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A pervasive feature of banking system portfolios is that 
they are illiquid: short-term obligations cannot be met 
unless a sufficient amount are renewed or rolled over. 
For two centuries, solutions have been proposed and 
policies implemented to try to solve the problems that 
seem to accompany such illiquidity. Among proposed 
solutions are Adam Smith's ([ 1789] 1937, bk. 2, chap. 
2) advice to bankers to avoid illiquidity by matching the 
maturities of assets and liabilities and Milton Friedman's 
(1960) suggestion that banks offering demand deposits 
be subject to 100 percent reserve requirements. In the 
United States, among the policies that have been imple-
mented are fractional reserve requirements, the Federal 
Reserve System as a purported lender of last resort, and 
the federal deposit insurance systems. 

Still, despite the long concern about banking system 
illiquidity, only very recently has anyone provided any-
thing close to a coherent explanation of illiquid banking 
system portfolios. In 1983, Douglas Diamond and 
Philip Dybvig offered a model of banking that does 
provide the ingredients of an explanation. They also 
claimed to have discovered a policy that resembles 
deposit insurance, is consistent with their explanation, 
and prevents any problems from accompanying the 
existence of illiquid banking system portfolios. Their 
analysis, however, suffers from one important flaw, 
which I attempt to correct. 

That flaw concerns one of the main ingredients of 
the Diamond and Dybvig model: the sequential service 
constraint, the requirement that a bank must service its 

customers sequentially, on a first-come, first-served 
basis. This requirement is crucial because without it, as 
shown below, the model does not explain banking 
system illiquidity. Although Diamond and Dybvig 
seemed aware of the importance of the sequential 
service constraint, they were vague about why it arises, 
what in the environment forces banks to deal with their 
customers sequentially instead of, for example, being 
able to cumulate withdrawal requests and make pay-
ments contingent on the total. Diamond and Dybvig 
(p. 408) offered hints about such an environment when 
they said that imposing the sequential service constraint 
allows them to "capture the flavor of continuous time 
(in which depositors deposit and withdraw at different 
random times) in a discrete model." However, they did 
not appeal to these hints when they asserted consistency 
between the sequential service constraint and the policy 
that they identify with deposit insurance and that 
overcomes the difficulties associated with illiquid 
banking system portfolios: Diamond and Dybvig 
(p. 414) said only that "the realistic sequential-service 
constraint represents some services that a bank pro-
vides but which we do not explicitly model." 

The model I present here builds on Diamond and 
Dybvig's hints and is an environment in which people 
are isolated from each other but are in contact with their 
bank in a way that implies the sequential service 
constraint. (This is what I mean by taking sequential 
service seriously.) Although my model is in other 
respects the same as theirs, mine has two quite different 

3 



implications. One is infeasibility of the policy which 
Diamond and Dybvig called deposit insurance and 
which in their model overcomes all the difficulties 
associated with illiquid banking system portfolios; the 
policy is inconsistent with the explanation of the 
sequential service constraint. The other distinguishing 
implication is that, in some versions of my model, 
desirable banking arrangements have the property that 
the returns that people realize on their deposits depend 
on the (random) order in which they withdraw. 

The implication concerning deposit insurance is 
important because deposit insurance is a controversial 
policy. Although many people recognize that deposit 
insurance produces undesirable incentives for banks to 
take on risky portfolios, most think that the benefits of 
deposit insurance outweigh the costs implied by those 
risk-taking incentives. The benefits, though, have never 
been carefully described within a model that explains 
illiquid bank portfolios. It is, therefore, important to 
determine whether, as they claimed, Diamond and 
Dybvig succeeded in describing those benefits. I argue 
that they did not. 

The implication concerning returns being dependent 
on the order in which people withdraw is important 
because such dependence resembles historically 
observed bank suspensions in which those who with-
drew after banks suspended payments were able to 
trade their deposits only at a discount. Furthermore, 
people's negative view of such dependence, particularly 
before the creation of the Federal Reserve System, has 
significantly influenced policy. The model set out here 
suggests that this negative view may be unjustified. 

While these two implications highlight the differ-
ence between my model and Diamond and Dybvig's, 
our models share other implications concerning long-
standing disputes about policy toward banking. These 
common implications follow from the Diamond and 
Dybvig explanation of banking system illiquidity. For 
example, as suggested above, some economists, most 
notably Smith and Friedman, have not considered 
illiquidity to be a necessary concomitant of banking. 
Others have taken the view that the basic function of 
banks is to lend long and borrow short—hence, to take 
on illiquidity. Both my model and Diamond and 
Dybvig's defend the latter view. Both models imply that 
attempting to force banks to be liquid is synonymous 
with preventing banks from carrying out their main 
function. 

To help readers understand Diamond and Dybvig's 
explanation of an illiquid banking system and my expla-
nation of the sequential service constraint, I describe 

my model twice. First I describe the model in a more-
or-less nontechnical way and summarize its results. 
Although some of the results that distinguish my model 
from Diamond and Dybvig's cannot be fully described 
in this context, the main ingredients of our models can. 
A more complete and necessarily more technical 
description of my model and results follows. This 
requires previous exposure to economic theory at the 
level of a rigorous intermediate microeconomic theory 
course and to calculus. 

A Camping Trip Economy 
The Diamond and Dybvig model has three main 
ingredients. One is that individuals are uncertain about 
when they will want to make expenditures. This un-
certainty produces a demand for assets which, loosely 
speaking, have good returns even if they are held for a 
short time. Another main ingredient is what underlies 
the sequential service constraint, namely, that spending 
by different people occurs successively. Thus, if people 
are holding assets that resemble demand deposits at 
banks, the withdrawal demands of different people 
must be dealt with separately, one after the other. The 
third main ingredient is that real investment projects are 
very costly to restart if they are interrupted. 

These ingredients are not new. The first has long 
been viewed as producing a demand for what have been 
called liquid assets. The second is a standard ingredient 
of analyses that treat a bank's reserve management 
problem as an inventory problem. The third is a 
plausible feature of most investment projects. What is 
new in the Diamond and Dybvig presentation is the 
attempt to embed versions of these ingredients in a 
model of an entire economy in a way that permits at 
least some of their consequences for the desirability of 
various policies to be deduced rigorously. The follow-
ing description of a camping trip shows how this can be 
done. 

