances of the 

unobservables.  The evidence that the probit estimates understate discrimination against blacks is 

consistent with a low level of standardization of XI*, coupled with a higher estimated variance of 

the unobservable for blacks, as conjectured earlier based on BM’s results.  And as reported in the 

next row of the table, the estimated ratio of the standard deviation of the unobservable for blacks 

to the standard deviation for whites always exceeds one, although the difference is not 

statistically significant.  The positive effect of being black via the variance is what we expect if 

XI* is low, since then a larger relative variance for blacks increases the relative probability that 

they are hired (called back).   

The next two rows of the table report diagnostic test statistics.  First, the p-values from 

the test of the overidentifying restrictions (Equation 14) are shown, based on probit 

specifications interacting all of the controls with race.  In all four cases the restrictions are not 

rejected, with p-values ranging from 0.17 to 0.62.  Nonetheless, the lower end of this range of p-

values suggests that the restrictions sometimes might be fairly inconsistent with the data.  As a 

consequence, below some alternative estimates are discussed that use only a subset of variables, 

for which Equation 14 is more consistent with the data, to identify discrimination.   

Finally, the subset of control variables for which the absolute value of the estimated 

coefficient for whites exceeded that for blacks – consistent with the larger standard deviation of 

unobservables for blacks – was identified.  Then the heteroskedastic probit model was estimated 

leaving the race interactions of the other variables in the model – so that the restrictions from 

Equation 14 that were less consistent with the data were not imposed – and the joint significance 

of these latter variables was tested.  Despite this latter subset of variables having estimated 
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coefficients less consistent with the restrictions in Equation 14, the p-values indicate that these 

interactions can also be excluded from the model.  This can be viewed as an overidentifying test 

of the restriction that there are no differences in the effects of any of the control variables by 

race, for the specifications for which the estimates are reported in the first row of Panel B.  

Although technically it is only necessary to assume that there is a single variable for which the 

coefficient is the same for blacks and whites, there is no obvious variable to choose for the 

purposes of identification; here, instead, I let the data select a set of variables more consistent 

with the identifying restriction.   

Table 3 follows up on the last procedure, by instead simply dropping from the analysis 

the control variables for which the absolute value of the estimated coefficient for whites was less 

than for blacks.  Given that the control variables are random with respect to race, dropping 

controls does not introduce bias.  As we would expect, the p-values for the tests of this set of 

restrictions are now much closer to one, ranging from 0.68 to 0.92, compared with a range of 

0.17 to 0.62 in Table 2.  However, as the table shows, the estimated effects of race are similar to 

those in Table 2 and do not point to any different conclusions.     

C. Monte Carlo Assessment  

A Monte Carlo assessment of how well the estimation procedure proposed in this paper 

works in terms of removing the bias in estimates of discrimination from correspondence study 

evidence was carried out.  The Monte Carlo assessment uses simulated data of the type needed to 

implement the estimator – namely, data with applicants at two different levels of productivity.  

The analysis is described in detail in Appendix 1; here the findings are briefly summarized.   

First, using simulated data either with or without discrimination, the heteroskedastic 

estimation procedure eliminates the bias, and recovers an unbiased estimate of discrimination.  

(And as a benchmark, the simulated data are used to replicate the HS critique, showing that a 
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simple probit analysis can generate bias in any direction.)  Second, for a specific case we 

consider, when the identifying assumption is violated and the coefficient on the productivity-

related characteristic in the simulated data is not equal for blacks and whites, but is treated as 

equal in the estimation, there are two findings.  When there is no discrimination, the 

misspecification has no effect; the estimator still produces estimates of γ centered on zero.  When 

there is discrimination and the model is misspecified, there is bias but it is multiplicative, so the 

estimator will not generate the wrong sign for the estimate of γ.   

