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Abstract: This paper evaluates the ability of formal rules to establish U.S. business cycle turning 

point dates in real time.  We consider two approaches, a nonparametric algorithm and a 

parametric Markov-switching dynamic-factor model.  In order to accurately assess the real-time 

performance of these rules, we construct a new unrevised “real-time” data set of employment, 

industrial production, manufacturing and trade sales, and personal income.  We then apply the 

rules to this data set to simulate the accuracy and timeliness with which they would have 

identified the NBER business cycle chronology had they been used in real time for the past 30 

years.  Both approaches accurately identified the NBER dated turning points in the sample in real 

time, with no instances of false positives.  Further, both approaches, and especially the Markov-

switching model, yielded significant improvement over the NBER in the speed with which 

business cycle troughs were identified.  In addition to suggesting that business cycle dating rules 

are an informative tool to use alongside the traditional NBER analysis, these results provide 

formal evidence regarding the speed with which macroeconomic data reveals information about 

new business cycle phases. 
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1. Introduction 

There is a long tradition in business cycle analysis of separating periods in which there is 

broad economic growth, called expansions, from periods of broad economic contraction, called 

recessions.  Understanding these phases and the transitions between them has been the focus of 

much macroeconomic research over the past century.  In the United States, the National Bureau 

of Economic Research (NBER) establishes a chronology of “turning point” dates at which the 

shifts between expansion and recession phases occur.  These dates are nearly universally used in 

work requiring a definition of U.S. business cycle phases.  Since 1978, business cycle dates have 

been established in real time by the NBER’s Business Cycle Dating Committee, which is 

currently composed of seven academic economists. 

The NBER’s announcements garner considerable publicity.  Given this prominence, it is 

not surprising that the business cycle dating methodology of the NBER has received some 

criticism.  For example, because the NBER’s decisions represent the consensus of individuals 

who likely bring differing techniques to bear on the question of when turning points occur, the 

dating methodology is charged as being neither transparent nor reproducible.  Also, the NBER 

has been hesitant to revise business cycle turning point dates, despite the fact that economic data 

are revised substantially.  Finally, the NBER business cycle peak and trough dates are often 

determined with a substantial lag.  For example, the March 1991 and November 2001 business 

cycle troughs were not announced by the NBER until nearly two years after the fact. 

 An alternative to the NBER procedures is to use formal rules to date business cycle 

turning points.  Such rules immediately address the first two criticisms above.  That is, given that 

the rules take the form of a formal algorithm or statistical model applied to data, they are both 

transparent and reproducible.  Also, because the rules can be applied to revised data, they 
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provide a straightforward approach to revision of business cycle dates. In this paper we evaluate 

whether or not such rules can also address the third critique.  That is, do these rules provide more 

timely identification of business cycle dates?  Of course, any gain in timeliness must be weighed 

against any loss of accuracy in establishing the dates.  In order to measure accuracy, in this paper 

we take it as given that the NBER dating chronology is correct, and thus make the NBER dates 

the standard for accuracy.1

 Why are we interested in the speed with which business cycle turning points can be 

identified?  The NBER is likely more concerned with establishing the correct turning point dates 

than establishing these dates quickly, which breeds additional caution.  This caution comes at a 

low cost if the primary objective is to provide a historical record of business cycle phases.  

However, as there is substantial evidence that interesting economic dynamics and relationships 

vary over business cycle phases, economic agents are likely also interested in real-time 

monitoring of whether a new phase shift has occurred.  In this paper we provide some formal 

evidence regarding the speed with which such real-time monitoring can reveal a new turning 

point in economic activity. 

We compare two popular business cycle dating methods, both of which are multivariate 

in that they use information from many time series to establish business cycle dates.  The first is 

a nonparametric algorithm, developed and discussed in Harding and Pagan (2002) and denoted 

MHP, for multivariate Harding-Pagan, hereafter.  The MHP algorithm proceeds by first 

identifying turning points as minima and maxima in the level of individual time series.  Next, 

economy-wide turning points are established by finding dates that minimize a measure of the 

average distance between that date and the turning points in individual series. 

                                                 
1 Of course, this assumption implies that the NBER dates do not need to be revised, making the second critique 
listed above irrelevant.  We revisit the issue of revisions in Section 4.4.  
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The second approach is a parametric dynamic factor time-series model that captures 

expansion and recession phases as unobserved regime shifts in the mean of the common factor.  