A Problem 
Suppose a group of people, N in number, on the last 
evening of their camping trip, are planning two subse-
quent meals—a late-night snack and breakfast, break-
fast being the last meal before their return home. In the 
evening, each member of the group has available y units 
of food which I shall treat as a single uniform and 
divisible object. This food will grow if stored: Each unit 
will become R{ units if held until a late-night snack 
and will become R{R2 units if held until breakfast, R{ 
and R2 being fixed technological returns on physical 
investment. Note, however, that storage cannot begin at 
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night. Any food taken out of storage then is either eaten 
or wasted. This is how the costliness of interrupting real 
investment projects is put into the model. 

Uncertainty about the desired timing of expenditures 
appears here in the following way. All the campers 
know in the evening that they will each awaken 
sometime in the night and either will be hungry and will 
prefer to eat then (and skip breakfast) or will not be 
hungry and will prefer to wait until breakfast to eat. In 
the evening, all the campers have an idea of the 
probability that they will themselves be hungry during 
the night. Note that, in the evening, the individuals care 
about both contingencies: how much they will be able 
to eat during the night if they turn out to be hungry then 
and how much they will be able to eat at breakfast if 
they turn out to prefer to eat then.1 Also, in the evening, 
people have at least a rough idea about the fraction of 
the group that will be hungry during the night. 

Before I describe the ingredient that produces se-
quential service, I can indicate the potential gains from 
joint action which, if undertaken, will be the model's 
analogue of intermediation (organized as a mutual). 
This is most easily done if I assume, for the moment, 
that OL\ is each person's subjective probability that she or 
he will wake up hungry during the night and is also 
known by all in the evening to be the fraction of the 
group that will wake up hungry during the night. The 
probability of the alternative happening is a 2 , which is 
1 — ot\. In order to describe the potential gains from 

joint action, I contrast what can potentially be achieved 
jointly with what individuals can achieve if they each 
act on their own, autarkically. 

Acting alone, each person can look forward to a 
late-night snack of R\y (if the person wakes up hungry) 
or a breakfast of R\R2y (if the person wakes up not 
hungry during the night). It is convenient to represent 
the magnitude of the late-night snack if hungry at night 
by c\ and the magnitude of breakfast if not hungry at 
night by c\. [The subscript denotes the time of the meal 
(1 for night, 2 for morning), and the superscript denotes 
the person's state during the night (1 for hungry, 2 for 
not hungry).] Thus, autarky achieves c\ = R{y and c\ — 
R\R2y or, more succinctly, ( c j , c p = (R{y, R\R2y). 
Note that if each person acts alone in that way, then 
(since the fraction who wake up hungry is c^), the total 
amount of food consumed during the night is a\NRiy. 
The key to understanding the potential for joint action 
is to note that if all the campers pool their resources in 
the evening, then they can conceivably arrange to have 
either more or less than a{NRiy consumed during the 
night. 

To see how much more or less, let C\ be the total 
amount consumed during the night and C2 the total 
amount consumed at breakfast. Then the maximum C2 
consistent with a given Q is 

(1) C2 = R2Wiy-Cl) 

where the difference in parentheses is what is left to 
accumulate at the rate R2 after all the late-night snacks, 
Q , have been subtracted. Now, to compare these 
possibilities to autarky, suppose that the group can 
somehow arrange to have C\ divided equally among the 
OL\N people who wake up hungry in the night and to 
have C2 divided equally among the a2N who wake up 
not hungry. Then c\ = C\la\N and — C2/a2N. Sub-
stituting the implied expressions for C\ and C2 into 
equation (1) implies that the maximum c\ consistent 
with a given c\ is 

(2) c$ = R2(Riy-alc\)/a2. 

The (nonnegative) combinations (c},c|) that satisfy 
(2) are shown in Figure 1. Note that the autarkic 
outcome is among these. 

As already noted, in the evening individuals care 
about both c\ and c\ because they do not know 
whether they will be hungry during the night. Suppose 
that they are able to rank all combinations of c\ and c\ 
and, in particular, all those that satisfy equation (2). 
There is no reason to suppose that among all combina-
tions satisfying (2), the autarkic combination is most 
preferred. I will suppose that it is not and that the most 
preferred combination satisfying (2) is below and to the 
right of the autarkic combination, a point like that 
labeled ( c { , i n Figure 1. 

While we should now appreciate the potential for 
joint action in this setting, other aspects of the model put 
barriers in the way of achieving any combination of 
(c{, that satisfies (2) or analogous combinations for 
the case in which the fraction of the group that will be 
hungry in the night is not known with certainty. 

Suppose that the group cannot meet during the 
night—for example, to determine how many people 
claim to be hungry then and to decide on the magnitude 
of a late-night snack based on the number of those 
claims. Suppose, instead, that people are isolated from 

lrrhis is analogous to situations in which individuals consider the purchase 
of insurance. For example, people think about how much fire insurance to buy 
because they care about their wealth both if a fire occurs in their house and if a 
fire does not occur. 
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Figure 1 
A Camper's Options: 
Possible Late-Night Snacks and Breakfasts 
Given the Resources and Technology 

Snack 
(Units of Food) 

each other, so that any arrangement must be consistent 
with people waking at a random time, not a time they 
choose, and not interacting with others during the night. 
This is the feature that implies the requirement that 
late-night withdrawal demands from any pooled 
resources be dealt with sequentially. 

To help the group deal with this and with an assumed 
selfishness of individuals, suppose that the campers 
have at their disposal something like a cash machine. 
This machine, however, can be stocked with and 
dispense food, not cash. Moreover, food deposited in the 
machine in the evening grows in accord with the fixed 
technological returns, R\ and R2. The machine is 
centrally located, and each person contacts it once at a 
random time during the night. The machine has most of 
the capabilities and limitations of actual cash machines. 
Thus, it can check identities and prevent one person 
from making a withdrawal from another's account. It 
can also be programmed to cumulate withdrawals as 
they occur and to make subsequent withdrawals 
depend on earlier withdrawals. It cannot, however, 

determine whether a person is truly hungry during the 
night or is making a night withdrawal based on some 
other motive—for example, out of concern about 
whether the machine will run out of food and not be 
able to dispense the intended breakfasts. 

Solutions 
The problem facing the group in the evening in this 
camping trip economy is how to stock and program the 
machine, where this includes the possibility of not using 
it at all. Below, features of the solution to this problem 
will be described for two versions of the model. In one 
version, the fraction of people who will turn out to be 
hungry during the night is known in the evening; so I 
call this the version without aggregate risk In the other 
version, with aggregate risk, there is uncertainty about 
that fraction. Here I will summarize both versions' 
solutions to the food machine problem, emphasizing 
what I think are close analogues between features of 
those solutions and features of intermediation in actual 
economies. 

