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Abstract

This paper considers a variety of econometric models for the joint distribution of

US stock and bond returns in the presence of regime switching dynamics. While simple

two- or three-state models capture the univariate dynamics in bond and stock returns,

a more complicated four state model with regimes characterized as crash, slow growth,

bull and recovery states is required to capture their joint distribution. The transition

probability matrix of this model has a very particular form. Exits from the crash state

are almost always to the recovery state and occur with close to 50 percent chance

suggesting a bounce-back effect from the crash to the recovery state.

1 Introduction

This paper studies a variety of econometric models for the joint distribution of US stock

and bond returns. We show that although there are well-defined regimes in the marginal

∗We thank two anonymous referees and the editor, Dick van Dijk, for many helpful suggestions. We

are also grateful to seminar participants at CERP University of Turin, University of Houston, University of

Rochester, Federal Reserve Bank of St. Louis and at the Tinbergen Centenary conference for comments on

an earlier version of the paper.



distributions of both stock and bond returns, there is very little coherence between these

regimes. This complicates models for the joint dynamics of stock and bond returns and

suggests that a richer model with several states is required. We study in detail a richly

specified model with four regimes broadly corresponding to ‘crash’, ‘slow growth’, ‘bull’ and

‘recovery’ states.

Unfortunately the vast majority of work on regime switching considers univariate models.

Examples include studies of economic variables such as exchange rates (Engel and Hamilton

(1990)), output growth (Hamilton (1989)), interest rates (Gray (1996), Ang and Bekaert

(2002b)), commodity indices (Fong and See (2001)), and stock returns (Rydén, Teräsvirta,

and Asbrink (1998), Turner, Startz and Nelson (1989), and Whitelaw (2001)).

Exceptions to the focus on univariate models include Ang and Bekaert (2002a) and

Perez-Quiros and Timmermann (2000) who consider bivariate regime switching models fitted

to stock market portfolios tracking either country indices or portfolios based on market

capitalization. Hamilton and Lin (1996) also consider a bivariate model for stock returns

and growth in industrial production. There appears to be no clear guidelines for how to

generalize univariate nonlinear models to the general multivariate case, however. Simple

generalizations easily yield overwhelmingly large models. To see this, suppose that stock

returns are divided into two states based on periods of high and low volatility, while bond

returns are divided into recession, low growth and high growth states. Also suppose that the

pair of state variables are only weakly correlated. In this case a six-state model − comprising
low and high volatility recessions, low and high volatility states with low growth and low

and high volatility states with high growth − is required to capture the joint distribution of
stock and bond returns. In general such models are not feasible to estimate or will be poorly

identified since most states are likely only to be visited very few times during the sample.1

The plan of the paper is as follows. Section 2 studies regimes in the individual asset

returns. Section 3 considers their joint distribution and discusses at some length a four-state

specification. Section 4 extends out setup to include additional predictor variables such as

1For a further discussion of multivariate regime switching models see Franses and van Dijk (2000), pp

132-134.
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the dividend yield. Section 5 concludes.

2 Stock and bond returns under regime switching: Uni-

variate models

In this section we consider the dynamics in the univariate or separate distributions of stock

and bond returns. An understanding of the univariate dynamics of the returns for the indi-

vidual asset classes is an important starting point for an analysis of their joint distribution.

We study three major US asset classes, namely stocks, bonds and T-bills although we sim-

plify the analysis to just stocks and bonds by analyzing their excess returns over and above

the T-bill rate. We further divide the stock portfolio into large and small stocks in light

of the empirical evidence suggesting that these stocks have very different risk and return

characteristics across different regimes, c.f. Perez-Quiros and Timmermann (2000).