The unobserved state variable controlling the regime shifts is modeled as following a Markov 

process as in Hamilton (1989).  This Markov-switching dynamic factor model (DFMS), as 

developed in Chauvet (1998), produces a probability that the economy is in an expansion or 

recession at any point in time.2  These probabilities can then be used to establish turning point 

dates using a rule for converting probabilities into a zero / one variable defining which regime 

the economy is in at any particular time. 

We apply these two approaches to a new “unrevised” real-time data set of the four 

coincident economic variables highlighted by the NBER in establishing turning point dates:  

1) non-farm payroll employment, 2) industrial production, 3) real manufacturing and trade sales, 

and 4) real personal income excluding transfer payments. In particular, the dating methods are 

applied as if an analyst had been using them to search for new turning points each month 

beginning in December 1976, where the data used is the vintage that would have been available 

in that month.  This real time dataset was collected for this paper and has not yet been applied in 

any other analysis. 

The results of this exercise suggest that both approaches are capable of accurately 

identifying turning points in real time.  That is, the first time these methods declare a turning 

point, the chosen date is usually close to that established by the NBER.  Both methods achieve 

this performance with no instances of “false positives”, or turning point dates that were 

established in real time, but did not correspond to a NBER turning point date.  Further, both 

approaches improve significantly over the NBER in the speed at which business cycle troughs 

                                                 
2 For other applications of the DFMS model see Kim and Nelson (1998), Chauvet (2001) and Mariano and 
Murasawa (2003), among others. 
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are identified.  In particular, the DFMS model would have identified the four business cycle 

troughs in the sample an average of 249 days, or roughly 8 months, ahead of the NBER 

announcement, while the MHP algorithm would have led by an average of 135 days, or about 4.5 

months.  However, neither approach provides a corresponding improvement in the speed with 

which business cycle peaks are identified.  Overall, these results suggest that formal dating rules 

are a potentially useful tool to be used for real-time monitoring of business cycle phase shifts.  

Our paper makes several contributions to an existing literature on this topic.  

Layton (1996) evaluates the performance of Markov-switching models of the U.S. coincident 

index for establishing business cycle turning points.  Layton uses a “pseudo” real-time analysis 

in which fully revised data are used in recursive estimations to evaluate the real-time 

performance of the business cycle dating algorithm.  The new real-time data set we use here 

provides a more realistic assessment of how the dating rules would have performed, as it does 

not assume knowledge of data revisions that were not available at the time the rule would have 

been used.  Chauvet and Piger (2003) use real-time data to evaluate the business cycle dating 

performance of univariate Markov-switching models of employment and real GDP, while 

Chauvet and Hamilton (2004) do a similar exercise for multivariate Markov switching models.  

These papers consider only Markov-switching models, whereas here we compare Markov-

switching models to nonparametric algorithms, which have a long history in dating business 

cycles.3  Harding and Pagan (2003) also provide some comparison of univariate versions of the 

dating rules considered here.  However, this comparison does not consider multivariate methods 

or the real time performance of the methods.   

In the next section we discuss the two approaches used to establish business cycle turning 

points in more detail.  Section 3 describes the real-time data set.  Section 4 discusses the real-
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time performance of the models for dating turning points in the business cycle.  Section 5 

concludes.  

 

2. Description of the Business Cycle Dating Methods 

The NBER dates a turning point in the business cycle when a consensus of the Business 

Cycle Dating Committee that a turning point has occurred is reached.  Although each Committee 

member likely brings different techniques to bear on this question, the decision is framed by the 

working definition of a business cycle provided by Arthur Burns and Wesley Mitchell (1946, 

pg. 3): 

 
Business cycles are a type of fluctuation found in the aggregate economic activity of 

nations that organize their work mainly in business enterprises: a cycle consists of 

expansions occurring at about the same time in many economic activities, followed by 

similarly general recessions, contractions and revivals which merge into the expansion 

phase of the next cycle.  

 
Fundamental to this definition is the idea that business cycles can be divided into distinct 

phases.  In particular, expansion phases are periods when economic activity tends to trend up 

while recession phases are periods when economic activity tends to trend down.  In addition, the 

definition stresses that these phases are observed in many economic activities, a concept 

typically referred to as comovement.  In practice, in order to date the shift from an expansion 

phase to a recession phase, or a business cycle peak, the NBER looks for clustering in the shifts 

of a broad range of series from a regime of upward trend to a regime of downward trend.  The 

converse exercise is performed to date the shift back to an expansion phase, or a business cycle 

                                                                                                                                                             
3 See Bry and Boschan (1971).  
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trough.  Four monthly series are prominently featured by the NBER in their decisions:  

employment, industrial production, real manufacturing and trade sales, and real personal income 

excluding transfer payments. 

