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Introduction

In discussions about the recent record-setting eco-
nomic expansion and the accompanying record-setting
bull market in stocks, two factors often receive credit:
Federal Reserve interest rate policy and increased pro-
ductivity. This conjunction naturally raises the ques-
tion of what interest rate policy is appropriate in the
face of changing productivity. Before such a policy
question can be answered, however, the logically prior
question of the effects of productivity changes on inter-
est rates must be addressed. The Federal Reserve con-
trols one particular short-term rate: the federal funds
rate. Investors, consumers, and businesses generally
care about long-term rates: mortgages, car loans, cor-
porate bonds. This Economic Review considers how
productivity changes affect the entire term structure of
interest rates. It thus may serve as a prelude to think-
ing about how the Federal Reserve (FOMC) should
move the Federal Funds rate in response to produc-
tivity changes or movement in other interest rates.

To get a handle on the economics behind produc-
tivity’s effect on the term structure, this paper works
out a simplified theoretical model based on the work
of Cox, Ingersoll, and Ross (1985a,b) and Sun (1992).
This approach abstracts from reality: it posits a very
simple production structure and it ignores money and
inflation.1 This means that it ignores several vital in-
fluences on the term structure, principally how produc-
tivity affects the part of interest rates that depends on
inflation and expectations about inflation.

One big advantage of writing down a theoretical
model in all its detail is that we are forced to answer
a host of questions that might not naturally come up.
When we talk about a productivity change (or shock)
is that change permanent or temporary? Do we expect
it to be repeated—or offset—in the near future? To get
answers we must be precise about our assumptions.

I. The Basic Economy

Whereas the Cox, Ingersoll, and Ross (CIR) model of
the economy uses continuous time, this article uses
discrete time to make it more comparable with other
macroeconomic work. The approach builds on the ex-
planation of dynamic portfolio theory presented in Sar-
gent (1987).

The basic plan is to use a representative-agent
framework, that is, to consider one person as a price
taker and, after finding out how that person’s choices
depend on prices, use the results to determine what
prices will clear the markets. The person decides how
much wealth to invest in each of two available as-
sets, and how much to consume now. One asset is
a risky, productive investment opportunity, something
like planting wheat or building a factory. The other
is a one-period, risk-free, real bond, something like a
government-guaranteed CD. The agent’s decision de-
pends on the assets’ risk and return. The key point of
the model is that the risk and return will change over
time—and change in a way directly related to produc-
tivity, as a productive factory is a profitable factory.
The underlying productivity changes interact with the
choices made by the representative agent to yield the
prices and interest rates we wish to examine.

More formally, if At denotes today’s wealth (that is,
wealth in period t), ct denotes consumption, st denotes
the amount put in the productive investment, and bt
denotes the amount in the bond, the basic budget con-
straint for this economy is: At � ct

�
st

�
bt � The transi-

tion equation, showing how wealth tomorrow depends
on decisions made today, becomes: At � 1 � Rt st

�
rtbt �

where Rt is the (gross) return on the risky investment
and rt is the return on the safe asset. Notice that Rt
can be thought of as productivity: The higher Rt is, the
higher the return from investing in the factory (or the

�
1 For papers that tackle these more difficult issues, see

den Haan (1995) and Bakshi and Chen (1996).
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more the factory produces for a given level of invest-
ment st). It is important to notice that at time t, rt is
known with certainty but Rt , being risky, is unknown.

Next, we assume that the agent has some utility
function u � ct � and some discount factor β so that total
utility is U � ∑∞

t � 0 β t u � ct � � Since the future is uncer-
tain, expected utility is

U �

∞

∑
t � 0

β t E0u � ct � �(1)

The agent’s problem is to choose values for st and
bt to maximize (1). The appendix carries out this cal-
culation, which results in the Euler equation:

u ��� ct � � βEt � Rt u ��� ct � 1 ��	 �(2)

This equation says that the agent balances the gain
from consuming a little more today (left side) against
the expected gain from investing that little bit and get-
ting more tomorrow (right side).

