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Abstract
First-order approximation methods are a standard technique for analyzing the lo-

cal dynamics of dynamic stochastic general equilibrium (DSGE) models. Although

for a wide class of DSGE models linear methods yield quite accurate solutions, some

important economic issues such as portfolio choice and welfare cannot be adequately ad-

dressed by �rst-order methods. This paper provides yet another case where �rst-order

methods may be inadequate for capturing a DSGE model�s business-cycle properties.

In particular, we show that increasing returns to scale (due to production external-

ities) may induce asymmetric business cycles and nonlinear income e¤ects that are

not fully appreciated by linear approximation methods. For example, hump-shaped

output dynamics can emerge even when externalities are below the threshold level re-

quired for indeterminacy, and output expansion tends to be smoother and longer while

contraction tends to be deeper but shorter-lived, as observed in the U.S. economy.

JEL classi�cation: C63; E0; E32.

Keywords: Second-order approximation; Asymmetric business cycle; Hump-shaped

output dynamics; Increasing returns to scale.
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1 Introduction

The standard approach to studying the business-cycle implications of DSGE models is to

focus on the model�s local dynamics near a steady state through linear (�rst-order) approx-

imations (such as the loglinearization method of King, Plosser, and Rebelo, 1988). It is

well-known that for standard real business cycle (RBC) models with constant returns, �rst-

order approximation methods give quite accurate solutions and higher-order methods give

almost identical predictions.

The central twist of this paper is the addition of increasing returns to scale (IRS) due

to production externalities. This simple deviation from standard RBC models is shown to

generate nontrivial non-linearities that are not well captured by �rst-order methods. Impor-

tantly, these non-linearities are increasing in the degree of external economies over parameter

ranges that predict a unique bounded rational expectations equilibrium. The model does

not rely on local indeterminacy to generate new and interesting dynamics, though one con-

tribution of the paper is to document model properties when the model gives rise to local

indeterminacy.1

Speci�c results of interest are that technology shocks generate asymmetric e¤ects on busi-

ness cycles. These e¤ects are generated by second-order components of the model, which

are ignored by linear approximation methods. Conditional on a positive technology shock,

hump-shaped impulse response functions are predicted for employment and output, consis-

tent with much empirical work. Smooth, prolonged dynamics are observed. In contrast,

conditional on a negative technology shock, the model predicts sharp, less persistent dynam-

ics. Combined these insights provide an explanation of the strong asymmetry of the business

cycle in the U.S. economy.

IRS have been shown in the existing literature as an important source of dynamics not

only for endogenous growth (e.g., Romer, 1986) but also for the business cycle. Baxter and

King (1991) show that incorporating production externalities into a standard RBC model

generates a better overall �t of the model to the U.S. data, especially under aggregate demand

shocks. Benhabib and Farmer (1994), Farmer and Guo (1994), Wen (1998a), and Benhabib

and Wen (2004) show that IRS can generate endogenous business cycles if externalities are

large enough to make the model�s steady state locally indeterminate.2

1Local indeterminacy means that there are multiple rational-expectations equilibrium paths that converge
to the same steady state. Note that local indeterminacy is not the same thing as multiple steady-state
equilibria. Indeterminacy can arise in a model with a unique steady state.

2Also see Cooper and Johri (1997) and Wen (1998b) for business-cycle implications of externalities in
RBC models without indeterminacy.
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However, this segment of the literature has based on �rst-order approximations to inves-

tigate the model�s dynamic behaviors. Although it has been shown that, for standard RBC

models (such as the models of Kydland and Prescott, 1982; and King, Plosser, and Rebelo,

1988), �rst-order approximation usually yields quite accurate results, it is less clear whether

such methods remain accurate in describing a model�s local dynamics when it involves market

failures and non-convexities, such as externalities and IRS.

IRS can greatly amplify the impact of shocks (Baxter and King, 1991) and dramati-

cally change a model�s topology around its steady state so that complicated dynamics, such

as bifurcations, discontinuous jumps, and complex eigenvalues, may emerge (Benhabib and

Farmer, 1994; and Coury and Wen, 2009). Therefore, it is interesting to investigate whether

�rst-order approximation methods continue to yield accurate predictions of a model�s dy-

namics when there are production externalities.

In addition, one of the most important aspects of stochastic dynamic models� risk�

cannot be well captured by linear solution methods. As an example, optimal portfolio

decisions can not be analyzed under linear approximation methods. For reasons like this,

second-order solution methods have been proposed and developed by the recent literature.

For a review of this literature, see, for example, Judd (1998), Jin and Judd (2002), Collard

and Juillard (2001), Schmitt-Grohe and Uribe (2004), Anderson et al. (2006), Lombardo

and Sutherland (2007), and Kim et. al. (2008), among others.

