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Introduction

There is now a considerable amount of evidence to suggest that technical trading rules

can earn economically significant excess returns in the foreign exchange market (Dooley and

Shafer, 1984; Levich and Thomas, 1993; Neely, Weller and Dittmar, 1997 (henceforth NWD);

Neely and Weller, 1999; Sweeney, 1986). But the reasons for the existence of these excess

returns are still not well understood. One possible explanation is that the intervention activities of

central banks in the market may account for at least part of the profitability of technical trading

rules (Dooley and Shafer, 1984; LeBaron, 1999; Szakmary and Mathur, 1997; Neely, 1998). The

arguments advanced in favor of this hypothesis focus on the fact that central banks are not profit

maximizers, but have other objectives that may make them willing to take losses on their trading.

Thus, the stated goal of intervention by the Federal Reserve is to maintain orderly market

conditions, and the unstated goals may include the achievement of macroeconomic objectives

such as price stability or full employment.1  If the target for the exchange rate implied by these

goals is inconsistent with the market’s expectations of future movements in the exchange rate,

there may be an opportunity for speculators to profit from the short-run fluctuations introduced

(Bhattacharya and Weller, 1997).

LeBaron (1999) investigated the relationship between intervention by the Federal

Reserve and returns to a simple moving average trading rule. He used daily intervention data to

show that most excess returns were generated on the day before intervention occurred. He found

that removing returns on the days prior to U.S. intervention reduced the trading rule excess

1 The goal of maintaining “orderly market conditions” is stated in the “Foreign Currency Directive,” published
annually in the Federal Reserve Bulletin with the minutes of the first Federal Open Market Committee meeting of
the year.
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returns to insignificance.2 Szakmary and Mathur (1997) examined the link between monthly

trading rule returns and monthly changes in the foreign exchange reserves—a proxy for

intervention—of five central banks. They also found evidence of an association between

intervention activity and trading rule returns.

The fact that trading rule returns were abnormally high on the day before intervention

tends to support the hypothesis that strong and predictable trends in the foreign exchange market

cause intervention, rather than that intervention generates profits for technical traders. But it still

leaves open the possibility that a sophisticated technical trader might be able to respond to the

fact that intervention had occurred to modify his position and increase his profits. If this is the

case, then observing intervention carries additional useful information about the future path of

the exchange rate that is not contained in current and past rates.

Although intervention by the Federal Reserve is not publicly announced at the time it

occurs, there is evidence that foreign exchange traders quickly become aware of it.3 Thus we are

interested in determining whether knowledge of central bank intervention can increase excess

returns to trading rules in dollar exchange rate markets. We investigate this question using the

methodology developed in NWD (1997). This allows us to identify optimal ex ante trading rules

that use information about whether intervention has occurred, and to compare their profitability

to that of rules obtained without the use of such information. We find substantial differences

between different time periods, suggesting that either the policies determining intervention or its

effects on the market have not been stable over time. We also find some evidence that the use of

2 The timing of the data used by Lebaron (1999)—exchange rates observed at 9:00 am and 11:00 am New York
time— left it unclear whether the high returns preceded or were coincident with the high exchange rate returns.
Experimentation with data collected before the opening of the New York market makes it clear that the high returns
precede the intervention activity. Those results are not reported for brevity.
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in-sample intervention data improves the out-of-sample profitability of the trading rules for two

currencies, the British pound and Swiss franc, over 1981-1992. However we show that this is a

consequence of more precise estimation of the relationship between past and future exchange

rates. We find no evidence for any currency to suggest that trading profits can be improved out

of sample by using rules that condition on contemporaneous intervention information.

1. Methodology

We use genetic programming as a search procedure to identify trading rules that use

information both on the past exchange rate series and on intervention activity. We have

previously used this technique to find profitable rules that use data on exchange rates alone

(NWD, 1997) and exchange rates and interest rates (Neely and Weller, 1999). It has also been

applied in the equity market (Allen and Karjalainen, 1999). The method is particularly useful for

our purposes as it permits flexible incorporation of additional information on central bank

intervention into the trading rule.

The genetic program searches for optimal trading rules over a very large population of

possible rules using the principles of natural selection. The program creates successive

populations of rules according to certain well-defined procedures. Profitable rules are more

likely to have their components reproduced in subsequent populations. The basic features of the

genetic program are: (a) a means of encoding trading rules so that they can be built up from

separate subcomponents; (b) a measure of profitability or “fitness”; (c) an operation which splits

and recombines existing rules in order to create new rules.

3 Klein (1993) finds that for US intervention from 1985-1989, 72% of interventions were reported and that 88% of
reports were correct. In addition, practitioners with whom we have spoken express confidence that they are aware
when the Federal Reserve is intervening.



4

Before we describe these features, let us first introduce some notation. The exchange rate

at date t  (USD per unit of foreign currency) is given by St . Intervention at date t is given by the

indicator variable, I t , which can take on values 1, 2, or 3, according to whether the U.S.

authorities buy dollars, do not intervene, or sell dollars respectively at date t. A trading rule can

be thought of as a mapping from past exchange rates and intervention data to a binary variable,

tz , which takes the value +1 for a long position in foreign exchange at time t, and -1 for a short

position. Trading rules may be represented as trees, whose nodes consist of various mathematical

functions, logical operators and constants, described in Table 1. The functions are distinguished

by the data series on which they operate. Thus maxS(k) is equivalent to ( )kttt SSS −−− ,...,,max 21 ,

and lagI(k) is equal to It-k.

Figure 1 presents an example of a simple trading rule that makes use of both exchange

rate and intervention data. It signals a long position in foreign currency at date t if the 15-day

moving average is greater than the 250-day moving average of the normalized exchange rate, or

if the U.S. authorities intervened to buy dollars in the last two days, otherwise a short position.

