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Abstract

This paper examines the technical efficiency of U.S. Federal Reserve check pro-
cessing offices over 1980–2003. We extend results from Park et al. (2000) and Daouia
and Simar (2007) to develop an unconditional, hyperbolic, α-quantile estimator of effi-
ciency. Our new estimator is fully non-parametric and robust with respect to outliers;
when used to estimate distance to quantiles lying close to the full frontier, it is strongly
consistent and converges at rate root-n, thus avoiding the curse of dimensionality that
plagues data envelopment analysis (DEA) estimators. Our methods could be used by
policymakers to compare inefficiency levels across offices or by managers of individual
offices to identify peer offices.
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1 Introduction

Benchmarking has become a wildly popular idea in management, finance, economics, educa-

tion, public policy, and other arenas; the Google internet search engine currently returns on

the order of 22,500,000 hits for the keyword “benchmarking.” The Oxford English Dictionary

defines benchmarking as “the action or practice of comparing something to a benchmark;

evaluation against an established standard,” suggesting that while an established standard

is important for benchmarking, there may be more than one such standard. Benchmarking

may involve detailed evaluation and comparison of a particular unit’s operating procedures

with those of a competitor, perhaps using standard accounting ratios such as return-on-

assets or other measures. Efficiency analysis is a more formal approach, wherein a statistical

model of a production process with a well-defined benchmark for purposes of comparison is

specified and then estimated, allowing possibilities for statistical inference.

The performance of firms and other decision-making units (DMUs) in terms of technical

efficiency, as well as allocative, cost, and other efficiencies, has received widespread atten-

tion in the economics, statistics, management science, and related literatures. In the case

of private firms, estimates of inefficiency have been used to explain insolvency rates and

merger activities, the effects of changes in regulatory environments, and overall industry

performance.1 In the case of public and non-profit entities, estimates of inefficiency are

intrinsically interesting because these entities do not face a market test, and inefficiency

estimates often provide the only objective criteria for gauging performance. Measuring the

performance of public entities may be important for allocating scarce public resources, for

deciding which to eliminate during periods of consolidation, etc. In particular, identifying

inefficient entities is a critical first step in any attempt to improve performance.

Both parametric and non-parametric approaches have been used to estimate inefficiency.

A popular parametric approach based on the ideas of Aigner et al. (1977) and Meeusen

and van den Broeck (1977) involves the estimation of a specific response function with a

composite error term. Often, studies specify a translog response function, which is regarded

as a flexible form. Researchers have found, however, that the translog function is often a mis-

1See, for example, Berger and Humphrey (1997) for a survey, and Gilbert and Wilson (1998) and Wheelock
and Wilson (1995, 2000) for specific applications involving commercial banks.
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specification when DMUs are of widely varying size.2 In an attempt to increase flexibility,

some researchers have augmented translog specifications with trigonometric terms along the

lines of Gallant (1981, 1982). In order to maximize log-likelihoods, however, the number of

additional terms must usually be restricted severely, and in most cases is probably far less

than the number that would minimize criteria such as asymptotic mean integrated square

error.3

Non-parametric approaches, by contrast, are popular because they avoid having to specify

a priori a particular functional relationship to be estimated; the data are allowed to speak for

themselves. Non-parametric methods usually involve the estimation of a production set or

some other set by either the free-disposal hull (FDH) of sample observations, or the convex

hull of the FDH. Methods based on the convex hull of the FDH are collectively referred to

as data envelopment analysis (DEA). DEA is well known and has been applied widely: as of

early 2004, DEA had been used in more than 1,800 articles published in some 490 refereed

journals (Gattoufi et al., 2004). The statistical properties of DEA estimators have been

established, and methods are now available for making statistical inferences about efficiency

based on DEA.4

Despite their popularity, DEA estimators have some obvious drawbacks. Although these

estimators avoid the need for a priori specification of functional forms, they do impose

(eventually) non-increasing returns to scale; i.e., they do not allow increasing returns to

scale everywhere. Moreover, it has long been recognized that DEA estimates of inefficiency

are sensitive to outliers in the data. Perhaps even more problematic, at least in many

applications, is that DEA estimators suffer from the well-known curse of dimensionality

2See Cooper and McLaren (1996), Banks et al. (1997), Wheelock and Wilson (2001), and Wilson and
Carey (2004) for empirical examples. For Monte Carlo evidence, see Guilkey et al. (1983) and Chalfant and
Gallant (1985).

3Published papers using this approach have typically not optimized the number of terms according to
such criteria. In addition, Barnett et al. (1991) note that “the basis functions with which Gallant’s model
seeks to span the neoclassical function space are sines and cosines, despite the fact that such trigonometric
functions are periodic and hence are far from neoclassical. In other words, the basis functions, which should
be dense in the space to be spanned do not themselves even lie within that space.” Instead of trigonometric
functions, one could use as the basis functions members of a family of orthogonal polynomials (e.g., Laguerre
or Legendre polynomials), but the problems of determining the optimal number of terms, and using these in
a non-linear, maximum-likelihood framework, remain.

4See Simar and Wilson (2000b) for a survey, and Kneip et al. (2007) for more recent results, on the
statistical properties of DEA estimators. See Simar and Wilson (1998, 2000a) and Kneip et al. (2007) for
details about the use of bootstrap methods to make inferences based on DEA.
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that often plagues non-parametric estimators. The number of observations required to obtain

meaningful estimates of inefficiency increases dramatically with the number of production

inputs and outputs; for a given sample size, adding dimensions results in more observations

falling on the estimated frontier. In many applications, including the one in this paper, there

are simply too few observations available to obtain meaningful estimates of inefficiency using

DEA.5

Recently, two alternative non-parametric approaches that avoid some of the problems

with the traditional DEA and FDH methods have been developed. Both the “order-m”

approach of Cazals et al. (2002) and the “order-α” approach of Daouia (2003), Aragon et al.

(2005) and Daouia and Simar (2007) are based on the idea of estimating “partial frontiers”

that lie close to the “full frontier” (i.e., the boundary of the production set). Both approaches

allow one to interpret estimators of the partial frontiers as estimators of the full frontier by

viewing the order (either m or α) as a sequence of appropriate order in the sample size n.

Both approaches involve some conditioning with the result that for a fixed order (again,

either m or α), the input-oriented partial frontiers are different from the output-oriented

partial frontiers of the same fixed order. While this is of little or no consequence when the

partial frontier estimators are viewed as estimators of the full frontier, it might be troubling

where the partial frontiers themselves are used as benchmarks against which efficiency is

measured. As discussed below, a compelling reason for using partial frontiers of fixed order

as benchmarks is that they can be estimated with root-n consistency, whereas this feature

is lost if the partial frontier estimators are viewed as estimators of the full frontier.

In this paper, we extend results obtained by Daouia and Simar (2007) for conditional

(input or output) order-α quantiles to estimate unconditional, hyperbolic order-α quantiles,

allowing estimation of efficiency along a hyperbolic path where inputs and outputs are ad-

justed simultaneously, rather than in either strictly an input or an output direction.6 As

discussed below, use of a hyperbolic path avoids some of the ambiguity in choosing between

an input or output-orientation, even if our partial frontier estimator is viewed as an estimator

5One can find numerous published applications of DEA to datasets with 50–150 observations and 5 or
more dimensions in the input-output space. Inefficiency estimates from such studies are likely meaningless in
a statistical sense due to the curse of dimensionality problem (see Simar and Wilson (2000b) for discussion).

6In the real world, there are undoubtedly situations where inputs and outputs cannot be adjusted si-
multaneously. This presents no problem here, however, because our method does not involve estimating
behavioral relationships.
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of the full frontier. As with the conditional estimators of Daouia and Simar, our hyperbolic

distance function estimator is fully non-parametric, robust with respect to outliers, and

is strongly consistent, converging at the classical, parametric root-n rate when the partial

(rather than full) frontier is estimated. Further, as discussed below, the measurement of

inefficiency along a hyperbolic path results in near-automatic identification of relevant peers

that managers of a DMU might study to learn how to improve their own operations. This

contrasts with the traditional DEA and FDH approaches, where a manager might learn

which DMUs are more efficient than others, but not necessarily which might be useful to

emulate.7

We use the unconditional quantile estimator described below to examine the technical

efficiency of Federal Reserve check-processing offices. Check processing is a logistic operation

similar to processing and delivery operations encountered in numerous industries (e.g., postal

and package-delivery services, military supply operations, etc.). Fed offices receive checks

from the depository institutions (hereafter “banks”) that cash the checks or receive them

from their depositors. Fed offices sort the checks, credit the accounts of depositing banks,

and forward the checks to the banks upon which they are drawn. Federal Reserve offices

are required by the Monetary Control Act of 1980 to charge a price for clearing checks that

recovers the Fed’s costs plus a “private sector adjustment factor” that represents a rate of

return and taxes that a private firm would have to pay. Paper check volume has declined

markedly in recent years as electronic payments media have become increasingly popular

(Gerdes and Walton, 2002). The Fed has eliminated check processing at some locations to

reduce costs, and further declines in volume would intensify pressure on the Federal Reserve

to reduce costs so as to remain in compliance with the Monetary Control Act. This paper

offers a methodology that could assist Fed officials in identifying possible inefficiencies in

check operations that could help them achieve their objectives.

The small number of Federal Reserve offices that process checks (49 offices as of 2003)

and relatively high dimension of our four-input, two-output model of check processing imply

that we are unlikely to obtain statistically meaningful estimates of inefficiency using DEA.

This problem is not unusual in situations where researchers seek to evaluate the performance

7Simply finding a DMU that is more efficient than one’s own may not be particularly useful to a manager
if the more efficient DMU operates at a much different scale, or produces a very different mix of outputs
using a very different mix of inputs.
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of producers. Because of its rapid convergence rate, the unconditional quantile estimator is

well-suited to investigating the efficiency of Fed check offices, as well as in other applications

where the curse of dimensionality is likely to be an issue.

The paper proceeds as follows: Section 2 briefly discusses traditional non-parametric

efficiency estimators and their drawbacks. Section 3 introduces the non-parametric, un-

conditional quantile estimator, and presents an example illustrating the problems with the

conditional approaches and how these are overcome by the unconditional approach. Asymp-

totic results that are important for interpreting estimates are presented in Section 4; proofs

are deferred to the Appendix. Section 5 describes a model of check processing operations,

Section 6 presents estimation results, Section 7 offers policy recommendations, and Section

8 concludes.

2 Problems with Traditional Efficiency Estimators

Standard microeconomic theory of the firm introduces the notion of a production possibilities

set

P ≡ {(x,y) | x can produce y} ⊂ R
p+q
+ , (2.1)

where x ∈ R
p
+ and y ∈ R

q
+ denote vectors of inputs and outputs, respectively. The upper

boundary of P, denoted P∂, is sometimes referred to as the technology or the production

frontier. In economics, management science, and other disciplines, the goal is often to esti-

mate distance from an arbitrary point (x,y) ∈ R
p+q
+ to the boundary P∂ along a particular

path. Shephard (1970) defined input and output distance functions given by

θ(x,y | P) ≡ sup
{
θ > 0 | (θ−1

x,y) ∈ P
}

(2.2)

and

λ(x,y | P) ≡ inf
{
λ > 0 | (x, λ−1

y) ∈ P
}
, (2.3)

respectively. The input distance function θ(x,y | P) measures distance from (x,y) to P∂ in

a direction orthogonal to y, while the output distance function λ(x,y | P) measures distance

from the same point to P∂ in a direction orthogonal to x.

Under constant returns to scale (CRS), θ(x,y | P) = λ(x,y | P)−1. However, with

variable returns to scale (VRS), the choice of orientation (either input or output) can have
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a large impact on measured efficiency. With VRS, a large firm could conceivably lie close

to the frontier P∂ in the output direction, but far from P∂ in the input direction. Similarly,

a small firm might lie close to P∂ in the input direction, but far from P∂ in the output

direction. Such differences are related to the slope and curvature of P∂ .