In this paper, we apply the second-order approximation method developed by the exist-

ing literature to analyze the local dynamics of an RBC model with externalities. We show

that taking second-order terms into consideration not only improves the accuracy of approx-

imations but also changes the predicted local dynamics of the model dramatically when IRS

exist. In particular, the magnitude of the impulse responses to positive technology shocks

are signi�cantly smaller and smoother under second-order approximation method than those

found under the �rst-order method, and hump shaped impulse responses can emerge even

with degrees of externalities that are too small to trigger indeterminacy. This is in sharp

contrast to the results in Benhabib and Wen (2004) where, under the �rst-order approxima-

tion method, hump-shaped dynamics emerge only when the degree of externalities is large

enough so that the model becomes locally indeterminate.

The new �ndings regarding the dynamic e¤ects of externalities are driven by the fact

that externalities introduce a large nonlinear income e¤ect� captured by a large negative

coe¢ cient in front of the square term of technology shocks and a large positive coe¢ cient

in front of the cross term of capital and technology shock. This implies that technology

3



shocks have the following asymmetric second-order e¤ects on aggregate output dynamics: A

positive technology shock generates smooth and hump-shaped output responses because the

variance of technology shocks neutralize the shock on impact but the covariance of capital

and technology shocks enhances (and thus propagates) the e¤ects of the positive shock in the

subsequent periods. On the other hand, a negative technology shock generates much bigger

and sharper falls in output relative to the �rst-order method because the variance of technol-

ogy shocks greatly amplify the negative shock while the covariance term reduces its negative

impact in the subsequent periods, making the impulse responses of output monotonically in-

creasing towards the steady state from below. Such an asymmetric nonlinear e¤ect is similar

to what we observe in the U.S. economy: on the one hand, economic expansion tends to be

smooth and gradual while economic contraction tends to be sharp and short lived (see, e.g.,

Neftic, 1984; Sichel, 1993; Kim and Piger, 2002; McKay and Reis, 2008; and Morley and

Piger 2009); on the other hand, regarding the e¤ects of oil shocks, unexpected increases in

oil prices (equivalent to negative TFP shocks) tend to have large adverse e¤ect on aggregate

output while decreases in oil prices tend to have only small or negligible positive e¤ects on

output (e.g., see Hamilton, 2003; and Mork, 1989).

Our analysis also helps to explain a puzzle in the indeterminacy literature. That is (e.g.,

in the Benhabib-Farmer model), under the �rst-order approximation method, positive tech-

nology shocks are extremely expansionary before indeterminacy arises but suddenly become

excessively contractionary when the model becomes locally indeterminate, generating sharp

falls in output, investment, and hours. This is puzzling because it indicates an unusually

large income e¤ect on hours worked and savings not observed in standard RBC models with

constant returns. Using second-order methods, we �nd that positive technology shocks have

a second-order negative impact on hours worked and this nonlinear income e¤ect increases

with the degree of increasing returns to scale. Hence, as externalities increase, the second-

order income e¤ect gradually dominates the �rst-order substitution e¤ect, and the initial

response of hours gradually turns to negative around the point of indeterminacy. Once the

model becomes indeterminate, the coe¢ cients of second-order terms in labor become zero so

that the strong income e¤ect are captured only by the �rst-order terms.3

An important caveat is that this paper�s main point is not to �nd frictions to improve

the empirical �t of existing RBC models for the business cycle. Hence, moment matching

is not our goal. Rather, we try to provide a new case where linear solution methods may

give inaccurate descriptions about the model�s dynamics. Moreover, given that the existing

3See discussions in section 3.3.
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literature has shown that IRS may be important for understanding the business cycle based

on �rst-order approximations, we are also interested in understanding whether IRS can

introduce non-linear dynamics that have not been captured by �rst-order methods.

The point that linear approximation methods may result in quantitatively signi�cant bi-

ases even for standard RBCmodels without externalities has been made in the literature. For

example, Fernandez-Villaverde et al. (2006) study the econometrics of computed dynamic

models and the consequences for inference of the use of approximated likelihoods. They �nd

that second order approximation errors in the policy function, which are completely ignored

by �rst-order approximation methods, have �rst order e¤ects on the likelihood function.4

The problem of numerical simulations of dynamic economies with heterogeneous agents and

economic distortions are also studied by the existing literature. For example, Feng et al.

(2009) and Peralta-Alva and Santos (2010), among others, discuss problems related to the

existence and computation of Markovian equilibria in economies with heterogenous agents

and market distortions, as well as convergence and accuracy properties of numerical solu-

tions.5

This rest of the paper is organized as follows: Section 2 presents the model with external-

ities and introduces the second-order perturbation method. A simple example is provided to

illustrate the di¤erence between �rst-order and second-order methods. Section 3 examines
the model�s dynamics with and without indeterminacy. Section 4 compares the accuracy of

linear and second-order approximations in the presence of IRS, and Section 5 concludes the
paper.