The fitness criterion we use in the genetic program is the excess return to a fully

margined long or short position in the foreign currency. The continuously compounded (log)

excess overnight return is given by ztrt where zt is the indicator variable described above, and rt is

defined as:

r S S i it t t t t= − + + − ++ln ln ln( ) ln( )*
1 1 1 . (1)
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The domestic (foreign) overnight interest rate is it  ( it
* ). The cumulative excess return from two

round-trip trades4 (go long at date t, go short at date t + k), with round-trip proportional

transaction cost c, is

r r c ct t k t i
i

k

, ln( ) ln( )+ +
=

−

= + − − +∑
0

1

1 1 (2)

Therefore the cumulative excess return r for a trading rule giving signal zt at time t over the

period from time zero to time T is:
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where n is the number of trades. This measures the fitness of the rule.

To implement the genetic programming procedures we define 3 separate subsamples, the

training, selection and validation periods. The first two periods are equivalent to an in-sample

estimation period. The third, the validation period, is used to test the rules trained and selected in

the first two periods. The results from this period therefore constitute a true out-of-sample test of

the performance of the rules.

The distinct time periods for all currencies were chosen as follows: training period, 1975-

1977; selection period, 1978-1980; validation period, 1981-1998. These training and selection

periods coincide with those used in NWD (1997) and provide the longest possible out-of-sample

period with floating exchange rates.

To examine the stability of the results obtained with this data sample, we repeated the

analysis with a more recent subsample of the data: training period, 1987-1989; selection period,

1990-1992; validation period 1993-1998. We chose to begin the second estimation period in
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1987 for the following reasons. The period 1981-1984 would not be useful in training rules using

intervention information because it coincided with a conscious policy decision on the part of the

first Reagan administration to avoid intervention.5 This paucity of intervention is clearly

illustrated in Figure 3. Also, the years 1985-1986 coincided with an enormous decline in the

value of the dollar; the DEM price of the dollar fell by 39 percent during those two years. Any

in-sample period using those years would have introduced a very substantial bias in favor of

uninteresting rules that were always long in the foreign currency. Therefore, a second set of rules

was constructed using 1987-1992 data.

The separate steps involved in implementing the genetic program are described below.

Step 1. Create an initial generation of 500 randomly generated rules.

Step 2. Measure the excess return of each rule over the training period and rank according to

excess return.

Step 3. Select the highest ranked rule and calculate its excess return over the selection period. If

this rule generates a positive excess return, save it as the initial best rule. Otherwise, designate

the no-trade rule as the initial best rule, with zero excess return.

Step 4. Select two rules at random from the initial generation, using weights attaching higher

probability to more highly-ranked rules. Apply the recombination operator to create a new rule,

which then replaces an old rule, chosen using weights attaching higher probability to less highly-

ranked rules. Repeat this procedure 500 times to create a new generation of rules.

Step 5. Measure the fitness of each rule in the new generation over the training period. Take the

best rule in the training period and measure its fitness over the selection period. If this best-of-

generation rule outperforms the previous best rule, save it as the new best rule.

4 Each trade incurs a round-trip transaction cost because it involves closing a long (short) position and opening a
short (long) one.
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Step 6. Return to step 4 and repeat until we have produced 50 generations or until no new best

rule appears for 25 generations.

The stages above describe one trial. Each trial produces one rule whose performance is

assessed by running it over the validation period. The validation period for the rules derived over

the 1975-1980 training/selection period was 1981-1998. The validation period for the rules

derived over the 1987-1992 training/selection period was 1993-1998.

Figure 2 illustrates the splitting and recombination operation referred to in Step 4. A pair

of rules is selected at random from a population, with a probability weighted in favor of rules

with higher fitness. Then subtrees of the two parent rules are selected randomly. One of the

selected subtrees is discarded, and replaced by the other subtree, to produce the offspring rule.6

The round-trip transaction cost c was set to 0.0005 (5 basis points) in the validation

period to reflect accurately the costs to a large institutional trader.7 In the training and selection

periods, however, we treat c as a parameter in the search algorithm and set it equal to 0.001 to

bias the search in favor of rules that trade less frequently. We have shown in NWD (1997) that

this is an effective way of reducing the chances of overfitting the data.

2. The Data

We use the noon (New York time) buying rates for the German mark, yen, pound sterling

and Swiss franc (DEM, JPY, GBP, and CHF) from the H.10 Federal Reserve Statistical Release.

Daily interest rate data are from the Bank of International Settlements (BIS), collected at 9:00am

GMT (4:00am, New York time).

5 There was some—but not much—intervention in 1981-1984.  See the introduction to Edison (1993).
6 The operation is carried out subject to the requirement that the resulting rule must be well-defined. We also
impose a restriction that a rule may not exceed a specified size (10 levels and 100 nodes).
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As in NWD (1997), we normalize the exchange rate data by dividing by a 250-day

moving average. The intervention data we use is the “in market” series from the Federal Reserve

Board aggregated across all currencies. The “in market” transactions are explicitly conducted to

influence the exchange rate.8 We construct a variable that can take on one of three values, 1, 2 or

3, depending on whether the U.S. authorities bought dollars, did not transact, or sold dollars on a

particular day. We deliberately avoid the use of quantitative intervention data since this would

not have been observable by traders at the time.

Table 2 presents some summary statistics for the various exchange rate returns, including

the interest differential but excluding interest accruing over weekends and other missing

observations. There is little evidence of significant skewness, and all return series are strongly

leptokurtic. However, kurtosis declines in the second half of the sample period, in some cases

quite sharply.

Table 3 provides summary statistics on U.S. intervention. We see that the frequency of

intervention has declined dramatically over time. Dollar purchases were eight times more

frequent during the selection period 1978-1980 than the validation period 1981-1998. This partly

reflects the fact that from 1981 to 1985 there was very little intervention by the United States.

There has also been relatively little intervention during the Clinton administration. Figure 3

illustrates the pattern of intervention over time. We see also that the mean size of intervention

has increased substantially over time. The average dollar purchase was eleven times greater in

the period 1981-1998 than in the period 1975-1977.

Table 4 breaks down intervention into different currencies. The DEM was the dominant

intervention currency early in the sample period, but the JPY has been used almost as often in the

7 NWD (1997) discuss estimates of transaction costs.
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1980s and 1990s. Although there were no JPY interventions at all during the training period

1975-1977, the currency accounted for 45 per cent of intervention volume during the validation

period 1981-1998. Figure 3 illustrates how the volume of intervention in different currencies has

changed over time.