In both versions of the model, a solution will have 
each member of the group place some resources in the 
machine, which will be programmed to pay out some-
thing greater than R{ per unit deposited for late-night 
snacks and, therefore, something less than R{R2 per unit 
deposited for breakfast. 

The benefits people get from such deposits are 
analogous to the benefits people in actual economies 
get from holding liquid assets. The individual members 
of the group do not know whether they themselves will 
want to eat during the night or at breakfast. Each gives 
up some possible long-run return—is willing to have a 
breakfast smaller than R\R2y—for a larger possible 
short-run return—having a late-night snack larger than 
R\y. This resembles the position of people who buy 
travelers' checks for a trip while being uncertain about 
how much they will spend during the trip. Such 
uncertainty means that they may end up returning with 
some of those checks, which then would have a lower 
return than alternative assets they could have pur-
chased. However, that possible sacrifice was deemed 
worthwhile at the time of purchase because of the 
possibility that the travelers' checks would be spent, in 
which case the checks would have had a better return 
than alternative assets. 

In the model, any such liquidity for individuals comes 
at the expense of illiquidity for the machine. Since in the 
evening people do not know whether they will be 
hungry during the night, the machine promises to pay 
out late-night snacks to whoever wants them. Since all 
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have the option to withdraw, the machine's promises or 
obligations are entirely short term; they resemble 
demand deposits or savings accounts, deposits which 
give the depositor the option to withdraw at any time. If 
D is the total amount of food units deposited, the 
machine's total late-night obligation would be judged 
in the evening by an outsider (like a bank examiner) to 
exceed R\D if it is programmed to pay out late-night 
snacks per unit deposited that exceed R\. However, the 
machine's total late-night resources are only RXD. 
Hence, in the most straightforward way of defining 
illiquidity, the machine has an illiquid portfolio. 

Such illiquidity does not necessarily cause problems. 
It does if the machine is programmed simply to pay out 
late-night snacks to whoever asks for them as long as it 
can. Then the machine would have problems which 
resemble threatened bank runs. For consider those 
campers who wake up not hungry during the night. 
They each know that if all others who wake up not 
hungry attempt to withdraw, then the machine will run 
out and not be able to make any breakfast payments. 
Hence, even if they are not hungry, campers who think 
others not hungry will attempt to withdraw will them-
selves attempt to withdraw. 

If there is no uncertainty about the fraction of the 
group who will turn out to be hungry in the night, then 
(as Diamond and Dybvig showed) there is a straight-
forward way to program the machine to avoid such 
crises of confidence: simply program the machine to 
shut down for the night after the total of late-night 
withdrawals reaches aiNc\. Since (c}, satisfies (2), 
this rule assures that the machine will have enough at 
breakfast to give the planned amount to each person 
who waits until then to withdraw. This shutdown 
scheme is like a threatened suspension of payments by 
banks. 

If there is uncertainty about the fraction of the group 
who will turn out to be hungry in the night, then matters 
are considerably more complicated. Given such aggre-
gate uncertainty, Diamond and Dybvig claimed that a 
policy they identified with deposit insurance was 
necessary and sufficient to produce desirable outcomes. 
However, as noted above and as I show below, that 
policy is not feasible if the isolation of individuals 
during the night is taken seriously as a restriction on 
what is feasible. I also show that having late-night 
payments depend on the random order in which 
individuals withdraw can be desirable. 

The camping trip economy can also be used to 
analyze versions of policies, like the Smith and 
Friedman proposals, that limit the amount of illiquidity 

banks take on. In general, bank illiquidity can be 
limited by restricting bank assets, bank liabilities, or 
both. Since this model has only one possible asset, the 
only way to limit illiquidity here is to adjust the stream 
of promised payments on liabilities. In terms of Figure 
1, the machine's portfolio can be made more liquid by 
changing the payment stream from the preferred point 
(c},c|) to something closer to (R\y, R&y), the point 
of complete liquidity at which the machine could meet 
all its promises even if everyone tried to withdraw at 
night. However, any such limitation on illiquidity 
obviously comes at the expense of the well-being of 
depositors. Moreover, imposing complete liquidity 
makes the machine superfluous. 

As you have no doubt noticed, the model in this 
paper omits many features of actual economies. The 
model contains only campers and the food machine. It 
does not contain, for example, anything that resembles 
separate financial and business sectors. Thus, the 
proper analogies to draw are between the campers of 
the model and consumers in actual economies and 
between the food machine of the model and the 
combined or consolidated financial and business 
sectors of actual economies. (After all, the machine 
holds as an asset a real investment, not loans to 
businesses that engage in real investment.) The result 
concerning illiquidity, then, is that the combined 
financial-business sector has an illiquid portfolio. 
Somewhat related to the absence of separate financial 
and business sectors is the absence of anything that 
resembles money. Also, the model has only one kind of 
real asset, so that the combined financial-business 
sector of the model, unlike that in actual economies, is 
not making any choices about the kinds of assets to 
hold. 

These and other omissions can be viewed as the price 
we pay for being able to rigorously deduce the effect on 
people's well-being of policies like liquidity require-
ments, as was done above, using Figure 1. To put this 
more positively, the model suggests that three plausible 
conditions are enough to explain illiquid banking sys-
tem portfolios: 

• People's preferences make them want to have 
assets that can be cashed in at optional times and 
that have relatively high payments if cashed in 
early. 

• People are sufficiently isolated from each other 
that their early withdrawal demands must be 
accommodated on a first-come, first-served basis. 
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• The real investment technology has an irreversi-
bility, or goods-in-process, feature. 

In other words, the model suggests that illiquid banking 
system portfolios can be understood without complica-
tions like separate financial and business sectors, 
money, and asset choices. 

A Closer Look at the Model 

Assumptions 
Here I present a detailed description of the model in the 
form of a list of assumptions. 

ASSUMPTION 1. Time Periods and Goods 
The economy has three time periods, labeled t = 0, 
t— 1, and t— 2, and one good per period. 

Period 0 is when decisions about intermediation 
arrangements are made, decisions like whether to set up 
some kind of intermediation arrangement and, if so, 
what kind. Periods 1 and 2 are the periods for which 
there is uncertainty about desired expenditure patterns. 
In particular, at t — 0 each individual is uncertain about 
whether she or he will want to consume at t — 1 or t = 2. 