VI. The Meaning of Discrimination 

The fact that a correspondence study can generate evidence of discrimination when γ = 0 

raises the question of whether the evidence reflects a different kind of discrimination.  In this 

case, the productivity of blacks and whites are regarded equally by employers (or equivalently 

there is no taste discrimination).  Moreover, employers are not making any assumption about 

mean differences in unobservables between blacks and whites.  However, they are making 

assumptions about distributional differences with regard to the variance of unobservables, and it 

is these assumptions that lead them, given the level of standardization of the study applicants, to 

prefer blacks or whites – which might be labeled “second-moment” statistical discrimination.   

The HS critique can be recast as showing that the analysis of data from a standard audit 

or correspondence study cannot distinguish between discrimination as it usually interpreted, and 

discrimination based on different variances of unobservables.  Indeed Manski’s (1988) paper 

discussed earlier, in the context of identification, makes this same point, noting that we can 

estimate the “reduced-form” effect of a binary treatment variable on a binary outcome without 

strong assumptions, but not the “structural” effect.  The present paper imposes an assumption to 

identify the structural parameter γ, distinguishing between what is typically viewed as 

discrimination (stemming from tastes or, as noted earlier, from standard statistical 
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discrimination) and different treatment stemming from differences in variances of the 

unobservable. 

A natural question, then, is whether the structural effect of race, captured in γ, is of 

interest, or whether instead all we want to know is the reduced-form effect of race – that is, how 

race affects the probability of hiring whether because employers discount black workers’ 

productivity (for example) or because employers treat blacks and whites differentially because of 

different distributions of the unobservable.  There are two reasons why the structural coefficient 

γ is important.  First, to the best of my knowledge, differential treatment based on assumptions 

(true or not) about variances are not viewed as discriminatory in the legal literature.17  Thus, 

identification of γ speaks to the discrimination that is most clearly illegal.     

The second and more compelling argument is that taste discrimination or “first-moment” 

statistical discrimination, captured in γ, generalizes from the correspondence study to the real 

economy.  In contrast, the second-moment statistical discrimination is an artifact of how a 

correspondence study is done – in particular, the standardization of applicants to particular, and 

similar, values of the observables, relative to the actual distribution of observables among real 

applicants to these firms.   

Suppose that the actual population of applicants to the employers included in a 

correspondence study comes from a large range of values of XI.  Then the different distributions 

of the unobservables by race can have strong effects on hiring outcomes in the correspondence 

study because in the study the applicants are standardized to a narrow range of XI.  In that sense, 

the differential treatment by race is strongly influenced by the design of the correspondence 

study, rather than by behavior of real firms evaluating real applicants, and can be generated 

solely from the standardization of applicants in a narrow range of XI; in that sense, 

“discrimination” attributable to differences in the variance of the unobservables is an artifact of 
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the study.18  In contrast, the structural effect of race via the latent variable would generalize to 

how the firms in the correspondence study, and presumably similar firms, evaluate actual job 

applicants and make hiring decisions.   

VII. Conclusions and Discussion 

Many researchers view audit and correspondence studies as the most compelling way to 

test for labor market discrimination.  And research applying these methods to many different 

types of groups nearly always finds evidence of discrimination.  The use of audit studies to test 

for labor market discrimination has been criticized on numerous grounds having to do with 

whether applicants from different groups appear identical to employers.  Many of these 

criticisms can be countered by using correspondence studies of fictitious applicants on paper 

rather than fictitious in-person applicants.   

However, Heckman and Siegelman (1993) show that even in correspondence studies in 

which group averages are identical conditional on the controls, group differences in the variances 

of unobservable dimensions of productivity can invalidate the empirical tests, leading to spurious 

evidence of discrimination in either direction, or spurious evidence of an absence of 

discrimination.  This is a fundamental criticism of correspondence studies, as it implies that 

evidence regarding discrimination from even the best-designed correspondence study can be 

misleading.  Nonetheless, this criticism has been ignored in the literature.  