Next, we simplify the problem in two steps by mak-
ing assumptions first about the form of the utility func-
tion u and then about the stochastic process driving Rt �

We specialize utility to take the log form:

u � c � � log � c � �(3)

Fortunately, as the appendix shows, log utility re-
sults in an especially simple form for investment de-
mand, namely st � kAt and bt ��
 At , where k and 
 are
just two constants (to be determined later). An even
more convenient form of (2), due to Grossman and
Shiller (1981), provides a compact representation for
both interest rates, Rt and rt �

1 � βEt

�
Rt

1
Rt k

�
rt 
�

1 � βEt

�
rt

1
Rtk

�
rt 
� �

(4)

General Equilibrium

Equation (4) solves the individual’s portfolio selection
problem. If our goal was to provide investment guid-
ance, we could determine how much to invest in each
asset by carefully specifying the stochastic processes
for Rt and rt and solving for k and 
 . We will use (4) in
a different way. Instead of taking the interest rates as
given, we will use (4) to determine them, in effect us-
ing it as a demand curve. For example, if you know the
demand for apples you can predict how many people
will buy when the price is $5; but the more interesting
use is putting demand and supply together to find the

price. In determining interest rates, similarly, the fo-
cus is on turning (4) around and using it solve for the
interest rate rt .

Equation (4) by itself does not allow a solution in
purely exogenous variables, so we must bring in other
aspects of the economy. The key to doing this is the
representative agent: There is only one person (both
a consumer and investor) in this economy, acting as a
price taker. This means that in aggregate, there is no
borrowing or lending: The consumer can only borrow
from himself, so everything nets out to zero. The total
amount invested in the safe bond is thus zero, making
 � 0 � Another way of saying this is that bonds are
“in zero net supply.” Note that the individual may still
invest in the productive assets, so we have not (yet)
pinned down k �

Imposing the zero-net-supply assumption, equation
(4) becomes

1 � βEt

�
Rt

1
Rt k  � βEt � 1 � k �

1 � βEt

�
rt

1
Rtk  �

(5)

Because rt is known at time t (you know what return
a safe bond will pay) and because k is a constant, the
equations in (5) can be combined to solve for k and rt �
yielding k � β and

1
rt

� Et

�
1
Rt  �(6)

Equation (6) provides a crucial step: it describes the
return on bonds, rt , in terms of productivity, that is, the
return on the productive process, Rt � The next step is
to think more carefully about how Rt moves over time
and what this implies, via (6), for the interest rate.

Lognormality, Kernels, and Interest Rates

Describing how Rt moves over time, in a way both in-
teresting and tractable, is harder than you might think.
In fact, it is best done by approaching the problem
indirectly. A convenient approach is to use the log-
normal distribution (that is, where logX is distributed
normally), because it has a particularly nice form for
expectations. If X is lognormal,

logEt � X � � Et � logX � �
1 � 2var � logX � �

Exactly what should be distributed lognormally, how-
ever? For this it pays to revisit (6).

Equation (6) can be rewritten, or perhaps we should
say, re-interpreted, as a way to express the price (not
return) of the safe bond in terms of something called
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a pricing kernel.2 While it is possible to give a suit-
able economic description of the pricing kernel (as
the intertemporal marginal rate of substitution or the
probability-weighted state price), at this point it’s best
to think of it as a step that makes the derivation easier.
Consider the interest rate rt again. Since the bond in
question is a one-period, zero-coupon bond for which
the owner will get one unit of consumption tomorrow
for a price of Pt today, the return is rt �

1
Pt � This makes

the left side of (5) 1 � � rt � � Pt � (Recall that rt and Rt
are gross returns, that is, of the form 1.05, rather than
5 percent.)

For the right side of (6), redefine 1 � � Rt � to be the
pricing kernel, (or, as it is sometimes called by the real
fun-loving types, the stochastic discount factor), Mt � 1 �
These substitutions lead to

Pt � Et � Mt � 1 � �(7)

Thus, the price is just the expectation of the pricing
kernel. Next, we define the interest rate (or yield) on
the safe bond as the negative of the log of the price, so
that y1t �

� logPt , and define mt as logMt �
3 If mt � 1 is

distributed lognormally, then (7) becomes

� y1t � Et � mt � 1 � �
1 � 2var � mt � 1 � �(8)

We arranged this detour because it is easier to put an
interesting and tractable structure on mt � 1 rather than
directly on Rt � At long last, we are ready to do this.