3. Results

3.1 Performance Comparisons

NWD (1997) showed that trading rules identified by genetic programming and based

only on past observations of the exchange rates earn significant excess returns in the out-of-

sample period 1981-1995. Here we compare the performance of trading rules trained only on

exchange rate data with rules trained on both exchange rate and intervention data.9 For each of

the in-sample periods—1975-1980 and 1987-1992—we run 200 trials for each currency, 100

with intervention data and 100 without. This generates a set of 100 rules for each currency under

each informational scenario and each in-sample period. We generate sets of rules because the

output from a genetic program is inherently stochastic. Although successful rules should detect

similar predictive patterns in the data, there is generally some variation in the structure of rules

generated from distinct trials. A large sample reduces variation caused by the stochastic nature of

8 Daily U.S. intervention data are released by the Board of Governors of the Federal Reserve with a one-year lag.
Thus 1998 data became available in January 2000.
9 In NWD (1997) we used exchange rate data from DRI. In an earlier version of this paper we used DRI data, but
later discovered that the time of collection of the data had been incorrectly documented by DRI. In fact, the time at
which the data were collected changes in mid-sample. Prior to October 8, 1986 the time of collection was 9:00 am
New York time (the New York open), and after that 11:00 am New York time (the London close). Since the vast
majority of intervention is timed to occur within the window bracketed by these two times, the information set for
traders at date t changes in a crucial way. This is important, since as Peiers (1997) has shown, there are significant
information asymmetries around the time of intervention, which in her study of Bundesbank interventions, did not
get resolved until shortly before a Reuters report. Not surprisingly, the results with the DRI data set exaggerated the
impact of intervention information on trading rule profitability.
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the genetic program and produces a more reliable estimate of the average difference in excess

return.

We aggregate the individual rules into two portfolio trading rules: the uniform portfolio

rule and the median portfolio rule. The uniform portfolio rule allocates a fraction 1/100 of the

value of the portfolio to each rule.10 The median portfolio rule generates a long signal at date t if

50 per cent or more of the rules give a long signal at date t. Otherwise it gives a short signal.

Let us first consider the out-of-sample performance of the portfolio rules generated over

the 1975-1980 training/selection periods, with and without intervention information. In order to

be able to compare the performance of the 1975-1980 set of rules with that generated from the

1987-1992 in-sample period, we divide the 1981-1998 validation period into two subperiods,

1981-1992 and 1993-1998. The latter subperiod coincides with the validation period for the

second (1987-1992) set of rules. Because the usual statistical procedures would have little power

to discriminate between the portfolio rule returns with and without intervention information, we

report Bayesian posterior probabilities to summarize the weight of the evidence in favor of the

hypothesis that intervention information increases excess returns. A probability greater than 0.5

favors the hypothesis.

The upper left-hand panel of Table 5 shows the results from the uniform portfolio rule

over the twelve-year out-of-sample period from 1981-1992. We find some evidence that

intervention information improved uniform-rule profitability for two currencies. In the case of

the GBP the posterior probability is 96.9 per cent. Despite a larger increase in excess return, the

evidence in the case of the CHF is weaker. This is a consequence of higher variability in the

difference between the two returns. However, the number of profitable rules nearly doubles,
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lending some additional support to the hypothesis. The figures for the median portfolio rule for

the GBP and CHF over the same period provide stronger support for the hypothesis that

intervention information improved performance. Excess returns increased from 0.52 to 7.19 per

cent (GBP) and from –0.57 to 6.22 per cent (CHF). The associated posterior probabilities were

99.5 and 92.1 respectively.

Over the period 1993-1998 the average profitability of the rules declines sharply. The

effect of training with intervention information is reversed for the GBP, and is much weaker for

the CHF. In the case of the GBP the decline in performance is also reflected in the number of

rules which earn a positive excess return over the period. It is important to emphasize the

uncertainty associated with our estimates over such a short out-of-sample period. The usual

tests—not shown for brevity—would almost always fail to reject the hypothesis that the returns

were the same over 1981-1992 period as they were for the 1993-1998 period. The only exception

is for the GBP with intervention information. However, this decline in performance is what one

would expect if the excess returns are interpreted as evidence of market inefficiency. When we

turn to consider the effect of training with intervention data, the strongest evidence is now for an

adverse impact, in the case of the JPY and GBP. To throw further light on this evidence of

changing performance over time, we compare these results with those in Table 6 from the second

set of rules generated with a training/selection period of 1987-1992. Here too, we find a general

decline in the profitability of the rules trained without intervention information, compared to the

results from 1981-1992.11 And there is no evidence that training with intervention information

improves performance over this more recent period. We see also that trading frequency is much

10 The excess return to the uniform rule coincides exactly with the average excess return over all 100 rules when
transaction costs are zero. Because a simple averaging procedure results in some double counting of transaction
costs, the uniform portfolio rule return will always be at least as great as the mean return.
11 Again, we must read the results with some caution because this decline may be due to sampling variation.
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higher in a number of cases, a clear indication that the structure of the rules identified from this

period differs in an important way from that of the earlier set.

3.2 How is the Intervention Data Used?

We conduct two experiments in order to illuminate the way in which the information on

intervention influences the performance of the rules. First, to see whether observing intervention

during the out-of-sample period contributed to profitability, we compute returns to the rules that

are trained with intervention data but are then supplied with a fictitious series out-of-sample

indicating that intervention is always zero (null intervention). This is intended to represent the

situation in which intervention is not observed. For this exercise, we concentrate on the 1981-

1992 sample in which the Bayesian posterior probabilities indicate that intervention information

improved the performance of GBP and CHF rules. Comparing the null intervention figures for

the uniform rule in Table 7 with the results in Panel A of Table 5 we see that performance

actually improves for the DEM, GBP and CHF, and is modestly reduced for the JPY. Thus it

appears that not observing intervention was, if anything, an advantage for the trading rules

during the period 1981-1992. This suggests that the intervention variable no longer had the

predictive power of the in-sample period. The fact that, nevertheless, out-of-sample performance

improved for the GBP and CHF is an indication that during the in-sample period intervention

was a significant correlated omitted variable. Its inclusion produced a more precise estimate of

the predictive relationship between the exchange rate next period and the past exchange rate

series.