As an alternative to the Shephard (1970) input and output measures, Färe et al. (1985)

proposed measuring efficiency along a hyperbolic path from the point of interest to P∂ . The

hyperbolic-graph distance function given by

γ(x,y | P) ≡ sup
{
γ > 0 | (γ−1

x, γy) ∈ P
}

(2.4)

measures distance from the fixed point (x,y) to P∂ along the hyperbolic path (γ−1
x, γy),

γ ∈ R
1
++. Note that for (x,y) ∈ P, θ(x,y | P) ≥ 1, λ(x,y | P) ≤ 1, and γ(x,y | P) ≥ 1 by

construction.8

The distance functions in (2.2)–(2.4) are defined in terms of the unknown, true produc-

tion set P, and must be estimated from a set Sn = {xi,yi}n
i=1 of observed input/output

combinations. Traditional, non-parametric approaches typically assume Pr((xi,yi) ∈ P) =

1 ∀ i = 1, . . . , n and replace P in (2.2)–(2.4) with an estimator of the production set to

obtain estimators of the Shephard input- and output-oriented distance functions. Deprins

et al. (1984) proposed the free-disposal hull (FDH) of the observations in Sn, i.e.,

P̂FDH(Sn) =
⋃

(xi,yi)∈Sn

{(x,y) ∈ R
p+q
+ | y ≤ yi, x ≥ xi}. (2.5)

DEA estimators, assuming VRS, are obtained by replacing P in (2.2)–(2.4) with the convex

hull of P̂FDH, given by

P̂DEA(Sn) =
{

(x,y) ∈ R
p+q
+ | y ≤

n∑

i=1

κiyi, x ≥
n∑

i=1

κixi,

n∑

i=1

κi = 1, κi ≥ 0 ∀ i = 1, . . . , n
}
, (2.6)

while DEA estimators incorporating CRS are obtained by replacing P with the convex cone

of P̂DEA(Sn) or P̂FDH(Sn), obtained by dropping the constraint
∑n

i=1 κi = 1 in (2.6). DEA

8The Shephard (1970) input and output distance functions defined in (2.2) and (2.3) are reciprocals of
the corresponding Farrell (1957) measures. Färe et al. (1985) defined a Farrell-type hyperbolic measure that
is the reciprocal of the measure defined in (2.4).
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estimates of input or output distance functions are obtained by solving the resulting familiar

linear programs, while FDH estimates based on (2.5) are obtained more easily using simple

numerical computations. Estimators of the hyperbolic distance function in (2.4) under VRS

have not been used in practice, apparently due to the fact that when P̂DEA(Sn) replaces P
in (2.4), the resulting estimator cannot be expressed as a linear program, although it can be

computed using numerical methods.

Asymptotic properties of estimators of the input and output distance functions in (2.2)–

(2.3) based on P̂FDH(Sn) and P̂DEA(Sn), as well as the assumptions needed to establish

consistency of the estimators, are summarized in Simar and Wilson (2000b). Unfortunately,

however, despite their widespread use, both DEA and FDH estimators suffer from a number

of vexing problems:

1. Convergence rates are pathologically slow when there are more than a few inputs

and outputs. DEA (VRS) estimators of θ(x,y | P) and λ(x,y | P) defined in (2.2)

and (2.3) converge at the rate n−2/(p+q+1) (Kneip et al., 1998), while FDH estimators

converge at an even slower rate, n−1/(p+q) (Park et al., 2000).9 The convergence rates

become worse as dimensionality (p + q) increases, becoming quite slow for commonly

used numbers of inputs and outputs. Although many published applications of DEA

estimators have used 100–200 observations with 5–10 dimensions, the slow convergence

rate of DEA estimators means that the results of such studies are largely meaningless

from a statistical viewpoint.

2. In addition to slow convergence rates, DEA and FDH estimators are extremely sensitive

to outliers. Although several methods have been proposed for detecting outliers in high-

dimensional data (e.g., Wilson, 1993, 1995; Kuntz and Scholtes, 2000; Simar, 2003; and

9 The faster convergence rate of DEA estimators results from convexification of the free-disposal hull of
the data, but DEA estimators are inconsistent if the true production set is not convex, while FDH estimators
remain consistent. Convergence rates of DEA and FDH estimators of the hyperbolic measure γ(x, y | P)
defined in (2.4) have not been established previously. However, rates of convergence of DEA and FDH
input- and output-efficiency estimators are similar to the rates of convergence derived by Korostelev et al.
(1995a, 1995b) for DEA and FDH frontier estimators. Unfortunately, as noted by Kneip et al. (1998), there
appears to be no straightforward way to adapt the results obtained by Korostelev et al. to the problem of
determining convergence rates of efficiency estimators. Nonetheless, since DEA and FDH estimators of the
hyperbolic measure γ(x, y | P) measure distance from a fixed point (x, y) to the boundary of P̂DEA or P̂FDH,
as do DEA and FDH estimators of θ(x, y | P) and λ(x, y | P), one might speculate that the convergence
rates of DEA and FDH estimators of the hyperbolic efficiency measure might be similar to their input- and
output-oriented counterparts. This is confirmed below in Section 4 for the FDH case.
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Porembski et al., 2005), some subjective interpretation is required. Moreover, merely

because an outlier is found does not mean it should be deleted. Outliers are atypical

observations; an observation might be atypical because it has low probability of being

observed. In this case, the outlier might be the most interesting part of the data.

On the other hand, outliers can also result from measurement errors, coding errors,

or other mistakes. When data have been corrupted by such errors, they should be

repaired or deleted if correction is not possible. In applied work, however, it is often

difficult to identify why an observation is atypical.

3. Under VRS, some portions of the boundaries of P̂FDH(Sn) and P̂DEA(Sn) will necessarily

be parallel to the output axes, while others will necessarily be parallel to the input

axes. For observations lying near the boundaries of P̂FDH(Sn) and P̂DEA(Sn) where

these phenomena occur, estimates of input- and output-efficiency can differ greatly.

For example, an observation just below the boundary of P̂DEA(Sn) in the region where

this boundary is parallel to the input axes might appear very efficient in an output-

orientation, but very inefficient in an input orientation. The problem could be avoided

by using P̂FDH(Sn) or P̂DEA(Sn) to estimate the hyperbolic measure γ(x,y | P) defined

in (2.4), but the other problems would remain.

The conditional α-quantile estimators developed by Daouia (2003), Aragon et al. (2005)

and Daouia and Simar (2007), as well as the unconditional hyperbolic α-quantile estimator

developed in the next section, are more robust with respect to outliers than standard DEA

and FDH estimators, and achieve root-n convergence when partial frontiers (or efficiency

measured relative to partial frontiers) are estimated. However, the conditional α-quantile

estimators do not address the third problem listed above; moreover, if efficiency is measured

relative to an estimate of a partial frontier, in order to retain the root-n rate of convergence,

the problem is compounded by the existence of different partial frontiers for either the input-

or output-orientations. Using a hyperbolic measure of efficiency avoids this problem, and

as noted previously, results in near-automatic identification of relevant peers for meaningful

comparisons among firms.
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3 Quantile Estimation for Efficiency Analysis

3.1 The Statistical Model

Together with the definition in (2.1), the following assumptions, similar to those found in

Park et al. (2000), define a statistical model:

Assumption 3.1. The production set P is compact and free disposal, i.e., if (x,y) ∈ P,

(x̃, ỹ) ∈ P, and x̃ ≥ x, then (x̃, ˜̃y) ∈ P ∀ 0 ≤ ˜̃y ≤ y.

Assumption 3.2. The sample observations Sn = {(xi,yi)}n
i=1 are realizations of identically,

independently distributed (iid) random variables with probability density function f(x,y) with

support over P.

A point (x,y) ∈ P is said to be on the frontier of P, denoted P∂ , if (γ−1
x, γy) 6∈ P for

any γ > 1; let (x∂
0 ,y

∂
0) ∈ P∂ denote such a point.

Assumption 3.3. At the frontier, the density f is strictly positive, i.e., f0 = f(x∂
0 ,y

∂
0) > 0,

and sequentially Lipschitz continuous, i.e., for all sequences (xn,yn) ∈ P converging to

(x∂
0 ,y

∂
0), |f(xn,yn) − f(x∂

0 ,y
∂
0)| ≤ c1||(xn,yn) − (x∂

0 ,y
∂
0)|| for some positive constant c1.

Now let yk denote the kth element of y, k = 1, . . . , q, and let y
(k) =

[
y1 . . . yk−1 yk+1 . . . yq

]
denote the vector y with the kth element deleted. In ad-

dition, let y
(k)(η) =

[
y1 . . . yk−1 η yk+1 . . . yq

]
denote a vector similar to y, but with

η substituted for the kth element of y. For each k = 1, . . . , 1 define a function

gk
P
(
x,y(k)

)
≡ max

{
η |
(
x,y(k)(η)

)
∈ P

}
. (3.1)

As discussed in Park et al. (2000), the production set P can be defined in terms of any of

the functions gk
P . Along the lines of Park et al., the following analysis is presented in terms

of gq
P , denoted simply as g.

Assumption 3.4. At the frontier, g(·, ·) is (i) positive, i.e., g(x∂
0 ,y

∂
0) > 0; (ii) continu-

ously differentiable; and (iii) the first derivative is Lipschitz continuous, i.e., for all (x,y),

|g(x,y(q))− g(x∂
0 ,y

∂(q)
0 )−∇g(x∂

0 ,y
∂(q)
0 )′((x,y(q))− (x∂

0 ,y
∂(q)
0 ))| ≤ c2||(x,y(q))− (x0,y

(q)
0 ))||2

for some positive constant c2, and for k = 1, . . . , p and ℓ = 1, . . . , q − 1,

∂
∂xk g(x,y

(q))|
(x,y(q))=(x∂

0 ,y
∂(q)
0 )

> 0 and ∂
∂yℓ g(x,y

(q))|
(x,y(q))=(x∂

0 ,y
∂(q)
0 )

< 0.
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The density f(x,y) introduced in Assumption 3.3 implies a probability function

H(x0,y0) = Pr(x ≤ x0,y ≥ y0). (3.2)

This is a non-standard probability distribution function, given the direction of the inequality

for y; nonetheless, it is well-defined. This function gives the probability of drawing an

observation from f(x,y) that weakly dominates the DMU operating at (x0,y0) ∈ P; an

observation (x̃, ỹ) weakly dominates (x0,y0) if x̃ ≤ x0 and ỹ ≥ y0. Clearly, H(x0,y0) is

monotone, nondecreasing in x0 and monotone, non-increasing in y0.

Using H(·, ·), the hyperbolic distance function in (2.4) can be written as

γ(x,y | P) = sup
{
γ > 0 | H(γ−1

x, γy) > 0
}
. (3.3)

Alternatively, define the hyperbolic α-quantile distance function

γα(x,y) = sup
{
γ > 0 | H(γ−1

x, γy) > (1 − α)
}

(3.4)

for α ∈ (0, 1]. If α = 1, then γα(x,y) = γ(x,y | P). For 0 < α < 1 and a fixed point

(x,y) ∈ R
p+q
+ , γα(x,y) > (respectively, <) 1 gives the proportionate, simultaneous decrease

(increase) in inputs and increase (decrease) in outputs required to move from (x,y) along a

path (γ−1
x, γy), γ > 0, to a point with (1−α) probability of being weakly dominated. The

hyperbolic α-quantile frontier is defined by

P∂
α =

{
(γα(x,y)−1

x, γα(x,y)y) | (x,y) ∈ P
}
. (3.5)

Using Assumption 3.3 and the fact that H(x0,y0) is monotone, nondecreasing in x0 and

monotone, non-increasing in y0, it is easy to show that P∂
α is monotone in the sense that if

(x0,y0) ∈ P∂
α , (x̃, ỹ) ∈ P∂

α , and x̃ ≥ x0, then ỹ ≥ y0.

