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CONDITIONAL HETEROSCEDASTICITY IN QUALITATIVE
RESPONSE MODELS OF TIME SERIES: A GIBBS SAMPLING

APPROACH TO THE BANK PRIME RATE

August 1998

Abstract

Previous time series applications of qualititative response models have ignored features

of the data, such as conditional heteroscedasticity, that are routinely addressed in time-series

econometrics of financial data. This article addresses this issue by adding Markov-switching

heteroscedasticity to a dynamic ordered probit model of discrete changes in the bank prime

lending rate and estimating via the Gibbs sampler. The dynamic ordered probit model of

Eichengreen, Watson and Grossman (1985) allows for serial autocorrelation in probit analysis of

a time series, and the present article demonstrates the relative simplicity ofestimating a dynamic

ordered probit using the Gibbs sampler instead of the Eichengreen et al. maximum-likelihood

procedure. In addition, the extension to regime-switching parameters and conditional

heteroscedasticity is easy to implement under Gibbs sampling. The article compares tests of

goodness of fit between dynamic ordered probit models of the prime rate that have constant

variance and conditional heteroscedasticity.
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Introduction

Early applications of qualitative response models, e.g., logits and probits, dealt exclu-

sively with cross-sectional data [Goldberger (1964)]. In discrete-choice models of a cross

section of individuals, a maintained assumption is that each individual’s random utility

shock is an independent draw from the population distribution. Qualitative-response mod-

els have also become popular for time series such as business recessions, financial crises

and interest-rate changes [Estrella and Mishkin (1997); Frankel and Rose (1996); Bernard

and Gerlach (1996); Eichengreen, Rose and Wyplosz (1995); Davutyan and Parke (1995)].

Yet insufficient attention has been given in this literature to the dependent nature of time

series, in both first and second moments. Serial dependence in the mean has been ad-

dressed in the dynamic probit model of Eichengreen, Watson and Grossman (1985) and in

the autoregressive conditional hazard model of Hamilton and Jorda (1997). With respect

to the variance of a time series, however, there is often substantial evidence against the

assumption that each disturbance term is drawn independently from a population with

a constant variance. Conditional heteroscedasticity is an especially prevelant feature in

financial data among interest rates, stock price tick changes and other price movements

[Bollerslev, Chou, Kroner (1992); Hausman, Lo and McKinlay (1992)].

The chief obstacle to applying time-series methods to address conditional heteroscedas-

ticity has been the latent nature of the residual shocks or perturbations in discrete-choice
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models. Most methods, such as autoregressive conditional heteroscedasticity [ARCH, Engle

(1982)], model the conditional variance as a function of lagged squared residuals, which is

not feasible if the residuals are unobservable. Broseta (1993) modifies the ARCH approach

to fit probit-type models by substituting the squared value of the expected value of the

residual for the squared residual. This expected value is not very informative, however,

because it does not vary much in a discrete-choice model. Moreover, the square of the

expected value of the residual may be a poor indicator of the expected value of the squared

residual. In this article, I use data-augmentation methods to draw values ofthe latent vari-

able, whereupon its conditional heteroscedasticity can be addressed with familiar methods,

such as regime switching. Furthermore, the data-augmentation approach espoused in this

article simplifies the estimation ofthe constant-variance dynamic ordered probit that serves

as the base model in the analysis of weekly prime rate changes.

The bank prime lending rate of interest is a discrete variable that always changes by

multiples of 25 basis points. Other examples of discretely-changing or “administered”

interest rates include the Federal Reserve discount rate, the Federal Reserve’s target federal

funds rate [Hamilton and Jorda (1997)] and home mortgage rates quoted by individual

lenders. The published weekly national mortgage rates represent survey averages, but any

potential borrower following a handful of lenders would need to predict discrete changes.