This paper shows that if a correspondence study includes observable measures of 

variation in applicants’ quality that affect hiring outcomes, an unbiased estimate of 

discrimination can be recovered even when there are group differences in the variances of the 

unobservable.  The method is applied to Bertrand and Mullainathan’s (2004) correspondence 

study, and leads to stronger evidence of race discrimination that adversely affects blacks than is 

obtained when differences in the variances of the unobservable are ignored.  Moreover, this 
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conclusion is bolstered by Monte Carlo simulations suggesting that the estimation procedure 

performs well, eliminating the problems highlighted by Heckman and Siegelman that could 

otherwise lead to badly misleading conclusions from the analysis of data from correspondence 

(or audit) studies. 

Finally, it should be recognized that the method proposed here can be easily implemented 

in any future correspondence (or audit) study.  All that is needed is for the resumes or applicants 

to include some variation in characteristics that affect the probability of being hired.19  This is 

different from what is often done in designing these studies, where researchers try to create a 

pool of equally-qualified applicants.  All that needs to be done is to intentionally create resumes 

of different quality.  Once a researcher confirms that a set of productivity-related characteristics 

on the resumes affected hiring outcomes, it should then be possible – conditional on an 

identifying assumption that has testable implications – to detect discrimination.   

Appendix 1. Monte Carlo Assessment  

This appendix provides Monte Carlo evidence on how well the estimation procedure 

proposed in this paper works in terms of removing the bias in estimates of discrimination from 

correspondence study evidence, and explores the consequences of violation of the identifying 

assumption.  Figure A1 replicates the basic result from Heckman (1998), showing that probit 

analysis of the data from a correspondence study can generate substantial bias in either direction.  

Paralleling Heckman, this is done for the case in which c = 0, βI = 1, Var(XW
II)/Var(XB

II) = 

(σW
II)2/(σB

II)2 = 2.25,20 and there is no discrimination (γ = 0).  For the Monte Carlo simulations, 

the assumed data generating process is XI* ~ N(0,1), XB
II ~ N(0,1), XW

II ~ N(0,2.25).  Paralleling 

the standardization of correspondence study applicants, the data are generated by sampling XI* 

from a truncated normal distribution, in steps of 0.1 + 0.1∙SD(XI*).  The simulation is done 100 

times at each value of XI* shown in the graph, with samples of 2,000 blacks and 2,000 whites in 
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each simulation (roughly BM’s sample sizes), and a probit model is estimated for each simulated 

data set.  The panels in the figure show – for both the estimates of γ and the marginal effects – 

the true values based on the assumed parameters, and the means based on the estimates.21   

The upper figures clearly illustrate that, despite the absence of discrimination in the data 

generating process (the true effect is constant at 0), the evidence can either point to 

discrimination against blacks or discrimination in favor of blacks, depending on the level of 

standardization of XI*.  The marginal effects show that even though there is no discrimination in 

the data generating process, quite strong evidence of discrimination in either direction can 

emerge, with a marginal effect of −0.1 (0.1) for low (high) values of XI*.  Finally, as we would 

expect, only at XI* = 0 is the estimate of γ (and the marginal effect) unbiased.  The lower panels 

of Figure A1 report the same kind of evidence when γ = −0.5, consistent with discrimination.  A 

similar result is apparent, with substantial bias relative to the true γ or the true marginal effect.  

The heteroskedastic probit estimation requires data with multiple levels of the value of 

XI* at which applicants are standardized.  As an intermediate step to separate the consequences 

of generating the data this way, and the consequences of implementing the heteroskedastic probit 

estimator, Figure A2 shows results with such generated data, but continuing to use the probit 

specification.  XI* is now sampled from two truncated normal distributions, one using XI*in steps 

of 0.1 + 0.1∙SD(XI*), as before, and the second using instead XI* + 0.5, again in steps of 0.1 + 

0.1∙SD(XI*).  Figure A2 shows qualitatively similar results to Figure A1, so simply using data 

with variation in productivity-related characteristics does not, in itself, eliminate the bias.  