 The two business cycle dating methods that we consider in this paper represent attempts 

to operationalize the above definition into formal algorithms and statistical models. We turn now 

to a more detailed discussion of both methods. 

 

2.1 Harding and Pagan (2002) Algorithm 

 Based on relatively informal descriptions of NBER procedures laid out in Boehm and 

Moore (1984), Harding and Pagan (2002) develop a formal algorithm whereby a common set of 

turning points can be extracted from a group of individual time series.  The algorithm is 

described in detail in Harding and Pagan (2002), and we provide only a brief summary here for a 

group of monthly time series.  Before using the algorithm, we need to first extract turning point 

dates for each of the time series, indexed by Ii ,...,1= .  Here we employ the commonly used 

algorithm of Bry and Boschan (1971) for this purpose, which, roughly speaking, identifies 

turning points as local minima and maxima in the path of each time series.4  Once the Bry-

Boschan algorithm has been applied to each time series we have a set of I turning point histories, 

labeled {  for peaks and }IPPP ,...,, 21 { }ITTT ,...,, 21  for troughs, where  and  are vectors of 

turning point dates for time series i.  The contribution of the Harding and Pagan algorithm is to 

consolidate these individual peak and trough dates into a single set of common turning point 

dates.  In order to do this, Harding and Pagan define variables  and , which record the 

distance in months between month t and the nearest entry in  for  and  for .  For 

iP iT

itDP itDT

iP itDP iT itDT

                                                 
4 To implement the Bry and Boschan (1971) algorithm, we use Gauss code created for Watson (1994).  
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example, if  and , then ( )60,40,20=iP 45=t 5=itDP .  For each value of t, we then form  

and  as the median across the I time series, that is 

tDP

tDT =tDP   and 

.  Harding and Pagan then define the common peak and 

trough dates as local minima in  and .  Formally, a common peak or trough is defined at 

month t if  or  is a minimum value in a 31 month window centered at time t, that is, 

from t

)...,( ,2,1 Ittt DPDPDPmedian

),...,,( 21 Itttt DTDTDTmedianDT =

tDP tDT

tDP tDT

 -15 to t +15.5  

 Finally, once the candidate set of common turning points has been obtained, two 

censoring procedures are applied.  First, for a candidate common peak (trough) to be retained at 

time t, the median distance to individual turning point dates, that is the value of  ( ), must 

not be larger than 15 months.  Second turning points are recombined so that they alternate 

between peaks and troughs. 

tDP tDT

 

2.2 Dynamic Factor Markov-Switching Model 

As discussed above, the NBER definition of a business cycle places heavy emphasis on 

regime shifts in economic activity.  Given this, the Markov-switching model of Hamilton (1989), 

which endogenously estimates the timing of regime shifts in the parameters of a time series 

model, seems well suited for the task of modeling business cycle phase shifts.  In addition, the 

NBER definition stresses the importance of comovement among many economic variables.  This 

feature of the business cycle is often captured using the dynamic common factor model of Stock 

and Watson (1989). 

                                                 
5 In practice, these local minimum values may not be unique, and it may be necessary to break ties.  To do so, 
Harding and Pagan consider higher percentiles than the median until a unique local minimum is found. 

7 



Chauvet (1998) combines the dynamic factor and Markov-switching frameworks to 

create a statistical model capturing both regime shifts and comovement.  Specifically, defining 

 as the log level of the i’th time series, and itY iitit yyy −=*  as the demeaned first difference of 

, the DFMS model has the form: itY
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That is, the demeaned first difference of each series is made up of a component common to each 

series, given by the dynamic factor , and a component idiosyncratic to each series, given by 

.  The common component is assumed to follow a stationary autoregressive process: 

tc

ite

 

 tSt t
cL εμφ =− ))((      (2) 

 

where tε  is a normally distributed random variable with mean zero and variance set equal to 

unity for identification purposes, and )(Lφ  is a lag polynomial with all roots outside of the unit 

circle.  The common component is assumed to have a switching mean, given by tS S
t 10 μμμ += , 

where  is a state variable that indexes the regime and { }1,0=tS 01 <μ  for normalization 

purposes.  The state variable is unobserved, but is assumed to follow a Markov process with 
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transition probabilities pSSP tt === − )1|1( 1  and qSSP tt === − )0|0( 1 .  Finally, each 

idiosyncratic component is assumed to follow a stationary autoregressive process: 

 

 ititeL ωθ =)(      (3) 

 

where )(Lθ  is a lag polynomial with all roots outside the unit circle.   