The probabilistic formulation used here is closely related to the work of Daouia and Simar

(2007), which builds on earlier work by Daouia (2003) and Aragon et al. (2005). Daouia and

Simar decompose the distribution function given in (3.2) to obtain

H(x0,y0) = Pr(x ≤ x0 | y ≥ y0) Pr(y ≥ y0) = Fx|y(x0 | y0)Sy(y0)

= Pr(y ≥ y0 | x ≤ x0) Pr(x ≤ x0) = Sy|x(y0 | x0)Fx(x0) (3.6)
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(the terms on the right-hand side of (3.6) also appear in Cazals et al., 2002, and Daraio

and Simar, 2005). Working in a Farrell-type framework, they define conditional quantile-

based efficiency scores that are equivalent to the reciprocals of the Shephard-type input- and

output-oriented conditional α-quantile distance functions given by

θα(x,y) = sup
{
θ ≥ 0 | Fx|y(θ

−1
x | y) > (1 − α)

}
(3.7)

and

λα(x,y) = inf
{
λ ≥ 0 | Sy|x(λy | x) > (1 − α)

}
. (3.8)

For α ∈ (0, 1), θα(x,y) < θ(x,y | P) and λα(x,y) > λ(x,y | P) by construction. These

implicitly define input and output conditional α-quantile frontiers given by

P∂
x,α =

{
(θα(x,y)−1

x,y) | (x,y) ∈ P
}

(3.9)

and

P∂
y,α =

{
(x, λα(x,y)−1

y) | (x,y) ∈ P
}
, (3.10)

respectively.

Figure 1 provides an illustration for the simple case where p = q = 1, and f(x, y) is

uniform over the unit triangle with corners at (0,0), (1,0), and (1,1). The solid line shows

P∂ . Simple algebra leads to expressions for the terms appearing in (3.6), making it easy

to compute γα(x, y) as well as θα(x, y) and λα(x, y) for a variety of pairs (x, y). Hence,

for a given value of α ∈ (0, 1), the hyperbolic α-quantile frontier and the two conditional

α-quantile frontiers can be traced. This has been done in Figure 1 for α = 0.95, where P∂
α

is illustrated by the dashed line, while the conditional α-quantile functions are shown by

the dotted lines. The steeper of the two dotted lines shows the input-oriented conditional

α-quantile frontier; the other shows the output-oriented conditional α-quantile frontier. For

a fixed α ∈ (0, 1), these frontiers differ from one another, although the difference diminishes

as α → 1. The input frontier P∂
x,α will necessarily have steeper slope than P∂ along a ray

λx, λ > 0, while the output frontier P∂
y,α will have less steep slope than P∂ along a ray λx,

λ > 0.

The hyperbolic α-quantile shown in Figure 1 parallels the full frontier P∂ due to the

uniform distribution of x and y; if f(x, y) were not uniform, then P∂
α might be more or

less steep than P∂, depending on the shape of f(x, y) near the full frontier. For example,
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if f(x, y) concentrated probability mass near the full frontier for large x and was relatively

disperse near the full frontier for small x, the partial frontier P∂
α would tend to be steeper

than the full frontier P∂. Nonetheless, it would remain true that the conditional α-quantile

frontiers P∂
x,α and P∂

y,α would have different slopes (i.e., different from the slopes of P∂
α and

P∂ , as well as different from each other’s slopes).

Measurement of efficiency requires comparison against a benchmark. While traditional

nonparametric approaches have used the full frontier P∂ as a benchmark, efficiency can also

be measured in terms of other benchmarks, such as partial frontiers. Measuring efficiency

relative to the hyperbolic α-quantile P∂
α may well result in different efficiency measures than

one would obtain using the full frontier as a benchmark, requiring a different interpretation

(this is discussed in greater detail below in Section 6). However, as will be seen in Sections

3.2 and 4 below, it is “easier” to estimate P∂
α in the sense that P∂

α can be estimated with

root-n consistency, while estimating P∂ incurs the curse of dimensionality, as well as diffi-

culties for inference. Moreover, it is common to evaluate performance in terms of quantiles

(often expressed in terms of percentiles for such purposes); e.g., student performance is often

expressed in terms of test-score percentiles; child height and weight are often described in

terms of percentiles or quantiles of a distribution, etc. Thus, while technical efficiency has

traditionally been benchmarked against the full frontier P∂, applied researchers as well as

consumers of policy studies should find comparisons based on the partial frontier P∂
α intuitive

and familiar.

3.2 Nonparametric, Hyperbolic Estimators

Estimation of γα(x,y), and hence P∂
α , is straightforward. The empirical analog of the dis-

tribution function defined in (3.2) is given by

Ĥn(x0,y0) = n−1

n∑

i=1

I(xi ≤ x0,yi ≥ y0), (3.11)

where I(·) denotes the indicator function. Then an estimator of γα(x,y) is obtained by

replacing H(·, ·) in (3.4) with Ĥn(·, ·) to obtain

γ̂α,n(x,y) = sup
{
γ > 0 | Ĥn(γ−1

x, γy) > (1 − α)
}
. (3.12)

12



Computing γ̂α,n(x,y) is essentially a univariate problem. An exact solution is possible using

methods similar to those used by Daouia and Simar to compute estimators of the input- and

output-conditional α-quantile distance functions defined in (3.7)–(3.8).

Given Sn and the fixed point of interest (x0,y0), for each i = 1, . . . , n, define χi =

min
j=1, ..., p

xj
0

xj
i

and ψi = min
j=1, ..., q

yj
i

yj
0

. Let A = {i | y0χi ≤ yi}, B = {i | x0ψ
−1
i ≥ xi}\A, and

C = {ωj} = {χi | i ∈ A}⋃{ψi | i ∈ B}.10 Then #C = n. A nonparametric estimator of the

hyperbolic α-quantile distance function γα(x0,y0) defined in (3.4) is given by

γ̂α,n(x0,y0) =

{
ω(αn) if αn ∈ N++,

ω([αn]+1) otherwise;
(3.13)

where [αn] denotes the integer part of αn, N++ denotes the set of strictly positive integers,

and ω(j) denotes the jth largest element of the set C, i.e., ω(1) ≤ ω(2) ≤ . . . ≤ ω(n).

An estimator of distance to the full frontier, Pα, is obtained by setting α = 1 in (3.13);

denote the resulting estimator by γ̂n(x0,y0). This amounts to replacing P in (2.4) by the

FDH estimator of P defined in (2.5).

Alternatively, given the point of interest (x0,y0), it is easy to find initial values γa, γb that

bracket the solution so that Ĥn(γ
−1
a x0, γay0) > (1− α) and Ĥn(γ−1

b x0, γby0) < (1− α), and

then solve for γ̂α,n(x0,y0) using the bisection method. This method can be made accurate

to an arbitrarily small degree. The following algorithm describes the procedure:

[1] Set γ1 := 1, γb := 1.

[2] If Ĥn(γ−1
a x, γay) ≤ (1 − α) then set γa := 0.5 × γa.

[3] Repeat step [2] until Ĥn(γ−1
a x, γay) > (1 − α).

[4] If Ĥn(γ−1
b x, γby) ≥ (1 − α) then set γb := 2 × γb.

[5] Repeat step [4] until Ĥn(γ−1
b x, γby) < (1 − α).

[6] Set γc := (γa + γb)/2 and compute Ĥn(γ−1
c x, γcy).

[7] If Ĥn(γ−1
c x, γcy) ≤ (1 − α) then set γb := γc; otherwise set γa := γc.

10Removing elements of A in the definition of B is required in the event of a tie, which can occur when
the path (γ−1

x0, γy0), γ > 0, passes through one of the the observations in Sn.
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[8] If (γb − γa) > ǫ, where ǫ is a suitably small tolerance value, repeat steps [6]–[7].

[9] If Ĥn(γ−1
c x, γcy) ≤ (1 − α) set γ̂α,n(x,y) := γa; otherwise set γ̂α,n(x,y) := γc.

Note that finding γa first reduces the computational burden. Given γa, γb can be found using

only the subset of sample observations that dominate the point (γ−1
a x, γay). Moreover, only

this same subset of observations need be used in the first pass through steps [6]–[7]. Upon

reaching step [8], the relevant subset of observations can be further reduced each time γa is

reset in step [7]. Setting the convergence tolerance ǫ in step [8] to 10−6 will yield solutions

accurate to 5 decimal places, which is likely to be sufficient for most applications.11 Due

to storage requirements, sorting, and the large number of logical comparisons required by

the exact method, computing γ̂α,n(x,y) using the bisection method is much faster than the

exact method.12 Applied researchers can use the hquan command in versions 1.1 (and later)

of Wilson’s (2007) FEAR library of routines for efficiency analysis to compute estimates

γ̂α,n(x,y) using the numerical procedure described above.

3.3 A Simple Illustration

Figure 2 illustrates the hyperbolic distance function estimator γ̂α,n(x,y) for the simple one

input, one output case (p = q = 1). Twenty observations are represented by the solid

diamonds, and the DEA estimate of the frontier is shown by the piecewise-linear curve

passing through the five observations at (2, 2), (3, 3), (4, 4), (5, 4.2), and (8, 4.4). Letting

(x0, y0) represent the point (8, 4.4), the dotted curve passing through the observation at

(8, 4.4) shows the path γ−1x, γy ∀ γ > 0. For α = 0.8, γ̂α,20(x0, y0) = 0.909090 and

γ̂α,20(x0, y0)
−1 = 1.1.

The open circle in Figure 2 indicates the point (γ̂α,20(x0, y0)
−1x, γ̂α,20(x0, y0)y) = (8.8, 4).

Since n = 20 and α = 0.8 in this example, exactly (1 − α)n = (1 − 0.8)20 = 4 sample

11Note that many rational decimal fractions become irrational numbers in the base-2 representation used
by modern digital computers; e.g., the base-10 fraction 0.95 has no exact representation in base-2. To avoid
problems with the logical comparisons in steps [7] and [9], comparisons should be made against (1 − α − ν)
instead of (1 − α), where ν is the smallest positive real number that can be represented on the computer
architecture in use that yields the result 1− ν 6= 1. For machines using 64-bit IEEE arithmetic, this number
is 2−53 ≈ 1.110223× 10−16.

12The hyperbolic α-quantile distance function estimates and corresponding bootstrap confidence interval
estimates shown in Table 3 took longer by a factor of roughly 70 using the exact method as opposed to the
bisection method using a 64-bit Intel T7400, 2.17GHz Core-2 Duo processor.
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observations weakly dominate the point (8.8, 4). Three of these dominating points—at

(4, 4), (5, 4.2), and the original point at (8, 4.4)—lie on the DEA estimate of the frontier

P∂ , while the fourth lies at (6, 4).

Note that the original observation (x0, y0) at (8, 4.4) is not dominated by any other

observations in the sample. However, by projecting this point onto the α-quantile at the

point represented by the open circle, three other observations are found that produce almost

as much output as the DMU of interest, but use considerably less input. Thus, the manager

of the DMU at (8, 4.4) might obtain useful information for managing his own DMU by

studying the operations of the three DMUs at (4, 4), (5, 4.2), and (6, 4).13

Of course, with only two dimensions, one could always plot the data as in Figure 2. But

with multiple inputs and multiple outputs, visualizing the data is problematic. DEA yields

estimates of efficiency, but little else. For an inefficient DMU, one could look for DMUs that

weakly dominate the DMU of interest to find relevant practices that might be emulated to

improve efficiency, but with high dimensions, it is sometimes the case that there are few, if

any, dominance relationships in the data.14 The example illustrated by Figure 2 shows how

the hyperbolic α-quantile estimator reveals relevant, practically useful comparisons among

DMUs, even for DMUs that DEA would indicate are ostensibly efficient.