2 The Model

The model is similar to that of Baxter and King (1991) and Benhabib and Farmer (1994).6

There exist a continuum of identical agents in the unit interval [0; 1]. A typical or rep-

resentative agent chooses consumption (ct), hours worked (nt), and capital stock (kt+1) to

4However, Ackerberg et al. (2009) show by counterexample that this conclusion of Fernández-Villaverde
et al. (2006) is false and argue that second order approximation errors in the policy function have at most
second order e¤ects on parameter estimates.

5More references to this literature can also be found in these two articles.
6We have also studied the model of Wen (1998a) where the degree of externalities required for indetermi-

nacy is much smaller because of variable capacity utilization, and our conclusions remain robust. To simplify
the analysis, we choose the simpler model of Benhabib and Farmer (1998) with �xed capacity utilization
even though this model requires an implausibly large degree of IRS to generate a signi�cant di¤erence in
local dynamics from those of standard RBC models.
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solve

max
fct;nt;kt+1g

Et

1X
t=0

�t
�
c1��t

1� � � a
n1+
t

1 + 


�
;

subject to the resource constraint, ct+kt+1� (1� �)kt � At(�k�t �n1��t )�k�t n
1��
t ; where

�
�kt; �nt

	
denote the average economy-wide capital stock and hours which are taken as given by indi-

viduals and At denotes aggregate technology shocks. The model exhibits increasing return

to scale at the social level if the externality parameter � > 0.7

The equilibrium of the model is determined by the following necessary conditions:

an
t = c
��
t (1� �)Atk

�(1+�)
t n

(1��)(1+�)�1
t (1)

c��t = �Etfc��t+1(�At+1k
�(1+�)�1
t+1 n

(1��)(1+�)
t+1 + 1� �)g (2)

ct + kt+1 � (1� �)kt = Atk�(1+�)t n
(1��)(1+�)
t (3)

logAt = � logAt�1 + �"t; (4)

where equation (1) is the optimal labor supply condition, Euler equation (2) equates the

marginal cost of reducing consumption in period t and the marginal gain of consumption

in the next period, equation (3) is the aggregate resource constraint in equilibrium, and

equation (4) speci�es the dynamics of At. The parameter � controls the variance of the

innovation "t � N(0; 1) and measures the level of uncertainty in the economy. Since agents
are identical, in general equilibrium the individual variables are equal to their aggregate

counterparts (e.g., kt = �kt and nt = �nt).

As shown by Benhabib and Farmer (1994), this model has a unique steady state and the

steady state is a saddle if the degree of externalities is small and a sink if � is large enough.

However, Coury and Wen (2009) show that this class of models may have multiple dynamic

equilibria (such as stable n-period cycles) away from the steady state even if the steady state

appears to be a saddle. To be mindful of this, in the following analyses we choose the value

of � su¢ ciently below the critical values found by Coury and Wen (2009) for n-period cycles.

2.1 Second-Order Taylor Expansion

The model�s equilibrium is solved by second-order approximation methods. The variables

in the above equations can be grouped into two types, the state variables and the control
7Benhabib and Farmer (1994) prove that this representative-agent model with externalities is equivalent

to a decentralized market economy with increasing returns at the �rm level.
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variables. The state variables include the capital stock and the realized exogenous shock

at the beginning of each period. We denote them by the vector st = (kt; At). The control

variables include consumption and hours, denoted by zt = (nt; ct).8

Under linear-approximation methods, due to certainty equivalence, the equilibrium paths

of economic variables are independent of the degree of uncertainty (�), and the dynamic

impulse responses of the model are symmetric with respect to the sign of the shocks (At).

That is, the policy functions can be written as

zt = g(st); (5)

and the state variables follow the law of motion

st+1 = h(st) + ��"t+1; (6)

where the 2 � 1 vector � = [0 1]0 since technological innovations do not directly a¤ect the

next-period capital stock.

However, under second-order approximations, second-order terms such as EtÂ2t+1 =
�2

1��2

and EtÂt+1k̂t+1 will emerge, so the policy functions g(�) and equilibrium paths of state

variables h(�) will depend on �. Accordingly, the general policy functions are characterized
by

zt = g(st; �) (7)

st+1 = h(st; �) + ��"t+1: (8)

Note that when the standard deviation of the shock � = 0, there is no uncertainty

in the model and all variables remain in the non-stochastic steady state. Therefore, the

impulse responses of the system to a technology shock obtained under the �rst-order and

the second-order methods converge to each other as � approaches zero.

De�ne ẑt � log zt� log z0, ŝt � log st� log s0. Following the literature (see, e.g., Schmitt-
Grohe and Uribe, 2004), the policy functions fg(�); h(�)g can be approximated by a second-
order Taylor expansion,

ẑt = [gs g�]

�
ŝt
�

�
+
1

2
[ŝt �]

�
gss 0
0 g��

� �
ŝt
�

�
; (9)

ŝt+1 = [hs h�]

�
ŝt
�

�
+
1

2
[ŝt �]

�
hss 0
0 h��

� �
ŝt
�

�
+

�
0
1

�
�"t+1; (10)

8If indeterminacy occurs, one may treat period-t consumption as a state variable since the steady state
is a sink.
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where the �rst derivatives gs and g� are known from the solution to the �rst-order system.