One possible reason why the relationship between intervention and the exchange rate

might have altered is the change in the nature of intervention that is reported in Tables 3 and 4.
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In particular, the substantial changes in the volume of intervention in different currencies may

have had a significant impact.12 We report further evidence below to suggest that the response of

exchange rates to intervention did change between 1975-1980 and later periods.

Next we perform the following simulation experiment. We assume that a simple Markov

switching model generates the intervention series independently of the return series. We generate

100 simulated intervention series using the transition probabilities estimated from the validation

period and run each set of 100 rules on the observed exchange rate data and the simulated

intervention series. This procedure eliminates any predictive power that intervention might have

had for future exchange rate returns. In Table 7 we report the performance of each set of rules.

The uniform returns are broadly comparable to those with in Table 5 but the median returns fall

off somewhat. There is also a substantial increase in trading frequency for the DEM and CHF

rules. The changes in rule performance suggest that the simulation procedure has eliminated

features of the joint distribution of intervention and exchange rate returns that had been

incorporated into the trading rules.

The most direct method for determining how the genetic programming rules use the

central bank intervention data is to analyze the structure of individual rules. But this approach is

generally informative only when the structure of the rule to be analyzed is fairly simple.

Although such rules may not be representative of the total population, it is interesting to examine

an example of a simple rule produced for the CHF. The rule, illustrated in Figure 4, had a mean

annual excess return of 3.72 per cent per annum over the out-of-sample period 1981-1998, and a

correlation of 98.2 per cent with the median portfolio rule. It provides a clear illustration of the

way in which intervention information influences the signal. The rule instructs “Take a long

position in foreign currency if the normalized exchange rate is greater than the norm (absolute

12 LeBaron (1999) reports a significant association between trading rule returns and the currency of intervention.
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value of the difference) of the maximum value of the intervention variable (over a time window

determined by current intervention) and the normalized exchange rate.” The price normalization

(division by a 250-day moving average) means that the exchange rate series moves fairly closely

around unity. So on a date when the Federal Reserve buys dollars (I = 1) the rule will always

signal a long position in foreign currency, and conversely on a day when it sells dollars (I = 3)

the rule will always signal a short position. Otherwise the rule takes a form that is essentially

equivalent to “Take a long position in foreign currency if the current value of the exchange rate

is greater than its 250-day moving average.” Thus on the day of intervention the trading rule

takes a position on the opposite side of the market from the Federal Reserve.

3.3 Returns around Intervention

We next investigate the behavior of returns around days when intervention took place.

Table 8 presents the raw exchange rate returns—returns to a long position in the foreign

currency— conditional on intervention at date t. Recall that our exchange rate data are collected

at midday New York time, so that the return at t – 1 is the return to a long position in the foreign

currency from midday on the day before intervention to midday on the day of intervention.13

Since the majority of interventions are timed to occur before the London close (11:00 a.m. New

York time) the t – 1 return will include the immediate response to the intervention (Goodhart and

Hesse, 1993; Humpage, 1998).

A strikingly consistent pattern emerges over the period 1975-1980. Returns to a long

position in the foreign currency were extremely high at t – 1 when the Federal Reserve bought

dollars at t. Similarly returns to a short position in the foreign currency were very high at t – 1

13 Conditional returns are measured over business days. Thus if intervention occurs on a Monday the return at t – 1
is measured from midday on the previous Friday to midday on Monday, inclusive of the interest differential.



15

when the Federal Reserve sold dollars at t. 14 This is consistent with evidence obtained from data

collected before the opening of the New York market—not presented here—that shows that

interventions were triggered by sharp moves in the exchange rate. But we see that returns usually

continue to have the same sign on date t i.e. from midday on the day of intervention to midday

on the day after. However they are much reduced. Thus interventions, although they might have

checked the appreciation or depreciation of the currency on the day they occurred, on average

did not reverse it. Even on the day after intervention in most cases—except for the JPY—we see

only a further slowing of the existing trend. Therefore from 1975 to 1980 it would clearly have

been a profitable strategy to trade on the opposite side of the market from the Federal Reserve on

a day when it intervened. From 1981 to 1992 intervention is again preceded by abnormally high

returns on the preceding day, but the pattern of return continuation is less pronounced for the

DEM and CHF. Indeed there are usually reversals of trend at t + 1. Consistent with results found

by Humpage (1998) these figures indicate that, at least over a very short horizon, the intervention

appears to be successful. We note that the change in response to intervention between the two

periods is coincident with a substantial increase in the size of intervention and a decrease in the

frequency of intervention (see Table 2).

We include the information on returns for 1993-1998 for completeness although there

were only 29 interventions during this period—including only one dollar sale. In a complete

reversal of the earlier pattern, the dollar was on average appreciating at t – 1 when the Fed

bought dollars, and then depreciated at t. Although the sample is small, the result does suggest

that the U.S. intervention reaction function may have changed significantly during the 1990s. As

14 These results are consistent with LeBaron (1999), who found that removing returns on days prior to non-zero
intervention reduced the profitability of a simple moving average trading rule to insignificance. Note that LeBaron’s
study used data from DRI and that the time at which these data were collected changed in mid-sample (see footnote
8).
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intervention is ultimately a political decision of the Treasury, it is possible that a change of U.S.

administration might have led to a change in the circumstances that trigger intervention.