Chauvet (1998) estimates the DFMS model for U.S. monthly data on non-farm payroll 

employment, industrial production, real manufacturing and trade sales, and real personal income 

excluding transfer payments.  The model produces estimated probabilities of the regime at time t 

conditional on the data, denoted )|1( TtSP Ψ= , that closely match NBER expansion and 

recession episodes.  That is, )|1( TtSP Ψ=  is high during recessions and low during expansions. 

In this paper, we use the DFMS model to obtain recessions probabilities in real time.  

Also, since we are interested in obtaining specific turning points dates, we will require a rule to 

convert the recession probabilities into a zero / one variable that defines whether the economy is 

in an expansion or recession regime at time t.  Here, we take a conservative, two-step approach, 

which we outline for a business cycle peak:  In the first step, we require that the probability of 

recession move from below to above 80% and remain above 80% for three consecutive months 

before a new recession phase is identified.  That is, we require that , for 

 0 to 2 and   In the second step, the first month of this recession phase 

is identified as the first month prior to month  for which the probability of recession moves 

above 50%.  That is, we find the smallest value of q for which 

8.0)|1( ≥Ψ=+ TktSP

=k .8.0)|1( 1 <Ψ=− TtSP

t

50.0)|1( 1 <Ψ=−− TqtSP  and 

.  The peak date for this recession phase is then established as the last 50.0)|1( ≥Ψ=− TqtSP
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month of the previous expansion phase, or month 1−+ qt .  An analogous procedure, with the 

80% threshold replaced by 20%, is used to establish business cycle troughs.  

In order to estimate the parameters of the DFMS model, as well as the recession 

probabilities, we use the Bayesian Gibbs Sampling approach described in Kim and 

Nelson (1998).6  The Gibbs Sampler produces a posterior distribution for  conditional on the 

data , the mean of which corresponds to the recession probability .  These 

probabilities are then used to obtain business cycle turning point dates.

tS

TΨ )|1( TtSP Ψ=

7

 

3.  Real Time Data Set 

 In this section we describe the real-time data set.  We have compiled real-time data on 

four coincident variables:  1) nonfarm payroll employment (EMP), 2) industrial production (IP), 

3) real manufacturing and trade sales (MTS), and 4) real personal income excluding transfer 

payments (PIX).  These are the four monthly variables highlighted by the NBER in establishing 

turning point dates.  We have collected realizations, or vintages, of these time series as they 

would have appeared at the end of each month from December 1976 to November 2003.  For 

each vintage from December 1976 to March 1990, the sample collected begins in January 1959 

and ends with the most recent data available for that vintage.  For each vintage from April 1990 

to November 2003, the sample begins in January 1967. For the series EMP, IP, and PIX, data are 

released for month  in month .  Thus, for these variables the sample ends in month t 1+t 1−R  

for vintage R .  For MTS, data are released for month t  in month 2+t .  Thus, for this variable 

                                                 
6 For estimation we set the lag order of the autoregressive polynomials, )(Lφ  and )(Lθ , equal to two.  We have 
investigated different lag orders with little impact on the results.  Priors for the Bayesian estimation are quite diffuse, 
and match those used in Kim and Nelson (1998).  
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the sample ends in month 2−R  for vintage R .  We obtained the EMP and IP data series from 

the Federal Reserve Bank of Philadelphia real time data archive described in Croushore and 

Stark (2001).  Data for PIX and MTS were hand collected as part of a larger real-time data 

collection project at the Federal Reserve Bank of St. Louis.  This dataset is new and has not yet 

been used in any other applications.8  The appendix provides more detail on the sources used to 

collect the PIX and MTS series. 

 

4. Performance of the Business Cycle Dating Methods 

 

4.1 Description of Real-Time Simulation Exercise 

 In order to assess the real time performance of the two business cycle dating methods 

described in Section 2, we apply these techniques to the real-time data set described in Section 3.  

We assume that an analyst applies the business cycle dating methods on the final day of each 

month, which is soon after the release of MTS data for that monthly vintage.  Thus, for each 

monthly vintage R , we create a monthly data set of EMP, IP, MTS and PIX that would have 

been available at the end of month R .  The final month of data included in this data set is 

determined by the series with the least amount of data available at vintage R .  As discussed in 

Section 3, this final data point is month 2−R , which is the last month for which data are 

available for MTS.  For each vintage R , the MHP algorithm and DFMS model are applied to the 

                                                                                                                                                             
7 We have also estimated the DFMS model in real time via maximum likelihood (ML) techniques, using Kim’s 
(1994) algorithm.  The results using ML and Bayesian estimation were very similar, so we focus on only the results 
from the Bayesian estimation here. 
8 These and many other series are expected to be available by late summer 2005 at http://research.stlouisfed.org/. 
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data set, and a chronology of turning point dates determined.9  We will be particularly interested 

in evidence of new turning points revealed toward the end of the sample at vintage R . 