ASSUMPTION 2. People and Endowments 
The economy has N people, and each person is en-
dowed with y units of just the period 0 good. 

Although people (and the economy) are endowed 
only with the period 0 good, a technology is available 
that permits goods to be produced at t = 1 and t— 2 
using the period 0 good. 

ASSUMPTION 3. The Technology Set 
Everyone in the economy has access to the following 
technology set. Let at be an output (if negative, an 
input) of the period t good. The triplet (a0,a{,a2) is 
in the economy's technology set if ( a 0 , a u a 2 ) = 
(-a, \R{a, (l-k)R{R2a) for some a > 0 and A e [0,1]. 

Here a is the input of the period 0 good, R\ the gross 
return between t— 0 and t— 1, R2 that between t— 1 
and t — 2, and A the fraction of the input withdrawn at 
t= 1. 

There is an irreversibility, or goods-in-process, 
aspect of this technology. Period 2 goods are produced 
only by starting with period 0 goods as input. In 
particular, goods withdrawn at t = 1 cannot be used to 
produce period 2 goods; once withdrawn, they must be 
consumed at t = 1. 

Now I describe preferences. To do this I let cp 
denote the period t consumption of a person who turns 

out to be type h, where h— 1 means impatient (to 
consume at t— 1) and h — 2 means patient (willing to 
wait to consume at t— 2). At t — 0, people do not know 
whether they will turn out to be type 1 or type 2. That 
being so, in general, they care about the 4-tuple cp for 
t= 1,2 and h— 1,2, which will be denoted by c. Here is 
the specific way people care: 

ASSUMPTION 4. Preferences 
Everyone has identical preferences at t— 0. Each 
maximizes the expected value of 

U(c) = X2
h={ahuh(c^c^ 

where 

(3) u\c\y c!£) =g(cf + 8hc!£) and 0 < 8{ < 1 /R2 < 82 

(4) g' > 0, g" < 0, and gXR[y)/g,(82RlR2y) > 82R2 

(5) a{ = 1 — a2 and ah is, in general, random: 

ah = afc with probability pk for k = 1,2 

These preferences may be interpreted as follows. At 
t = 0, each person thinks she or he will turn out to be 
type h at t = 1 with probability ah. Being type h means 
having at t = 1 the utility function over t — 1 and t— 2 
consumption given by u\c{*, 

In Assumption 4, condition (3) says that these t= 1 
utility functions have straight-line indifference curves 
with slopes ordered as shown in Figure 2. This is the 
condition that implies, as we will see later, that 
desirable arrangements have c\ — 0 (impatient people 
consuming only at t = 1) and c\ — 0 (patient people 
consuming only at t — 2). 

Condition (4) in Assumption 4 assures that when 
c\ — c\ — 0, the indifference, or level, curves of 
t/(c) = «!#(<;}) + a2g(82c%) are qualitatively as shown 
in Figure 3. In particular, it assures that a tangency 
between such indifference curves and the pairs satisfy-
ing (2) is to the right of the point (R\y, R\R2y) and 
is above the line 82c\ — c\. To see this, note that at 
such a tangency, the slope of an indifference curve of 
a{g(c\) + a2g(S2c$\ -a{g'(c\)/a282g'(82c%\ is equal 
to the slope of (2), —GLxR2IOL2. This equality can be 
written g'(c\)/g\82c%) = 82R2. Since 82R2 > 1 and g" < 0 
(marginal utility is diminishing), any such tangency 
satisfies c\ < 82c\ (is above the line 82c\ — c\ in 
Figure 3). Finally, the inequality g " < 0 and the last 
inequality assumed in (4) imply that any such tangency 
satisfies c} >/?!>> [is to the right of (R{y, R\R2y) in 
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Figure 2 

Indifference Curves 
of Patient and Impatient People 
at Period 1 

Figure 3]. As you can verify, all the assumptions about 
g are satisfied by g(jt) = —x~b for b > 0, but not by 
g(x) = xl/2 or by g(jc) = In x. 

The last condition of Assumption 4, (5), will be 
discussed below. 

ASSUMPTION 5. Private Information About Types 
Although people learn their own type at t— 1, no one 
else does. That is, a person's type is not public in-
formation. 

This assumption rules out ordinary kinds of insur-
ance arrangements in which payments are made de-
pendent on publicly observable events. It lets people 
misrepresent themselves to the machine. Put different-
ly, if people are to act in accord with their true type, then 
the alternatives offered by the machine must give them 
an incentive to do so; that is, these alternatives must be 
incentive compatible. 

ASSUMPTION 6. Aggregate Fraction of Types 
The fraction of the population who turn out to be type h 
at t = 1 is ah, 

Note that, according to Assumptions 4 and 6, the 

distribution of the fraction of the population who turn 
out to be type h is the same as the distribution of the 
probability for each person of turning out to be type h. 
In the version of this model without aggregate risk, the 
fraction and the probability are known [K= 1 in (5)]; 
in the version with aggregate risk, they are random 

The above assumptions do not differ in a significant 
way from those set out by Diamond and Dybvig. The 
next two assumptions, however, are at best implicit in 
their presentation. 

ASSUMPTION 7. Isolation in Period 1 
During period 1, people are isolated from each other, 
although each contacts a central location at some 
instant during the period. The order in which they 
contact that location is random (and viewed by them as 
such) and uniformly distributed: the probability that a 
person is among the fraction v who first contact the 
central location is v. In contrast to period 1, at t = 0 and 
t— 2 people are all together. 

Although this isolation assumption may seem ex-
treme, it is consistent with the notion that people hold 
liquid assets because they may find themselves im-
patient to spend when they do not have access to asset 
markets, in which they can sell any asset at its usual 
market price. The assumption is also consistent with the 
notion that demand deposits provide the holder with the 
possibility of spending at any time, if not also at any 
place, a notion which implicitly assumes that not all 
people are together. Also, note that people are not 
choosing when to contact the machine. Each person 
contacts the machine at a random time, and the person's 
choice is limited to trying or not trying to make a 
withdrawal. 

