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Introduction

In the classical principal–agent problem, a risk-
neutral agent bears all the risk. This particular 
solution, while acknowledged as a special case, is
prominent in the minds of economists because the
more general risk-averse case does not easily yield
numerical results. For example, Jensen and Murphy
(1990) find a divergence between the risk actually
borne by chief executive officers and the risk-neutral
solution, which seems too large to be accounted for 
by reasonable levels of risk aversion. 

Although the standard risk-neutral solution is
correct, it is also misleading. Other solutions exist
wherein the agent does not bear all the risk, and
these may be considered more “natural,” since they
are limits of the risk-averse case. 

Specifically, in Grossman and Hart’s (1983) 
principal–agent problem, where there is a finite num-
ber of actions and states, many optimal sharing rules
exist; in only one does the agent bear all the risk.1

With a large enough stake in the project, the agent
will not shirk—and with a finite number of states and
actions, this stake need not be 100 percent. 

Once agents have some risk aversion, the principal–
agent problem has a unique solution. For the two-state
case, limits can be computed as risk aversion approaches
zero. The risk-averse solutions do not converge to the

classic risk-neutral solution, however, but to the solu-
tion with the lowest risk for the agent. Because less risk
makes a risk-averse agent happier, he demands a lower
risk premium, in turn making the principal happier.
But exceptions occur. There are cases in which the 
optimal action discretely shifts with an infinitesimal
increase in risk aversion. In this case, the sharing rule
(and thus the risk borne by the agent) differs substan-
tially when the principal wants to induce distinctly 
different actions. 

By increasing the number of actions, the results
reduce to the standard continuous-action principal–
agent models (see Holmstrom [1979]). Under reason-
able conditions, the set of risk-neutral solutions
shrinks to one. 

This should introduce a note of caution to appli-
cations of the principal–agent model. The simple
risk-neutral solution is not a good approximation 
of the optimal contract, even for arbitrarily low risk
aversion. It can be misleading to compare actual
contracts in which risk aversion is important—
executive compensation, for instance—with the 
predictions of the risk-neutral principal–agent
model. Stated more positively, these results show
how principal–agent theory implies the relatively
flat sharing rules that are observed in practice. 

■ 1 Although Grossman and Hart do not explicitly mention multiple
solutions in the risk-neutral case, they are careful in stating their theorems.
Hence, this result does not imply any error in their work.
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I. Sharing Rules

The Model

First let us quickly review the assumptions, nota-
tion, and approach of the Grossman–Hart model.
For concreteness, assume the principal owns a firm,
but she delegates its management to the agent.
There is a finite number of outcomes (gross profit
states), q1 < q2 < … < qn. The principal, who is risk
neutral, cares only about the firm’s expected net
profit, defined as gross profit minus any payment to
the manager. 

In managing the firm, the agent takes an action,
often thought of as effort, which the principal cannot
observe. The principal does observe the outcome, 
however, and, like the agent, knows that different
actions determine the probability of the outcome
states. Both know  i (a), the probability of outcome qi
given action a. This probabilistic setting means the
agent might work hard but still have little output to
show for it. In choosing an action, the agent does not
know the ultimate result. Conversely, in seeing the out-
come, the principal cannot deduce the agent’s action. 

Actions belong to the finite set Α={a1, a2, a3 . . . 
am}, making the principal’s expected benefit from an
action equal to 

B(a) = ∑ i(a)qi . 

To avoid the problem of increasingly larger penalties
being imposed with progressively smaller probabili-
ties (see Mirrlees [1976]), assume that i (a) is
strictly greater than zero for all states and actions. 

The agent likes income, but he dislikes effort.
His utility function, U(a,I), depends positively on
his income from the principal, I, and negatively on
his action, a. Grossman and Hart find it useful to
place the following restrictions on U(a,I):

Assumption (A1): U(a,I) has the form G(a) +
K(a)V(I), where V(I) is a real-valued, continuous,
strictly increasing, concave function with the
domain [I,∞] and lim = – ∞. G and K

are real-valued, continuous functions defined by
A, and K is strictly positive. For all a1, a2 in A
and I, J in (I,∞ ), [G(a1) + K(a1)V(I)] ≥ [G(a2) +
K(a2)V(I)] implies [G(a1) + K(a1)V(J)] ≥
[G(a2) + K(a2)V(J)]. 