We assume that the log pricing kernel takes the fol-
lowing form:

� mt � 1 � xt
�

x1
�
2

t γεt � 1 �(9)

xt � 1 � µ � φ � xt
� µ � �

x1
�
2

t εt � 1 �

If we think about this equation in light of the original
question we posed about the effect of productivity on
interest rates, the new term, xt , may be thought of as a
factor that moves productivity around. While equation
(9) may seem rather unintuitive at first, it has several
nice properties that, as we show later, will carry over
to interest rates. It has a long-run mean, µ , and it tends
to revert to that mean with a speed that depends on φ �
That is to say, the process has first-order serial correla-
tion. The other term that perhaps looks a little strange
is the x1

�
2 factor on the shock, which makes the effect

of the shock (and thus the variance of the process) de-
pend on the level of xt . If xt is large, the shock will
have large effects. This means that interest rates move
around more when they are high than when they are
low. If rates are at 10 percent, movements up to 11 or
down to 9 will be common, but if rates are at 3 percent,
it will be a rare move that reaches 4 or 2 percent.

This “square-root process” has another important
aspect. As x drops toward zero, the variance (the ef-
fect of ε shocks) decreases, making it less likely that
the process will fall below zero. For a large value of x,
the odds are small that the shock would be big enough
to send xt negative. For a small value of x, the vari-
ance is very low, so the odds of going negative are also
small. In the limit, with a continuous time process (as
in Cox, Ingersoll, and Ross [1985b]) the probability
is zero. To make life easier, we will adopt that ap-
proximation (also used in Sun [1992] and Campbell,
Lo, and MacKinlay [1997]), although for discrete-time
processes it is not strictly true.

If our goal was only to price bonds and other finan-
cial assets, we could simply have started with equation
(7), but that would have omitted mention of any con-
nection between productivity and interest rates, which
is our main concern.

II. Term Structure

Putting the pricing equation (8) together with the as-
sumptions on the productivity factor (9) finally puts
enough structure on the problem to get some meaning-
ful results. Substituting (9) into (8) yields

p1t �
� y1t � Et

� ��� xt
�

x1
�
2

t γεt � 1 ���
� � 1 � 2 � var

� ��� xt
�

x1
�
2

t γεt � 1 �	�
or

y1t � xt � 1 � γ2σ2 � 2 � �(10)

This gives the short-term yield (under the standard ap-
proximation of logs, y1t 
 rt

� 1). This equation has a
fairly intuitive explanation. The factor affecting return
to capital (here, xt) has a big influence on the interest
rate, which increases with return to capital. That’s not
quite the end of the story, however, because investment
in capital, the productive asset, is risky. The bond is
safe, and therefore risk-averse investors are willing to
pay a premium to put their assets in bonds. A premium
price on bonds translates into a lower interest rate. So
a risk factor offsets some of the direct productivity ef-
fect. Notice the importance of the square-root process

�
2 For more involved descriptions of using the pricing ker-

nel to derive interest rates, the now-standard reference is
Campbell, Lo, and MacKinlay (1997) chapter 11; for a more
specific application along the lines of this article, see Haubrich
(1999).

�
3 Notice that the uncertain return from t to t � 1 is indexed

as Rt , but that the associated kernel is indexed as t � 1 � This
is standard usage.
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here. An increase in productivity, xt , also increases the
variance, and thus the uncertainty, of the productivity
shocks.

Long Rates

Now let’s consider what the model tells us about the
longer-maturity bond. With an approach analogous to
that used in section I, one can obtain an expression for
the price of a two-period bond, noting that the two-
period yield will be the negative of one-half the log
price. Thus,

P2t � Et

�
Mt � 1P1 � t � 1 �

or

p2t � Et

�
mt � 1

�
p1 � t � 1 � �

1 � 2var
�
mt � 1

�
p1 � t � 1 � �

which after substituting in (8), becomes

(11) p2t � Et

� � � xt
�

x1
�
2

t γεt � 1 �� xt � 1 � 1 � γ2σ2 � �
�

1 � 2var
� � � xt

�
x1
�
2

t γεt � 1 �
� xt � 1 � 1 � γ2σ2 � � �

Again using (9) to express xt � 1 in terms of xt and εt � 1,
(11) reduces to

p2t �
� xt

�
1

� � 1 � γ2σ2 � 2 � φ

� � γ � � 1 � γ2σ2 � 2 ��	 2 σ2 � 2 �
� � 1 � γ2σ2 � 2 � � 1 � φ � µ �

This makes the two-period yield

y2t � � 1 � 2 � xt

�
1

� � 1 � γ2σ2 � 2 � φ

� � γ � � 1 � γ2σ2 � 2 � 	 2 σ2 � 2 �
� � 1 � 2 � � 1 � γ2σ2 � 2 � � 1 � φ � µ �

(12)