Changes in such interest rates naturally fit into the ordered-probit framework described in

Maddala (1983), because the observations fall into a small number of categories that can

be ordered from lowest to highest.
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The next section briefly discusses the advantages ofestimating a dynamic ordered probit

model via Gibbs sampling, relative to the maximum-likelihood procedure of Eichengreen

et al. (1985). The third section reviews the regime-switching approach to time-varying

parameters popularized by Hamilton (1989). The fourth section presents the application of

Gibbs-sampling methods to estimate a dynamic ordered probit model with regime-switching

conditional heteroscedasticity. The fifth section presents estimation and forecast results for

the bank prime rate in the form of posterior means from the Gibbs sampler.

II. The estimation of a dynamic ordered probit

with and without data augmentation

In the dynamic ordered probit of Eichengreen, Watson and Grossman (1985), an ob-

served variable, Y, changes each period by one of J different discrete amounts, including

changes of zero. A latent ‘desired’ level, Y*, is defined in terms of its own changes from

period to period plus an initial level, Y~,where the changes in the desired level are assumed

to depend on a vector of lagged explanatory variables plus a disturbance as in an ordinary

regression model:

(1)

The desired change in Y at time t (as opposed to the change in the desired level) is denoted
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Z~and equals ~ — ~ Equivalently,

Z~=L~Y~+Y~-~ (2)

In this way, the model allows for pressure for a change in Y to depend on past gaps between

desired and actual levels, thereby accounting for serial dependence in the changes in Y. A

vector of cut-off constants (c0, .., cj) determines that the actual change, ~ is in category

j if and only if

Z~ (c~_i,c~).

The maximum-likelihood estimation procedure of Eichengreen, Watson and Grossman

(1985) requires numerical evaluation of an integral for each observation in order to obtain

the density, h, of }T~inside the relevant interval, where 4 is the standard normal density

and I~is the information available up to time t:

rUt 1

h(~Y7I ‘~)= ‘/~J q~(~Y*/)h(y* I~)dY~1, (3)
It—’

where ~ ~ cat.i and it—i = Y~_2+ c~_1U~1= Y~_2+ c~Because numerical evalua-

tion of these integrals is time-consuming and approximate, it is not tractable under direct

maximum-likelihood estimation to extend the model to include additional features, such as

regime-switching parameters.

In cases like the dynamic ordered probit, where the joint density of 1~and 1’~is

difficult to evaluate, data augmentation via Gibbs sampling offers a tractable method to

generate a sample of draws from a joint distribution through a sequence of draws from the

respective conditional distributions. Data augmentation in the present context allows one

6



to treat augmented values of Y8~,s ~ t, as observed data when evaluating the conditional

density of Y~. Thus, one conditions the density of ~ on a value, instead of a density,

of Y~, making the problem much simpler than recursive evaluation of the integral in

equation (3). Additional details on how the latent variables are sampled are in the fourth

section and the appendix. Because the fourth section presents the full model with regime-

switching conditional heteroscedasticity, we briefly review regime-switching models in the

next section.

IlL Regime-switching models

Hamilton’s (1989, 1990) use of Markov-switching parameters has spawned many appli-

cations, because it offers a way to capture regime changes in economic data. In forecasting,

Hamilton (1994) notes that an estimated regime-switching model permits predictions of a

variable to take account of possible non-deterministic future changes in regime. Inferences

regarding the dates of past changes in regime, the magnitude of the difference between

regimes and forecasts of the regime at future dates are not readily apparent from the data.

For this reason, Hamilton (1989,1990) assumes that the regimes or states are governed

by an unobservable discrete state variable that follows a first-order Markov process. In

many applications, the state variable, S~,is assumed to be binary: St {0, 1}. For a first-

order Markov process with constant transition probabilities, the serial dependence is easily

summarized by the sum of the transition probabilities:
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Prob(St=OISti=0) = p
Prob(S~= 1! St_i = 1) = q

If p+q> 1, the process has positive serial correlation; ifp+q < 1, the process has negative

serial correlation and if p + q = 1, there is no serial dependence. The unconditional value

ofProb(S~=0)is (1—q)/(2—p—q).