2.1 Data

All data is obtained from the Center for Research in Security Prices. Our analysis uses

monthly returns on all common stocks listed on the NYSE. The first and second size-sorted

CRSP decile portfolios are used to form a portfolio of small firm stocks, while deciles 9 and

10 are used to form a portfolio of large firm stocks. We also consider the return on a portfolio

of 10-year T-bonds. Returns are calculated applying the standard continuous compounding

formula, yt+1 = lnSt+1− lnSt, where St is the asset price, inclusive of any cash distributions
(dividends or coupons) between time t and t + 1. To obtain excess returns, we subtract

the 30-day T-bill rate from these returns. Dividend yields are also used in the analysis and

are computed as dividends on a value-weighted portfolio of stocks over the previous twelve

month period divided by the current stock price. Our sample is January 1954 - December

1999, a total of 552 observations.
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2.2 Regimes in the individual series

Before proceeding to the joint model for stock and bond returns we consider the presence

of regimes in the individual asset return series. The objective is to assess the degree of

coherence across the state variables characterizing the regimes (if any) in the returns on

small and large firms and on long-term bonds. A high degree of coherence would naturally

suggest a substantial reduction in the overall number of regimes, k, required in a joint model

for stock and bond returns. Each of the univariate return series (indexed by i = 1, .., n,

where n is the number of assets), yit, is modeled as a simple Markov switching process whose

parameters are driven by an asset-specific state variable, Sit, taking values sit = 1, .., ki,

where ki is the number of states for the ith series:

yit = µisit +

pX
j=1

aij,sityit−j + σisituit, i = 1, ..., n, uit ∼ IIN(0, 1), (1)

where state transitions are governed by a constant transition probability matrix

P (Sit = sit|Sit−1 = sit−1) = psitsit−1 , sit, sit−1 = 1, ..., ki. (2)

Thus each regime is assumed to be the realization of a first-order, homogeneous, irreducible

and ergodic Markov chain. For each series, yi, the number of states, ki, is a key parameter

in the proposed model. If ki = 1, we are back to the standard linear model used in much

of the literature. As ki rises, it becomes increasingly easy to fit complicated dynamics and

deviations from the normal distribution in asset returns. However, this comes at the cost of

having to estimate more parameters which can lead to deteriorating out-of-sample forecasting

performance.

Economic theory offers little guidance to the most plausible non-linear model capable

of adequately fitting the data. If recurrent shifts only affect the diversifiable component of

portfolio returns (idiosyncratic risk), regime switching in well-diversified portfolios such as

those we study here should only show up in the form of regime-dependent heteroskedasticity

giving rise to a model of the type

yit = µi + σsituit. (3)
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On the other hand, when shifts occur in the systematic risk component, then most economic

models would suggest regime dependence both in the risk premium (µ) and in the variance:

yit = µist +

pX
j=1

aij,sityit−j + σsituit, (4)

The presence of autoregressive lags may proxy for omitted state variables tracking time-

varying risk premia. This ambiguity about the correct theoretical model suggests we should

consider a wide range of models.

To determine ki, we undertake an extensive specification search, considering values of

ki = 1, 2, 3 and different values of the autoregressive order, p. We consider up to three states

because of the existing evidence in the literature of either two (Schwert (1989) and Turner,

Startz, and Nelson (1989)) or three (Kim, Nelson and Startz (1998)) regimes in the mean

and volatility of U.S. asset returns (see also Rydén et al. (1998)). It is of course important to

determine whether multiple states are needed in the first place, i.e. whether ki > 1. Testing

a model with ki states against a model with ki − 1 states is complicated because some of
the parameters of the model with ki states are unidentified under the null of ki − 1 states
and test statistics follow non-standard distributions.2 To check if the linear model (ki = 1)

is misspecified, we computed the test proposed by Davies (1977) which accounts for the

unidentified nuisance parameter problem. To determine the number of states, we adopted

the Hannan-Quinn information criterion for model selection (c.f. Rydén et al. (1998)). This

trades off the improved fit resulting from adding more parameters as ki grows against the

decreasing parsimony.

Table 1 reports the parameter estimates of two- and three-state models fitted to the

returns on our three portfolios along with linearity tests and values of the Hannan-Quinn

information criterion. The left panels (A and C) set p = 0 (no autoregressive terms), while

the right panels (B and D) assume that p = 1. For all three assets the single-state model

is strongly rejected in favour of a multistate model.3 The Hannan-Quinn criterion points to
2See, e.g., Davies (1977), Garcia (1998) and Hansen (1992).
3In addition to the Hannan-Quinn information criterion we also considered the Akaike and Schwarz

information criteria. Two of three information criteria applied to the univariate series suggested a two-state

model for stock returns while all criteria selected a three-state model for bond returns.
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a two-state specification for both stock market portfolios and a three-state specification for

bonds. Furthermore, there is evidence of first-order autoregressive terms in the small stock

and bond return series.