By contrast, the estimators described by Daouia and Simar (2007) of the conditional

α-quantile distance functions in (3.7) and 3.8) yield θ̂α,20(x0, y0) = 1 and λ̂α,20(x0, y0) = 1.1

given the observations shown in Figure 2 and α = 0.8 (by coincidence, λ̂α,20(x0, y0) =

γ̂α,20(x0, y0)
−1). Thus the input-oriented, conditional α-quantile partial frontier P∂

x,α corre-

13Perhaps the DMU at (8, 4.4) is operating at an inefficient scale size, beyond the region of CRS. Or,

because DEA estimates of the true frontier P∂ are biased downward, i.e., P̂DEA ⊆ P (see Simar and Wilson,
2000a, for discussion), it may well be possible for the DMU at (8,4.4) to significantly reduce its input-
usage without reducing output. It is important to remember that the observations on the piecewise-linear
DEA frontier in Figure 2 are only ostensibly efficient. The DEA frontier estimate is nothing more than a
biased estimate of the true, but unobserved, frontier P∂ . Using DEA and the bootstrap methods of Simar
and Wilson (1998, 2000a) would necessarily yield estimates of confidence intervals for θ(x0, y0 | P) and
λ(x0, y0 | P) defined in (2.2)–(2.3) that do not include 1; e.g., the lower bound of an estimated confidence
interval for the input-distance function θ(x0, y0 | P) will necessarily lie to the right of 1. This reflects the
fact that the true production set boundary, P∂ , necessarily lies to the left and above the piecewise-linear
DEA frontier estimate shown in Figure 2.

14Wheelock and Wilson (2003) analyzed three cross-sections of observations on U.S. commercial banks in
1984, 1993, and 2002, with p = q = 5, and 13,845, 10,661, and 7,561 observations (respectively). In each
cross section, all observations were found to lie on the FDH frontier estimate. Consequently, there is no
observation in any of the three cross sections that is dominated by another observation in the same cross
section.
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sponds with the DEA estimator of the full frontier at the point (8, 4.4), while the output-

oriented conditional α-quantile partial frontier P∂
y,α lies below the DEA frontier estimator at

(8, 4.4), as is apparent from (3.10) and the earlier discussion regarding Figure 1.

4 Asymptotic Results

Park et al. (2000) derive asymptotic results for FDH distance function estimators of the

input- and output-oriented distance functions defined in (2.2) and (2.3). Here, some similar

results are obtained for the FDH estimator of the hyperbolic distance function γ(x0,y0)

using techniques similar to those used by Park et al.; these results are useful for establishing

properties of the hyperbolic α-quantile distance function estimator. Proofs are given in the

Appendix.

Theorem 4.1. Under Assumptions 3.1–3.4, for all ǫ > 0,

Pr
[
n1/(p+q) (γ(x,y) − γ̂n(x,y)) ≤ ǫ

]
= 1 − exp

[
− (µH,0ǫ)

p+q]+ o(1)

where µH,0 is a constant given in Definition A.2 in the Appendix.

Analogous to Corollary 3.2 in Park et al. (2000), the next results follow directly from

Theorem 4.1; in particular, (ii) is obtained by exploiting the relation between exponential

and Weibull distributions.

Corollary 4.1. Under Assumptions 3.1–3.4, (i) γ̂n(x,y) converges to γ(x,y) with

Op

(
n−1/(p+q)

)
, and there is no δ > 1

p+q
such that γ(x,y) − γ̂n(x,y) = Op

(
n−δ
)
; and (ii)

n1/(p+q) (γ(x,y) − γ̂n(x,y))
d−→ Weibull

(
µp+q
H,0 , p+ q

)
.

These results establish that the FDH estimator γ̂n(x,y) of the hyperbolic distance func-

tion defined in (2.4) is consistent, converges at the rate n−1/(p+q), and asymptotically is

distributed Weibull, confirming the earlier speculation in footnote 9. Asymptotic results in

Daouia and Simar (2007) for the conditional α-quantile estimators can be extended to the

case of the hyperbolic quantile estimator γ̂α,n(x,y) by adapting their analysis to allow both

input and output quantities to be adjusted.

Theorem 4.2. For (x,y) ∈ P, α ∈ (0, 1], and for every ǫ > 0,

Pr (|γ̂α,n(x,y) − γα(x,y)| > ǫ) ≤ 2e−2nω2/(2−α)2 ∀ n ≥ 1 (4.14)
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where

ω = H
(
(γα(x,y) − ǫ)−1

x, (γα(x,y) − ǫ)y
)
. (4.15)

Theorem 4.2 implies that γ̂α,n(x,y) converges completely to γα(x,y), denoted by

γ̂α,n(x,y)
c−→ γα(x,y). Hence, γ̂α,n(x,y) is a strongly consistent estimator of γα(x,y).15

Theorem 4.3. In addition to Assumptions 3.1–3.4, assume H(γ−1
x, γy) is differentiable

with respect to γ near γ = γα(x,y). Then

√
n (γ̂α,n(x,y) − γα(x,y))

d−→ N
(
0, σ2

α(x,y)
)

(4.16)

where

σα(x,y)2 = α(1 − α)

[
∂H (γα(x,y)−1

x, γα(x,y)y)

∂γα(x,y)

]−2

. (4.17)

Thus, the estimator γ̂α,n(x,y) of the hyperbolic distance function γα(x,y) is asymptoti-

cally normal, with convergence at the classical, parametric rate of O
(
n−1/2

)
. Consequently,

the hyperbolic efficiency estimator γ̂α,n(x,y) does not suffer the ill-effects of the curse-of-

dimensionality that plagues DEA and FDH estimators, since its convergence rate depends

solely on the sample size n and involves neither p nor q. These results are not surprising,

given that similar results were obtained by Daouia and Simar (2007) for estimators of the

input and output conditional α-quantile distance functions defined in (3.7)–(3.8).

In principle, the asymptotic distributional results in (4.16)–(4.17) could be used for statis-

tical inference-making when γ̂α,n(x,y) is used to estimate γα(x,y) for α ∈ (0, 1). However,

this would require estimation of the derivative of the probability function H(·, ·), which

seems difficult. Alternatively, it is easy to implement a bootstrap procedure for purposes

of testing and inference. Since quantiles (rather than the boundary of the production set)

are estimated, a naive bootstrap based on resampling from the empirical distribution of the

inputs and outputs could be implemented for inference-making purposes. However, although

valid asymptotically, the naive bootstrap may result in poor coverages because of the dis-

crete nature of data in small samples. In Section 6 below we implement a smooth bootstrap

procedure that overcomes this problem.

15A sequence of random variables {ζn}∞n=1 converges completely to a random variable ζ, denoted by

ζn
c−→ ζ, if limn→∞

∑n

j=1
Pr (|ζj − ζ| ≥ ǫ) < ∞ ∀ ǫ > 0. This type of convergence was introduced by Hsu

and Robbins (1947). Complete convergence implies, and is a stronger form of convergence than almost-sure
convergence.
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Daouia and Simar (2007) show that for their conditional α-quantile distance function

estimators, letting α be a sequence in n and allowing α→ 1 as n→ ∞ allows their estimators

to be interpreted as robust estimators of distance to the full frontier P∂ , rather than of

distance to the conditional α-quantiles P∂
x,α and P∂

y,α. As shown next, similar results hold

for the hyperbolic α-quantile distance function estimator.

Lemma 4.1. Under Assumptions 3.2–3.4, for any (x,y) ∈ P,

n1/(p+q)
(
γ̂n(x,y) − γ̂α(n),n(x,y)

) a.s.−→ 0

as n→ ∞, where the order of α(n) > 0 is such that n(p+q+1)/(p+q)(1−α(n)) → 0 as n→ ∞.

Analogous to the decomposition given in Daouia and Simar (2007), it is clear that

n1/(p+q)
(
γ(x,y) − γ̂α(n),n(x,y)

)
= n1/(p+q) (γ̂(x,y) − γ̂n(x,y))

+n1/(p+q)
(
γ̂n(x,y) − γ̂α(n),n(x,y)

)
. (4.18)

Applying Lemma 4.1 and Corollary 4.1, part (ii) to (4.18) yields the following result.

Theorem 4.4. Under Assumptions 3.2–3.4 and with the order of α(n) > 0 such that

n(p+q+1)/(p+q)(1 − α(n)) → 0 as n→ ∞, for any (x,y) ∈ P,

n1/(p+q)
(
γ(x,y) − γ̂α(n),n(x,y)

) d−→ Weibull
(
µp+q
H,0 , p+ q

)

where µH,0 is a constant.

The constant µH,0 that appears here is the same as the one appearing in Theorem 4.1, and

as noted earlier, an expression for µH,0 is given in the Appendix.

To summarize, the results obtained in this section reveal that as with the conditional

α-quantile estimators of Daouia and Simar (2007), the unconditional, hyperbolic α-quantile

estimator has two interpretations—as an estimator of distance to a partial frontier (when

α is fixed), or as an estimator of distance to the full frontier (when α is a sequence in n of

appropriate order). In the first case, the estimator is root-n consistent and asymptotically

normal. In the latter case, the root-n convergence and asymptotic normality properties

in Theorem 4.3 are lost, and the curse of dimensionality re-appears. There are no free

lunches here. However, compared to the FDH estimator γ̂n(x,y) of γ(x,y), the estimator

γ̂α(n),n(x,y) will be far less sensitive to outliers. Moreover, under either interpretation, the

hyperbolic estimator avoids problem no. 3 listed near the end of Section 2.
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5 Federal Reserve Check Processing

We use the methods described above to examine the efficiency of Federal Reserve check-

processing operations. Roughly half of all checks written in the United States are cashed

or deposited at banks other than those upon which they are drawn. Many of these checks

are processed by the Federal Reserve, the world’s largest volume processor. In 2003, Federal

Reserve offices processed 15.8 billion checks (Board of Governors of the Federal Reserve

System, 2003, p. 118). Check volume has declined since 1999, when Federal Reserve offices

processed 17.1 billion checks, as electronic payments media have become increasingly popular.

The decline in volume has put considerable pressure on the Fed to reduce costs, and has

increased interest in the efficiency with which the Fed provides payments services. The

methods we propose could be used to rank offices in terms of efficiency and to help check

office managers identify peer offices whose operations they might wish to study for ideas

about how to improve the efficiency of their own facilities.

Recent studies of the Fed’s efficiency conclude that Federal Reserve check operations

suffer from considerable cost, or “x-”, inefficiency. Using quarterly data for 1979-90, and

both parametric and non-parametric methods, Bauer and Hancock (1993) found evidence

of considerable cost inefficiency at Fed check offices both before and after the Fed began to

charge for payments services in 1982. In a related study, Bauer and Ferrier (1996) found both

high average cost inefficiency and considerable dispersion of inefficiency across Fed offices

during 1990-94. Further, Bauer and Ferrier (1996) detected evidence of technological regress

in check processing during the early 1990s, which they associated with declining processing

volume at some sites, migration of “high-quality” check business (e.g., Social Security and

payroll checks) to electronic media, and the implementation of new check services (e.g.,

application of magnetic ink character recognition to paper checks).

Gilbert et al. (2004) used DEA to investigate the productivity of Fed check offices by

pooling observations across time and estimating a single production frontier for the entire

sample. That study found that the median Fed office became more productive during the

1990s, after experiencing a decline in productivity during the 1980s. The authors did not

investigate efficiency, however, because their sample size was too small to yield reliable

estimates of the production frontier for each period.
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Wheelock and Wilson (2004) applied the “order-m” estimator of Cazals et al. (2002)

to estimate the input-technical efficiency of Fed check offices. Unlike DEA, the order-m

estimator has a root-n convergence rate when used to estimate distance to a partial frontier,

and thus is useful for small sample applications. Wheelock and Wilson (2004) found evidence

of a small improvement in the efficiency of the median Fed office during the 1990s, but a

decrease in efficiency and increased dispersion across Fed offices during 2000-03. Wheelock

and Wilson (2004) did not compare efficiency levels across offices, nor identify relevant peer

groups for individual offices.