 The choice to restrict the entire data set by the series with the least data available at 

vintage R is a conservative assessment of the information available to the analyst.  Alternatively, 

we could have included the month 1−R  data for EMP, IP and PIX in conjunction with a forecast 

for month 1−R  MTS data.  While potentially fruitful, we chose not to pursue this approach here 

for two reasons.  First of all, as will be seen below, the performance of the business cycle dating 

methods applied to the restricted data set is already quite good, thus demonstrating the potential 

benefits of their use.  Second, it is not clear that the additional information for EMP, IP and PIX 

would necessarily improve the performance of the dating methods, as revisions from the first to 

the second release of these monthly data series, particularly EMP and IP, are often very large. 

 

4.2 Business Cycle Chronologies Obtained Using Data of the Most Recent Vintage 

In order to provide some evidence that the business cycle dating methods yield a 

reasonably good description of NBER procedures, we begin by displaying the entire business 

cycle chronology obtained using the most recent vintage available in our data set, November 

2003.  For this vintage, the sample runs from January 1967 to September 2003, a period over 

which there have been twelve NBER turning points, six peaks and six troughs. 

The business cycle chronology for the MHP and DFMS methods are shown in Tables 1-

2.  From Table 1, the performance of the MHP algorithm is quite good at matching the NBER 

chronology.  The MHP algorithm identifies all twelve of the NBER turning points quite 

accurately, with the dates from MHP within one month in nine cases, and within three months in 

                                                 
9 The parameters of the DFMS model are re-estimated for each vintage.  However, the DFMS model specifications, 
such as lag orders, remain constant for each vintage.  
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all cases.  Also, the MHP algorithm does not identify any “false-positive” turning points, or 

turning points that do not correspond to a NBER turning point.   

The DFMS model applied to the most recent vintage of data performs similarly to the 

MHP algorithm at matching the NBER chronology.  The DFMS model also identifies all twelve 

of the NBER turning points, with the date established by DFMS within one month of the NBER 

date in ten of twelve cases.  For the remaining two dates, the date established by the DFMS 

model is two and four months from the NBER date respectively. Figure 1 plots the probabilities 

of recession from the DFMS model, )|1( TtSP Ψ= , using the most recent vintage data.  The 

pattern depicted by the probabilities is very distinct and unambiguous – the probabilities increase 

substantially at the NBER peaks and subsequently decrease around NBER troughs. There is no 

instance in which the probabilities increase above (decrease below) 50% and a recession does not 

begin (end). 

 

4.3 Real-Time Performance of the Business Cycle Dating Methods 

We now turn to the real-time performance of the business cycle dating methods.  Again, 

we consider vintages from December 1976 to November 2003.  There are, therefore, four NBER 

business cycle episodes to identify in real time using these vintages, namely the 1980, 1981-

1982, 1990-1991, and 2001 recessions.  We will also be interested in any “false positive” turning 

point dates identified by the dating methods. 

Tables 3-4 describe the real-time performance of the MHP algorithm and DFMS model.  

The top frame of each table evaluates the performance of the model in capturing business cycle 

peaks while the bottom frame evaluates business cycle troughs.   The first column gives the 

turning point date assigned in real time by the MHP algorithm or DFMS model.  In other words, 
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this column records the date of any new turning points established by the methods.  If this 

turning point date has a corresponding NBER turning point, the second column gives this NBER 

date, while the third column records the discrepancy in months between the NBER date and the 

date in column one.  The fourth column gives the month in which the date in column one would 

have been available.  For example, the first entry in column four of Table 3 is June 30, 1980.  

This is the first time at which the MHP algorithm, using the data set available, would have 

revealed a peak around the January 1980 NBER peak.  The fifth column gives the date the 

NBER announced the turning point date.  The final column gives the amount of time before the 

NBER date that the turning point from the dating methods would have been available, which is 

the amount of time the date in column 4 anticipates that in column 5.  

We begin with Table 3, which shows the results for the MHP algorithm.  The MHP 

algorithm identifies eight turning points in real time, each of which corresponds to a NBER 

turning point.  Thus, the MHP algorithm does not generate any false positives.  The MHP 

algorithm also identifies these eight turning points with reasonable accuracy.  In particular, for 

four of the eight turning points, the turning point date identified in real time is within one month 

of the NBER date.  For the remaining four business cycle peaks, the date identified by the 

algorithm is within 6 months of the NBER date. 