Each of the two regimes identified in the two stock return series has a clear economic

interpretation. The first regime captures a bear state with high volatility and low expected

returns: large stocks are characterized by negative mean excess returns and an annual volatil-

ity of 22.2%, small stocks by relatively low mean excess returns of 5.4% per annum and

volatility of 29.5%. Conversely, the second - more persistent - regime is associated with high

mean returns (large stocks earn an annualized premium of 11.7%, small stocks a premium of

13%) and low volatility. The estimates of the transition probability matrices for small and

large stocks are also quite similar although small stocks tend to stay longer in bear states.

The states identified in the bond returns have a similar interpretation: Regime 1 captures

economic recessions during which interest rates tend to fall or stay roughly constant so that

long-term bonds earn low but positive average excess returns (1.8% per annum), while their

volatility is above-average (8.5%). Regime 2 captures economic booms with rising interest

rates and negative excess returns on bonds.

To further assist with the economic interpretation of these states, Figure 1 shows smoothed

state probability plots for the two-state models fitted to the individual return series. Al-

though the matching between the high volatility states identified for the two stock portfolios

is by no means perfect, there are clearly strong similarities between the two and many well-

known historical episodes trigger similar regime switches in both portfolios, e.g., the Vietnam

War in the 1960s, the oil shocks of the 1970s, the volatility surge of 1987-1988, the early

1990s recession, and the Asian flu of 1998. As a result, the correlation between the smoothed

probability of state 1 across the two stock return series is 0.52.

In contrast, there is not much similarity between the regimes identified in the stock and

bond return series. Indeed the correlations between the smoothed state probabilities inferred

from bond returns and the probabilities implied by both small and large stock returns are

close to zero (0.15-0.16). This impression is further enhanced by the scatter plots of smoothed

state probabilities shown in Figure 2, indicating no strong correlations between the states
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identified in stock and bond returns. Furthermore, many episodes associated with regime

switches in the stock market portfolios (e.g., the early 1980s recession and the 1987 crash)

are not reflected in similar switches in bond returns.

Of course, this analysis may not fully reveal possible similarities between the nonlinear

components in stock and bond returns since we identified three states in bond returns. We

therefore next consider three-state models for stock and bond returns. Panels C and D in

Table 1 report parameter estimates for these models while Figure 3 plots the smoothed state

probabilities for the univariate three-state models fitted to the two stock return series and

bond returns. Interpretation of the three states in stock returns is difficult. As we move from

regime 1 to 3 the risk premium on large stocks changes from -20.3% to 44.5% per annum

and the volatility declines from 25% to 6.3%. For small stocks there is no great difference

in the volatility estimates for states 1 and 3 while their mean returns (-29.3% and 104% per

annum, respectively) are very different.

In contrast, the three-state model marks a clear improvement over the two-state model

fitted to bond returns. In this case the three states are easier to interpret. Regime 1 has

relatively high volatility (11.8%) and high mean excess returns (3.6%), and therefore repre-

sents periods of declining short-term interest rates and strong growth following a recession.

Regime 2 corresponds to periods of rising short-term interest rates (leading to negative mean

excess returns on long-term bonds) and downward sloping, stable yield curves. The third

state is the most frequently visited regime in our sample, characterized by moderately pos-

itive mean excess returns (0.7%) and moderate volatility (6.2% per annum). The steady

growth of the 1990s with stable interest rates and monetary policy falls almost entirely in

this regime. This classification of the sample period into regimes is more sensible than that

provided by the two-state model for bond returns.4

4There is in fact an interesting association between some of the regime shifts appearing in Figure 3 for

bonds and changes in monetary policy. For instance, out of roughly 15 major switches, as many as four can

be linked to the classical Romer and Romer (1989) (contractionary) monetary policy shock dates, in the

sense that these switches occur within six months of Romer and Romer’s dates. In particular, the 1968:12

and 1979:10 episodes are associated with almost contemporaneous shifts to regime 2, consistent with tight

monetary conditions and increasing interest rates; similarly, the 1955:09 and 1974:04 dates precede switches
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The lack of coherence between regimes in stock and bond returns encountered in the

two-state models is even clearer in the three-state models. The correlation between the

smoothed state probabilities for stock and bond returns shown in Figure 3 is systematically

negative or close to zero, irrespective of how the states are ordered.