The agent has a reservation utility U, that is, the
expected utility he can achieve working elsewhere.
Sometimes this is derived from an outside income I,
so that U = V(I). If the principal does not offer him
a contract worth at least U, the agent will take
another job. To make the model at all interesting,
some income level should induce the agent to work.
Grossman and Hart formalize this as
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Assumption (A2): {[U–G(a)]/K(a)} ≤ V (∞) for all a
in A. 

To see what happens when this assumption does
not hold, consider the negative exponential utility

–e–k(I–a) and U = 5. In this case, even infinite income
could not make the agent work. 

If the principal could observe actions, it would
be straightforward to determine how much she pays
the agent for each action. Call this the first-best
cost, or CFB(a):

U [a,CFB(a)] = U, or 
CFB(a) = h{[U–G(a)]/K(a)},

where h = V –1. 
As Grossman and Hart put it, “CFB(a) is simply

the agent’s reservation price for picking action a. ”
Given this cost, the first-best optimal action maxi-
mizes the principal’s net benefit, B(a)–CFB(a). 

Of course, the principal cannot observe the
agent’s actions, nor can she directly base pay on
effort. Instead, she chooses an incentive scheme, 
Ii = {I1, I2, … In}, wherein payment Ii depends on
the observed final state, qi . Given this, the agent
will choose the action that maximizes his expected
utility. Knowing how the agent will react, the princi-
pal now can break her problem into two parts. For
each action, she calculates the least costly incentive
scheme that will induce the agent to choose that
course. This gives her the expected cost of motivat-
ing the agent to perform a particular action a, 

C(a) = ∑ i (a)Ii. She then chooses the action with

the highest net benefit—that is, the one that maxi-
mizes B(a)–C(a). 

Multiple Solutions

The possibility of multiple solutions arises from look-
ing at the mathematics of the agent’s problem. With
risk neutrality, the concave programming problem
with a unique solution becomes a linear program-
ming problem with multiple solutions. With a 
risk-averse agent, the principal minimizes the agent’s
risk, subject to meeting the incentive constraints. 
For a risk-neutral agent, only the incentives matter,
and any incentive-compatible risk configuration will
work. When the principal is not indifferent between
the two most desirable actions, multiple equilibria
can result. The larger the gap between the actions, 
the more risk the agent can bear. 

The traditional solution assigns all risk to the
agent, who delivers a fixed payment to the principal.
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The agent, then, receives

Ii = qi – [B(a*) – CFB(a*)]. 

The agent bears all the risk for shortfalls in q, and
the principal gets her expected benefit. 

qi – Ii = B(a*) – CFB(a*). 

Now, suppose the agent bears less risk and takes
only a fraction of the shortfall in q. Income in state i
becomes

(1)  Ii =  qi – t [B(a*) – CFB(a*)],

where t is a constant and measures the fraction 
of risk borne by the agent. Proposition 1 gives 
sufficient conditions for being less than one:

Proposition 1: Assume (A1)–(A2) and a risk-
neutral agent. If

∈ a:a≠a*and  (a)≤1

where

then an optimal contract exists that pays the agent 
Ii = qi – t [B(a*) – CFB(a*)] for some value of t.
This somewhat complicated condition guarantees
there is a “gap” or “jump” between the principal’s
payoff in different states.

The proof is straightforward and revealing. To
emphasize the underlying logic, I have made two
simplifying assumptions about utility, both of which
are easily generalized. First, I have specialized the
risk-neutral income utility to V(I) = I, rather than to
V(I) = +   I. Second, I have used the additively 
separable form of utility, setting U(a,I) equal to 
G(a) + V(I) or, here, to G(a) + I. 