The processing of checks is a standard logistic operation. “Forward item” processing

involves receiving checks from depositing banks, sorting them, crediting the accounts of the

depositing banks, and delivering the checks to the banks upon which they are drawn. Some

Fed offices process Federal Government checks and postal money orders, as well as com-

mercial checks. Federal Reserve offices also process “return items” (which include checks

returned on account of insufficient funds) and provide various electronic check services, such

as imaging and truncation. Fed check offices also incur costs in making adjustments necessi-

tated by processing and other errors. Following the convention of other studies, e.g., Bauer

and Hancock (1993), Bauer and Ferrier (1996), Gilbert et al. (2004), and Wheelock and Wil-

son (2004), we focus here on the forward processing of commercial and Federal Government

check items.

Gilbert et al. (2004) and Wheelock and Wilson (2004) model Federal Reserve check

processing as consisting of two jointly-produced outputs measured by (i) the number of

forward items processed and (ii) the number of endpoints served. An endpoint is an office of

a depository institution to which a Fed office delivers checks. The number of endpoints is a

measure of the level of service provided by a check office — an office serving many endpoints,

all else equal, provides a higher level of service than an office serving fewer endpoints. In this

sense, check processing is analogous to the delivery of mail by a post office. The output of

a post office is not simply the number of items it delivers, but also the number of addresses

to which it delivers mail. Presumably, a post office that delivers mail to a single address

provides less service than a post office that delivers an identical quantity of mail to several
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addresses.16

Federal Reserve check facilities use a variety of inputs to process checks and deliver them

to paying banks. We follow Bauer and Hancock (1993) and subsequent studies by defining

four distinct categories of inputs used in the processing of forward items: (1) personnel, (2)

materials, software, equipment and support, (3) transit services, and (4) facilities. Estima-

tion of technical efficiency requires estimates of the physical quantities used of each input,

rather than total expenditures. Table 1 describes our method of constructing measures of

the four inputs for each Fed check office using expense data for forward items processing.

Our sample consists of quarterly data on all Fed offices that processed checks at any time

between 1980 and 2003. Offices that did not process in a particular quarter, or for which data

are unavailable, are omitted from estimation only for that quarter. Table 2 gives summary

statistics for both inputs and outputs observed in the third quarter of the first, middle and

ending years of our sample. Because of significant changes in the Fed’s accounting system

after 1994 and 2000, data and results are not directly comparable across the three periods

1980–1994, 1995–2000, and 2001–2003.

6 Estimation Results

First, we use the DEA and FDH estimators to estimate technical efficiency in both the input

and output orientations for each Fed check office in each period of our sample. We use

observations on every office operating in a given quarter (45–48 offices depending on the

quarter) to estimate the production frontier P∂ for that quarter. DEA estimates suggest a

moderate level of technical inefficiency among Fed check-processing offices over the period

of our study; in the input orientation, mean technical efficiency estimates for each of 95

quarters range from 1.0 to 1.431, with an overall mean of 1.118. Hence, we estimate an

average level of inefficiency of 11.8 percent. Results are similar in the output orientation:

mean inverse (output) technical efficiency estimates for each period range from 1.0 to 1.373,

with an overall mean of 1.071, implying an average level of inefficiency of 7.1 percent (here

and throughout, we report inverses of output-oriented efficiency estimates, so that in all

orientations, increasing values of efficiency estimates correspond to increasing inefficiency).

16Gilbert et al. (2004) present a statistical test of the hypothesis that the number of endpoints served by
a Fed check office constitutes a distinct output.
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By contrast, when we use the FDH estimator, we estimate average inefficiencies of 1.0170

and 1.019 in the input and output orientations, respectively, or less than 2 percent ineffi-

ciency. Recall that the DEA estimator of P defined in (2.6) is merely the convex hull of

the FDH estimator defined in (2.5). Hence the assumption of convexity accounts for ap-

proximately 75 percent of the apparent inefficiency detected by the DEA estimation. This

assumption might be reasonable, but its large impact on estimates of efficiency could give

one pause.

Our principal reason for doubting either the DEA or FDH efficiency estimates, however,

is the relatively small size of our sample and the slow convergence rates of the DEA and FDH

estimators. We simply have too few observations to obtain statistically meaningful estimates

of technical efficiency using either estimator. This is a common problem in applications;

however, in many cases the problem has been ignored.

The hyperbolic quantile estimator discussed in Section 3.2, by contrast, has a root-n

convergence rate when used to estimate distance to a partial frontier and, unlike DEA, does

not impose convexity. We use the estimator to obtain estimates of technical inefficiency

for every Fed office operating in each quarter. Of course, specific estimates depend on the

choice of α, which determines the location of the unique α–quantile frontier. In general, the

larger the value of α, the larger the estimates γ̂. Figure 3 plots our hyperbolic α-quantile

efficiency estimates for four values of α—0.8, 0.85, 0.9, and 0.95—against each other; each

panel compares estimates for a pair of values for α. The similar ranking of offices across

different values of α is reflected in the fact that most points fall on or near a straight line. For

α = 0.8, 0.85, or 0.9, the rankings are broadly similar, and somewhat similar for α = 0.95

Since our sample size is rather small (n = 44) the estimates begin to show some instability

as α approaches 1. At α = 0.95, only three observations (the original and two others)

will weakly dominate the projection of a particular observation onto the α-quantile frontier.

Similar results were obtained for other quarters represented in our data. As with the example

provided by Daouia and Simar (2007) using data on mutual funds to estimate conditional

α-quantile efficiencies, the results seem to be rather robust with respect to the choice of α.

Results for the third quarter of 2003, the last quarter in our sample, are presented in

Table 3, alongside corresponding DEA and FDH estimates for comparison. We have sorted

offices in order from most to least efficient according to point estimates of efficiency (γ̂) for
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α=0.9, and report both point estimates and 95-percent confidence intervals obtained using

a smooth bootstrap.17

Our estimates reveal considerable variation across offices in estimated efficiency. We

estimate that the most efficient office used just 34 percent of the input amount and produced

nearly three times (1/0.34) more output than an office (perhaps hypothetical) located on the

α=0.9 quantile frontier along a hyperbolic path from the first office. The least efficient office

in that quarter, by contrast, used 105.8 percent of the input and produced 100/1.0584 = 94.5

percent of the output produced by an office on the α-quantile frontier. The 95 percent

confidence intervals indicate that differences in efficiency estimates across many offices are

statistically significant.

We find a correspondence between the rankings of offices by α-quantile, DEA and FDH

efficiency estimates. In general, offices found to be least efficient, as indicated by input or

inverse output distance function estimates greater than 1.0, using either the DEA or FDH

estimators correspond to offices identified as least efficient by our quantile estimator. Many

of the DEA and FDH estimates for individual offices are equal to 1.0, however, indicating

that the office is located on the estimated frontier and, thus, estimated to have no inefficiency.

Across the 4,405 quarterly observations on Fed check offices, 50.1 percent of all DEA distance

function estimates and 88.2 percent of FDH estimates are equal to 1.0.18 Such large numbers

of DMUs located on the DEA and FDH frontiers reflects the relatively small size of our sample

as compared to the number of inputs and outputs in our check processing model. In contrast

to hyperbolic α-quantile estimation, DEA and FDH provide only a partial ordering of offices

17 In principle, since the boundary of support of f(x, y) is not estimated, a naive bootstrap (where
bootstrap samples are drawn from the empirical distribution function of the sample data) could be used
to construct confidence interval estimates. With very small samples, as in the present case, however, the
discrete nature of the observed data cause the naive bootstrap to yield bootstrap distributions that are
also discrete. Although the problem disappears asymptotically, using a smooth bootstrap, where pseudo
values γ∗

i are drawn from a kernel density estimate of the original distance function estimates γ̂α,n(xi, yi),
i = 1, . . . , n seems to give more sensible results. To implement the smooth bootstrap, each observation
(xi, yi) is projected onto the estimated α-quantile and then randomly projected away form the α-quantile
by computing (x∗

i , y
∗

i ) =
(
γ∗

i γ̂α,n(xi, yi)
−1

x, γ∗

i
−1γ̂α,n(xi, yi)y

)
for each i = 1, . . . , n. Then bootstrap

distance function estimates for each of the original sample observations are computed relative to the α-
quantile of the bootstrap data (x∗

i , y
∗

i ).
18The convexity assumption of the DEA estimator explains why there are fewer offices located on the DEA

frontier than on the FDH frontier. Because the FDH frontier necessarily lies above the α-quantile frontier,
the high percentage of offices located on the FDH frontier explains why the distance function estimates γ̂

are less than 1.0 for most offices.
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in terms of efficiency.19 Moreover, as noted above, although the quantile efficiency results

presented in Table 3 are for a value of α = 0.9, we obtained similar results for different values

of α.

Table 4 presents efficiency estimates for the 44 offices represented in Table 3 in the

same period, namely the third quarter of 2003. Table 4 contains 2 groups of three columns,

corresponding to α = 0.9 and α = 0.95; the three columns within each group give estimates of

the hyperbolic α-quantile distance function, the input conditional order-α quantile distance

function, and the inverse of the output conditional order-α quantile distance function. Hence,

for α = 0.9, the column labeled “γ̂α” in Table 4 is identical to the similarly labeled column in

Table 3. Comparing the hyperbolic estimates corresponding to the two values of α confirms

the impression from Figure 3; i.e., while there are some changes in the rankings, the results

obtained with the two values of α are broadly similar. However, when comparing either of the

sets of hyperbolic estimates with estimates of the input and output conditional α-quantile

estimates, one sees substantial differences. With α = 0.9, a number of the conditional

estimates are equal to unity, while an even greater number are equal to unity when α = 0.95.

Moreover, it is apparent that in many cases the conditional estimates are sensitive to the

choice of input or output orientation, as one might expect given the discussion in Section 2.

Figures 4–6 plot the mean, median and variance of hyperbolic α-quantile efficiency esti-

mates (with α = 0.9) across offices by quarter from 1980:1 to 2003:3. Similar to the findings

obtained by Gilbert et al. (2004) for productivity, and Wheelock and Wilson (2004) for

input-technical efficiency, our estimates indicate an increase in mean and median inefficiency

after Fed offices began to charge for payments services in 1982. Inefficiency continued to

increase until about 1990, then it declined until about 1993, and finally increased from the

mid-1990s through the end of our sample. Variation across offices was relatively high when

the pricing regime was first implemented, relatively low in the late 1990s, and then high

again during the period of declining volume after 1999.

19The failure of DEA and FDH to provide a complete ranking has long been noted in the literature.
Andersen and Petersen (1993) proposed a “super-efficiency” score, based on omitting the observation under
consideration from the reference set when computing a DEA efficiency score for a particular observation.
Although this approach provides a complete ranking, it confounds estimation and interpretation of the results
by implicitly assuming a different technology for each sample observation.

24



7 Policy Recommendations

The estimates reported in Table 3 and illustrated in Figures 4–6 indicate considerable vari-

ation across Federal Reserve offices in terms of technical efficiency. Because our methods

provide a ranking of offices in terms of efficiency, as well as an indication of whether differ-

ences across offices are statistically significant, System policymakers could use our estimator

to identify high- or low-performing offices that might require additional attention.

Managers of individual offices might find it more useful to use our methods to identify

high-performing peer offices with characteristics that are similar to those of the manager’s

own office. Such offices would probably be more relevant for the manager to study than

other high performing offices that operate at considerably different scale or mix of inputs

and outputs than the manager’s own office.

Recalling the example from Section 3.3, it is easy to use our quantile estimator to identify

relevant peers for comparison with a particular office. Peers consist of all offices that weakly

dominate in terms of efficiency the projection of a given office onto the α-quantile frontier.