Interestingly, all of the results on the presence of regimes in stock and bond returns, their

interpretation, and the coherence between regimes in stock and bond returns are insensitive

to the inclusion of autoregressive terms. For instance, the coefficients of correlations across

stock and bond portfolios are similar to those reported above when p = 1 and the state

probabilities resulting from this model are practically indistinguishable from those in Figure

2.

In conclusion, while there is a strong correlation between the process driving regimes in

large and small firms’ stock returns, bond returns appear to be governed by a very different

process. This is already suggested by the fact that a two-state model is selected for stock

returns while a three-state model is chosen for bond returns and is further stressed by the

difference in the state transition probability estimates of the two-state models.5 The fact

that a three-state specification fits excess bond returns much better than a simpler, two-

regime model and that these states are weakly correlated with those identified in the stock

portfolios indicates that multiple regimes are needed to capture the joint distribution of

stock and bond returns.

3 A joint model for stock and bond returns

Earlier studies of regime switching in stock and bond returns focused on separately modeling

stock returns or the evolution in interest rates, but do not consider their joint distribution.

When considering the joint stochastic process of returns on stocks and bonds, we have to

to state 3, in which bond returns are moderate. As explained by Romer and Romer (1989), their dates are

supposed to detect only pure, contractionary monetary shocks. This explains why we find more shifts than

their dates. We thank an anonymous referee for leading us to explore these issues.
5While bond returns imply that the average duration of a ‘bear market’ is almost 13 months, the stock

returns suggest an estimate between four (large stocks) and nine (small stocks) months.
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carefully determine the number of states in their joint distribution and need to pay attention

to differences in their individual state characteristics.

To capture the possibility of regimes in the joint distribution of asset returns, consider

an n × 1 vector of returns in excess of the T-bill rate, yt = (y1t, y2t, ..., ynt)0. Suppose that
the mean, covariance and possibly also serial correlation in returns are driven by a common

state variable, St, that takes integer values between 1 and k:

yt = µst +

pX
j=1

Aj,styt−j + εt. (5)

Here µst = (µ1st, ..., µnst)
0 is an n×1 vector of mean returns in state st,Aj,st is the n×nmatrix

of autoregressive coefficients associated with lag j ≥ 1 in state st, and εt = (ε1t, ..., εnt)0 ∼
N(0,Ωst) follows a multivariate normal distribution with zero mean and state-dependent

covariance matrix, Ωst, given by

E

"Ã
yt − µst −

pX
j=1

Aj,styt−j

!Ã
yt − µst −

pX
j=1

Aj,styt−j

!0
|st
#
= Ωst (6)

Regime switches in the state variable, St, are assumed to be governed by the transition

probability matrix, P , with elements

Pr(St = st|, St−1 = st−1) = pstst−1 , st, st−1 = 1, .., k. (7)

Each regime is thus the realization of a first-order Markov chain with constant transition

probabilities.

While simple, this model allows asset returns to have different means, variances and

correlations in different states. This means that the risk-return trade-off can vary over

states in a way that can have strong implications for investors’ asset allocation. For example,

knowing that the current state is a persistent bull market will make most risky assets more

attractive than in a bear state. Likewise, if stock market volatility is higher in recessions

than in expansions, equity investments are less attractive in recessions unless their mean

return rises commensurably.

Estimation of the parameters of the joint model is relatively straightforward and proceeds

by optimizing the likelihood function associated with (5) - (7). Since the underlying state
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variable, St, is unobserved we treat it as a latent variable and use the EM algorithm to

update our parameter estimates, c.f. Hamilton (1989).

3.1 Determination of the number of states

Before turning to the selection of the number of states for the joint model, we first consider

the implications of the analysis of the univariate series in Section 2. Suppose that each of

the n univariate return series is governed by a Markov switching process of the form (1) -

(2). Also assume that the innovation terms are simultaneously correlated,

E

"Ã
yit −

pX
j=1

aij,sityit−j − µisit
!Ã

ymt −
pX
j=1

amj,smtymt−j − µmsmt
!
|sit, smt

#
= σimsitsmt ,

(8)

although for all i 6= m and all q 6= 0, E[(yit−q−
Pp

j=1 aij,sityit−q−j−µisit−q) (ymt−
Pp

j=1 amj,smtrmt−j−
µmsmt)] = 0 (no serial correlation or cross-correlation).