In Table 9 we show the median portfolio returns—from the 1975-1980 rules, using

intervention information—for the DEM, GBP and CHF over the periods 1976–1980, 1981–1992,

and 1993-1998.15 The results for the JPY are not informative because the median portfolio rule,

trained with intervention information, performed poorly out of sample and took long positions

over 99 per cent of the time. We therefore omit them. If we consider the in-sample results for the

DEM (top-left panel of Table 9) we see that the majority of trading rules have picked up on the

trend associated with intervention. Thus on 88 per cent of occasions the rule signals a long

position at t – 1, when the annualized daily raw return was 76 per cent (see Table 8).16 It is also

clear that the rule has detected the profitability of trading on the opposite side of the market from

the Fed at t, since in every instance when the Fed bought dollars, the rule took a long position

and vice versa. This trading pattern is reproduced in the 1981-1992 period, but its profitability is

much reduced. The results for the CHF are very similar. For the GBP, although the rule is

predominantly on the right side of the market for dollar purchases, it does less well during both

the in-sample and out-of-sample periods around sales.

Comparing the 1981-1992 panel of Table 9 with the 1993-1998 panel, we see that the

median rules tend to do better after dollar purchases—in periods t and t+1—despite the fact that

the overall performance of the rules is worse in this period. Although the DEM and CHF rules

both lose money on t+1 after dollar sales, these figures are based on only one observation. This is

15 The first sample starts in 1976 because the year 1975 was used as a window for lagged variables by the rules.
16 Note that we cannot infer the trading rule return directly from the raw return and the percentage of instances when
the rule was long because of variability in the size of returns and the presence of transaction costs, which have been
deducted from the trading rule returns in Table 9.
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consistent with the evidence from Table 7 that the out-of-sample performance of the intervention

rules does not depend on contemporaneous intervention information.

4. Discussion and Conclusion

The profitability of a trading rule is closely related to the predictability of the exchange

rate one period ahead. However, it is important to recognize the differences between this

investigation and one that uses standard statistical procedures to address the issue of

predictability. The application of Granger causality tests to the data (not reported) provides

strong evidence for all currencies except the JPY that returns and squared returns help predict

intervention and also lends support to the hypothesis that intervention causes returns. These

conclusions are based on the results from running two-variable vector autoregressions including

past exchange rates and magnitude of intervention. However, this evidence of Granger causality

does not necessarily imply that a trading strategy that conditions on intervention will be more

profitable than one that does not. There are several reasons for this. First, the linear predictive

power attributed to intervention by the Granger causality tests may also be present as a non-

linear component in the past exchange rate return series. The genetic program may already have

incorporated the information into the trading rules trained only on exchange rate data. Second,

the Granger causality tests use the magnitude of intervention, while we provide the genetic

program only with information about the sign of intervention. Third, the linear relationship may

not be economically significant; transactions costs may eliminate any excess returns.

The volatility associated with exchange rate returns cautions us to be circumspect in

drawing conclusions about the value of intervention information as an input to trading rules.

Given this caveat, however, the weight of the evidence suggests that training with intervention
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information improved the performance of the GBP and CHF rules over the period 1981-1992

although there is no such evidence for the major intervention currencies, DEM and JPY. For both

DEM and JPY, providing intervention information led to some deterioration in performance for

the median portfolio rule during the out-of-sample period 1981-1992. This may be explained by

the fact that intervention policy changed in some significant ways between in-sample and out-of-

sample periods.  For example, the DEM was by far the most-used intervention currency in the

1975-1980 period (Table 4) but the JPY was used nearly as often in the 1981-1998 period. In

addition, interventions were much more frequent, but much smaller in the former period.

Experiments with null and simulated intervention (Table 7) show that the improved

performance of the GBP and CHF rules comes about not because the intervention signal itself

has predictive power out-of-sample, but because training rules with intervention data better

identifies the predictive component in the past exchange rate series. This suggests that the

predictive relationship between past and future exchange rates has been more stable than the

relationship between intervention and the exchange rate.

Because we find no evidence for any currency that contemporaneous information about

the occurrence of intervention improves trading rule performance, our findings do not support

the view that intervention activity is a source of profit for technical traders in the foreign

exchange market. On the contrary, our results indicate that the profitability of technical trading

rules is a consequence of strong and persistent trends in exchange rates, which intervention is

intended to reverse.
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Table 1
Genetic programming parameters of interest

Size of a generation 500

Termination criterion 50 generations or no improvement for 25 generations

Probability of selection for reproduction with
rules ranked from 1 (best) to 500 (worst)

( )( )populationinrank17948.51 +⋅

Arithmetic functions +, -, *, /, norm, constant between (0,6)
Boolean operators "if-then", "and", "or", "<", ">", "not", "true", "false"
Functions of the data "moving average", "local maximum ", "local minimum",

"lag of data ", "current data."
In rules trained using intervention data, the functions could be applied to either the normalized exchange rate series
or to the intervention indicator series. In rules trained without the intervention data, the functions could only be
applied to the normalized exchange rate.

Table 2
Summary statistics: Daily exchange rate returns including interest differential
but excluding weekends and missing observations: 1975-1998 and 1987-1998

1975-1998 1987-1998
DEM JPY GBP CHF DEM JPY GBP CHF

Observations 5909 5931 5878 5910 2964 2966 2965 2966

Mean*100 0.0014 0.0115 0.0005 -0.0002 0.0042 0.0048 0.0111 0.0013
SD*100 0.66 0.67 0.64 0.76 0.68 0.72 0.64 0.75
Skewness -0.05 0.56 -0.11 0.01 -0.02 0.52 -0.29 0.13
Kurtosis 3.42 4.85 3.71 3.12 1.77 4.35 2.43 1.60

Min*100 -5.89 -3.56 -3.86 -5.85 -3.09 -3.37 -3.27 -3.10
Max*100 4.13 5.62 4.60 4.39 2.90 5.62 2.90 3.89

The kurtosis and skewness statistics are marginally distributed as standard normals under the null hypothesis that the
distribution of the exchange rate returns is normal.  See Kendall and Stuart (1958) for a derivation of these statistics.
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Table 3
Summary statistics on US intervention data: “in market” series: 1975-1998 and 1987-1998

1975-80 rules 1987-92 rules
training selection validation overall training selection validation overall
1975-77 1978-80 1981-98 1975-98 1987-89 1990-92 1993-98 1987-98