 For business cycle peaks, the MHP algorithm does not show any improvement over the 

NBER in the speed at which it identifies turning points.  Indeed, the MHP algorithm would have 

identified the four peaks in the sample roughly one quarter after the NBER announcement on 

average, with a maximum lag time of three months.  However, the MHP algorithm would have 

identified business cycle troughs much more quickly than the NBER  The average lead time for 

the four troughs in the sample is 135 days, or about 4.5 months, with a maximum lead time of 

14 



290 days for the 1991 business cycle trough.  Interestingly, the increase in speed with which the 

MHP algorithm identifies business cycle troughs does not come with a loss of accuracy in 

identifying the NBER date.  Indeed, the business cycle trough dates identified in real time are 

generally closer to their corresponding NBER date than are the business cycle peak dates 

identified in real time. 

Table 4 reports the performance of the DFMS model in dating turning points in real time. 

The DFMS model also identifies eight turning points, each of which corresponds to a NBER 

turning point date.  All eight of these turning points are identified fairly accurately, with seven 

within a month of the corresponding NBER date.  Compared to the MHP algorithm, the DFMS 

model identifies peak and trough dates in real time that are closer to the NBER dates (column 3). 

Similar to the MHP algorithm, the DFMS model does not show any improvement over 

the NBER in the speed with which business cycle peaks are identified, but does show a 

substantial improvement in timeliness for business cycle troughs.  In particular, the DFMS model 

identified the four business cycle troughs in the sample an average of 249 days, or about 8 

months, ahead of the NBER announcement, a larger improvement in speed than was yielded by 

the MHP algorithm.  For the last two recessions, the DFMS model identified the trough 448 and 

320 days ahead of the NBER respectively. 10,11  

The results in Table 4 are derived from a combination of the recession probabilities, 

, with the dating rule used to convert these recession probabilities into recession )|1( TtSP Ψ=

                                                 
10 Given that the dating rules treat business cycle peak and trough episodes symmetrically, the improved timeliness 
of the rules over the NBER for troughs but not peaks is suggestive of an asymmetry in the NBER approach.  One 
explanation for this is that the NBER may have an asymmetric loss function for valuing errors made in establishing 
the dates of business cycle peaks vs. troughs.  
11 Chauvet and Hamilton (2004) obtain somewhat different results for the DFMS model than those presented here.  
These authors use a less conservative rule for converting recession probabilities into turning point dates, which can 
account for some of the differences.  Their data set also differs from the one considered here. 
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dates.  For reference, Figures 2 to 5 plot the values of the real-time recession probabilities used 

to date each peak and trough in the sample.  That is, these figures show a sequence of 

 that was available at the vintage for which the business cycle peak or trough was 

first identified. 

)|1( TtSP Ψ=

 

4.4 Revisions of Business Cycle Dates 

The NBER’s business cycle dating committee has never revised an established business 

cycle turning point date, despite the fact that economic data is often revised substantially.  Does 

this rigidity suggest that the NBER’s business cycle dates are no longer consistent with the data?  

We can evaluate the importance of data revisions for business cycle turning point dates by 

tracking revisions to the dates established using the MHP algorithm and DFMS model.  In 

particular, for each dating method, Tables 5 and 6 give the initial business cycle date established 

(taken from Tables 3 and 4) and the business cycle date established using the most recent vintage 

of data available (taken from Tables 1 and 2).  To assess the NBER’s practice of not revising 

turning point dates, we are particularly interested in the impact of data revisions occurring after 

the NBER’s announcement.  Thus, we also list the business cycle date established by each dating 

method at the vintage closest to the date of the NBER announcement.  Note that this is not 

available in those cases for which the initial date established by the dating method was not 

available until after the NBER announcement.  

We begin with Table 5, which contains the results for the MHP algorithm.  Comparing 

columns 2 and 3 with column 4, we can see that there are some fairly large revisions of business 

cycle dates, with several revisions of 2-3 months and a largest revision of 6 months.  However, in 

most cases these revisions reflect the turning point date established in real time moving closer to 
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the NBER date.  Thus, these revisions are not suggestive that the NBER dates themselves require 

revision. 

Table 6 contains the results for the DFMS model.  In all cases, the dates recorded in real 

time or at the time of the NBER announcement are within one month of those established using 

the last vintage of data available, suggesting that revisions of business cycle turning point dates 

are relatively unimportant.  Overall, these results validate the NBER practice of not revising 

business cycle turning point dates once they are established.   