Nonetheless, the biases in both the no discrimination and discrimination cases are a bit smaller 

than in Figure A1 because of the larger range covered by XI*.22    

Figure A3 reports results for the heteroskedastic probit estimation, using the same data 

generating process for simulating data as in Figure A2, although in this case 5,000 simulations 
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are run for each pair of values of XI* because the heteroskedastic probit estimation is less precise 

than the simple probit estimation.  The top panel covers the no discrimination case (γ = 0).  The 

left-hand graph shows the means of the true and estimated values of the marginal effects for each 

value of XI*.  These are largely indistinguishable in the figure, indicating no bias.  The right-hand 

panel provides evidence on the distribution of the estimates, showing the distance between the 

25th and 75th percentiles of the estimates and between the 2.5th and 97.5th percentiles at each 

value of XI*.  The distribution of estimates is quite tight at levels of standardization near the 

center of the distribution of XI*, but becomes wider at more extreme values, when hiring rates in 

the generated data move towards zero or one.  The discrimination case (γ = −0.5) similarly 

demonstrates that the heteroskedastic probit estimation eliminates the bias.   

The last analysis, reported in Figure A4, considers the implications of the data generating 

process violating the identifying assumption that the coefficient(s) on the productivity-related 

characteristics are equal for blacks and whites.  Results are presented for two cases: mild 

violation in which the coefficient on XI* (βI) is slightly larger for whites than for blacks (1.1 

versus 1); and strong violation in which it is much larger (2 versus 1).  As Figure A4 shows, in 

the case of no discrimination – the left-hand panels – the results are indistinguishable from when 

the identifying assumption is not violated.  In contrast, in the discrimination case the estimated 

marginal effects become more negative than the true effects over much of the range, only slightly 

with mild violation of the identifying assumption, but more so when the violation is more 

pronounced.   

The implications of what happens when the identifying assumption is violated in this 

specific setting make sense, thinking about how γ is identified.  Using estimates of the separate 

probits in Equations 10 and 10’, the ratio of the standardized white probit coefficient to the black 

probit coefficient identifies σBR
II (which equals σB

II/σW
II).  When the true value of βI is larger for 
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whites than for blacks, but it is assumed that they are equal, σBR
II is overestimated.  For example, 

in the case in the top panel of Figure A4, the ratio of coefficients is (βI∙1.1)/(βI/σBR
II) = 1.1∙σBR

II.  

Recall from the earlier discussion that the probit for blacks identifies (–c + γ)/exp(ω) = (–c + 

γ)/σBR
II.  Because c = 0 in the simulations, we identify γ by multiplying the estimate of this 

expression by the estimate of σBR
II; the upward bias in the estimate of σBR

II therefore implies that 

the estimate of γ is biased away from zero.  In the no discrimination case, when γ = 0, this is 

irrelevant; multiplying an estimate that averages zero by the upward-biased estimate of σBR
II has 

no effect.  But when the true γ is non-zero (and negative), this bias leads to an estimate of γ that 

is more negative.  When γ is more negative, we get exactly the “bending” of the estimated 

marginal effects that the right-hand panels of Figure A4 illustrate.23  A violation of the 

assumption in the opposite direction (βI larger for blacks) would lead to biases in the opposite 

direction.  Nonetheless, it follows from this reasoning that the bias is multiplicative, and hence 

does not generate the wrong sign for the estimate of γ, or generate spurious evidence of 

discrimination when there is no discrimination.  However, further analysis shows that when c ≠ 0 

(or, more generally, when c is not equal to the expected value of unobserved productivity), the 

implications of violation of the identifying assumption are less sharp.  
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Table 1 
Probit Estimates for Callbacks: Basic Results 
 Males and females  Females 
 (1) (2) (3)  (4) (5) (6) 
Black  -.033 

(.006) 
-.030 
(.006) 

-.030 
(.006) 

 -.033 
(.008) 

 -.030 
(.007) 

-.030 
(.007) 

Female .009 
(.012) 

-.001 
(.011) 

.001 
(.011) 

 … … … 

Selected individual  
resume controls 

       