A more intuitive expression for the two-period rate
comes from rearranging (12) into

(12a) y2t � � 1 � 2 � � � 1 � γ2σ2 � 2 � xt

� � 1 � γ2σ2 � 2 � � µ � φ � xt
� µ � �� � 2γ � 1 � γ2σ2 � 2 �

� � 1 � γ2σ2 � 2 � 2 � � σ2 � xt � �

The first two terms in the brackets of (12a) describe the
part of the two-period bond yield that is attributed to
the expectations hypothesis of the term structure. The
expectations hypothesis says that two-period interest
rates ought to be the average of today’s one-period
interest rate and the expectation of next period’s one-
period interest rate. The first term,� 1 � γ2σ2 � 2 � xt �

is just today’s one-period interest rate. The next term,� 1 � γ2σ2 � 2 � � µ � φ � xt
� µ � � �

is the expectation of next period’s interest rate. The
reason xt shows up is that productivity today has infor-
mation about xt � 1, productivity tomorrow. The best
guess for the productivity factor tomorrow is that it
will revert somewhat toward the mean µ (exactly how
much depends on the speed of adjustment, φ .) Next
period’s short rate (y1 � t � 1) depends on what xt � 1 is, so
our best guess for next period’s short-term rate is our
best guess for next period’s productivity factor multi-
plied by the factor � 1 � γ2σ2 � 2 � . Notice that the sec-
ond term is greater or less than the first term precisely
when xt is greater or less than µ � From the expecta-
tions perspective, if the productivity factor (and thus
the short rate) is below the mean, rates are expected to
increase, and so the term structure slopes upward. If
rates are above the mean, they are expected to fall, and
the term structure slopes downward.

The expectations hypothesis is not completely true,
however, and (12a) has an additional term, accounting
for risk, which tends to lower the two-period yield. For
example, if xt � µ , the risk term would imply that y2t �
y1t .

Questions about the term structure reduce to ques-
tions about the difference between equation (10), the
short rate, and equation (12a), the long rate. Of
course, one might ask more complicated questions in-
volving three-period yields, four-period yields, or even
seventeen-period yields. Restricting attention to one-
and two-period yields eliminates questions about the
shape of the yield curve, such as whether or not it is
humped. Still, the key intuitions about many impor-
tant questions—such as how productivity affects term
structure level and slope—come through with only two
yields.

Spreads

A convenient way to discuss many term-structure
changes is to look at the spread between long and short
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yields. From (10) and (12), this becomes

y2t
� y1t � � 1 � 2 � � 1 � γ2σ2 � 2 � � 1 � φ � µ

� � 1 � 2 � �
1

� � φ � 2 � � 1 � γ2σ2 � 2 �� � γ � � 1 � γ2σ2 � 2 � 	 2 σ2 � 2 � xt �

(13)

Now to return (and about time) to the central ques-
tion of this paper: How do productivity changes affect
the term structure? As may be apparent by now, get-
ting the answer will not be easy for two very differ-
ent reasons. First, the many and complicated terms in
equations (10)–(13) indicate that there are fairly com-
plicated interactions going on, and comparative statics
will result in some messy algebra. A deeper reason is
that the phrase “changes in productivity” now has no
unambiguous meaning. Does “change” mean an in-
crease in the average level, µ , a high (or low) value of
xt , or perhaps a higher variance, σ 2, or mean reversion
parameter, φ? Not every change is worth looking at,
but understanding a few key changes will shed light on
some central aspects of the relation between produc-
tivity and the term structure.

First, consider an increase in the mean of the pro-
ductivity factor µ , holding everything else constant.
This indicates that the long-run average productivity
of the economy has increased; we have entered a “new
era” of high growth. What does this do to the term
structure? A quick look at equations (10)–(13) shows
that y1t is unchanged, and that the effect on y2t depends
on the sign of � 1 � γ2σ2 � 2 � � 1 � φ � �(14)

It will also be apparent that the sign of � 1 � γ2σ2 � 2 �
should be positive if a positive level of the productiv-
ity factor, xt , implies a positive interest rate (yield).
Furthermore, as long as the factor adjusts towards the
mean but does not immediately jump to the mean, (that
is, 0 � φ � 1), both parts of (14) will be positive, and
an increase in productivity will steepen the slope of the
term structure.