 

4. Conclusions 

This paper investigates the ability of formal rules to establish business cycle turning point 

dates in real time.  Both methods studied, a non-parametric algorithm given in Harding and 

Pagan (2002) and the dynamic factor Markov-switching model as in Chauvet (1998), accurately 

identify the NBER turning point dates in real time, with no instances of false positives.  Both 

approaches also provide improvements over the NBER in the timeliness with which they identify 

business cycle troughs, but provide no such improvement for business cycle peaks.  Comparing 

the two methods, the dynamic factor Markov-switching model identifies NBER turning point 

dates the most accurately, as well as identifies business cycle troughs with the largest lead. 
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Appendix:  Sources of Real-Time Data 

 

Real Personal Income Excluding Transfer Payments 

For vintages from December 1976 through March 1990, data for real personal income 

was collected from Business Conditions Digest, while for vintages from April 1990 through 

December 1995, real personal income data was collected from the Survey of Current Business.  

For vintages from January 1996 through November 2003, real personal income data was 

collected from Business Cycle Indicators and data archives maintained by the Federal Reserve 

Bank of Saint Louis.  In some cases for vintages from January 1996 onward, only nominal 

personal income and real and nominal personal disposable income data were available. To obtain 

real personal income data, we deflated nominal personal income by real-time data for the ratio of 

nominal to real personal disposable income, which was collected from the Survey of Current 

Business. 

We were only able to obtain real-time data on real transfer payments for a limited number 

of vintages.  To exclude transfer payments we assume that transfer payments data is not revised 

except for level shifts.  This assumption allows us to use the ratio of nominal personal income to 

transfer payments obtained from the latest vintage in our sample, November 2003, to exclude 

transfer payments from all earlier vintages.  For those vintages for which we were able to collect 

the actual transfer payments data, we compared this data to the approximations and found them 

to be quite accurate. 

 
Real Manufacturing and Trade Sales 

For vintages from December 1976 through March 1990, data for real manufacturing and 

trade sales was collected from Business Conditions Digest, while for vintages from April 1990 
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through December 1995, real manufacturing and trade sales data was collected from the Survey 

of Current Business.  For vintages from January 1996 through November 2003, real 

manufacturing and trade sales data was collected from Business Cycle Indicators, Business 

Statistics, and the Survey of Current Business.   

For a small number of individual vintages, there were gaps in the data available.  This 

missing data was filled in using the following strategy:  Define the missing data for month t at 

vintage R  as .  Suppose that data is available for  and , as well as for , , 

and .  To obtain an imputed value of , denoted , we use the following geometric 

average: 

R
tY hR
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Figure 1: Full Sample Smoothed Probabilities of Recession and NBER Recessions (Shaded). 
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Figure 2: Real Time Probabilities of Recession Determining the Peak (___) and Trough (---) 
of the 1980 Recession, and NBER Recession (Shaded). 
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Figure 3: Real Time Probabilities of Recession Determining the Peak (___) and Trough (---) 
of the 1981-82 Recession, and NBER Recession (Shaded).
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Figure 4: Real Time Probabilities of Recession Determining the Peak (___) and Trough (---) 
of the 1990-91 Recession, and NBER Recession (Shaded). 
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Figure 5: Real Time Probabilities of Recession Determining the Peak (___) and Trough (---) 
of the 2001 Recession, and NBER Recession (Shaded). 
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Table 1 
Business Cycle Dates: NBER and MHP Algorithm 

Data sample: January 1967 – September 2003; Data vintage: November 2003 
 
 

Peaks Troughs 

MHP NBER Lead / Lag 
Discrepancy MHP NBER Lead / Lag 

Discrepancy 
Dec 1969 Dec 1969 0M Nov 1970 Nov 1970 0M 

Nov 1973 Nov 1973 0M Mar 1975 Mar 1975 0M 

Oct 1979 Jan 1980 3M Jul 1980 Jul 1980 0M 

Jul 1981 Jul 1981 0M Dec 1982 Nov 1982 -1M 

Jul 1990 Jul 1990 0M Jan 1991 Mar 1991 2M 

Dec 2000 Mar 2001 3M Nov 2001 Nov 2001 0M 
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Table 2 
Business Cycle Dates: NBER and DFMS Model 

Data sample: January 1967 – September 2003; Data vintage: November 2003 
 
 

Peaks Troughs 

DFMS NBER Lead / Lag 
Discrepancy DFMS NBER Lead / Lag 

Discrepancy 
Oct 1969 Dec 1969 2M Oct 1970 Nov 1970 1M 

Dec 1973 Nov 1973 -1M Mar 1975 Mar 1975 0M 

Jan 1980 Jan 1980 0M Jul 1980 Jul 1980 0M 

Jul 1981 Jul 1981 0M Nov 1982 Nov 1982 0M 

Jul 1990 Jul 1990 0M Mar 1991 Mar 1991 0M 

Nov 2000 Mar 2001 4M Dec 2001 Nov 2001 -1M 
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Table 3 
Business Cycle Dates Obtained in Real Time – NBER and MHP Algorithm 