Proof: For the optimal action, the principal calcu-
lates the least costly method of getting the agent to
choose action a*. The incentive scheme must mini-
mize the principal’s expected payment to the agent
while still inducing him to act. This is a program-
ming problem, including individual rationality (IR),
incentive compatibility (IC), and feasibility con-
straints (FEAS). 

(P1) MIN ∑ i(a*),

subject to

(IR) ∑ i(a*) [G(a*) + Ii] ≥ U,

(IC) ∑ i(a*) [G(a*) + Ii] ≥

∑ i(a) [G(a*) + Ii] for a:a≠a*

(FEAS) Ii ≤ ∞ for all i. 

We now must determine the value of in equa-
tion (1) that will satisfy these conditions. This
means choosing to satisfy

∑ i(a*)Ii = ∑ i(a*) { qi – t[B(a*) – CFB(a*)]} 

= CFB(a*),

resulting in 

(2) t =                              . 

By construction, values between 0 and 1 satisfy
the individual-rationality constraint. Some values of

also satisfy the incentive-compatibility constraint,
as I will now show. Substituting equation (2) into
equation (1), the incentive scheme becomes

(3)  Ii = qi – B(a*) + CFB(a*). 

This makes the incentive-compatibility constraint

(4)  G(a*) + ∑ i(a*)[ qi – B(a*) – CFB(a*)] ≥

G(a*) + ∑ i(a) [ qi – B(a*) – CFB(a*),

which simplifies to

(5)  G(a*)–G(a) ≥ [B(a)–B(a*)].

Whether a risk-neutral agent bears all the risk
depends on whether there is a gap between
G(a*)–G(a) and B(a)–B(a*).2 But this gap is not
solely a matter of chance:  The principal chooses a*
to maximize B(a)–C(a) or, in the risk-neutral case,
B(a)–CFB(a). Because a* is the optimal action, it
satisfies B(a*)–CFB(a*) ≥ B(a)–CFB(a). Rearranging
and using the definition of CFB, we have

(6)  G(a*) – G(a) ≥ B(a) – B(a*) ∀ a ∈ A. 

–
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n

i=1

n

i=1

n

i=1
n

i=1

B(a*) – CFB (a*)
B(a*) – CFB (a*)

n

i=1

n

i=1
n

i=1

■ 2 Haubrich (1994) provides several numerical examples of problems
of this type, showing that solutions do exist and the theorem is not vacuous.
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If the inequality in equation (6) is strict, can 
be less than one, meaning the agent does not assume
all the risk. There are three cases to consider, depend-
ing on the sign of each side of equation (6). 

(i) Both G(a*)–G(a) and B(a)–B(a*) are positive.
In this case, a has the larger gross payoff but is
more costly to implement than a*. Clearly, if
equation (6) holds, any in the relevant range
of [0,1] will satisfy equation (5). 

(ii) If G(a*)–G(a) is positive and B(a)–B(a*) is
negative, any works. In this case, the less
costly action, a*, also has the better payoff. 

(iii) Both G(a*)–G(a) and B(a)–B(a*) are nega-
tive. In this case, a* is more costly but has a
better payoff. We usually think of this as the
“normal” case. With negative numbers, 
division reverses signs, so equation (5)
implies that , the fraction of risk borne by
the agent, can fall anywhere in the interval 

∈ ,1  . 

With a more general utility function, this becomes
the condition stated in the proposition:

(7)  

Even equation (7) understates the full range of
incentive schemes wherein the principal bears risk.
With more than two states, the sharing rule need
not be linear, and a single-parameter    will not cap-
ture all possible deviations from the classic case. In
general, the solution set will be the convex hull of
extreme points, a multidimensional “flat” or “face”
of the constraint set for the linear programming
problem (P1). 

II. Convergence

Solutions in which the principal assumes some risk
are more than curiosities. As risk aversion approaches
zero, the risk borne by the agent converges to a 
number less than one. The traditional solution offers
a poor approximation of this, even near zero. 