ASSUMPTION 8. A Quasi-Cash Machine 
There is a machine into which the period 0 good can be 
deposited. The amount deposited grows according to 
the technology of Assumption 3, and withdrawals made 
at t= 1 cannot be reinvested. The machine is at the 
central location, so that people contact it once and at 
random times during period 1. The machine operates 
like a cash machine in that it is able to check a person's 
account to determine whether the person is entitled to 
make a withdrawal. And at t = 0 the machine can be 
programmed to compute functions of withdrawals as 
they occur and to make subsequent withdrawals 
depend on previous withdrawals. The machine cannot, 
however, determine (with a lie detector, for example) 
whether a person is patient or impatient. 
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Figure 1 

Feasible and Optimal Consumption 
Without Aggregate Risk 

Good 

Desirable Arrangements 
Given those assumptions, the task now is to describe 
features of desirable intermediation arrangements for 
two versions of the model. As indicated above, an 
intermediation arrangement is a way of stocking and 
programming the machine. In addition to requiring that 
any such arrangement be consistent with Assumptions 
1-8,1 will only consider symmetric arrangements, those 
which treat everyone at time 0 the same. The desirability 
of arrangements that satisfy these conditions will be 
judged by the magnitude of expected utility, the ex-
pected value of t/(c), as described in Assumption 4. In 
other words, desirability is judged from the point of 
view of time 0. 

To put this more formally, I will be describing 
features of the solution to two social planning problems. 
The objective for the problems is maximization of the 
expected value of U(c). The constraints are symmetry 
and Assumptions 1-8. In one problem, the aggregate 
fraction of type 1 people is known; in the other, that 
fraction is random. The social planner should be viewed 
as having control of all the resources at t = 0, Ny units of 

the time 0 good, and access to the technology. The 
planner knows preferences as described in Assumption 
4, but in the version with the fraction of types random, 
the planner knows its distribution, but must infer the 
realization. The content of Assumptions 7 and 8 is that 
the planner at t = 1 encounters people one by one, in a 
random order. The planner must determine a person's 
period 1 consumption when the person is encountered. 
The planner can make the individuals' period 1 con-
sumption depend on what they say about themselves, on 
their type, and on what the planner has learned from the 
people already encountered. The planner cannot, 
however, first question everyone and then decide on 
each person's period 1 consumption. 

• Without Aggregate Risk 
In the version of the model without aggregate risk, the 
fraction of each type of person is known (K= 1). An 
upper bound on the desirability of a symmetric 
arrangement is obtained by choosing a nonnegative 
4-tuple c to maximize U(c) as described in Assumption 
4 subject to Assumptions 1-3 and 6. This is an upper 
bound because the other assumptions impose further 
restrictions that at best will not be binding. In fact, 
Diamond and Dybvig showed that they need not be 
binding. 

I begin by describing the 4-tuple which produces this 
upper bound. I denote it by c. Symmetry and Assump-
tions 1-3 and 6 are equivalent as constraints to (1), 
Q = a{Nc\ + a2Nc\, and C2 = OL\NC\ + a2Nc%. First 
note that c satisfies c\ — c\ — 0. This follows from the 
form of w1 and u2 assumed in Assumption 4 and il-
lustrated in Figure 2.2 This, in turn, implies that (c{, c |) 
satisfies equation (2) and g'(c\)/g'(d2c%) = d2R2. Con-
ditions (3) and (4) then imply that d2RiR2y> 
d2c%> c\> R{y. That is, (c},c|) is as depicted in 
Figure 3. 

Though they don't use my camping trip analogy, 
Diamond and Dybvig in effect described a way of 
stocking and programming the machine so that c is 
achieved even though the restrictions given in the other 
assumptions apply. Their arrangement has everyone 
depositing their endowments in the machine. The 
machine is programmed to pay out exactly c\ at t = 1, to 
whoever wants to withdraw during period 1, but only 
until those withdrawals total a\Nc\. At that point, the 

2This is proved as follows. Let the 4-tuple c* be feasible, but not such that 
cf = c^1 = 0. Then consider the following alternative: c\ = c*1 + /R2, 
c2 = c22 + ^2ci2» c2 = ci = Feasibility of c* implies feasibility of the 
alternative. And by (3) and g' > 0, the alternative gives a higher value of U(c). 
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machine pays out no more; it suspends payments until 
t = 2, when, with everyone together, everything avail-
able is divided equally among those who did not 
withdraw during period 1. 

To show that this suspension arrangement works, I 
will show that each person has an incentive under it not 
to misrepresent her or his type, no matter what the 
person thinks others will do. Let be the fraction who 
withdraw at t— 1, where under the arrangement 
O < 0 < c * i . Then R2(RYNy -/3Nc\) remains to be 
divided among (1 — /3)N people at t— 2. Therefore, 
each person gets {R\R2y — pR2c\)/(l — /3). Since 
p < a i (the suspension aspect of the arrangement), this 
amount is bounded below by c\\ and since c\ > R\y, it 
is bounded above by R\R2y. The upper bound implies 
that each type 1 person will attempt to withdraw at 
t= 1 because (3) implies that each prefers c\ at t= 1 
to R\R2y at t = 2. The lower bound and 82c\ > c\ imply 
that no type 2 person will attempt to withdraw at t = 1 
because each prefers c\ at t— 2 to c\ at t = 1. 

The suspension aspect of the arrangement produces 
the lower bound. If, instead, the machine were program-
med to pay out c\ at t— 1 to whoever wants to 
withdraw, for as long as it can, then /? could conceivably 
be so much greater than OLX that a type 2 person, fearing 
that period 2 promised payments could not be met, 
would attempt to withdraw at t— 1. In other words, this 
alternative arrangement seems vulnerable to a type of 
bank run. However, in order to claim that bank runs 
would occur in this model under this alternative 
arrangement, we would have to append to the model 
subjective views held at t — 0 about the likelihood of a 
bank run that are consistent with the setting up of a joint 
arrangement being best even though the possibility of a 
bank run is anticipated. If a bank run is too likely, then 
the joint arrangement would not be set up.3 

We can imagine the outcome of the above suspen-
sion arrangement emerging from a mutual or credit 
union organization in which depositors jointly deter-
mine the policy to be followed by the organization. 
People would be willing to join such an organization 
and deposit their endowments in it, because their 
alternative is using the technology on their own. That 
alternative, as described above, produces a worse 
outcome for the individuals than does the joint suspen-
sion arrangement. 

We can also imagine the suspension arrangement 
outcome emerging from the operation of a bank that is 
not operated as a mutual organization, but is forced by 
the threat of potential entry to behave competitively. 
Such behavior in this setting would lead to zero profits 

or, equivalently, to the bank paying out to depositors 
everything it receives on the assets it holds. Suppose 
that such a bank proposes to pay (x\,x2) per unit 
deposited, with xt being the per unit payment to time t 
withdrawals, and suppose that the fraction a t of total 
deposits D is withdrawn at time t. Then the condition 
that the bank pay out all earnings is easily seen to be 

(6) X2 = R2(RX - OL\X\)LOL2. 