IV. The Model and Gibbs Sampling Procedure

The dynamic ordered probit has seven categories, corresponding with the categories

found in Table 1 for 1302 weekly prime rate observations (with the prime rate denoted as

PR) and 223 non-zero changes between December 15, 1972 and December 5, 1997.

As discussed in the second section, the dynamic ordered probit model assumes that

the change in the desired level of the prime rate depends on the changes in a vector of

explantory variables, X, pius a disturbance:

L~PR~= L~X~J3+ e~. (4)

The asterisk denotes the desired, as opposed to actual, level. The shock ~ is normally

distributed with variance o~,where the variance is not constant across time; it will change
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between two levels:

Var(et) = = o~(1— S~)+ cr~St (5)

In estimating /3 from equation (4), the observations from the high-volatility regime have

less influence on the determination of the estimated values of the /3 coefficients through

weighted least squares. The state variable St {0, 1} is a binary random variable that

follows a first-order Markov process. The transition probabilities for this process are:

Prob(St = 0 I St-i = 0) = p

Prob(St = 1 1 St—i = 1) = q

As in the standard dynamic ordered probit model of Eichengreen and Watson (1985),

the actual change in the discrete choice variable is a function of a latent variable, Z, that

is the sum of this period’s change in the desired level and last period’s gap between the

actual level and the desired level:

= APR~’+ PR~1— PR~1 (6)

The actual changes are assumed to be related to Z~in the following way:

z~PR<—.50 ~-* Z~<—.750

APR=—.50 +~* —.750<Z~<—.375

z~PR=—.25 *-~ —.375<Z~<--.125

z~PR= 0.00 ~-* —.125 < Z~<+.125
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L~PR=+.25 ~ +.125~Z~~+.375

~PR=+.50 4-* +.375<Z~~+.750

z~PR>+.50 ~+ Z,> +.750 (7)

The choice of the cut-off constants, c = (—.75, —.375, —.125, .125, .375, .75), assumes that

the actual discrete changes in the prime rate correspond to the 25-basis point increment

closest to the ‘desired’ continuous change.

Gibbs sampling

The model is estimated via the Gibbs sampler in order to take advantage of the data

augmentation that generates samples of the state variables and the latent ‘desired’ levels

of the prime rate. These variables are included in a chain of parameters to be simulated

from a full set of conditional distributions. The parameter groupings for the Gibbs chain

are:

= {PR~},t = 1, ..., T latent ‘desired’ level

P2 = (o~,o~)

03 = {S~},t=1,..,T States

04 = /3 regression coefficients

= (p, q) transition probs.

Gibbs sampling is an attractive approach because it is relatively easy to sample from

these conditional distributions, as outlined in Albert and Chib (1993) for the binary and
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ordered probit. Gibbs sampling consists of iterating through cycles of draws of parameter

values from conditional distributions as follows:

(i+i) (i) (i) (i) (i)
f(Qi I ~ ,Q~,04 ,05 ,YT) (8)
~ (i+1) (i+i) (i) (i) (i) ~

J’~Q2 Pi ,03 ,04 ,05 ,~T
~,‘ (i+i) (i+i) (i+1) (i) (i)

J ~Q3 Pi Q~ ‘04 ‘25 Y
~ (i+i) (i+i) (i+i) (i+i) (i) ~

J~~Q4 Qi ,22 ,03 ,05 ,~T
~ (i+i) (i+i) (i+i) (i+i) (i+i)

J k05 Pi , , , 24 , T

where YT stands for the entire history of the data and superscript i indicates run number

i through the Gibbs sampler. At each step, a value of p is drawn from its conditional

distribution. As discussed in the appendix, all of the necessary conditional distributions

can be standard statistical distributions, given appropriate choices for prior distributions.

The key idea behind Gibbs sampling is that after a sufficient number of iterations, the

draws from the respective conditional distributions jointly represent a draw from the joint

posterior distribution, which often cannot be evaluated directly [Gelfand and Smith (1990)].