The convergence results are for the two-state
case—the sole case with closed-form solutions for the
risk-averse problem. Answering convergence ques-
tions usually requires strong assumptions. For
instance, Grossman and Hart assume only two states,
or negative exponential utility. Without strong
restrictions, odd things can occur in the model: The
individual-rationality constraint may not bind, higher
profits may mean less money for the agent, or the
agent may get more money for less effort. 

Limiting Cases

With only two states, the single-parameter    fully
describes how much risk the agent bears. Usually, 
the risk-averse solutions converge to the solution with
the smallest value (rather than the classic solution of 

=1). Some exceptions exist because the optimal
action can switch at zero, which in turn causes a 
discrete jump in the risk burden. 

To explore convergence, we must first make sure
the utility functions do, in fact, converge. If we index
the income utility function by risk aversion , ( , I ),
we embody this convergence as a new assumption. 

Assumption (A3): As   approaches 0, V( ,I) 
converges uniformly to + I, ( ,    ≠0), on the 
interval [–qn, qn]. 

Although it is natural, this assumption does
restrict utility functions. For example, the negative
exponential function –e–γ(I–a) converges to zero, 
a constant function that is inadmissible by assump-
tion (A1). 

The statement of proposition 2 requires a little
groundwork. First, the proof uses the closed-form
solution for the two-state case found by Grossman
and Hart:

(8)  v1=                                                                       

(9)  v2=                                                                       

The derivation of these formulas depends crucially
on Grossman and Hart’s proposition 6, which proves
the agent is indifferent between the optimal action a*
and some less costly action. The existence of two pos-
sibilities makes convergence problematic. As risk
aversion falls, either the optimal action or the less
costly action may change. A change in the optimal
action matters for the convergence result, but it is not
clear whether a change in the less costly action makes
a difference. I have produced neither a proof nor a
counterexample for this case. Thus, the statement of
proposition 2 reflects these two possibilities. 

The unique profit share for a given utility func-
tion and risk aversion is defined as (V, ), and the
the minimum in equation (7) is defined as  min. 

Proposition 2: Given assumptions (A1)–(A3), 
if the optimal action and the indifferent alternative
action do not change for risk aversion in the neigh-
borhood of zero, then 

lim    (V, ) = min.
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Action Shifts

Proposition 2 does not hold when the optimal action
shifts at zero. Suppose one action is best at a risk aver-
sion of zero and another at a risk aversion greater than
zero. As the action changes, so does the sharing rule.
The best way to illustrate this is a simple two-act
example. Here, the principal induces the better action
at zero risk aversion, but pays a flat fee and accepts
the lower action for risk aversion greater than zero. 

We begin with B(a*)–C(a*)=B(a)–C(a), or indif-
ference between the two actions, so that the switch
occurs at zero. This sets    equal to one, meaning the
agent bears all the risk. We next want B(a2)–C(a2) <
B(a1)–C(a1), making the lower action preferred 
for > 0. To do this, set V(I) = I – I2. Then, 

h(v) =    [1 + (1 – 4 v)] /2 . With h(v) in hand, we
can assess the second-best costs once we have calcu-
lated v1 and v2. The goal is to show that, in some
cases,   C(a2)/ > 0. If this is true, an increase in
leads the principal to prefer action a1, since the cost
of action a2 increases while the rest of the variables,
B(a2), B(a1), and C(a1), remain unchanged. (C [a1]
fixed payment independent of state. ) 

Simplifying v1 and v2 from equations (8) and
(9), we have:

+                                                                     

This represents a shift in the optimal action
induced by the principal. Both actions remain feasi-
ble. The last terms in each of these expressions are
constant with respect to  , so we may rewrite them as

v1 =  I – I + P
v2 =  I – I + Q.

and solve for I1, I2, and C(a2):

I1 =                                                      

I2 =                                                     .  

Notice that   I1/    and   I2/     have the same sign,
matching   C(a2)/   . Explicitly calculating the first
of these derivatives, we have 

I1/ =                                           . 

6

To ease the notational burden and to emphasize
the logic, I present the proof for the additively sepa-
rable case. The generalization to other utility func-
tions is straightforward. 