Observations 735 741 4456 5932 742 742 1483 2967

% > 0 18.1 26.5 3.2 7.9 10.0 3.9 1.9 4.4
% < 0 18.4 22.7 4.8 8.7 16.8 3.2 0.1 5.1
Mean > 0 20.4 136.6 228.4 131.5 180.8 124.3 529.5 242.8
Mean < 0 -9.6 -57.8 -172.7 -92.6 -215.9 -126.3 -833.0 -205.6
SD > 0 20.4 146.6 297.2 204.6 154.2 96.5 513.0 305.0
SD < 0 7.7 77.4 168.5 136.1 175.6 91.2 NA 175.2

Min -45.5 -379.1 -1250.0 -1250.0 -1250.0 -450.0 -833.0 -1250.0
Max 112.3 904.6 1600.0 1600.0 720.2 336.0 1600.0 1600.0
The data subsamples are: training period 1975:1–1977:12; selection period 1978:1–1980:12; validation period
1981:1–1998:12 for the 1975-1980 rules and training period 1987:1–1989:12; selection period 1990:1–1992:12;
validation period 1983:1–1998:12 for the 1987-1992 rules. Positive intervention corresponds to purchases of dollars
in millions. These figures are for the series matched to the USD/JPY exchange rate series. Because each exchange
rate series has different missing values, there will be small differences for the intervention series matched to other
exchange rate data.

Table 4
Proportion of intervention in different currencies: 1975-1998 and 1987-1998

DEM JPY OTHER
1975-98
Training 1975 1977 86.17 0.00 13.83
Selection 1978 1980 92.19 1.92 5.89
Validation 1981 1998 53.96 44.95 1.08
Overall 1975 1998 67.90 28.94 3.16

1987-98
Training 1987 1989 51.98 48.02 0.00
Selection 1990 1992 64.22 35.78 0.00
Validation 1993 1998 45.53 49.53 4.94
Overall 1987 1998 51.77 47.06 1.17

Each column gives the percentage of absolute intervention in different currencies from the “in market” series
provided by the Federal Reserve. The first panel reports figures from the subsamples of the 1975-1998 period while
the second panel reports figures for the 1987-1998 period.
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Table 5
Annual portfolio trading rule excess return for each currency over the periods 1981-1992 and
1993-1998; Rules obtained from 1975-1980 data using intervention information vs. rules not

using intervention information

Panel A: Uniform Portfolio Rule
1981-1992 1993-1998

DEM JPY GBP CHF DEM JPY GBP CHF
AR*100 CBI 7.12 3.08 5.46 4.64 3.71 3.41 -3.10 1.86

No CBI 8.29 3.46 3.58 1.72 2.06 7.51 -0.73 -0.67
t-statistic CBI 2.22 1.37 2.06 1.40 1.03 0.96 1.28 0.46

No CBI 2.78 1.72 1.27 0.74 0.58 2.20 0.26 0.23
Posterior  prob. 10.00 37.90 96.90 81.70 97.00 1.90 2.20 75.80
Sharpe ratio CBI 0.63 0.36 0.53 0.39 0.42 0.38 -0.54 0.20

No CBI 0.77 0.45 0.33 0.22 0.23 0.87 -0.12 -0.10
# of rules > 0 CBI 96 92 96 89 97 52 28 92

No CBI 94 67 90 45 86 89 57 23
Trades per year CBI 9.04 4.25 6.58 10.47 7.28 2.92 6.91 6.51

No CBI 4.15 6.80 7.12 8.04 4.33 7.08 4.89 7.75
% long CBI 48.82 81.04 53.55 50.80 37.08 75.18 70.01 50.54

No CBI 50.10 64.93 61.37 76.28 36.58 58.03 82.85 77.95
Long  return -0.23 2.14 -1.33 -2.07 -0.68 -1.76 2.85 -0.88

Panel B: Median Portfolio Rule
1981-1992 1993-1998

DEM JPY GBP CHF DEM JPY GBP CHF
AR*100 CBI 7.80 1.77 7.19 6.22 3.17 -1.74 -5.81 1.53

No CBI 9.73 4.48 0.52 -0.57 1.91 11.87 2.04 -0.65
t-statistic CBI 2.25 0.57 2.02 1.64 0.81 0.33 1.70 0.33

No CBI 2.80 1.45 0.14 0.15 0.49 2.36 0.60 0.14
Posterior  prob. 2.80 22.60 99.50 92.10 85.70 1.90 0.00 63.50
Sharpe ratio CBI 0.64 0.15 0.50 0.46 0.33 -0.13 -0.68 0.15

No CBI 0.79 0.39 0.04 -0.04 0.19 1.04 0.27 -0.06
Trades per year CBI 8.49 2.83 3.58 8.49 6.85 0.00 9.85 6.18

No CBI 2.33 5.00 7.41 4.33 2.84 2.67 0.17 2.84
% long CBI 47.69 99.02 46.23 46.68 34.66 100.00 70.05 45.45

No CBI 48.05 62.21 64.47 98.70 33.20 49.84 89.67 99.09
The rows denoted CBI show results for the rules that use central bank intervention data. The rows denoted No CBI
show results for the rules identified only from exchange rate data. AR*100 is the mean annual return over the
validation period for the 100 rules. The table shows the Newey-West corrected t-statistic for the null hypothesis that
each portfolio rule has a return equal to zero. Posterior prob. is the Bayesian posterior probability that the excess
return of the portfolio using intervention information is greater than that of the rule that does not use such
information. The Sharpe ratio is the annual mean excess return divided by the annual standard deviation of the
excess return. # of rules > 0 in Panel A gives the total number of the 100 rules for each currency which earned a
positive excess return over the given period. Trades per year for the uniform portfolio normalizes by the fraction of
the portfolio traded. % long is the percentage of the time the rule was long in the foreign (non-dollar) currency. For
the uniform portfolio this represents an average over all individual rules. Long return in Panel A is the return to a
long position in the foreign currency (buy-and-hold return).