Prior and posterior conditional distributions for Pj,3 = 1, .., 5 are in the appendix.

The Gibbs sampler was run for a total of 8000 iterations in each estimation. The first

3000 iterations were discarded to make~sure the sampler had converged to the posterior

distribution.

Explanatory variables

The conditioning variables, ~ from equation (4), are lagged changes in the federal
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funds rate and lagged values of the change in the spread between the three-month com-

mercial paper rate and the three-month Treasury bill rate. Changes in the federal funds

rate indicate general swings in short-term interest rates, and the prime rate has generally

keyed off the federal funds target rate for the past several years. The paper-bill spread,

on the other hand, serves as a business-cycle indicator, as suggested by Friedman and

Kuttner (1993), who find that the paper-bill spread rises above normal when the economy

is poised to enter a recessionary phase. These increases in the paper-bill spread reflect a

quality spread due to the possibility that some issuers of commercial paper will not sur-

vive a recession without defaulting. For this reason, the paper-bill spread is a predictor of

recessions, but not of the strength of ongoing expansions, so we only consider changes in

the paper-bill spread when the spread is above its median value by multiplying changes in

the spread by the appropriate dummy variable.

We expect all of the /3 coefficients from equation (4) to have positive coefficients. An

increase in the federal funds rate signifies an upswing in short-term interest rates that the

prime rate would be expected to follow. An increase in the paper-bill spread signals an

increase in quality spreads that would imply an increase in bank customer lending rates for

any given interbank lending rate, the federal funds rate. Because we are primarily inter-

ested in the overall, multi-period response of the prime rate to changes in the explanatory

variables, coefficients representing sums of lag coefficients are presented. Thus, if the origi-

nal model were written with Ps denoting coefficients on individual lags of the jth regressor

variable:
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r~1X~,~1+ F32X3,~2+ .~ + F~kX~,tk,

then the reported ,B~coefficients are defined as /
3

j1 = (F~~+ ... + F~k),/3j2 = (F32 + ... +

= Fjk. The lag lengths, k, were chosen informally, based on when the 13

coefficients lost significance, which is at lag four for the federal funds rate changes and lag

three for the changes in the paper-bill spread. The explanatory variables are all lagged at

least one period, so they are pre-determined relative to this week’s change in the dependent

variable.

V. Estimation results

The posterior means for the regression coefficients, found in Table 2, have the expected

positive signs and are significant, relative to their empirical confidence intervals from the

Gibbs sampling. The probability values at the bottom of Table 1 are the posterior means

of the p-values of Wald test statistics for the joint significance of the regression coefficients

taken at each iteration of the Gibbs sampler. The significantly positive coefficients on

the changes in the paper-bill spread suggest that the prime rate displays a countercyclical

mark-up vis-a-vis the federal funds rate, that is, the quality spread increases in recessions

when customer default rates rise.

In the model with Markov switching, the posterior mean of the standard deviation

of the shocks is more than five times greater in the high-variance state than in the low-
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variance state. The unconditional probability of being in the low-volatility state is 83.3

percent [(1 — q)/(2 — p — q)]. Figure 1 shows the Gibbs posterior means for the volatility

state variable across the sample period. As one would expect, the high-volatility state is

concentrated between October 1979 and October 1982 when the Federal Reserve targeted

non-borrowed reserves and induced greater volatility in short-term interest rates. Other

occurrences of the high-volatility state outside of the 1979-82 period more closely resemble

spikes than regimes. Accordingly, the transition probability q from Table 1 suggests that

the half-life of the high-volatility state is about two weeks.