Proof: In the risk-neutral case, we know from equa-
tion (6) that 

min=                         , 

which clearly depends on the optimal action ak and
a particular alternative ai. This implies an income
difference between states of

(10)  I2 – I1 = G(aj ) – G(ak )/

1(aj ) –    1(ak ). 

In the limit of the risk-averse case, optimal
incomes are given by the limits of equations (8) 
and (9). 

(11)  

(12)  

Because 1(aj ) + 2(aj ) = 1, the probabilities can
be expressed in terms of 1(•). Making this substitu-
tion and collecting terms yields

I1 = 

I2 =  

Taking the difference and simplifying, we find

(13)  I2 – I1 = G(aj ) – G(ak ) /

1(aj ) – 1(ak ),

which matches equation (10). 
The equality between equations (10) and 

(13) depends on the constancy of both the optimal
action and the alternative action. I conjecture that
even if the alternative action switches in the neigh-
borhood of zero, the equality (and thus the proposi-
tion) still holds. 
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The first two terms are positive, while the last
can be rewritten as [I – (1 + )I + P ]. As →0, the
last term approaches I – I + P. For values of I that
are not too large, that term is positive, and we have
the counterexample. 

In this counterexample, the agent bears all the
risk if he is risk neutral, but assumes none if he is
even slightly risk averse. In other words, conver-
gence fails in a spectacular way. But it may fail in
more prosaic fashions as well. The limit of the risk-
averse case may be higher or lower than min. 
Figure 1 schematically illustrates these possibilities. 

Mathematically, convergence fails because of a
difference between min for the risk-neutral case and
for the limit of the risk-averse case. This difference is

(14) min – lim = [G(a1) – G(aj )] / [B(aj ) – 

B(a1)] – [G(ak ) – G(aj )] / [B(aj ) – B(ak )]. 

Indifference at zero risk aversion implies G(a1) +
B(a1) = G(ak ) + B(ak ), creating two distinct possibili-
ties: Either ak or a1 can be the high-cost, high-benefit
action. If B(ak ) > B(a1), then G(ak ) < G(a1), and 
vice versa. The sign of equation (14), then, can go
either way. 

Despite the myriad possibilities, nonconvergence
remains a special case. To start with, the principal
must be indifferent between two different actions of
the risk-neutral agent, and she must strictly prefer one
action for arbitrarily small levels of risk aversion. 

Increasing the Number of Actions

The lowest share of risk the agent can take, min, is
decreasing in the gap in the principal’s payoff
between the chosen and the indifferent act, 
[G(ak ) – G(aj )]/[B(aj ) – B(ak )]. It seems intuitive
that as the number of actions increases, the gap
decreases and min moves toward one, its value in
the continuous-action case. But it is possible to
work the convergence so that exceptions occur. If B
and G are continuous functions, some condition on
the difference (such as lim  ak–ak+1 = 0) would
ensure the result. 

III. Conclusion

The traditional solution to the risk-neutral 
principal–agent problem is misleading. With finite
states and finite actions, many solutions exist, and in
all but one of these the principal bears the risk. The
traditional solution cannot even claim to be the lim-
iting case as risk aversion decreases: In fact, it is the
solution farthest away from the limit. 

These results have two main consequences. First,
they caution us against using the traditional solution
as an approximation of the less tractable risk-averse
case. This may explain why Jensen and Murphy
(1990) found CEOs bearing a surprisingly low
amount of risk. It also explains, in part, why the
numerical calculations of CEO risk in Haubrich
(1994) were so small, even for very low levels of risk
aversion. Second, they illustrate the range, power,
and tractability of Grossman and Hart’s version of
the principal–agent model. 

Nevertheless, the results presented here should 
be taken as preliminary—brief observations of a rare
nocturnal animal. Proposition 1 provides sufficient,
but not necessary, conditions for multiple solutions
and does not characterize all possible solutions. The
convergence results require even stronger restrictions
and depend on the two-act case. Still, I believe the 
scattered sightings reported here show a surprising—
and noteworthy—aspect of the principal–agent model. 
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