Table 5 presents a list of peer offices for each Fed check processing site, where sites are

listed from most to least efficient based on estimation of the α=0.9 quantile using data for

2003:3, i.e., in the same order as in Table 3. Typically, the number of peers will equal

(1−α)n, i.e., (1−0.9)(44) = 4.4 offices. We identify five peers for three Fed offices, however,

because a few offices produce equal amounts of one output (number of endpoints). We also

list in the table the number of times a given office appears in the relevant peer group of other

offices. For example, #11 is among the peers for 16 offices. Not surprisingly, more efficient

offices tend to be in relevant peer groups more frequently than less efficient offices. Relatively

inefficient offices rarely dominate the projections of other offices onto the α-quantile frontier.

Our main policy recommendation is that policymakers and managers of entities such

as Federal Reserve check facilities use techniques such as those presented in this paper to

identify differences in performance across decision-making units and for choosing relevant

peer groups for individual DMUs. Although we focus exclusively on technical efficiency in

this paper, the methods proposed here could be applied easily to examine other types of

efficiency to obtain a more complete picture of performance. Used in this way, statistical

analysis can assist policymakers and managers of individual offices in identifying operations
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that merit more in-depth study, and help guide the allocation of scarce public resources.

8 Summary and Conclusions

This paper proposes a new unconditional quantile estimator for estimating the efficiency

of individual firms or offices that use a common set of inputs to produce a common set of

outputs. Like DEA and FDH estimators, our quantile estimator is fully non-parametric.

However, unlike DEA and FDH, our estimator is robust with respect to outliers in the data,

and when used to estimate distance to a partial frontier, is strongly consistent with the rapid

root-n convergence rate typical of parametric estimators.

Although our quantile estimator has some similarities with the conditional α quantile

estimators of Daouia (2003), Aragon et al. (2005) and Daouia and Simar (2007), we avoid

problems in comparing efficiency across DMUs of different sizes that arise with the use

of those estimators. Furthermore, our approach enables the identification of relevant peer

groups that managers of individual DMUs might study to learn how to improve their own

operations.

We apply our methods to study the efficiency of Federal Reserve System facilities that

process paper checks. Declining check volume has put considerable pressure on Fed offices to

reduce costs and inefficiencies, and has caused the Fed to eliminate check processing opera-

tions at some of its facilities. Further volume declines are anticipated, and thus policymakers

will likely be forced to consider further eliminations. The methods proposed here for esti-

mating efficiency could be used to help identify best practices as well as under-performing

offices. Although we examine only technical efficiency in this paper, our methods could also

be used to examine other types of efficiency, such as cost or scale efficiency, to obtain a more

complete picture of the performance of individual offices. Further, the methods are applica-

ble not only to investigating the efficiency of check processing operations, but to any setting

in which policymakers or operations managers are interested in evaluating the performance

of individual facilities or comparing performance across facilities within an organization.

A Appendix

The terms defined next are needed in the proofs of Lemma A.1 and Theorem 4.1.
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Definition A.1. For (x0,y0) ∈ P,

H(x0,y0) ≡ {(x,y) ∈ R
p+q
+ | x ≤ x0, y ≥ y0}

⋂
P, (A.1)

H0(ξ) ≡ H
(
x

∂
0(1 − ξ)−1, y

∂
0(1 − ξ)

)
for ξ > 0, (A.2)

(x∂
0 ,y

∂
0) ≡

(
γ(x0,y0)

−1
x0, γ(x0,y0)y0

)
∈ P∂ . (A.3)

Definition A.2.

g1 ≡
p∏

k=1

∂

∂xk
g(x,y(q))|

(x,y(q))=(x∂
0 ,y

∂(q)
0 )

q∏

ℓ=1

∂

∂yℓ
g(x,y(q))|

(x,y(q))=(x∂
0 ,y

∂(q)
0 )

, (A.4)

x0 ≡
p∑

k=1

∂

∂xk
g(x,y(q))|

(x,y(q))=(x∂
0 ,y

∂(q)
0 )

x∂k
0 , (A.5)

y0 ≡
q−1∑

ℓ=1

∂

∂yℓ
g(x,y(q))|

(x,y(q))=(x∂
0 ,y

∂(q)
0 )

yℓ
0 + yq

0, (A.6)

µH,0 ≡
(
f0

|g1|
xp

0y
q
0

(p+ q)!

)1/(p+q)

. (A.7)

The following lemma is an analog to Lemma A.3 in Park et al. (2000), and is needed for

the proof of Theorem 4.1.

Lemma A.1. For any sequence ξ that goes to zero,

ρH,0(ξ) = (µH,0ξ)
p+q +O

(
ξp+q+1

)
.

Proof. By Assumption 3.3,

ρH,0(ξ) = f0 +O(ξ))L[H0(ξ)
⋂

P] (A.8)

where f0 = f(x∂
0 ,y

∂
0) and L denotes the Lebesgue measure. Since (x,y) ∈ P iff y

q ≤
g(x,y(q)),

L[H0(ξ)
⋂

P] =

∫

Ω

I
(
yq ≤ g(x,y(q)

)
dx dy

where I(·) is the indicator function and Ω = (−∞,x∂
0(1 − ξ)−1] × [y∂

0(1 − ξ),∞). Let

d0(x,y) =
(
(x − x

∂
0), (y − y

∂
0)

(q)
)

and ∇g0 = ∇g(x∂
0 ,y

∂(q)
0 ). Note g(x∂

0 ,y
∂(q)
0 ) = y∂q

0 and

‖d0(x,y)‖ = O(ξ) for any (x,y) ∈ H0(ξ)
⋂P. By Assumption 3.4,

g(x,y(q)) = y∂q
0 + ∇g′0d0(x,y) +O(ξ2).
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Hence

L[H0(ξ)
⋂

P] =

∫

Ω

I
[
∇g′0d0(x,y) ≥ yq − y∂q

0 +O(ξ2)
]
dx dy. (A.9)

Now transform the coordinate system by shifting the origin to
(
x

∂
0(1 − ξ)−1, y

∂
0(1 − ξ)

)

and reversing the direction of the input axes; in addition, rescale the axes by the absolute

values of the corresponding partial derivatives. In order to maintain an additive struc-

ture, let 1 − ξ = 1 + η ≥ 1 for ξ > 0, implying η = ξ
1−ξ

> 0 and O(ξ) = O(η).

Specifically, (i) transform yℓ to ỹℓ = | ∂
∂yℓ g(x,y

(q))|
(x,y(q))=(x∂

0 ,y
∂(q)
0 )

(
yℓ − y∂ℓ(1 − ξ)

)
∀ 1 ≤

ℓ ≤ q − 1; (ii) transform yq to ỹq = yq − y∂q
0 (1 − ξ); and (iii) transform xk to x̃k =

∂
∂xk g(x,y

(q))|(x,y(q))

(
x∂k(1 + η) − xk

)
∀ 1 ≤ k ≤ p (note that in the right-hand side of

the last expression, the xk axis has been “flipped,” so that the orientation of x̃k is opposite

that of xk). Then (A.9) can be rewritten as

L[H0(ξ)
⋂

P] = |g1|−1

∫

[0,∞)p+q

I

[
p∑

k=1

x̃k +

q∑

ℓ=1

ỹℓ ≤ ξ(y0 + (1 − ξ)−1x0 +O(ξ))

]
dx̃ dỹ

(A.10)

where expressions for g1, x0, and y0 are given in Definition A.2.

The integral in (A.11) is the volume of a (p+q)-dimensional simplex with edges of length

ξ(y0 + (1− ξ)−1x0 +O(ξ)), or equivalently, ξ(y0 +O(ξ)) + ηx0. The result follows from this

and (A.8).

Proof of Theorem 4.1. Consider (x0,y0) ∈ P and let γ0 = γ(x0,y0) and γ̂n = γ̂n(x0,y0).

By construction, γ0 ≥ γ̂0 and hence Pr(γ0 − γ̂0 ≤ ǫ) = 0 ∀ ǫ ≤ 0. For ǫ > 0, necessarily

Pr(γ0 − γ̂0 ≤ ǫ) = Pr(−γ̂0 ≤ ǫ− γ0)

= Pr(γ̂0 ≥ γ0 − ǫ)

= 1 − Pr(γ̂0 < γ0 − ǫ)

= 1 − Pr(ω(n) < γ0 − ǫ)

= 1 −
[
Pr(ω(i) < γ0 − ǫ)

]n
(A.11)

due to Assumption 3.2. The right-hand side of the last expression converges to unity as

n→ ∞ for any ǫ > 0, and hence γ̂0 is weakly consistent.

For an arbitrarily small ǫ > 0, rewrite (A.11) as

Pr(γ0 − γ̂0 ≤ ǫ) = 1 −
[
1 − Pr

(
xi ≤ x0(γ0 − ǫ)−1 and yi ≥ y0(γ0 − ǫ)

)]n
. (A.12)
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Let x0(γ0 − ǫ)−1 = x
∂
0(1 − ξ)−1 and y0(γ0 − ǫ) = y

∂
0(1 − ξ); clearly, ξ > 0 for ǫ > 0. The

probability expression on the right-hand side of (A.12) is related to the set H0(ξ) given in

Definition A.1.

Let ρH,0(ξ) = Pr ((xi,yi) ∈ H0(ξ)). Similar to the reasoning in Park et al. (2000), this

probability contains all information about the distribution of γ̂0; moreover, ρH,0(ξ) depends

on the density f and the curvature of g. The distance γ0−γ̂0 goes to 0 as n→ ∞; hence, only

the properties of f and g in a neighborhood of (x∂
0 ,y

∂
0) are needed to derive the asymptotic

distribution of Pr(γ0 − γ̂0 ≤ ǫ).

Analogous to the reasoning in Park et al. (2000), consider an arbitrarily small ξ. Locally,

g is linear and f is constant. Hence, H0(ξ) may be approximated by a (p + q)-dimensional

simplex where the angles depend on the partial derivatives of g at (x∂
0 ,y

∂
0), and ρH,0(ξ) is

approximately proportional to ξp+q.

To obtain a sequence ξ in terms of the sample size n, define ξ = n−1/(p+q)ǫ for any ǫ > 0.

Since lim
n→∞

(
1 − ρ

n

)n

= e−ρ, the theorem follows from (A.11) and Lemma A.1.

Proof of Theorem 4.2. Let ǫ > 0. Then

Pr (|γ̂α,n(x,y) − γα(x,y)| > ǫ) = Pr (γ̂α,n(x,y) > γα(x,y) + ǫ)

+ Pr (γ̂α,n(x,y) < γα(x,y) + ǫ) .

Note that for γ̂α,n(x,y) (≷) γ, the fact that H(x,y) is monotone nondecreasing with x

and monotone nonincreasing with y implies Ĥ(γ−1
x, γy) (≷) 1 − α. Let

Ṽi = I
(
xi ≤ (γα(x,y) + ǫ)−1

x,yi ≥ (γα(x,y) + ǫ) y
)
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and Vi = Ṽi − (1 − α). Then

Pr
[
γ̂α,n(x,y) > γα(x,y) + ǫ

]

≤ Pr
[
Ĥ
(
(γα(x,y) + ǫ)−1

x, (γα(x,y) + ǫ)y
)
> 1 − α

]

= Pr

[
n−1

n∑

i=1

Ṽi > 1 − α

]

= Pr

[
n∑

i=1

Vi > 0

]

= Pr

[
n∑

i=1

Vi −
n∑

i=1

E(Vi) > nω1

]
,

where ω1 = −E(V1); the last step holds due to independent sampling. By definition,

Pr(α − 1 ≤ Vi ≤ 1) = 1 ∀ i = 1, . . . , n. Using Hoeffding’s (1963, Theorem #2) inequality

gives

Pr [γ̂α,n(x,y) > γα(x,y) + ǫ] ≤ e−2nω2
1/(2−α)2 . (A.13)

Similarly, let

W̃i = I
(
xi ≤ (γα(x,y) − ǫ)−1

x,yi ≥ (γα(x,y) − ǫ) y
)

and Wi = W̃i − (1 − α). Then

Pr
[
γ̂α,n(x,y) < γα(x,y) + ǫ

]

≤ Pr
[
Ĥ
(
(γα(x,y) + ǫ)−1

x, (γα(x,y) + ǫ)y
)
> 1 − α

]

= Pr

[
n−1

n∑

i=1

W̃i ≤ 1 − α

]

= Pr

[
n∑

i=1

Wi ≤ 0

]

= Pr

[
n∑

i=1

Wi −
n∑

i=1

E(Wi) ≤ nω2

]
,

where ω2 = −E(W1). Again using Hoeffding’s inequality,

Pr [γ̂α,n(x,y) < γα(x,y) − ǫ] ≤ e−2nω2
2/(2−α)2 . (A.14)

The result in (4.14) is obtained by setting ω = min{ω1, ω2}.
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To obtain the result in (4.15), note

ω1 = −E(V1)

= −E
[
I
(
x1 ≤ (γα(x,y) + ǫ)−1

x,y1 ≥ (γα(x,y) + ǫ) y
)
− (1 − α)

]

= (1 − α) −H
(
(γα(x,y) + ǫ)−1

x, (γα(x,y) + ǫ) y
)
,

and

ω2 = −E(W1)

= −E
[
I
(
x1 ≤ (γα(x,y) − ǫ)−1

x,y1 ≥ (γα(x,y) − ǫ) y
)
− (1 − α)

]

= (1 − α) −H
(
(γα(x,y) − ǫ)−1

x, (γα(x,y) − ǫ) y
)
.