One way for such a bank to attract deposits is to provide 
depositors with a high return on early withdrawals. The 
highest such return consistent with type 2 depositors not 
wishing to withdraw is4 

(7) X\ = S2x2. 

When augmented by a suspension rule that no more 
than ajjc\D will be paid out at time 1, this kind of 
banking policy, with depositors choosing how much to 
deposit, produces the outcome c. 

This can be seen as follows. With 0ci,Jt2) given by 
the solution to (6) and (7), depositing y in such a bank 
leads to (c\,c|) = [82R{R2y/(a2 + M2 /?2)]( l , 1 /S2), a 
pair that satisfies equation (2) and c\ = 82c%. (See 
Figure 3.) It follows that any pair (cj, c | ) on the line 
connecting that pair and the pair (R{y, R\R2y) can be 
achieved by dividing the endowment y between 
autarkic investment and such deposits. Since c is on this 
line and is, by construction, the preferred pair, the 
endowment will be split so that c is achieved. Finally, 
the suspension policy assures that no one has an in-
centive to misrepresent her or his type no matter what 
others are expected to do. 

More generally, the outcome c can be achieved by 
individuals splitting their endowment among different 
banks—banks which propose payment streams that 
satisfy (6), but which differ according to whether they 
have relatively high time 1 or time 2 payments per unit. 
Besides more closely resembling actual banking 
arrangements, such arrangements can achieve alloca-
tions that are optimal even if people at t = 0 are allowed 
to differ. In particular, people could have different 
endowments and different preferences in the form of 
different g functions. Different people would then be 

3 For further discussion of this point, see Andrew Postlewaite and Xavier 
Vives' 1987 paper. 

4 As is standard, I assume that people truthfully reveal their type if they are 
indifferent between doing so and not doing so. 
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holding different portfolios, different amounts of the 
different kinds of deposits and of autarkic investment. 

I conclude this description of the version of the 
model without aggregate risk by pointing out the sense 
in which isolation at / = 1 is necessary for the existence 
of intermediation in this model. Without isolation at 
t— 1, there would in general be a credit market at t = 1 
for one-period loans to be repaid at t— 2. Following 
Charles Jacklin (1987), I can show that such a credit 
market is inconsistent with people voluntarily choosing 
to deposit at t— 0, not misrepresenting their type at 
t— 1, and with payments per unit of deposits (JC!,JC2) 
that satisfy (6) and x \>R\ (illiquidity). 

Note that (6) and jct > imply that x2 < R\R2 and, 
therefore, x2/xx<R2, a marginal gross return on 
deposits between t = 1 and t = 2 that is less than R2. To 
display the inconsistency, I denote by r the gross return 
in the loan market at t = 1 and consider two exhaustive 
possibilities for r. First, suppose r>x2/xx. Then any 
type 2 depositor would attempt to withdraw at t = 1 and 
lend at r, thus implying misrepresentation. Next, 
suppose r < x2/x\. Then no one would choose deposits 
at t = 0. By choosing autarkic investment, people assure 
themselves c\ = R{R2y. If they turn out to be type 1, 
then at t — 1 they borrow at r, pledging their real 
investment as collateral. Per unit placed in autarkic 
investment, they can borrow RxR2/r > RlR2/(x2/x{) 
>X\, the last inequality following from x2<RxR2. 
Thus, they do better with autarkic investment no matter 
what type they turn out to be. 

This shows that access to a credit market at t = 1 is 
inconsistent with deposits that provide liquidity. Isola-
tion at t = 1 is needed to rule out such a credit market. 

• With Aggregate Risk 
Although the version of the model without aggregate 
risk explains illiquid intermediary portfolios, the 
Diamond and Dybvig suspension arrangement works 
so well there that no difficulties accompany the illi-
quidity. In particular, suspensions never occur—or 
certainly never in a way that troubles anyone. Thus, we 
must conclude that either that version of the model 
cannot account for the observed difficulties accompany-
ing illiquidity or the suspension arrangement was not 
thought of. Since the latter seems counterfactual, other 
variants of the model might better account for the 
difficulties that accompany illiquidity. The one I 
consider here, which was also considered by Diamond 
and Dybvig, is a version in which the fraction of people 
who will turn out to be type h, a^ is itself random, so 
that, in the aggregate, risk exists. 

Following Diamond and Dybvig, I will first describe 
an allocation that gives an upper bound on time 0 
expected utility, the expected value of f/(c). This upper 
bound is fully analogous to c above in that it is found by 
maximizing the expected value of U(c) given by 
Assumption 4, subject only to Assumptions 1-3 and 6. 
Then I present the argument that this upper bound 
cannot be achieved given isolation and, hence, sequen-
tial service at t — 1. An argument of this sort was 
presented by Diamond and Dybvig and used by them to 
conclude that intermediation subject to sequential 
service could not achieve the upper bound. 

Diamond and Dybvig, however, went on to describe 
a policy, which they labeled deposit insurance, that 
could attain the upper bound. Since I insist that any 
arrangement must be consistent with all the assump-
tions, I conclude that Diamond and Dybvig's policy is 
not feasible. I then show that for some economies 
satisfying all the assumptions, it is desirable to have 
payments during period 1 depend on the random order 
in which people contact the machine. Versions of this 
dependence can be interpreted as nontrivial bank 
suspensions in which people who show up early get 
more than those who show up late. Such suspensions are 
nontrivial in that those who show up late end up worse 
off than those who show up early. 

The upper bound I begin with permits period 1 
consumption of each person to depend on the aggregate 
fractions of types (af, af), which I denote by ak. (In 
doing this, I am for the moment ignoring Assumption 5 
and the even more important Assumption 7, the 
isolation assumption.) The upper bound is the solution 
to the following problem. Choose Cx(ak), C2(ak), and 
c(ak) for k = 1, 2, . . . , K} where c(ak) is the 4-tuple 
(c\(ak\ c\(<xk\ c\(oLk\ c%(ak)\ to maximize 

(8) E(U(c)) = Xkpk[Xhakuh(c!f(ak\ c£(a*»] 

subject to, for k = 1, 2 , . . . , K, 

(9) C2(ak)<R2[NR{y-C{(ak)] 

(10) C{(ak) = a![Nc\(ak) + 0L$Nc\(<xk) 

(11) C2(ak) = akNc2(ak) + a$Nc%(ak) 

where E denotes expectation and (ak) denotes de-
pendence of the variable on the outcome for (a1? a2). 