Intuitively, this simply says that because bonds com-
pete with real, productive assets, when the return on
those productive assets is expected to be higher in the
long run, real interest rates are expected to be higher
as well. If that increase doesn’t show up directly in to-
day’s productivity (xt ), the part of the effect that shows
up in long-term rates creates a steeper term structure.

What happens if the productivity factor itself, xt , is
higher? This corresponds to a temporary shock, an
increase in productivity for a limited time. A glance
at (10) shows that this increase in productivity raises
short-term rates, as is to be expected. The effect on

long rates and thus on the slope of the term structure is
more difficult to ascertain. In fact, a direct attack along
the lines of equations (13) and (14) would be unen-
lightening. Comparing (10) and (12a), and discussing
how the productivity shocks affect expected rates and
risk terms, will prove more fruitful.

An increase in xt increases y1t , as discussed above.
It also may increase y2t , depending on the relative sizes
of the expectations effect and the risk effect. What
does it mean for the slope of the term structure? Using
(12a) and (10) to compare the expectations part of the
two-period rate with the one-period rate shows us that

y2t 
 � 1 � 2 � � � 1 � γ2σ2 � 2 � xt
� � 1 � γ2σ2 � 2 � � µ � φ � xt

� µ � ��� �

This implies that
y2t
� y1t
 � 1 � 2 � � 1 � γ2σ2 � 2 � � φ � 1 � xt

� � 1 � φ � µ � � �

Taking the derivative with respect to xt yields

∂ � y2t
� y1t � � ∂ xt

� � 1 � 2 � � 1 � γ2σ2 � 2 � � φ � 1 � �

(15)

Since � 1 � γ2σ2 � 2 ��� 0 and φ � 1, an increase in the
productivity factor, xt , decreases the spread between
rates, meaning that the yield curve gets flatter. Effec-
tively, because of reversion to the mean, a higher xt
today has less of an impact tomorrow; if x is above the
mean, xt tends to get pulled down, and if xt is below
the mean, increasing it lessens the pull upward by the
mean. The net result is that the effect of the produc-
tivity shock on interest rates today is larger than the
expected effect on interest rates tomorrow.

This, of course, is only one aspect of an increase in
xt . Because the economy is risky, two-period bonds are
not merely the average of current and expected rates;
after all, that is why equations (12) and (12a) contain
variance terms. The term that remains in (12a) after
accounting for the expectations hypothesis approxima-
tion is

� � 2γ � 1 � γ2σ2 � 2 � � � 1 � γ2σ2 � 2 � 2 � � σ2 � 2 � xt �

Clearly this is negative, since γ , � 1 � γ2σ2 � 2 � � and σ 2

are positive. An increase in xt lowers the risk factor,
decreasing two-period rates and the slope of the term
structure.

Why does an increase in the productivity factor, xt ,
decrease the risk factor in two-period yields? There
are two parts to the answer. The first has to do with
the heteroskedastic aspect of the square-root process.

http://clevelandfed.org/research/review/
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An increase in xt increases the variance of the produc-
tivity process. This means that investing in the real
economy is now riskier, which leads to the second part
of the answer. Because the real economy is riskier, in-
vestors will pay a premium for a safe bond that delivers
them from that risk. The higher price means a lower
yield. If the world really does work this way, a higher
productivity shock, though good in one sense (directly
higher productivity), is bad in another (higher risk).

Other Assets

Bonds are not the only financial assets around. Pro-
ductivity shocks will also affect stocks, options, swaps,
and other derivatives. One way to price these assets is
to start with (7) and (9), specifying the return process
for the asset in question. Since we’ve only assumed
one source of uncertainty in the economy, (xt), how-
ever, the relations between the different assets might be
rather simplistic. Conceptually, at least, it is straight-
forward to add more shocks.

This might even be done in a way that preserves the
results so far. Let the pricing kernel take the form

Pt � Et � Mt � 1Kt � 1 � �

where Kt � 1 is independent of Mt � 1 and is a martingale
(that is, Et � Kt � 1 	 � Kt ). Then Pt � Et � Mt � 1 � Kt and

P2t � Et
� Mt � 1P1 � t � 1 � Kt . Thus the spread between

long and short rates, which depends on the ratio P2t � Pt ,
is independent of Kt . But the extra factor, Kt , would
show up in pricing other assets such as stocks.

III. Conclusion

Bond traders, stock jobbers, and risk managers all have
their own reasons for understanding the course of in-
terest rates. The Federal Reserve’s Federal Open Mar-
ket Committee derives its concern from its mandate for
monetary policy, and that policy involves correctly set-
ting one interest rate among many. Setting the path for
the federal funds rate is itself complicated by the com-
plex interactions of the funds rate with T-bill, mort-
gage, and other interest rates.