24

Table 6
Annual portfolio trading rule excess return for each currency over the period 1993-1998; Rules

obtained from 1987-1992 data using intervention information vs. rules not using intervention
information

Panel A: Uniform portfolio

DEM JPY GBP CHF
AR*100 CBI -1.73 0.69 -1.84 0.06

No CBI -0.84 3.98 -3.80 0.32
t-statistic CBI 0.75 0.17 1.25 0.02

No CBI 0.38 1.43 2.56 0.12
Posterior prob. 22.20 12.00 94.00 46.10
Sharpe ratio CBI -0.33 0.08 -0.50 0.01

No CBI -0.16 0.58 -0.98 0.06
# of rules > 0 CBI 36 39 45 60

No CBI 42 84 15 52
Trades per year CBI 39.41 70.22 9.55 8.23

No CBI 29.60 23.77 24.24 18.66
% long CBI 47.12 46.54 68.09 29.94

No CBI 49.22 45.99 54.59 46.79
Long return -0.68 -1.76 2.85 -0.88

Panel B: Median portfolio

DEM JPY GBP CHF
AR*100 CBI -5.47 -0.71 -2.77 -2.46

No CBI 0.04 2.65 -5.34 0.94
t-statistic CBI 1.38 0.13 0.82 0.55

No CBI 0.01 0.48 1.54 0.21
Posterior prob. 5.20 23.10 73.40 24.50
Sharpe ratio CBI -0.62 -0.06 -0.35 -0.23

No CBI 0.00 0.18 -0.62 0.11
Trades per year CBI 67.96 92.00 16.70 17.87

No CBI 36.57 40.24 48.76 31.72
% long CBI 50.66 45.36 91.59 37.22

No CBI 48.70 42.57 56.65 48.01
The rows denoted CBI show results for the rules that use central bank intervention data. The rows denoted No CBI
show results for the rules identified only from exchange rate data. AR*100 is the mean annual return over the
validation period for the 100 rules. The table shows the Newey-West corrected t-statistic for the null hypothesis that
each portfolio rule has a return equal to zero. Posterior prob. is the Bayesian posterior probability that the excess
return of the portfolio using intervention information is greater than that of the rule that does not use such
information. The Sharpe ratio is the annual mean excess return divided by the annual standard deviation of the
excess return. # of rules > 0 in Panel A gives the total number of the 100 rules for each currency which earned a
positive excess return over the given period. Trades per year for the uniform portfolio normalizes by the fraction of
the portfolio traded. % long is the percentage of the time the rule was long in the foreign (non-dollar) currency. For
the uniform portfolio this represents an average over all individual rules. Long return in Panel A is the return to a
long position in the foreign currency (buy-and-hold return).
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Table 7
Mean annual excess returns over the period 1981-1992 for the trading rules run on actual

exchange rate data and fictitious intervention data

Uniform rule, null intervention, 1981-1992
DEM JPY GBP CHF

AR*100 9.26 2.11 7.08 7.66
t statistic 2.67 0.68 1.99 2.02
Sharpe ratio 0.74 0.18 0.49 0.57
Trades per year 2.50 0.00 3.75 3.83
% long 48.28 100.00 46.11 47.96

Uniform rule, Markov intervention, 1981-1992
DEM JPY GBP CHF

AR*100 6.63 2.14 7.03 4.91
t statistic 1.92 0.69 1.98 1.31
Sharpe ratio 0.54 0.18 0.49 0.37
Trades per year 20.39 0.65 3.81 20.83
% long 48.39 99.86 46.18 46.50

Median rule, null intervention, 1981-1992
DEM JPY GBP CHF

AR*100 8.10 2.92 5.26 5.76
t statistic 2.53 1.28 2.03 1.76
Sharpe ratio 0.71 0.33 0.52 0.49
Trades per year 3.05 2.73 6.44 4.75
% long 49.88 81.10 53.38 52.29

Median rule, Markov intervention, 1981-1992
DEM JPY GBP CHF

AR*100 5.89 2.67 5.32 3.40
t statistic 1.84 1.16 2.01 1.06
Sharpe ratio 0.52 0.30 0.52 0.29
Trades per year 20.63 6.11 6.88 21.89
% long 49.52 83.02 53.08 50.64

The panels display portfolio-rule results from the rules generated on 1975-1980 data but using either null or
simulated intervention data. Panels labeled “null intervention” show the results, comparable to those in Table 5, for
the case in which the rules are provided with fictitious intervention data during the period 1981-1992 in which all
intervention data is set to zero. Panels labeled “Markov intervention” display the mean results from providing the
rules with fictitious data generated by drawing 100 sets of intervention data from a calibrated Markov switching
process. See the notes to Table 5 for a description of each row in the table.
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Table 8
Exchange rate returns conditional on intervention/no intervention by the U.S.

DEM JPY GBP CHF

1975-1980  t - 1 t t + 1  t - 1 t t + 1  t - 1 t t + 1  t - 1 t t + 1

AR*100 (Fed buys USD) 76.2 26.5 5.0 44.7 19.2 -2.9 43.8 22.4 7.8 93.0 32.2 4.2

MSD*100 4.2 3.4 3.5 6.2 3.1 3.3 4.4 3.6 3.3 5.8 4.8 5.9

AR*100 (Fed sells USD) -71.0 -22.8 -17.4 -29.8 0.7 5.0 -23.8 -5.1 -9.5 -75.2 -24.7 -17.0

MSD*100 4.0 3.0 3.3 5.3 2.9 3.1 2.4 2.6 3.1 4.3 3.4 3.8

AR*100 (Fed out) -3.7 -1.8 4.4 4.8 3.9 11.0 -2.5 -1.0 6.2 -9.9 -4.5 3.2

MSD*100 1.8 2.4 2.8 3.6 3.7 4.1 2.6 2.8 3.1 3.7 4.3 3.3

1981-92

AR*100 (Fed buys USD) 67.6 6.7 -15.2 85.4 25.7 -4.5 72.3 26.9 2.5 77.6 5.3 -25.8

MSD*100 5.3 4.8 3.2 6.7 7.1 4.3 5.5 1.2 1.6 5.3 4.6 2.8

AR*100 (Fed sells USD) -63.1 -6.1 6.1 -50.3 3.3 8.0 -59.3 -20.4 0.0 -63.6 -6.4 10.4