Although this problem looks complicated, it is as 
simple as the upper bound problem considered in the 
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version of the model without aggregate risk. Note that 
(9) is the same as (1) except for the dependence on ak . 
Also note that the variables C\(ak), C2(ak), and c(ak) 
for a particular k appear in only one term of the sum in 
(8) and appear in only the kth equation of each of (9), 
(10), and (11). Therefore, the maximization can be 
accomplished separately for each value of k. Moreover, 
each of these maximizations is exactly like the one 
above except that , a2) is replaced by the kth value of 
(<*!, OL2). Thus, if I denote by C(AK) the kth 4-tuple that 
solves this problem, Assumption 4 implies that 
c\(ak) = cf(ak) = 0 and 

(12) c%(ak) = R2[NR{y - akc\(ak)]/ak 

(13) g'(c\(ak))/g'(82cl(ak)) = 82R2. 

The pairs (c\(ak), c%(ak)) for two values of k 
(k= 1,2) are displayed in Figure 4. As there depicted, 
the pair for the smaller value of OLx has higher values of 
both c\ and c\, which is a direct consequence of (13). 
This fact is used below. 

I now show that c(ak) for k = 1 , 2 , . . . , K cannot be 
achieved. That is, given Assumptions 7 and 8, the 
machine cannot be programmed in a way that permits 
c(ak\ k = 1 , 2 , . . . , K} to be achieved. To see this, we 
need only consider what happens if the first person to 
contact the machine is a type 1 person. Except in trivial 
cases, neither this person nor the machine knows ak . 
Hence, this person must get a payment that does 
not depend on a k . But as noted above, c(ak) for 
k= 1 , 2 , . . . , K does depend on ak. Therefore, c(ak) 
cannot be achieved. 

Now I use this result to show that Diamond and 
Dybvig's deposit insurance is inconsistent with Assump-
tions 7 and 8. Although this insurance scheme is quite 
complicated, for my purpose here I need only note that 
it achieves c(ak\ k = 1,2,. . . , K Since I just established 
that no arrangement consistent with Assumptions 7 and 
8 can achieve c (a k \ I conclude that Diamond and 
Dybvig's deposit insurance scheme does not satisfy 
those assumptions. 

Indeed, as must be the case, the Diamond and 
Dybvig deposit insurance scheme allows the insuring 
(and taxing) agency to cumulate all period 1 with-
drawal demands and make a payment contingent on the 
total. Such an arrangement violates isolation at t = 1. 

Note that this argument does not say that any kind of 
deposit insurance scheme is infeasible. It only says that 
the policy that Diamond and Dybvig identify with 
deposit insurance is infeasible and, therefore, that they 

Figure 4 

Opt imal Consumpt ion 
Wi th A g g r e g a t e Risk 

c: Subject Only to Assumptions 1 - 3 and 6 
c: Subject Also to No Dependence on the Order 

People Contact the Machine 

Good 

have not provided a coherent case for deposit insurance. 
Other kinds of deposit insurance schemes may be fea-
sible and desirable. 

Having shown that c(ak) is not achievable, I 
naturally ask, What is the best achievable arrange-
ment? Unfortunately, I do not have a complete answer. I 
can, however, show that there are economies in which 
the most desirable arrangement will have realized 
period 1 consumption dependent on the order in which 
type 1 people contact the central location. I can do this 
by showing that a symmetric arrangement satisfying all 
the assumptions and for which realized period 1 
consumption depends in a simple way on that ordering 
gives higher expected utility than any feasible sym-
metric arrangement that does not display any such 
dependence. 

The first step in my argument is to note that if period 
1 consumption does not depend on ordering, then it is 
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constant. In particular, it cannot depend on the realiza-
tion of ak. Therefore, an upper bound on expected 
utility achievable under schemes without dependence 
on ordering is given by the solution to maximizing (8) 
subject to (9 ) - ( l l ) and the additional constraint 
c^(ak) = c\, a constant not dependent on k. Denote 
this allocation c(ak) and note that it satisfies c\ = 
c\(ak) = 0 and (9) at equality for each k.5 Now let K= 2 
so that the nonzero part of c(ak) is a triplet (c{, 
c%(al\ c$(a2)). Moreover, let the function g be such 
that this solution satisfies c\<82c%(ak) for k= 1,2. 
If g(x) = —x~b for b> 0, then since the solution to 
maximizing (8) subject to (9) - ( l l ) approaches c\ = 
R\y> c2=Rifyy a s b approaches 0, for sufficiently 
small b, c\ <82c%(otk). [The triplet (c \ 9c$(a l ) , 
c%(a2)) is depicted in Figure 4.] 

Now consider the following arrangement. The entire 
endowment is pooled and deposited in the machine. For 
some positive e still to be determined, the payment on a 
period 1 withdrawal is (c\ + e) until withdrawals total 
Afa}(c}+ e). The payment on subsequent period 1 with-
drawals is (c\ — e) until withdrawals total iV[a}(c| + e) 
+ (a2 - a\Xc\ ~ e)l or N[a2c\ + e(2a\ - a2)]. Then 
no further withdrawals at t— 1 are allowed. (Such 
period 1 payments are depicted in Figure 5.) Finally, at 
t— 2, all resources are divided on a pro rata basis 
among those who have not withdrawn at t= 1. 

Note that in this arrangement, since c\ < S2c%(ak) 
for k= 1,2 and since payments are totally suspended 
after withdrawals total N[a^c\ + e(2a\ — ajO], for 
sufficiently small e it is easily shown that everyone has 
an incentive to behave in accord with their true type. 
This being so, I assume they do and express expected 
utility as a function of e. 