Bachelor’s degree  .009 
(.009) 

.009 
(.009) 

  .019 
(.010) 

.019 
(.010) 

Experience ∙10-1  .080 
(.029) 

.076 
(.028) 

  .080 
(.034) 

.076 
(.033) 

Experience2 ∙10-2  -.022 
(.011) 

-.021 
(.010) 

  -.019 
(.013) 

-.018 
(.012) 

Academic honors  .039 
(.015) 

.040 
(.015) 

  .026 
(.017) 

028 
(.017) 

Special skills  .056 
(.009) 

.055 
(.009) 

  .060 
(.010) 

.059 
(.010) 

        
Other controls:        
Individual resume 

characteristics 
 X X   X X 

Neighborhood 
characteristics 

  X    X 

        
Mean callback rate .080 .080 .080  .082 .082 .082 
N 4,784 4,784 4,784  3,670 3,670 3,670 
Note: Marginal effects using Equation 15 are reported.  Standard errors are computed 
clustering on the ad to which the applicants responded, and are reported in parentheses; 
the delta method is used to compute standard errors for the marginal effects.  Individual 
resume characteristics include bachelor’s degree, experience and its square, volunteer 
activities, military service, having an email address, gaps in employment history, work 
during school, academic honors, computer skills, and other special skills.  Neighborhood 
characteristics include the fraction high school dropout, college graduate, black, and 
white, as well as log median household income, in the applicant’s zip code.    



 
 

Table 2 
Heteroskedastic Probit Estimates for Callbacks: Full Specifications 
 Males and females  Females 
 (1) (2)  (3) (4) 
A. Estimates from basic probit (Table 1)      
Black -.030 

(.006) 
-.030 
(.006) 

  -.030 
(.007) 

-.030 
(.007) 

      
B. Heteroskedastic probit model      
Black (unbiased estimates) 
 

-.024 
(.007) 

-.026 
(.007) 

 -.026 
(.008) 

-.027 
(.008) 

      
Marginal effect of race through level   -.086 

(.038) 
-.070 
(.040) 

 -.072 
(.040) 

-.054 
(.040) 

Marginal effect of race through variance .062 
(.042) 

.045 
(.043) 

 .046 
(.045) 

.028 
(.044) 

      
Standard deviation of unobservables, 

black/white 
 

1.37 
 

1.26 
  

1.26 
 

1.15 
      
Wald test statistic, null hypothesis that ratio 

of standard deviations = 1 (p-value) 
 

.22 
 

.37 
  

.37 
 

.56 
      
Wald test statistic, null hypothesis that ratios 

of coefficients for whites relative to blacks  
are equal, fully interactive probit model 
(p-value) 

 
 
 

.62 

 
 
 

.42 

  
 
 

.17 

 
 
 

.35 
      
Test overidentifying restrictions: include in 

heteroskedastic probit model interactions 
for variables with |white coefficient| < 
|black coefficient|, Wald test for joint 
significance of interactions (p-value) 

 
 
 
 

.83 

 
 
 
 

.33 

  
 
 
 

.34 

 
 
 
 

.56 
Number of overidentifying restrictions 3 6  2 6 
      
Other controls:      
Individual resume characteristics X X  X X 
Neighborhood characteristics  X   X 
      
N 4,784 4,784  3,670 3,670 
Note: See notes to Table 1.  In the first row of Panel B the marginal effects in Equation 16 are 
reported, with the decomposition in Equations 16’ and 16’’ immediately below; the marginal 
effects are evaluated at sample means.  The standard errors for the two components of the marginal 
effects are computed using the delta method.  Test statistics are based on the variance-covariance 
matrix clustering on the ad to which the applicants responded.  Individual resume characteristics 
also include the variables listed separately in Table 1.   
 