A tell-tale sign of conditional heteroscedasticity in a time series is fat tails or leptokur-

tosis. Conditional heteroscedasticity is related to leptokurtosis because the latter serves as

a measure of the “variance of the variance” when a mixture of non-leptokurtic conditional

distributions is causing fat tails in the unconditional distribution. Table 1 shows that the

interest-rate changes appear too leptokurtic for the constant variance model, because the

sample kurtosis of its residuals has a posterior mean of 6.59, which is well above 3, the

kurtosis of level of normal random variables. This measure is a Gibbs posterior mean be-

cause the sample kurtosis was calculated at each Gibbs draw of the vector of PR*. The

Markov-switching model posits that a mixture of two normal random variables with differ-

ent variances can generate the leptokurtosis observed in the interest-rate changes. Table 1

shows that the Gibbs posterior mean of the sample kurtosis of the standardized residuals

from the switching model, Et/ag~, is only 3.58, which is only slightly above 3. Thus, it

appears that the simple Markov mixture model is adequate for explaining the conditional
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heteroscedasticity observed in the prime-rate changes. A formal test of goodness of fit is

presented next.

In comparing the model with Markov-switching variance to the constant-variance model,

I use a test of goodness of fit that checks how closely the model-impled cumulative den-

sity function describes the actual distribution of the residuals. Following Vlaar and Palm

(1993), I divide the model-implied cumulative density functions into 100 percentile groups

by cutting the vertical axis of the CDF into 100 pieces from 0.01 to 1.0. If the model fits

the data well, the expected number of residuals in each percentile group is one percent of

the sample (or about 13 observations). The actual count of residuals in percentile group i

of the model-implied CDF, ~(.), is

T (i—i) i
= ~ ‘it where ‘it = 1, ~ 100 <4~(et/crs~)<j~

= 0, otherwise

The residual counts are tabulated at each iteration of the Gibbs sampler and the average

count, ~ is taken across all the iterations. Figure 2 plots the actual ~ counts across all 100

percentile groups for the dynamic ordered probit models with and without Markov switch-

ing in the variance. Figure 2 shows that the residuals from the constant-variance model

are too leptokurtic, relative to the model-implied distribution: the numbers of residuals

near the center and the tails are too high relative to the model-implied expected value of

13, and the number in the shoulders of the distribution is too low. The residuals from the

Markov-switching model, in contrast, are much more uniformly distributed across the per-

centile groups, without major deviations from the expected value of 13. A chi-square test
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of goodness of fit formalizes the visual evidence from Figure 2 in favor of the conditionally

heteroscedastic model. The test statistic equals 100/T ~ (n~— T/100)2 and is distributed

x~9under the null. This statistic, like the count n~,is calculated at each iteration of the

Gibbs sampler, and its probability value is averaged across the Gibbs iterations to arrive at

a posterior mean for the p-value of the test. For the constant-variance model, the posterior

mean p-value for the test ofgoodness of fit is less than le-05, whereas it equals 0.373 for the

conditionally heteroscedastic model with Markov-switching variance. Thus, the differences

between the two models in matching their CDFs to the data in Figure 2 lead to significantly

different results in the test of goodness of fit.

Conclusions

This article presents methods for greatly simplifying estimation of the dynamic ordered

probit model ofEichengreen et al. (1985) via the Gibbs sampler and its data augmentation.

I also extend the model to include treatment of conditional heteroscedasticity through

regime switching. These methods are applicable to a wide variety of qualitative-response

models of time series. In general, with the methods presented here, one can add almost

any time-series feature to the latent variable governing a qualitative-response process.

In the changes in the bank prime lending rate studied here, conditional heteroscedas-

ticity is shown to be an important feature of this time series, and the heteroscedasticity is

addressed through Markov switching in the variance parameters. The high-volatility state

holds about 17% of the time on average, wherein the standard deviation of the shocks is
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more than five times as large as in the low-variance state. The Gibbs posterior means for the

state variable give the expected result that the most important high-variance episode coin-

cided with the 1979-82 period when the Federal Reserve experimented with non-borrowed

reserves targeting and induced greater interest-rate volatility. The treatment of conditional

heteroscedasticity makes the difference between a dynamic ordered probit model that can

pass a test of goodness of fit and a constant-variance specification that badly fails the test.
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Appendix: Gibbs sampling distributions

Priors and posteriors for transition probabilities

The likelihood function for a discrete binary random variable that is governed by a
first-order Markov process is

L(p,q) pfloo(
1

p)nolq?
2
11(1 q)flo (9)

where n~is the number of transitions between ~ = i and St = j.