Productivity plays a crucial role in the interactions
of the various interest rates, but its effect is not always
simple. An increase in the long-run mean of produc-
tivity will increase long-term interest rates and cause
the term structure to get steeper. An increase in to-
day’s productivity tends to increase both short- and
long-term interest rates, but long-term rates move less,
causing the term structure to get flatter.

Real-world productivity shifts will rarely be so cut
and dried. The central, as yet unanswered, questions—
such as whether recent productivity increases are per-
manent or temporary—matter greatly for the term
structure, as they yield diametrically opposed conclu-
sions. Thus, economic theory provides some guid-
ance about the appropriate questions to ask. It also
raises further questions. For example, in a truly
“new paradigm economy” shouldn’t we expect to see
changes in other parameters of the productivity pro-
cess, —such as the speed of adjustment—that theory
tells us are important for the term structure?

So, in one sense, a more sophisticated view has
complicated the matter. Just as a wine connoisseur
would not hazard a recommendation until he knew
whether beef or fish were being served, advice about
interest rates often requires that we specify more de-
tails about the underlying economy.

http://clevelandfed.org/research/review/
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Appendix

Finding the values that maximize expected lifetime
utility is perhaps easiest done using dynamic pro-
gramming (see Sargent [1987] for an excellent expo-
sition). The state variables are � At � rt � Rt � 1 	 and the
control variables are � st � bt � � Forming Bellman’s equa-
tion gives

V � At � rt � Rt � 1 � � max
st � bt

�
u � At

� st
� bt �

� βEtV � stRt
�

btrt � rt � 1 � Rt � � �

(A.1)

The first-order necessary conditions for the “max”
part of (A.1) are given by:

∂V
∂ st

� 0 � � u � � At
� st

� bt �
� βEt RtV1 � stRt

�
btrt � rt � 1 � Rt � � 0

(A.2)

∂V
∂ bt

� 0 � � u � � At
� st

� bt �
� βEt rtV1 � stRt

�
btrt � rt � 1 � Rt � � 0 �

(A.3)

Next, using the Benveniste and Scheinkman (1979)
results on the differentiability of the value function V
to evaluate V1 yields V1 � At � rt � Rt � 1 � � u � � ct � � Substi-
tuting this into (A.2) yields the Euler equation, 0 �� u � � ct � � βEt � Rt u � � ct � 1 ��	 or

u � � ct � � βEt � Rt u � � ct � 1 ��	 �(A.4)

(A.4) is equation (2) in the text.
Given equation (A.4), the next step is to solve for the

policy functions st � At � Rt � 1 � rt � and bt � At � Rt � 1 � rt � �
Substituting these into the Euler equation (A.4) gives

(A.5) u � � At
� st � At � Rt � 1 � rt � � bt � At � Rt � 1 � rt � 	

� βEt

�
Rtu � � At

� st � At � Rt � 1 � rt �� bt � At � Rt � 1 � rt ��	 �
for Rt and substituting them into the corresponding Eu-
ler equation for bonds implies

(A.6) u � � At
� st � At � Rt � 1 � rt � � bt � At � Rt � 1 � rt � 	

� βEt

�
rtu � � At

� st � At � Rt � 1 � rt �� bt � At � Rt � 1 � rt ��	 �
for the bond rate, rt �

Using log utility implies that the Euler equation
(A.5) takes the form

(A.7) �At
� st ��� � � bt ��� � � � 1

� βEt
�
Rt �Rtst ��� � �

rtbt ��� �� st � 1 ��� � �
bt � 1 ��� � � � 1 � �

The point is now to guess a form for the policy func-
tions st and bt and to see if they work. Fortunately,
log utility results in an especially simple form, namely,
st � kAt and bt � 
 At , where k and 
 are just two con-
stants (to be determined later). This transforms the Eu-
ler equation (A.7) into

(A.8) � � 1 � k � 
 � At � � 1

� βEt �Rt � RtkAt
�

rt 
 At� kAt � 1
� 
 At � 1 � � 1 � �

This simplifies to� At
� kAt

� 
 At � � 1

� βEt

�
Rt �RtkAt

�
rt 
 At � 1 � k � 
 � � � 1 � �

which further reduces to equation (4) in the text.
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