 
 

Peak Date: 
MHP 

Peak Date: 
NBER 

Lead / Lag 
Discrepancy 

Peak Date Available: 
MHP 

Peak Date Announced: 
NBER 

Days ahead of NBER 
Announcement  

Jul 1979 Jan 1980 6M Jun 30, 1980 Jun 3, 1980 -27 
May 1981 Jul 1981 2M Mar 31, 1982 Jan 6, 1982 -84 
Jul 1990 Jul 1990 0M Apr 30, 1991 Apr 25, 1991 -5 
Sep 2000 Mar 2001 6M Dec 31, 2001 Nov 26, 2001 -35 

      
Trough Date:  

MHP 
Trough Date: 

NBER 
Lead / Lag 

Discrepancy 
Trough Date Available: 

MHP 
Trough Date Announced: 

NBER 
Days ahead of NBER 

Announcement 
Jul 1980 Jul 1980 0 May 31, 1981 Jul 8, 1981 38 
Oct 1982 Nov 1982 1M Aug 31, 1983 Jul 8, 1983 -54 
Jul 1991 Mar 1991 -4M Mar 31, 1992 Dec 22, 1992 266 

Nov 2001 Nov 2001 0M Sep 30, 2002 July 17, 2003 290 
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Table 4 
Business Cycle Dates Obtained in Real Time – NBER and DFMS Model 

 
 

Peak Date: 
DFMS 

Peak Date: 
NBER 

Lead / Lag 
Discrepancy 

Peak Date Available: 
DFMS 

Peak Date Announced: 
NBER 

Days ahead of NBER 
Announcement 

Jan 1980 Jan 1980 0M Jul 31, 1980 Jun 3, 1980 -58 
Aug 1981 Jul 1981 -1M Feb 28, 1982 Jan 6, 1982 -53 
Aug 1990 Jul 1990 -1M Mar 31, 1991 Apr 25, 1991 25 
Nov 2000 Mar 2001 4M Jan 31, 2002 Nov 26, 2001 -66 

      
Trough Date: 

DFMS 
Trough Date: 

NBER 
Lead / Lag 

Discrepancy 
Trough Date Available: 

DFMS 
Trough Date Announced: 

NBER 
Days ahead of NBER 

Announcement 
Jun 1980 Jul 1980 1M Dec 31, 1980 Jul 8, 1981 189 
Nov 1982 Nov 1982 0M May 31, 1983 Jul 8, 1983 38 
Mar 1991 Mar 1991 0M Sep 30, 1991 Dec 22, 1992 448 
Nov 2001 Nov 2001 0M Aug 31, 2002 July 17, 2003 320 
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Table 5 
Revisions to Business Cycle Dates:  MHP Algorithm 

 
NBER Date Initial Date: 

MHP 
Date at Vintage Closest to 

NBER Announcement: MHP 
Date at Final 

Vintage: MHP 
Peaks    

Jan 1980 Jul 1979 NA Oct 1979 

Jul 1981 May 1981 NA Jul 1981 

Jul 1990 Jul 1990 NA Jul 1990 

Mar 2001 Sep 2000 NA Dec 2000 

    

Troughs    

Jul 1980 Jul 1980 Jul 1980 Jul 1980 

Nov 1982 Oct 1982 NA Dec 1982 

Mar 1991 Jul 1991 Feb 1991 Jan 1991 

Nov 2001 Nov 2001 Nov 2001 Nov 2001 
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Table 6 
Revisions to Business Cycle Dates:  DFMS Model 

 
NBER Date Initial Date: 

DFMS 
Date at Time of NBER 
Announcement: DFMS 

Final Date: 
DFMS 

Peaks    
Jan 1980 Jan 1980 NA Jan 1980 

Jul 1981 Aug 1981 NA Jul 1981 

Jul 1990 Aug 1990 Aug 1990 Jul 1990 

Mar 2001 Nov 2000 NA Nov 2000 

    

Troughs    

Jul 1980 Jun 1980 Jun 1980 Jul 1980 

Nov 1982 Nov 1982 Nov 1982 Nov 1982 

Mar 1991 Mar 1991 Mar 1991 Mar 1991 

Nov 2001 Nov 2001 Jan 2002 Dec 2001 
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