By taking second-order derivatives of the �rst-order conditions with respect to s and �,

one can obtain a linear equation system with the unknown elements in cross-derivative

coe¢ cients gss, hss, g�� and h��. The cross terms are symmetric and equal to zero, gs� =

g�s = hs� = h�s = 0, as shown by the literature. The second-order coe¢ cient matrices are

three dimensional. For example, since we have two elements in g(st; �) and two elements in

st, gss is thus a 2� 2� 2 matrix.
The steady state under second-order methods is di¤erent from that under linear methods.

For example, if the initial state is zero, ŝ0 = 0, then we have ŝ1 = 1
2
h���

2; consequently the

system will evolve and rest at another steady state. Moreover, at the non-stochastic steady

state where ẑt and ŝt are zero, the policy functions di¤er from those under linear solutions

by a constant term proportional to �2.

Accordingly, in order to generate impulse response functions and time series comparable

to those under linear methods, one can �nd the stochastic steady state by numerical simula-

tion, and then introduce shocks to generate time series or impulse responses relative to the

stochastic steady-state values.9 Furthermore, one may note that direct use of (9) and (10)

can generate an exploding path since second-order terms result in unnecessary higher-order

terms in consecutive iteration. The �Pruning�process as proposed by Kim et al. (2008)

is useful to overcome this problem. In fact, this process uses only �rst-order parts of the

response to generate the second-order terms in the recursive computation.

2.2 A Simple Example

Suppose an economy is described by the following nonlinear equation:

yt = EtAt+1y
�
t+1; j�j < 1; (11)

where yt is an endogenous jump variable and At+1 an exogenous driving process satisfying

logAt = � logAt�1 + �"t (12)

and "t � N(0; 1), where � denotes the standard deviation of "t. The model has two steady
states: �y = 0 and �y = 1. We consider the second steady state because it is saddle-stable.

To facilitate Taylor expansions around a steady state, denote ŷt � log yt � log �y and rewrite
9We depart from Schmitt-Grohe and Uribe (2004) and Kim et al. (2008) by adjusting the steady state

so that the impulse responses return to zero in the long run.
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equation (11) as

elog yt = Ete
logAt+1+� log yt+1 : (13)

First-Order Method. The �rst-order Taylor expansion of equation (13) around the steady

state
�
log �y = 0; log �A = 0

	
is given by

ŷt = Et

h
Ât+1 + �ŷt+1

i
: (14)

Using the method of undetermined coe¢ cients, we can guess the solution ŷt = 
AÂt + 
��

and substitute the solution into equation (14) to obtain


AÂt + 
�� = Et

h
Ât+1 + �

�

AÂt+1 + 
��;

�i
: (15)

Applying the law of motion (12) and comparing coe¢ cients of
n
Ât; �

o
on both sides of

equation (15) gives 
A =
�

1��� and 
� = 0. So the �rst-order accurate solution is given by

ŷt =
�

1� ��Ât: (16)

The impulse response function of ŷt to a one-standard deviation shock in "t can be generated

from the following state-space representation of the model,�
ŷt
Ât

�
=

�
0 �
A
0 �

��
ŷt�1
Ât�1

�
+

�

A
1

�
�"t; (17)

by setting ŷ0 = 0, Â0 = 0, � = 1, "1 = 1 and "t = 0 for all t > 1.

Second-Order Method. The second-order Taylor expansion of equation (13) around the

steady state
�
log �y = 0; log �A = 0

	
is given by

ŷt +
1

2
ŷ2t = Et

�
Ât+1 + �ŷt+1 +

1

2

�
Ât+1 + �yt+1

�2�
: (18)

We can guess a second-order solution with undetermined coe¢ cients:

ŷt = 
AÂt + 
AAÂ
2
t + 
�� + 
���

2: (19)

Notice that substituting this second-order solution into equation (18) would generate

higher-order terms such as
n
Âxt ; ŷ

x
t ; �

x
o
with x � 3. Since these higher-order terms are
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irrelevant for our second-order solution, they can be ignored completely. That is, we can

substitute out the second-order terms in equation (18) by the �rst-order solution in equation

(16) while keeping the �rst-order terms as they are in equation (18).