The prior is to assign parameters u23, where the ratio between u00 and ~u01,for example,
represents a prior guess for the ratio between the corresponding numbers of actual transi-
tions, n~0/n01.The magnitudes of the u~relative to the sample size indicate the strength
of the prior. As a weak prior, I set u00 = 4, u0~= 1, u10 = 1, and u11 = 4, such that the
sum of the u~is low relative to the sample size.

The beta distribution is conjugate to itself, so the posterior is also beta and is the
product of the prior and the likelihood of the observed transitions, so that we may draw
transition probabilities from

p I ST r’.~ beta(uoo + n00, u01 + n01) (10)

q I ~T r~ beta(uii + n11, u10 + n10), (11)

where ST = {S~}~t = 1, ..., T. The initial values for p and q at the start of the Gibbs
sampling were p=O.9S and q= 0.9.

Priors and posteriors for Markov state variables

We wish to sample the states in reverse order from the following probability, where YT
stands for the entire history of the observed and latent data and Yt is the observed and
latent data at a point in time:

P(St=OISt+i,...,ST,YT) (12)

By Bayes theorem, and as outlined in Chib (1996),

P(St=OISt+1,...,ST,YT) o f(yt+1,...,YT,St+1,...,STIy1,...,yt,St)xP(StIyi,...,yt)

~ f(yt+1,...,yT,St+2,...,STIyI,...,yt,St,St+1) x

I S~)x P(S~I Yi,...,Yt)

x P(S~1I S~)x P(S1 I Yi,...,Yt) (13)
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The first and second proportions in (13) are simply applications of Bayes’ theorem.
Because the density f(yt+i, ..., lIT,

5
t+2, ..., ST I Yi, ~••, lIt, St, S~+~)is independent of S~,it

can be subsumed into the constant of proportionality, which can easily be recovered in order
to draw states. As shown in (13), the only necessary inputs are the transition probabilities
and the filtered probabilities conditional on the contemporaneous data.

Priors and posteriors for variances

Following Kim and Nelson (1998), the prior distribution for the variances is chosen to
be inverted gamma, because the inverted gamma is conjugate to itself: a,~“-‘ IG(v~,r~)
with v0 = 2, v1 = .4, r~= 1 and r1 = 1. The v2 are shape parameters and the prior
with zi~< u0 implies a more diffuse distribution with thicker tails for cr~because one of
the variance states will occur less often and therefore the variance parameter for that state
will be estimated less precisely. A higher value of v~implies a stronger prior for o~.The
posterior is also inverted gamma, u~ IG(~-~2,T~+ ~>~tj5tje~).Initial values for cr~and
o~to start the Gibbs sampling were set at 0.025 and 0.20, respectively.

Priors and posteriors for ~3coefficients

The prior for /3 is diffuse and the initial value for /3 in the first cycle of the Gibbs
sampler is the ordinary least square estimate from the regression on the actual (as opposed
to the desired) prime rate changes. With ~T denoting the diagonal matrix with entries
from the vector (o-~,t = 1, ..., T), the posterior distribution for /3 is the multivariate normal
distribution for generalized least squares coefficients:

/3 N(X!~X)~XIY~hz~PR*,X’~1X)’).

Generating latent variables, PR~

The initial values of PR~,t = 1, .., T are drawn from f(PR~ I PR~1,L~PR~E cat.j),
where PR~is held fixed at PR0. In this case,

~ N(PR~1+ ~ ~

with truncation such that PR~e (PR~_1+ cji, PR~1+ c3). From equation (7), the
constants c0, .., c-, are (—cc, —.75, —.375, —.125, .125, .375, .75, cc).