 
 

Table 3 
Heteroskedastic Probit Estimates for Callbacks: Restricted Specifications Using only Controls with 
Absolute Value of Estimated Effect in Fully Interactive Probit Model Larger for Whites than 
Blacks  
 Males and females  Females 
 (1) (2)  (3) (4) 
A. Estimates from basic probit       
Black -.030 

(.006) 
-.030 
(.006) 

  -.030 
(.007) 

-.030 
(.006) 

      
B. Heteroskedastic probit model      
Black (unbiased estimates) -.024 

(.007) 
-.025 
(.007) 

 -.024 
(.009) 

-.025 
(.008) 

      
Marginal effect of race through level   -.090 

(.037) 
-.080 
(.036) 

 -.086 
(.040) 

-.077 
(.038) 

Marginal effect of race through variance .066 
(.041) 

.056 
(.039) 

 .062 
(.044) 

.052 
(.042) 

      
Standard deviation of unobservables, 

black/white 
 

1.41 
 

1.33 
  

1.37 
 

1.30 
      
Wald test statistic, null hypothesis that ratio 

of standard deviations = 1 (p-value) 
 

.19 
 

.23 
  

.25 
 

.29 
      
Wald test statistic, null hypothesis that ratios 

of coefficients for whites relative to blacks  
are equal, fully interactive probit model 
(p-value) 

 
 
 

.84 

 
 
 

.92 

  
 
 

.68 

 
 
 

.74 
      
Other controls:      
Individual resume characteristics X X  X X 
Neighborhood characteristics  X   X 
      
N 4,784 4,784  3,670 3,670 
Notes: See notes to Tables 1 and 2.  



 
 

No discrimination (γ = 0)  
 

Probit estimates of γ                         Probit estimates of marginal effect of black 

          
        
 

Discrimination (γ = -.5) 
 

Probit estimates of γ                         Probit estimates of marginal effect of black 

          
Notes: Left-hand graphs shows true γ and mean estimated γ.  Right-hand graphs show marginal effects, evaluated at sample 
means for simulated data.  In the data generating process, XI* ~ N(0,1), XB

II ~ N(0,1), XW
II ~ N(0,2.25), so Var(XW

II)/Var(XB
II) = 

2.25 (XW
II and XB

II are unobservable); βI = 1 and c = 0 for both blacks and whites.  Estimates are generated by Monte Carlo 
simulation, drawing 4,000 observations (2,000 white and 2,000 black) from truncated normal distribution at each value of XI* (in 
steps of 0.1 + 0.1∙SD(XI*)) and estimating probit model.  Simulation is done 100 times at each value of XI*.   
 
 
Figure A1 
Replication of Heckman (Figure 1, 1998), and Monte Carlo Simulations of Estimates of Marginal Effects from 
Simple Probit Estimation  



 
 

No discrimination (γ = 0)  
 

Probit estimates of γ                          Probit estimates of marginal effect of black 

                
        
 

Discrimination (γ = -.5) 
 

Probit estimates of γ                          Probit estimates of marginal effect of black 

        
Notes: See notes to Figure A1.  The only difference is as follows: Estimates are generated by Monte Carlo simulation, drawing 
4,000 observations (2,000 white and 2,000 black) observations from two truncated normal distributions (one at each value of 
XI* (in steps of 0.1 + 0.1∙SD(XI*)), and one at each value of XI* + .5 (again in steps of 0.1) + 0.1∙SD(XI*)), and estimating probit 
model.   

 
 
Figure A2 
Monte Carlo Simulations of Probit Estimates and Marginal Effects from Simple Probit Estimation with Two 
Types of Applicants 



 
 

No discrimination (γ = 0) 
 

Estimates of marginal effects of black                     Distribution of estimates 

         
 

Discrimination (γ = -.5) 
 

Estimates of marginal effects of black                     Distribution of estimates 