Therefore, plugging the linear solution (16) into second-order terms in equation (18)

yields

ŷt = Et

"
Ât+1 + �ŷt+1 +

1

2

�
Ât+1 +

��

1� ��Ât+1
�2#

� 1
2

�
�

1� ��Ât
�2
: (20)

Since EtÂ2t+1 = �
2Â2t + �

2, the above equation reduces to

ŷt = �Etŷt+1 + �Ât +
1

2 (1� ��)2
�2: (21)

Plugging the conjectured second-order solution (19) into equation (21) and simplifying gives


AÂt + 
AAÂ
2
t + 
�� + 
���

2

= � (1 + �
A) Ât + �
�� + ��
2
AAÂ

2
t +

�
�
AA + �
�� +

1

2 (1� ��)2
�
�2: (22)

Comparing coe¢ cients on both sides gives 
A = �
1��� , 
� = 0, 
AA = 0, and 
�� =

1
2(1��)(1���)2 . Hence, the second-order rational expectations equilibrium is given by

ŷt =
�

1� ��Ât +
1

2 (1� �) (1� ��)2
�2: (23)

Note the second-order solution conforms to the general solution in equation (9). However,

in the special model the second-order e¤ect from Â2t does not exist and the solution di¤ers

from the �rst-order solution only by a constant proportional to �2. Thus, the corresponding

impulse response function is also the same as that of the �rst-order solution (up to a constant

term in the steady state).

2.3 Calibration and Eigenvalues

We calibrate the model based on the existing literature. In particular, we set the discounting

factor � = 0:99, the elasticity of intertemporal substitution � = 1, the inverse elasticity of

labor supply 
 = 0 (indivisible labor), capital�s share � = 0:3 and the persistence of shock

� = 0:9.
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The eigenvalues of the model is given by the linear terms and thus not a¤ected by higher-

order terms. Hence, the region of local indeterminacy is not in�uenced by the variance of

technology shocks under second-order expansion. Excluding the exogenous driving process,

the system has two eigenvalues. When externalities are small, one and only one of the

eigenvalues lies inside the unit circle, thus the steady state is a saddle. When externalities

are large enough so that � > �� = 0:4935, both eigenvalues will lie inside the unit circle

and the system is indeterminate (Benhabib and Farmer, 1994). Figure 1 plots the two

eigenvalues as functions of the externality parameter �. The critical value for indeterminacy

is �� = 0:4935.10

0 .1 .2 .3 .4 .45 .5 .55 .6 .7 .8 .9 1
­1.5

­1

­0.5

0

0.5

1

1.5

2

η

λ1

0 .1 .2 .3 .4 .45 .5 .6 .7 .8 .9 1

­10

­5

­2
0
2

5

10

η

λ2

Figure 1. Eigenvalues.

The dashed lines correspond to the region of complex eigenvalues. It is clear from Figure 1

that the eigenvalues go through dramatic changes as the degree of externalities (�) increases.

The explosive root jumps from positive in�nity to negative in�nity while the stable root

goes through similar topological changes near the critical value ��. Both eigenvalues become

stable and form a complex conjugate pair (dashed lines) for certain region of � > ��. Such

dramatic changes in eigenvalues indicate that the topology of the model near the steady state

is signi�cantly altered by externalities, and that linear approximation may not be accurate

enough for capturing the curvature of the equilibrium path near the steady state.

10Wen (1998a) showed that introducing capacity utilization can reduce the critical value �� to about 0:1,
which is more consistent with empirical estimates. Our results apply to the model of Wen (1998a), but we
choose the simpler Benhabib-Farmer model for exposition purpose in this paper.
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3 Dynamic Analysis

3.1 Impulse Responses
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Figure 2. Responses to a Positive Technology Shock.

The impulse responses of the economy to a technology shock with standard deviation

� = 0:3 are graphed in Figure 2.11 For comparison, windows in the �rst column on the

left show the impulse responses under the �rst-order approximation method and those in

the second column on the right show those under the second-order method. The top-row

windows show the results when externality are absent (� = 0) and the bottom-row windows

11If the the variance of the shock � is too small, second-order and �rst-order methods yield very similar
results. On the other hand, second-order methods may no longer be accurate if � is too large. Hence, we
choose a large enough � so that the second-order terms are signi�cant and at the same time the second-order
solution is more accurate than linear methods. If we use the model of Wen (1998a) with variable capacity
utilization, the values of � can be made much smaller, in the order of � = 0:03.
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show the results when externalities are large enough (� = 0:4) but well below the critical

value of 0:4935 for indeterminacy.12

It is clear from the top-row windows that �rst-order and second-order methods yield very

similar results when externalities are not present, con�rming the literature�s �ndings that

linear solution methods provide reasonably good approximations for standard RBC models.

For example, the initial impulse response of output is about 0:7 percent under �rst-order

approximation and about 0:68 percent under second-order approximation.

However, when externalities exist, the two solution methods yield dramatically di¤erent

results. The bottom-row windows in Figure 2 indicate that the initial impulse response of

output is about 1:6 percent under �rst-order approximation but only about 0:75 percent

under second-order approximation. More importantly, while the responses of output and

labor remain monotonic under the �rst-order method, they all become hump-shaped under

the second-order method, suggesting a much richer internal propagation mechanism.