We take subsequent draws from

I PR~_1 i)PR~+1(1)L~PRtE cat.j), (14)
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where, as in equation (8), superscript i denotes the ~th cycle of the Gibbs sampler. We use
the density from equation (14), because sampling theentire vectorjointly from f(PR~,..., PR~
YT) would require evaluation of a density equivalent to the cumbersome likelihood function
from equation (3). To draw from (14), we note that unconditionally (e’, ~t+i) are distributed
as independent, bivariate normals with mean zero:

f (e’, ~t+i) =
2~Js~as~+1exp {_.5e~/a~~— ~ } (15)

Given equation (4), we can relate e~and e~ to PR~as follows:

= PR-A

A = PR~1+ z~X~1/3

= -PR~-i-B
B_—PR~~1-z~X,~/3 (16)

In other words, PR~is the only unknown affecting the values of both ~t, t+i, and the
conditional density of PR~must take into account the extent to which a particular value
of PR~would create an outlier value in either or both of (er, ~ Substituting (16) into
(15), we end up (after some algebra) with a univariate density for PR~conditional on
PR~1,PR~~1such that

PR~ N (~L+1A+~4~Bas~+1crs~)~ (17)
+ 0~

St
0

St+, +

Conditional on L~PR~e cat.j, the distribution of PR* is truncated so that PR~E (PR~1+
c~1,PR~1+ c3). From (17), it is interesting to note how the variances affect the mean
of PR~. If the variances were the same across both time periods, the mean of PR~is
simply (A + B)/2, the average of the two values implied by knowing PR~_1and PR~~1,
respectively. If, on the other hand, the variances are unequal, such that cr~9~> then
A receives less weight than B in determining the mean of PR~.Similarly, the variance of
PR~is o~~/2,the variance of the average, if S,~= St+i.
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Table 1: Observation categories
based on size of prime rate change.
Sample period: 12/5/72 — 12/13/97
category }_criterion } frequency

1 L~iPR>+.5 15
2 z~PR=+.5 35
3 L~iPR=+.25 68
4 L~PR=0 1078
5 z~PR=-.25 49
6 A.PR=-.5 44
7 ~PR<—.5 12
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Table 2: Posterior distributions of parameters
from 1302 weekly observations and 223 changes

parameter Markov switching
in variance

constant variance

a~ post. mean
95% confid. interval

.0051
(.0036,.0073)

.0223
(.020,.025)

post. mean
95% confid. interval

.1649
(.123,.223)

.0223
(.020,.025)

post. mean kurtosis of residuals 3.54 6.59
trans. prob. p post. mean

95% confid. interval
.9378

(.913,.959)
n.a.
n.a.

trans. prob. q post. mean
95% confid. interval

.6876
(.563,.796)

n.a.
n.a.

Intercept post. mean
95% confid. interval

.0069
(-.023,.036)

.0091
(001,.017)

Coefficients for_changes_in fed. funds rate are /
3

1j

/3~~post. mean
95% confid. interval

.3657
(.301,.435)

.6192
(.577,.661)

/312 post. mean
95% confid. interval

.2652
(.210,.322)

.4687
(.431,.506)

/313 post. mean
95% confid. interval

.1583
(.113,.206)

.2849
(.252,.318)

I3~4post. mean
95% confid. interval

.0729
(.0466,.100)

.1310
(.109,.153)

Coefficients for changes in paper-bill spread are /
3
2i

/321 post. mean
95% confid. interval

.1039
(.023,.182)

.1106
(.012,.207)

/322 post. mean
95% confid. interval

.0670
(.003,.137)

.0867
(.010,.164)

1323 post. mean
95% confid. interval

.0650
(.002,.129)

.1019
(.037,.166)

p-value: /3~j= 0 Vi .000 .000
p-value: /

3
2i = 0 Vi .013 .026

Note that the /3 parameters are sums of lag coefficients.
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Figure 1: Posterior mean of probability of high-variance state*
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* Four-week moving average of the probability.



Figure 2: Goodness of fit by percentile of model-implied CDFs
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