Also note that

−H
(
(γα(x,y) + ǫ)−1

x, (γα(x,y) + ǫ) y
)
≤ −H

(
(γα(x,y) − ǫ)−1

x, (γα(x,y) − ǫ) y
)

for any ǫ > 0. Hence ω1 ≥ ω2 and ω = min{ω1, ω2} = ω2.

Proof of Theorem 4.3. Define random variables

Vn =
√
n (γ̂α,n(x,y) − γα(x,y)) (A.15)

and

Wi = (1 − α) − I
(
xi ≤ γα(x,y)−1

x,yi ≥ γα(x,y)y
)
. (A.16)

Clearly, E(Wi) = (1 − α) − H (xi ≤ γα(x,y)−1
x,yi ≥ γα(x,y)y) = (1 − α) − (1 − α) = 0

and

VAR(Wi) = E(W 2
i )

= E
[
(1 − α)2 + I

(
xi ≤ γα(x,y)−1

x,yi ≥ γα(x,y)y
)2

−2(1 − α)I
(
xi ≤ γα(x,y)−1

x,yi ≥ γα(x,y)y
) ]

= (1 − α)2 + (1 − α) − 2(1 − α)2

= α(1 − α).

Define

Wn =
1√

nG′(γα(x,y))

n∑

i=1

Wi. (A.17)
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Then

VAR(Wn) =
1

nG′(γα(x,y))2
× nVAR(Wi)

=
α(1 − α)

G′(γα(x,y))2
.

By the Lindeberg-Levy central limit theorem, Wn
d−→ N(0, σ2

α(x,y)) where

σ2
α(x,y) = α(1 − α)G′(γα(x,y))−2.

Now define Rn = Vn−Wn. It suffices to show that Rn
p−→ 0. By definition, γ̂α,n(x,y) ≥ γ

iff Ĥ(γ−1
x, γy) > (1 − α) for (x,y) ∈ P. Then for any real t,

Vn ≥ t ⇔
√
n (γ̂α,n(x,y) − γα(x,y)) ≥ t

⇔ γ̂α,n(x,y) ≥ −γα(x,y) +
t√
n

⇔ Ĥ

((
γα(x,y) +

t√
n

)−1

x,

(
γα(x,y) +

t√
n

)
y

)
> 1 − α

⇔ Zt,n > Tn (A.18)

where

Tt,n =

√
n

G′(γα(x,y))

[
G

(
γα(x,y) +

t√
n

)
− (1 − α)

]
,

Zt,n =

√
n

G′(γα(x,y))

[
G

(
γα(x,y) +

t√
n

)

−Ĥ
((

γα(x,y) +
t√
n

)−1

x,

(
γα(x,y) +

t√
n

)
y

)]
.

Recall that G′(γ) < 0; using the definition of the first derivative of a function, it is clear

that

G

(
γα(x,y) +

t√
n

)
− (1 − α) =

t√
n
G′
(
γα(x,y) +

t√
n

)
+

t√
n
o(1). (A.19)

Then by (A.19),

Tt,n
p−→ t as n→ ∞. (A.20)
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Turning to Zt,n, it is clear that E(Zt,n) = 0 and hence E(Zt,n−Wn) = 0 since E(Wn) = 0.

Therefore VAR((Zt,n −Wn) = E [(Zt,n −Wn)2]. Note that

Zt,n =

√
n

G′(γα(x,y))

[
G

(
γα(x,y) +

t√
n

)
−

1

n

n∑

i=1

I

(
xi ≤

(
γα(x,y) +

t√
n

)−1

x,yi ≥
(
γα(x,y) +

t√
n

)
y

)]

=

√
n

G′(γα(x,y))

1

n

n∑

i=1

[
G

(
γα(x,y) +

t√
n

)

I

(
xi ≤

(
γα(x,y) +

t√
n

)−1

x,yi ≥
(
γα(x,y) +

t√
n

)
y

)]
. (A.21)

In addition, from the definition of Wn in (A.17) and the definition of Ĥ(·, ·),

Wn =

√
n

G′(γα(x,y))

1

n

n∑

i=1

[
(1 − α) − I

(
xi ≤ γα(x,y)−1

x,yi ≥ γα(x,y)y
)]
. (A.22)

Then

VAR(Zt,n −Wn) =
n

G′(γα(x,y))2
× VAR

(
1

n

n∑

i=1

Ai

)

where

Ai = G

(
γα(x,y) +

t√
n

)

−I
(

xi ≤
(
γα(x,y) +

t√
n

)−1

x,yi ≥
(
γα(x,y) +

t√
n

)
y

)

−(1 − α) + I
(
xi ≤ γα(x,y)−1

x,yi ≥ γα(x,y)y
)
.
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Clearly, E(Ai) = 0; hence VAR(Ai) = E (A2
i ). Denote γα(x,y) by γα. Then

A2
i = G

(
γα +

t√
n

)2

−2G

(
γα +

t√
n

)
I

(
xi ≤

(
γα +

t√
n

)−1

x,yi ≥
(
γα +

t√
n

)
y

)

−2(1 − α)G

(
γα +

t√
n

)

+2G

(
γα +

t√
n

)
I
(
xi ≤ γ−1

α x,yi ≥ γαy
)

+I

(
xi ≤

(
γα +

t√
n

)−1

x,yi ≥
(
γα +

t√
n

)
y

)

−2(1 − α)G

(
γα +

t√
n

)

+2(1 − α)I

(
xi ≤

(
γα +

t√
n

)−1

x,yi ≥
(
γα +

t√
n

)
y

)

−2(1 − α)G

(
γα +

t√
n

)

−2(1 − α)I

(
xi ≤

(
γα +

t√
n

)−1

x,yi ≥
(
γα +

t√
n

)
y

)

−2I
(
xi ≤ (γα + ζ)−1

x,yi ≥ (γα + ζ)y
)

+(1 − α)2

−2(1 − α)I
(
xi ≤ γ−1

α x,yi ≥ γαy
)

+I
(
xi ≤ γ−1

α x,yi ≥ γαy
)

where ζ = max
(
0, t√

n

)
.

Taking expectations,

E
(
A2

i

)
= G

(
γα(x,y) +

t√
n

)2

+ [1 + 2(1 − α)]G

(
γα(x,y) +

t√
n

)

−2G (γα(x,y) + ζ)

−(1 − α)2 + (1 − α).
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Since lim
n→∞

E
(
A2

i

)
= 0, E (Zt,n −Wn)2 → 0 as n→ ∞ and hence

(Zt,n −Wn)
p−→ 0 as n→ ∞. (A.23)

Ghosh (1971, lemma 1) gives two conditions that are sufficient for Rn
p−→ 0:

(i) ∀ δ > 0, ∃ a λ such that Pr(|Wn| > λ) < δ; and

(ii) ∀ k and ∀ ǫ > 0,

lim
n→∞

Pr (Vn ≥ k + ǫ, Wn ≤ k) = 0, (A.24)

lim
n→∞

Pr (Vn < k, Wn ≥ k + ǫ) = 0. (A.25)

Condition (i) follows trivially from the Bienaymé-Chebyshev inequality (e.g., see Stuart and

Ord, 1994, p. 113) whenever λ is chosen to satisfy λ2 > σ2
α(x,y)δ−1. In addition, for any k

and any ǫ > 0, set t = k + ǫ; then by (A.18),

Pr (Vn ≥ k + ǫ, Wn ≤ k) = Pr (Zt,n > Tt,n, Wn ≤ t− ǫ)

= Pr (|(Zt,n −Wn) − (Tt,n − t)| ≥ ǫ) .

Then (A.24) follows from (A.20) and (A.23).

Setting t = k and applying similar reasoning leads to the result in (A.25). Hence Rn
p−→ 0

by lemma 2 of Ghosh (1971). Therefore Vn has the same limiting distribution as Wn.

Proof of Lemma 4.1. From (3.13),

γ̂n(x,y) − γ̂α(n),n(x,y) = (ω(n) − ω(α(n)n))I(α(n)n ∈ N)

+(ω(n) − ω([α(n)n]+1))I(α(n)n 6∈ N).

Let Cx,y,k(n) =
ω(n)−ω(k)

1−n−1k
∀ k ∈ {1, . . . , n− 1} and Cx,y(n) = max

k∈{1, ..., n−1}
Cx,y,k(n). Then

(ω(n) − ω(α(n)n))I(α(n)n ∈ N)

≤ Cx,y(n)(1 − α(n))I(α(n)n ∈ N), (ω(n) − ω([α(n)n]+1))I(α(n)n 6∈ N)

≤ Cx,y(n)(1 − α(n))I(α(n)n 6∈ N).

Hence n1/(p+q)(γ̂n(x,y)− γ̂α(n),n(x,y)) ≤ n1/(p+q)Cbx,y(n)(1−α(n)). Since by Assumptions

3.2 and 3.3 the support of (x,y) is bounded, there exists a constant Mxy > 0 such that
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ωi ≤ Mxy almost surely, for any i = 1, . . . , n. Therefore ω(n) − ω(k) ≤ ωn) ≤ Mxy almost

surely, for any k = 1, . . . , n − 1. Since 1
1−n−1k

≤ n (provided n ≥ 2), Cx,y(n) ≤ Mxyn

almost surely. Hence

n1/(p+q)(γ̂n(x,y) − γ̂α(n),n(x,y)) ≤ n1/(p+q)Mxyn(1 − α(n))

= Mxyn
(p+q+1)/(p+q)(1 − α(n))

almost surely. The lemma follows after applying the strong law of large numbers.
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Table 1: Definitions and Measurement of Inputs

1. Personnel—number of employee work hours.

2. Materials, Software, Equipment and Support—expenditures are deflated by the follow-
ing price measures:

• Materials: Consumer Price Index (CPI) (n.s.a, 2000=100)

• Software: private nonresidential fixed investment deflator for software (n.s.a.,
2000=100)

• Equipment: for 1979–1989, PPI for check-handling machines; for 1990–2003, PPI
for the net output of select industries-office machines, n.e.c. (n.s.a., 2000=100)

• Other Support: CPI (n.s.a., 2000=100)

3. Transit—expenditures for shipping, travel, communications, and data communications
support deflated by the following price measures:

• Shipping and Travel: private nonresidential fixed investment deflator for aircraft
(n.s.a., 2000=100).

• Communications and Communications Support: private nonresidential fixed in-
vestment deflator for communications equipment (n.s.a., 2000=100).