I first express Q as a function of ak and then use (9) 
at equality and (11) to express c$(ak) as a function of e. 
By (10), C\(al)/N = a\(c\+e) and Cx(a2)/N = 
a\(c\ + e) + (a? — a})(c} — e). In each case, c%(ak) = 
R2[Riy-Ci(a*)/N]/al Then, from (8), expected 
utility is 

(14) G(e) = pi[a\g(c\ + e) + a\g(82c2(a *))] 

+ p2[a2(a\/<xpg(d\+e) 

+ aftl-a\/a$g(c\-€) 

+ a2g(82c2(a2))] 

where a \ l a \ is the probability conditional on a = a 2 

that a type 1 person contacts the machine early enough 
to get the return (c{ + e) and (1 — OL\!OL\) is the proba-

Figure 1 
How the Period 1 Payment 
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Contacts the Machine 
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bility that the person is too late and gets only (c\ — e). 
The derivative of G with respect to e evaluated at 

e = 0 is 

(15) G'(0) = pxa\H(al) + p2(2a\ - a2)H(a2) 

where H(ak) = g'(c\) - 82R2g'(d2cj(ak)). Since c(ak) 
is the solution to maximizing (8) subject to (9)-(l 1) and 
c\(ak) = c\,H satisfies 

(16) p{a\H(al) + p2a2H(a2) = 0. 

Substituting from (16) into (15), we get G'(0) = 
p22(a\~ a2)H(a2). Since a\<a2, g"< 0, and c(ak) 

5 An additional assumption is needed to conclude that c\(otk) = 0 for all k. 
The reasoning used in note 2 can be applied here to establish that c\ = 0 and 
that c\(ak) = 0 for some k. However, because c\ is not permitted to vary with 
k, the reasoning cannot be used in the same simple way to establish that 
c\(a*) = 0 for all k. A simple alternative argument is available if we assume 
that <5 j = 0. Then an allocation with c\(ak) > 0 for some k can be dominated by 
a feasible allocation with c\(ak) = 0 and with the released state k, time 2 output 
used to augment c\{ak). 
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satisfies (9) at equality, the definition of H(ak) implies 
that / /(a2) < //(a1). This inequality and (16) imply that 
H(a2) < 0, which implies that G'(0) > 0. This com-
pletes the argument because it implies that there are 
positive e for which the scheme illustrated in Figure 5 
gives higher expected utility than the best scheme that 
does not have any dependence on ordering. 

Note that this result does not describe the best 
symmetric arrangement. That is, even for this simple 
K= 2 case, I have not found an arrangement that 
maximizes expected utility subject to all the assump-
tions. However, for some economies I have found an 
arrangement that satisfies those assumptions and gives 
higher expected utility than any feasible arrangement 
that does not make consumption depend on the order 
people contact the central location at t = 1. Thus, I can 
conclude that for those economies the best arrangement 
displays some such dependence. 

Although this dependence property of an equilib-
rium has been established only for a very special class of 
economies, it almost certainly holds quite generally. 
Arrangements that do not display such dependence 
necessarily limit randomness to period 2 consumption. 
In general, higher expected utility should be achievable 
using arrangements that shift some of the randomness 
to period 1 consumption even if the shifting is accom-
plished by introducing a new source of randomness-
dependence on ordering—that by itself is utility 
reducing. Indeed, a plausible conjecture is that aggre-
gate randomness in the desired intertemporal pattern of 
consumption and some version of the isolation assump-
tion are in general sufficient to imply that equilibrium 
arrangements involve some dependence of returns on 
the order people withdraw. 

In this connection, note that under an arrangement in 
which returns are a decreasing function of earlier 
withdrawals, as in Figure 5, the model's features 
resemble qualitative features of U.S. banking experi-
ence during the 19th century. In particular, during 
actual suspension episodes, those who withdrew late, 
after suspension occurred, received a lower return than 
those who withdrew early; late withdrawers' checks 
passed at a discount. According to this interpretation, 
such suspension episodes are the result of high realiza-
tions of the fraction who want to consume early; they 
are not runs in the sense of type 2 people claiming to be 
type 1 people. 

Finally, note that this interpretation of suspension 
episodes can be adopted without the claim that bankers 
or depositors had anything like the model's perspective 
on feasible banking arrangements. Bankers would 

adopt such payment patterns in order to lessen the 
impact of aggregate uncertainty on future returns or, as 
some have said, in order to protect bank assets. People 
would be willing to obtain deposits with such payment 
patterns—that is, even knowing that suspensions might 
occur—because such deposits have a relatively high 
return in some circumstances. However, without the 
model's perspective on feasible arrangements, there 
could easily be dissatisfaction with the system and a 
search for a better one. After all, some depositors 
getting lower payments simply because they show up 
later than some others seems disorderly and to impose 
on depositors an undesirable degree of uncertainty. 
Without the perspective offered by this model, it is 
hardly surprising that people would not consider such 
uncertainty to be an unavoidable consequence of 
features of the environment—aggregate uncertainty 
and the features that make sequential service necessary. 

Concluding Remarks 
In this paper, I have described a model of banking very 
like Diamond and Dybvig's. In it I assume an environ-
ment that is different from theirs in only one way: I 
assume that people are isolated at the early withdrawal 
time in a way that implies Diamond and Dybvig's 
sequential service constraint. Admittedly, I have been 
able to obtain only limited results. Isolation turns out to 
be important in constraining what can be achieved in 
the version of the model with aggregate risk, the version 
in which the total number of people who truly need to 
withdraw early is random. However, for that version, I 
was able to obtain only a weak general property of the 
best arrangement in some special cases, namely, that 
returns on early withdrawals depend on the random 
order people withdraw. Obviously, when isolation con-
strains what can be achieved, it does so in a compli-
cated way. 

Despite that, I think isolation must be retained in 
some form because the alternative, that people are 
together at the early withdrawal time, is inconsistent 
with illiquid banking arrangements in two senses. First, 
if people are not isolated, then the arrangements that 
potentially achieve good outcomes do not resemble 
banking. In the camping trip economy, for example, a 
late-night meeting would be held, people would be 
asked whether they are hungry, and the magnitude of 
the late-night snack would be based on their responses. 
Second, if people are not isolated, then they could and, 
in general, would want to participate in a one-period 
credit market at the early withdrawal time. As demon-
strated above, such a market is inconsistent with 
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voluntary participation in an illiquid banking arrange-
ment. 

Inconsistency between banking, on the one hand, 
and well-functioning markets, on the other, should not 
be surprising. Almost any story about the role of 
banking has implicit in it that markets are costly to 
participate in or are incomplete in some way. What 
distinguishes the model I have presented here is its 
explicit description of banking services and of what 
prevents markets from supplanting those services. That 
explicit description has allowed me to deduce results 
rigorously. Besides the result that returns depend on 
ordering, I have deduced that Diamond and Dybvig's 
kind of deposit insurance is not feasible and that pol-
icies that directly limit the illiquidity of bank portfo-
lios, although feasible, are not desirable. 
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