MSD*100 5.8 5.6 4.0 5.9 5.6 4.8 4.8 5.9 4.3 6.1 6.3 5.0

AR*100 (Fed out) 1.9 -0.1 -0.4 2.8 1.0 1.8 0.2 -1.1 -1.8 -0.5 -2.1 -2.3

MSD*100 4.2 4.2 4.4 3.7 3.9 4.0 4.8 5.0 5.0 4.7 4.7 4.9

1993-98

AR*100 (Fed buys USD) -36.3 64.2 44.1 -80.2 15.5 72.3 -9.8 18.5 -4.1 -15.0 67.9 60.2

MSD*100 5.4 4.3 3.9 6.6 4.2 4.0 3.8 3.2 2.4 5.9 5.7 5.2

AR*100 (Fed sells USD) 144.8 -76.0 98.6 1136.4 9.4 628.9 145.6 129.6 46.1 90.2 -78.4 39.7

MSD*100 . . . . . . . . . . . .

AR*100 (Fed out) -0.2 -1.8 -1.7 -1.3 -2.1 -3.6 3.1 2.5 2.5 -0.7 -2.1 -2.1

MSD*100 3.3 3.0 2.9 4.6 4.7 4.6 2.3 2.3 2.4 4.0 3.7 3.6

The four panels display exchange rate returns and standard deviations of returns conditional on intervention for each
of the four exchange rates moving left to right. Each of the three vertical panels displays results from a different
subsample: 1975-1980, 1981-1992, and 1993-1998. Line 1 of each panel gives the annualized percentage return
conditional on intervention at date t to buy dollars. The first figure in the column headed t - 1 gives the return from
the rate collected at 12:00 noon New York time on date t - 1 to the rate collected at the same time on date t. The
figures for the succeeding columns are interpreted similarly. Business days only are included so that if date t is a
Monday, date t – 1 is a Friday and the return is calculated from midday Friday to midday Monday. Line 2 reports the
monthly standard deviation of the exchange rate return on the date specified. Lines 3-4 and 5-6 report figures
conditional on intervention to sell dollars at date t, and on no intervention at date t respectively.



27

Table 9
Median portfolio returns and positions conditional on intervention by the Federal Reserve

1975-80 rules DEM GBP CHF

1976-80 data (in-sample) t-1 t t+1 t-1 t t+1 t-1 t t+1

AR*100 (Fed buys USD) 41.5 29.9 -0.6 52.2 32.2 14.4 45.2 34.0 3.2

MSD*100 4.6 3.3 3.8 3.8 3.0 3.3 6.1 4.5 5.5

% long 88.6 100.0 87.9 88.2 88.2 88.2 82.1 100.0 85.4

AR*100 (Fed sells USD) 22.1 16.9 16.3 -9.6 4.3 4.4 16.7 20.0 22.6

MSD*100 2.9 2.9 3.0 2.7 3.0 2.5 3.6 3.3 3.3

% long 36.3 0.0 38.1 81.9 81.9 81.4 25.2 0.0 8.0

AR*100 (Fed out) -7.8 -1.5 10.2 -0.5 2.7 9.4 -13.8 -10.2 0.6

MSD*100 1.8 2.7 2.4 2.4 2.8 2.8 3.0 4.0 3.6

% long 72.1 78.7 71.8 67.7 67.7 68.0 67.7 68.5 71.7

1981-92 data (out-of-sample)

AR*100 (Fed buys USD) 46.9 5.1 -15.0 84.7 31.3 -7.0 54.2 3.5 -21.9

MSD*100 4.5 3.7 4.0 3.6 3.5 3.5 5.1 4.2 4.3

% long 87.7 100.0 88.6 92.1 92.1 92.1 86.0 100.0 86.8

AR*100 (Fed sells USD) 61.8 4.7 2.7 22.1 -5.0 -4.7 64.0 5.5 -11.6

MSD*100 4.6 4.1 4.1 4.9 4.2 4.0 5.0 4.5 4.7

% long 10.7 0.0 10.7 38.1 37.2 36.3 7.0 0.0 0.5

AR*100 (Fed out) 1.8 8.2 9.4 2.7 7.2 8.7 -0.5 6.4 9.0

MSD*100 3.9 4.0 4.0 3.9 4.0 4.1 4.3 4.4 4.3

% long 48.9 49.3 48.9 44.8 44.9 44.9 48.2 48.1 48.6

1993-98 data (out-of-sample)

AR*100 (Fed buys USD) -25.2 58.3 29.4 -12.7 9.8 -5.3 -59.8 65.7 54.3

MSD*100 5.4 4.3 3.9 3.7 3.2 2.4 5.8 5.7 5.2

% long 53.6 100.0 50.0 64.3 64.3 60.7 82.1 100.0 82.1

AR*100 (Fed sells USD) -144.8 76.0 -98.6 133.0 129.6 46.1 -90.2 78.4 -39.7

MSD*100

% long 0.0 0.0 0.0 100.0 100.0 100.0 0.0 0.0 0.0

AR*100 (Fed out) 3.7 2.1 2.9 -5.8 -6.2 -5.4 2.7 0.3 0.7

MSD*100 3.2 3.3 3.3 2.9 2.9 2.9 3.8 3.8 3.8

% long 34.2 33.4 34.4 69.9 69.9 70.0 44.4 44.1 44.5

The four panels display median rule returns and their monthly standard deviations conditional on intervention for
each of the four exchange rates moving left to right. The top panel displays results from 1976-1980—rather than
1975-1980 as in Table 8—because 1975 was used as a data window for lags in constructing the trading rules. The
rules were obtained from training and selection periods 1975-1980. See the notes to Table 8 for additional details.
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Figure 1 An example of a trading rule
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Figure 2 The recombination operation
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Figure 3 U.S. official intervention by currency, from 1975 through 1998

Notes:  The panels of the figure display U.S. official intervention in the DEM, JPY, other currencies and total
intervention in millions of U.S. dollars.  Purchases (sales) of dollars are displayed as positive (negative) numbers.
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Figure 4 A trading rule for the CHF found by the genetic program
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