4. Facilities—expenditures on facilities support deflated by the following price index:
“Historical Cost Index” from Means Square Foot Costs Data 2000 (R.S. Means Com-
pany: Kingston, MA), pp. 436-442. Data are January values.

Sources: Federal Reserve Planning and Control System documents unless otherwise noted.
Additional details are available from the authors.
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Table 2: Summary Statistics for Inputs and Outputs

1980:3 1992:3 2003:3
Inputs:

labor 43438.5 33525.3 25994.5
33503.7 22121.1 15698.1

materials 2007.9 1694.9 2373.5
1321.8 1023.9 1252.2

facilities 644.9 714.6 919.6
585.1 475.7 572.8

transit 1906.3 1281.4 492.3
1287.9 701.7 301.8

Outputs:

checks 84325.1 84896.5 97909.7
52406.7 46057.8 49676.4

endpts 399.8 430.1 307.8
296.3 303.6 164.9

NOTE: Each entry gives sample mean (top) and sample standard deviation (bottom).
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Table 3: Hyperbolic Quantile, DEA, and FDH Efficiency Estimates, 2003:3, α = 0.9

95% CI input (inverse) output

site bγα bγlo bγhi DEA FDH DEA FDH
1 0.3427 0.3045 0.4340 1.0000 1.0000 1.0000 1.0000
2 0.4122 0.3773 0.5638 1.0000 1.0000 1.0000 1.0000
3 0.4886 0.4493 0.6369 1.0000 1.0000 1.0000 1.0000
4 0.5190 0.4809 0.6920 1.0000 1.0000 1.0000 1.0000
5 0.5395 0.5043 0.6847 1.0000 1.0000 1.0000 1.0000
6 0.5411 0.5044 0.6736 1.0000 1.0000 1.0000 1.0000
7 0.5514 0.5131 0.7146 1.0000 1.0000 1.0000 1.0000
8 0.5675 0.5287 0.7385 1.0000 1.0000 1.0000 1.0000
9 0.5733 0.5035 0.7315 1.0000 1.0000 1.0000 1.0000

10 0.5817 0.5291 0.7021 1.0000 1.0000 1.0000 1.0000
11 0.5908 0.5572 0.7251 1.0000 1.0000 1.0000 1.0000
12 0.5979 0.5691 0.7277 1.0000 1.0000 1.0000 1.0000
13 0.6396 0.5808 0.8226 1.0000 1.0000 1.0000 1.0000
14 0.6551 0.6019 0.7841 1.0000 1.0000 1.0000 1.0000
15 0.6675 0.5964 0.7506 1.0000 1.0000 1.0000 1.0000
16 0.6719 0.6253 0.8308 1.0000 1.0000 1.0000 1.0000
17 0.6845 0.6338 0.8499 1.0936 1.0000 1.1094 1.0000
18 0.6916 0.6297 0.8223 1.1498 1.0000 1.2191 1.0000
19 0.6922 0.6406 0.8506 1.0027 1.0000 1.0021 1.0000
20 0.7024 0.6416 0.8555 1.0000 1.0000 1.0000 1.0000
21 0.7206 0.6137 0.7685 1.0236 1.0000 1.0220 1.0000
22 0.7208 0.6486 0.8219 1.0000 1.0000 1.0000 1.0000
23 0.7271 0.6333 0.8303 1.0000 1.0000 1.0000 1.0000
24 0.7608 0.6864 0.8945 1.1173 1.0000 1.1038 1.0000
25 0.7867 0.7696 0.9923 1.0000 1.0000 1.0000 1.0000
26 0.7892 0.7397 0.9928 1.0000 1.0000 1.0000 1.0000
27 0.8000 0.7178 0.8910 1.1414 1.0000 1.1186 1.0000
28 0.8069 0.7527 1.0136 1.1943 1.0133 1.1488 1.0445
29 0.8101 0.6822 0.8416 1.0541 1.0000 1.0500 1.0000
30 0.8108 0.7256 0.9825 1.0164 1.0000 1.0148 1.0000
31 0.8164 0.7360 0.9373 1.0431 1.0000 1.0337 1.0000
32 0.8204 0.7283 0.9177 1.0061 1.0000 1.0057 1.0000
33 0.8228 0.6964 0.8981 1.0336 1.0000 1.0302 1.0000
34 0.8424 0.7745 0.9901 1.2330 1.0000 1.2137 1.0000
35 0.8477 0.7733 1.0261 1.2852 1.2520 1.2045 1.0212
36 0.8523 0.7652 0.9488 1.2074 1.0473 1.1783 1.0767
37 0.8844 0.7571 0.9336 1.3973 1.0000 1.2898 1.0000
38 0.8872 0.7182 0.8996 1.2957 1.0000 1.2726 1.0000
39 0.9163 0.7922 0.9870 1.4814 1.0000 1.3214 1.0000
40 0.9182 0.8345 1.0233 1.4881 1.0927 1.3659 1.0942
41 0.9226 0.8334 1.0309 1.3026 1.0173 1.2694 1.0753
42 0.9295 0.8437 1.0911 1.4955 1.1647 1.3822 1.1880
43 1.0253 0.9183 1.1456 1.8164 1.3685 1.5788 1.3514
44 1.0584 0.9034 1.1580 2.2161 1.2831 2.0276 1.5150

NOTE: Output-oriented DEA and FDH efficiency estimates are reported as reciprocals of
Shephard output distance function estimators to facilitate comparisons; i.e., increasing values
correspond to increasing inefficiency. The column labeled γ̂α gives estimates of the hyperbolic
α-quantile distance function defined in (3.4, while the columns labeled γ̂lo and γ̂hi give bounds
of confidence intervals estimated using the bootstrap procedure described in footnote 17.
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Table 4: Hyperbolic Quantile, Input- and (Inverse) Output-Conditional Quantile Efficiency
Estimates, 2003:3, α = 0.9, 0.95

α = 0.9 α = 0.95

site bγα
bθα 1/bλα bγα

bθα 1/bλα

1 0.3427 0.3359 1.0000 0.4409 0.3377 1.0000
2 0.4122 0.4039 1.0000 0.4464 1.0000 1.0000
3 0.4886 0.4336 1.0000 0.6575 0.6575 1.0000
4 0.5190 1.0000 0.5031 0.5469 1.0000 0.6109
5 0.5395 0.5395 1.0000 0.7606 0.8000 1.0000
6 0.5411 0.6283 1.0000 0.5575 1.0000 1.0000
7 0.5514 1.0000 0.4759 0.5733 1.0000 0.5733
8 0.5675 1.0000 0.5258 0.6117 1.0000 0.5675
9 0.5733 0.5733 1.0000 0.6894 0.6894 1.0000

10 0.5817 0.5063 1.0000 0.6021 0.6021 1.0000
11 0.5908 1.0000 1.0000 0.5950 1.0000 1.0000
12 0.5979 1.0000 1.0000 0.6849 1.0000 1.0000
13 0.6396 1.0000 0.6014 0.6744 1.0000 1.0000
14 0.6551 0.4625 1.0000 0.6851 1.0000 1.0000
15 0.6675 0.5756 1.0000 0.6871 1.0000 1.0000
16 0.6719 1.0000 0.6567 0.7494 1.0000 0.7494
17 0.6845 0.9068 1.0000 0.7243 1.0000 1.0000
18 0.6916 0.6916 1.0000 0.9070 0.9070 1.0000
19 0.6922 0.6922 1.0000 0.7590 1.0000 1.0000
20 0.7024 0.6916 1.0000 0.7986 0.7024 1.0000
21 0.7206 0.8357 1.0000 0.7672 1.0000 1.0000
22 0.7208 1.0000 0.6819 0.7971 1.0000 0.8301
23 0.7271 1.0000 0.6589 0.7388 1.0000 1.0000
24 0.7608 0.6666 1.0000 0.7976 0.7976 1.0000
25 0.7867 0.7547 0.8552 0.8187 0.7560 1.0000
26 0.7892 1.0000 0.7466 0.8471 1.0000 0.7892
27 0.8000 1.0000 0.7703 0.8344 1.0000 1.0000
28 0.8069 1.0133 0.8670 0.9358 1.0133 1.0000
29 0.8101 0.8683 1.0000 0.8619 1.0000 1.0000
30 0.8108 0.7736 1.0000 0.8737 0.7753 1.0000
31 0.8164 1.0000 0.8164 0.9249 1.0000 0.8287
32 0.8204 0.6560 1.0000 0.9099 0.7117 1.0000
33 0.8228 0.7868 1.0000 0.8271 0.8230 1.0000
34 0.8424 0.8424 0.8436 0.8436 1.0000 1.0000
35 0.8477 1.2520 0.9150 0.9822 1.2520 1.0000
36 0.8523 1.0473 0.8523 0.8823 1.0473 1.0000
37 0.8844 1.0000 0.9372 0.9372 1.0000 0.9523
38 0.8872 0.8666 1.0000 0.9085 0.8929 1.0000
39 0.9163 0.9443 0.9163 0.9443 0.9904 1.0000
40 0.9182 1.0012 1.0000 1.0000 1.0927 1.0345
41 0.9226 1.0000 0.7978 0.9886 1.0173 1.0000
42 0.9295 1.0000 0.9759 0.9759 1.1647 1.0000
43 1.0253 1.3088 1.0757 1.0757 1.3685 1.3095
44 1.0584 1.1063 1.4815 1.1188 1.2199 1.5150

NOTE: Hyperbolic α-quantile distance function estimates are shown in the columns labeled
γ̂α for each office. Offices are sorted by the value of these estimates for α = 0.9 as in Table 3.

Columns labeled θ̂α and 1/λ̂α give estimates for the conditional input- and output-α-quantile
distance functions; reciprocals of the output-oriented estimates are given so that in all cases,
increasing values correspond to increasing inefficiency.
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Table 5: Weak Dominance Relationships, 2003:3, α = 0.9

# times
site relevant peers relevant

1 3 5 10 18 0
2 3 6 10 17 10
3 5 6 15 18 7
4 7 8 16 23 2
5 2 3 18 21 4
6 9 15 19 21 9
7 4 16 22 35 2
8 4 7 12 16 1
9 3 6 15 19 5

10 5 14 18 24 3
11 9 15 17 19 16
12 11 17 19 22 6
13 11 22 23 27 4
14 2 21 29 33 4
15 2 6 19 21 14
16 12 23 31 37 4
17 9 11 15 39 9
18 2 3 5 21 4
19 9 11 15 29 11
20 3 14 24 33 1
21 2 6 15 38 11
22 11 12 23 36 10
23 11 13 22 27 11
24 10 14 21 30 3
25 15 29 32 34 0
26 11 22 23 31 0
27 11 17 19 23 4
28 11 12 22 37 0
29 2 6 15 21 5
30 2 3 21 33 1
31 11 13 23 27 2
32 6 15 29 38 2
33 2 15 20 21 4
34 9 15 19 32 1
35 11 12 16 22 1
36 11 13 17 19 22 2
37 11 12 22 36 2
38 2 6 15 21 3
39 15 29 33 38 1
40 13 17 19 23 0
41 11 17 23 27 0
42 11 17 19 23 0
43 11 17 19 22 23 0
44 2 6 14 21 24 0
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Figure 1: Conditional Input, Conditional Output, and Hyperbolic Quantile Frontiers
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Figure 2: Example Illustrating DEA and Hyperbolic α-Quantile Estimators

0 2 4 6 8 10

0
2

4
6

8
10

 

x

y

46



Figure 3: Hyperbolic Graph Efficiency Estimates, 2003:3
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Figure 4: Mean Hyperbolic Graph Efficiency Estimates
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Figure 5: Median Hyperbolic Graph Efficiency Estimates

period

m
ed

ia
n

1980:1 1985:1 1990:1 1995:1 2000:1 2003:3

0.
66

0.
68

0.
70

0.
72

0.
74

0.
76

49



Figure 6: Variance of Hyperbolic Graph Efficiency Estimates
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