When the level of externalities increase, the hump-shaped responses become even more

prominent. For � close to the critical value ��, even a very small value of � can give rise to

hump-shaped dynamics under the second-order method. It is thus evident that production

externalities have dramatically changed the topology of the model near the steady state. It is

shown by Benhabib and Wen (2004) that under linear approximation method, hump-shaped

impulse responses and oscillating cycles will emerge when the externalities are large enough

so that the model becomes indeterminate. Here, we show that such nonlinear dynamic

may already exist when the degree of externalities are below the critical value required for

indeterminacy, but they can only be captured by higher-order terms.13

The reason for the above results is that the coe¢ cients of the second-order terms in a

standard RBC model without externalities are in general very small (close to zero), hence

linear methods usually yield quite accurate solutions. However, once externalities or increas-

ing returns are allowed, the second-order terms can become non-negligible and very large.

For example, when � = 0:3 and � = 0:4, we have the following decision rules for capital,

12This value (� = 0:4) is also su¢ ciently below the threshold value for generating n-period cycles found
by Coury and Wen (2009).
13Coury and Wen (2009) show that the model of Benhabib and Farmer (1994) has global indeterminacy

even when the model�s steady state appears to be a saddle judged by eigenvalues (i.e., for externalities below
the critical level required for local indeterminacy based on �rst-order approximation method).

13



consumption, and labor:24 k̂t+1ĉt
n̂t

35 =

0@ 0:9124 0:5484
0:4325 0:9101
�0:6272 4:4930

1A� k̂t
Ât

�
+
1

2

0@ 0:0463 �0:2652 0:7531
0:0143 �0:1810 0:3924
�0:7155 9:0494 �19:6185

1A24 k̂2t
k̂tÂt

Â2
t

35

+
1

2

0@ 2:4241
�0:4161
20:8073

1A�2: (24)
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Figure 3. Second-Order E¤ects as � Increases.

Note that in labor�s decision rule the coe¢ cient of Â2t is �19:6185 and that of the cross

term k̂tÂt is 9:0494. But these coe¢ cients are close to zero when � = 0. For hours worked,

its coe¢ cients of Â2t and k̂tÂt increase in absolute values as � increases towards the critical

value ��, but both become zero again as soon as � > ��. This is shown in Figure 3 where

the second-order coe¢ cients of labor and consumption are graphed. Labor has no second-

order terms under indeterminacy because hours are (log)linear function of consumption and

capital, both of which are state variables under indeterminacy.

Hence, the reason that second-order method predict more subdued and hump-shaped

output responses is that externalities introduce a large negative coe¢ cient in front of the

square term of technology shock, Â2
t , and a large positive term in front of the cross term

between the capital stock and technology, k̂tÂt. This means that the e¤ect of a positive

technology shock on labor and output is neutralized by the square term in the impact period

but enhanced by the cross term in the subsequent periods, giving rise to hump-shaped

dynamic pattern.

14



Such a nonlinear, second-order income e¤ect on hours also implies that the economy�s

dynamic responses to technology shocks are not symmetric. Under a negative technology

shock, the square term Â2
t reinforces the negative shock on impact while the cross term k̂tÂt

o¤set the negative e¤ect of the shock in subsequent periods, making the impulse response

of output to a negative technology shock more contractionary but less persistent than that

predicted by the linear method (see Figure 4). For example, Figure 4 shows that the initial

drop in output is around �1:6 by linear approximation and about �2:5 by second-order
approximation. The predicted half-life is about 7 quarters under the linear method and less

than 4 quarters under the second-order method.
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Figure 4. Responses to a Negative Technology Shock.

Such an asymmetric property is similar to what we observe in the U.S. economy. Ex-

pansions tend to be more gradual and long-lived while contractions tend to be sharper and

short-lived (see, e.g., Neftic, 1984; and Sichel, 1993). Also, Mork (1989) and Hamilton (2003)

point out that the economy�s response to oil price shocks are highly asymmetric: a sudden

increase in oil price (adverse productivity shock) tend to depress the economy while a sud-

den decrease in oil prices tend to have little e¤ect. Aguiar-Conraria and Wen (2007) argue

that increasing returns to scale large enough to trigger indeterminacy can explain the large

negative impact of oil price increases on the U.S. economy. Here we show that mild degree

of externalities can produce similar e¤ect under second-order approximation.

Given the same level of �, as � increases, the impulse responses of output under second-

order expansion will become more and more hump-shaped and the initial value can even
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become negative (which is then followed by a positive hump). This dynamic pattern pro-

vides an explanation to a puzzle existing in the indeterminacy literature: technology shocks

suddenly become contractionary once the model becomes locally indeterminate.
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Figure 5. Responses to a Positive Technology Shock.