         
Notes: Left-hand graphs show mean true and estimated marginal effects of being black, evaluated at sample means for 
simulated data.  Right-hand graphs show distributions of estimates.  The marginal effects shown correspond to the effect 
of race on the latent variable, as in Equation 16’.  Estimates are generated by Monte Carlo simulation, drawing 4,000 
observations (2,000 white and 2,000 black) observations from two truncated normal distributions (one at each value of XI* 
(in steps of 0.1 + 0.1∙SD(XI*)), and one at each value of XI* + .5 (again in steps of 0.1 + 0.1∙SD(XI*)), and estimating 
heteroskedastic probit model.  Simulation is done 5,000 times at each value of XI* shown in graph.  As in Figure A1, the 
data generating process has XI* ~ N(0,1), XB

II ~ N(0,1), XW
II ~ N(0,2.25), so Var(XW

II)/Var(XB
II) = 2.25 (XW

II and XB
II are 

unobservable); and βI = 1 and c = 0 for both blacks and whites.  
 
 
Figure A3 
Monte Carlo Simulations of Heteroskedastic Probit Estimation, Estimates of Marginal Effects and 
Distributions 



 
 

Mild violation of identifying assumption in data generating process (βI for whites = 1.1) 
 
No discrimination (γ = 0)                         Discrimination (γ = -.5) 

                    
     

Strong violation of identifying assumption in data generating process (βI for whites = 2) 
 
No discrimination (γ = 0)                         Discrimination (γ = -.5) 

                        
Notes: See notes to Figure A3.  The only difference is that βI is unequal for blacks and whites; it is always equal to 1 for 
blacks, and as indicated in the graph headings for whites.     
 
 
Figure A4 
Monte Carlo Simulations of Heteroskedastic Probit Estimation, with Model Misspecification Masking 
Higher Unobserved Variance for Whites, Estimates of Marginal Effects  
 

  
 
 
 



 
 

Endnotes 
 
1 In the ensuing discussion XI is observable and XII unobservable.  I put a coefficient on XI in 

Equation 2 because XI has a definable scale, whereas I treat XII as scaled such that its coefficient 

equals one.  Following HS, I assume that the coefficient on XI is the same for blacks and whites, 

so discrimination is reflected only in an intercept difference.  I return to this issue later.     

2 We could include resume characteristics, which should not matter for the estimate of γ’ since 

they are randomly assigned by race.  The same is true of firm fixed effects, which are orthogonal 

to race.  

3 As discussed below, some characteristics of workers not controlled by the researcher are 

observed by the employer in an audit study; but many are not.  

4 This is more problematic in correspondence studies of age discrimination, because even with 

many other qualifications on the resumes, if researchers give older applicants the same amount 

of experience as younger applicants, employers are likely to make adverse assumptions about 

older applicants whose resumes reflect limited work experience.  See Lahey (2008) and Riach 

and Rich (2007) for suggestions for addressing this problem in age discrimination studies.     

5 We can treat F as statistically independent because resume characteristics are, or should be, 

assigned randomly (for example, Lahey and Beasley 2009).  And we can always think about XII 

as the variation in unobserved productivity that is orthogonal to XI. 

6 Heckman (1998, footnote 7) suggests that the case with a low level of standardization and 

higher dispersion for whites “seems to rationalize” audit study evidence of discrimination against 

blacks.  It is not clear, however, that we know either the level of standardization or the relative 

dispersion of unobserved productivity.  Even though the first issue relates to observables, there is 

no obvious way to compare the distributions of qualifications of testers in an audit study to the 

population of job applicants.  In fact, there are two conflicting tendencies in setting standards for 



 
 

 
audit studies.  Setting a low standard implies that call-back rates will be low, reducing the 

statistical power of the evidence.  But setting a standard too high raises concerns about 

“overqualification” of candidates (for example, BM 2004, p. 995), which in an economic context 

presumably means that the job applicant will be expected to get better job offers,  deterring 

employers from making offers.   

7 Conversely, the following argument can be easily modified to show that if βI is not the same for 

blacks and whites, then γ is unidentified.  The assumption that only race shifts the variance of the 

unobservable (Equation 13) is less consequential, since in a correspondence (or audit) study the 

observed characteristics of applicants other than race are essentially the same.    