The left window in Figure 5 shows the �rst-order approximation of the model under a

positive technology shock when the steady state is indeterminate (i.e., � = 0:6),14 and the

right window shows the second-order approximation of the model under a positive technology

shock when � = 0:48, which is below the critical value for indeterminacy. The left window

shows that technology shocks are contractionary under indeterminacy, which is puzzling

because the top-left and bottom-left windows in Figure 2 indicate that externalities amplify

technology shocks in the positive direction. The existing indeterminacy literature has not

provided an explanation for this puzzling phenomenon.

However, the right window in Figure 5 suggests that technology shocks are already con-

tractionary from a second-order viewpoint even before the model becomes indeterminate.

Therefore, we believe that the puzzle is caused by a large income e¤ect from increasing re-

turns to scale on hours. When the marginal product of labor is high, it is optimal to reduce

hours worked and increase leisure under the income e¤ect but to increase hours worked un-
der the substitution e¤ect. However, when externalities are below the critical value ��, the

income e¤ect is captured only by second-order terms while the substitution e¤ect is captured

by the �rst-order terms. Therefore, �rst-order method will show positive impulse responses

14The initial consumption level is �xed at the steady state, ĉt = 0. See Benhabib and Wen (2004) for
discussions on how to generate impulse responses to fundamental shocks in an indeterminate model.
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under technology shocks. Once the model becomes indeterminate, if consumption is treated

as a state variable under indeterminacy, the decision rule of labor has only �rst-order terms

because the optimal �rst-order condition of labor supply (Equation 1) implies that it is a

(log)linear function of the model�s state space. Hence, in this case there are no second or

higher-order terms in labor and consequently, the strong income e¤ect of a technology shock

on hours can only be captured by �rst-order terms, explaining the puzzle in the left window

of Figure 5.

3.2 Behavior of Investment

Based on linear methods, it has become well-known in the RBC literature that investment is

extremely volatile under technology shocks (see, e.g., Kydland and Prescott, 1982). However,

this is not necessarily the case from a second-order perspective (see Figure 6).
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Figure 6. Responses of Investment to a Positive Shock.
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Because of the asymmetric second-order income e¤ect, investment is very volatile only

under a negative technology shock but not so under a positive technology shock. In fact, if the

elasticity of labor supply is large enough or technology is not highly persistent, the initial re-

sponse of savings (investment) to a positive shock can be very mild or even negative, as shown

in Figure 6. Notice that in each window of Figure 6, second-order approximation always

yields a lower level of investment than �rst-order approximation. This is due to an extremely

large negative coe¢ cient of the square term Â2t in the investment decision rule,
�
{̂t
�
=�

�2:5029 21:9379
� �
k̂t Ât

�0
+ 1

2

�
�10:1104 139:2464 �439:1138

� �
k̂2t k̂tÂt Â2

t

�0
+

96:9648
2
�2. By the same token, however, investment will always appear to be more volatile

than that predicted by linear method under a negative technology shock.

3.3 Second-Order E¤ects of Sunspots

Since the coe¢ cients of second-order terms are obtained based on the linear solution (see

Schmitt-Grohe and Uribe, 2004; and Lombardo and Sutherland, 2007), the zone of inde-

terminacy will remain unchanged if indeterminacy arises in the model.15 Farmer and Guo

(1994) simulate the Benhabib-Farmer (1994) model under indeterminacy by linear method

and show that sunspot shocks can generate business-cycle comovements among output, con-

sumption, investment, and hours. The e¤ects of positive and negative sunspot shocks under

linear method are symmetric and monotonic (see the left-column windows in Figure 7, where

the upper row pertains to positive shock and the lower row pertains to negative shock).

However, as shown in the right-column windows, under second-order approximation, pos-

itive and negative sunspot shocks have asymmetric e¤ects on the economy. In particular,

under a negative sunspot shock (the lower right-corner window), the economy has hump-

shaped impulse responses, while under a positive sunspot shock (the upper right-corner win-

dow), the economy has no initial hump but tends to overshoot its steady state from above.

The hump-shaped impulse responses of output to negative sunspot shocks are in contrast to

the analysis of Schmitt-Grohe (2000), where she argues under linear solution method that

sunspots shocks cannot generate hump-shaped output dynamics and forecastable comove-

ments among output, consumption, hours and investment. Here we show that this may not

necessarily be the case if the second-order e¤ects are taken into consideration.

15When recursive equilibria fail to exist, the perturbation methods employed by the literature and this
paper cannot be applied (see Peralta-Alva and Santos, 2009, for the issues involved). Here we follow Benhabib
and Farmer (1994) and the existing literature by taking as given the existence of recursive equilibria in the
region of indeterminacy.
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Figure 7. Responses to Sunspot Shocks.