8 Consistent with the earlier discussion of statistical discrimination, we might want to allow for 

the possibility that E(XB
II) – E(XW

II) ≠ 0.  In this case, we can normalize by assuming E(XW
II) = 

0 and defining E(XB
II) – E(XW

II) = μBW
II.  We can then replace γ in the preceding identification 

argument with γ + μBW
II, and it is this sum of parameters, reflecting the combination of taste 

discrimination and the expected mean difference in the unobservable (statistical discrimination), 

which is identified.   

9 Some of the other controls on the resumes may be continuous, but they do not contribute to 

identification of the effect of race on the latent variable given that they are, by construction, 

orthogonal to race.  By way of contrast, in audit-type studies of discrimination on a continuous 

outcome – such as price quotes for cars or car repairs (Goldberg 1996; Gneezy and List 2004) – 

the identification problem is simpler.   

10 Recall that μ in Equation 13 is normalized to zero.  

11 See Cornelißen (2005). 



 
 

 
12 BM actually study differences in treatment between applicants with black-sounding names and 

names that do not sound black.  For simplicity, I discuss the results as if they capture differences 

between blacks and whites, which is certainly a plausible interpretation of their findings.    

13 This variable enters as a quadratic, and the effect of experience is stronger for whites up to 

about 16 years of experience, more than twice the mean in their sample.   

14 Also, the effect of gaps in employment is inexplicably positive, but not significant for 

estimates disaggregated by race. 

15 Probits estimated for males only yielded similar results for the effects of race, although the 

estimated coefficients of some of the productivity-related characteristics were quite imprecise or 

had unexpected signs.  In estimating the heteroskedastic probit model for males, in some cases 

there were computational problems, likely reflecting these other issues regarding the estimates 

for males, and perhaps also the much smaller sample for males.     

16 They study sales, administrative support, clerical, and customer service jobs.  The male 

applicants were used almost exclusively for the sales jobs, so the sex difference is identified 

mainly from the sales jobs.   

17 There is a small economics literature that studies discrimination based on second moments – in 

particular the variance of productivity – where a group with higher variance may be penalized 

because of risk aversion on the part of employers.  The idea goes back to Aigner and Cain 

(1977).  Dickinson and Oaxaca (2009) provide an experimental study of this type of 

discrimination in labor markets.     

18 One could imagine more complicated scenarios in which different firms engage in strategies 

that draw applicants from different parts of the distribution, in which case it is harder to 



 
 

 
characterize how differences in the distribution of unobservables by race will impact the 

treatment of whites versus blacks.   

19 In principle this can be done in an audit study as well a correspondence study, although it is 

much harder to generate large samples in audit studies.  

20 This is the ratio of the variances of the unobservables.  Note that a larger value for whites is 

the opposite of the common assumption in models of statistical discrimination.     

21 The true marginals are based on the heteroskedastic probit specification (Equation 16’), 

because the simulated data are heteroskedastic.  The true marginal effect is reported as a mean 

because it is computed once using each simulated data set, holding the parameters fixed, and 

then averaged. 

22 In this case the unbiased estimate occurs at the value of −0.25 (for XI*) on the horizontal axis, 

where the average of the upper and lower standardization levels equals zero.  The reduction in 

bias is a little less clear in the discrimination case.  To clarify, the bias in Figures A1 and A2 

should be contrasted at comparable values of XI*, given that Figure A2 shows the mean estimates 

at the lower level of standardization of XI*.  For example, for the discrimination case, the mean 

estimate of γ at XI* = 1 in Figure A1 should be compared to the mean estimate at XI* = 0.75 in 

Figure A2 (in which case this is the lower standardization level and the average is 1); the latter 

estimate is in fact closer to zero.   

23 In the standard marginal effect – ψkφ(Sψ), from Equation 15 – nearer the center of the 

distribution the larger estimate of ψk dominates the marginal effect, whereas nearer the tails the 

larger estimate of ψk lowers φ(Sψ) enough that the product ψkφ(Sψ)  is closer to zero.   