Notice in Figure 7 both second-order and �rst-order methods yield exactly the same

initial magnitude of responses for all variables under a positive sunspot shock. The results

di¤er only in the subsequent periods. This is so because with indeterminacy consumption

is a state variable and the coe¢ cients of second-order terms for labor are zero; thus, in the

�rst period the responses of consumption and labor are only due to �rst-order e¤ect while

the capital stock stays unchanged. Consequently, sunspot has only a �rst-order e¤ect on

the responses of output in the impact period. For example, the decision rules under sunspot
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shocks take the following form when �s = 0:3 and � = 0:6,24 k̂t+1ĉt+1
n̂t

35 =

0@ 0:5070 1:0000
�0:1304 1:2229
�4:0000 8:3333

1A� k̂t
ĉt

�
+
1

2

0@ 2:5900 �9:7502 9:1002
0:0327 0:1184 �0:2984
0 0 0

1A24 k̂2t
k̂tĉt
ĉ2t

35

+
1

2

0@ 0
8:5717
0

1A�2s +
0@ 0
1
0

1A�"st+1; (25)

where �2s is the variance of "st � ĉt � Et�1ĉt, the one-period ahead forecasting error of

consumption (sunspots). Clearly, starting from the steady state where k̂t = k̂t�1 = ĉt�1 =

0, the e¤ects of a sunspot shock on consumption in period t is determined only by the

forecasting error "st and not by any higher-order terms in the state space. On the other

hand, the coe¢ cients of the second-order terms are zero in the decision rule of hours. In

addition, output is a linear function of capital and labor. Therefore, both second-order

method and �rst-order method yield the same initial impulse responses for consumption,

hours and output. However, in the subsequent periods the responses under the two methods

diverge signi�cantly. In particular, because the cross term k̂tĉt has a large negative e¤ect

and the square term ĉ2t has a large positive e¤ect on the capital stock, the impulse responses

of output and labor become hump-shaped downward under a negative sunspot shock but,

under a positive sunspot shock, they become monotonically decreasing and over-shooting

the steady state from above.

4 Accuracy Test

As pointed out by Jin and Judd (2002), second-order approximation is not necessarily better

than linear methods in terms of solution accuracy, depending on the models used and the

parameter regions. Judd (1998) proposes to use Euler Equation Error (EEE) as a criterion

for non-local accuracy test, which is expressed as the logarithm of the Euler equation residual

EEE = log10

�������1�
n
�Et

h
c��t+1

�
�At+1k

�(1+�)
t+1 n

(1��)(1+�)
t+1 � 1 + �

�io� 1
�

ct

������� ; (26)

where fct+1; ct; nt+1; kt+1g are determined by the second-order policy rules discussed above.
Note that EEE is in general negative, and a smaller (i.e., more negative) EEE implies an
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improved accuracy. For example, EEE is negative in�nity (�1) when the solution is exact
(100% accurate).
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Figure 8. Accuracy Test.

Figure 8 plots the EEEs of the model under the �rst-order and the second-order method,

respectively, when � = 0:3 and � = 0:4. The vertical axes represents EEE, the right-

front axes represents deviations of Ât from its steady state 0 in both positive and negative

directions, and the left-front axes represents the deviations of capital from its steady state

k̂ = 0. Since the �rst-order EEE lies everywhere above the second-order EEE both at the

steady state and when the model is signi�cantly away from the steady state, the second-order

solution dominates the linear method in terms of accuracy under the current calibrations.
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Figure 9. Accuracy with respect to �.

On the other hand, if we �x the technology level at its steady state (Â = 0) or the

capital stock at its steady state (k̂ = 0), and let the degree of externalities vary, the top-row

windows in Figure 9 shows that the degree of accuracy deteriorates as � increases toward

�� = 0:4935. In particular, the second-order method is not necessarily better than the linear

method around the critical point of indeterminacy, ��. However, for most values of �, the

second-order method dominates the �rst-order method. The bottom window in Figure 9 is

a two-dimensional picture of the top-row windows at the point where k̂t = 0 and Ât = 0. It

shows that the accuracy of both the �rst-order and the second-order approximation methods

deteriorates as the externality � increases toward the critical point of indeterminacy, but with
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the second-order method more accurate than the linear method except around the point of

indeterminacy.

5 Conclusion

This paper shows that externalities and IRS can have important implications for business-

cycle dynamics that have not been fully appreciated by �rst-order approximation methods.

In particular, they induce a strong second-order asymmetric income e¤ect on leisure so that

hump-shaped output dynamics may emerge even if externalities are su¢ ciently below the

critical value required for local indeterminacy. Similarly, i:i:d sunspots shocks under inde-

terminacy may be able to generate forecastable comovements of output, hours, consumption

and investment, in contrast to the conclusion reached by Schmitt-Grohe (2000). Moreover,

this asymmetric second-order income e¤ect is able to generate business cycle dynamics that

are qualitatively consistent with the asymmetric nature of the business cycle observed in

the U.S. economy. Whether similar results can also be found in models with other types of

frictions, such as borrowing constraints, remain to be investigated.
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