Under no further restrictions on the relationship between the individual state variables

{s1t, ..., snt} the states (St) for the joint process {y1t, ...., ynt} can be obtained from the

product of the individual states:

S =
nY
i=1

Si = S1 × S2 × ...× Sn. (9)

This gives a total of k =
Qn
i=1 ki possible states and k(k − 1) state transition probabilities.

Under independence between the individual states, the transition probability matrix defined

on the joint outcome space is simply the Kronecker product of the individual transition

matrices and the number of transition probability parameters to be estimated reduces toPn
i=1 ki(ki − 1) which can be considerably smaller than k(k − 1) when n is large. For

example, in the bivariate case (n = 2) we have

Pr(s1t = a, s2t = a
∗|s1t−1 = b, s2t−1 = b∗) = Pab[1]⊗ Pa∗b∗ [2]. (10)

Obviously, the original n-variable Markov switching process with
Qn
i=1 ki states is perfectly

equivalent to a modified univariate Markov switching process characterized by k =
Qn
i=1 ki

10



different regimes and a single (
Qn
i=1 ki)×(

Qn
i=1 ki)−dimensional transition probability matrix

P = P1 ⊗ P2 ⊗ ...⊗ Pn. (11)

In practical multivariate problems of even moderate size this representation is not, of

course, feasible to use. For example, in the case with three variables each of whose marginal

distribution has three states (n = 3, ki = 3) the total number of states would be 27, involving

the estimation of 702 parameters in the transition probability matrix alone. This suggests

the need for carefully considering ways for the econometric modeler to reduce the set of

states required to capture the essential dynamics of the joint distribution.

To determine the number of states for the joint model, k, we undertake an extensive

specification search, considering values of k = 1, 2, 3, 4, 5 and different values of the autore-

gressive order, p. Results from the specification analysis are presented in Table 2. In all

cases linearity is very strongly rejected no matter how many states and lags are present in

the regime switching model. The Hannan-Quinn information criterion supports four states.

There is only weak evidence of an autoregressive component in asset returns. We therefore

settle on a four-state regime switching model without autoregressive terms.6

3.2 Interpretation of the States

Having determined the number of states we next focus on their economic interpretation.

Table 3 reports the parameters of the four-state regime switching model while Figure 4 plots

the associated smoothed state probabilities. For reference we also show the estimates of a

single-state model with no autoregressive terms.

It is relatively straightforward to interpret the four regimes. Regime 1 is a ‘crash’ state

characterized by large, negative mean excess returns and high volatility. It includes the

two oil price shocks in the 1970s, the October 1987 crash, the early 1990s, and the ‘Asian

6The number of parameters involved in our model depends on the number of assets, n, the number of

states, k, and the number of autoregressive lags and is equal to (nk + pn2k + kn(n+1)2 + k(k − 1)). For the
preferred model n = 3, k = 4, p = 0, so we have 48 parameters and 1,656 data points for a saturation ratio

(the number of data points per parameter) of 35.
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flu’. Regime 2 is a low growth regime characterized by low volatility and small positive

mean excess returns on all assets. Regime 3 is a sustained bull state in which stock prices

– especially those of the small stocks– grow rapidly on average. Interest rates frequently

increase in this state and excess returns on long-term bonds are negative on average. The

drawback to the high mean excess returns on small stocks is their rather high volatility, while

large stocks and bonds have less volatile returns. Notice the big difference between mean

returns on small and large stocks in regimes 2 and 3. In state 2 the mean return of large

stocks exceeds that of small stocks by about 7% per annum, while this is reversed in state

3. Regime 4 is a “bounce-back” regime with strong market rallies and high volatility for

small stocks and bonds.7 Mean excess returns, at annualized rates of 27%, 55%, and 12%,

are very large in this state as is their volatility.

Correlations between returns also vary substantially across regimes. The correlation

between large and small firms’ returns varies from a high of 0.82 in the crash state to a

low of 0.50 in the recovery state. The correlation between large cap and bond returns even

changes signs across different regimes and varies from 0.37 in the recovery state to -0.40 in

the crash state. Finally, the correlation between small stock and bond returns goes from

-0.26 in the crash state to 0.12 in the slow growth state.

Mean returns and volatilities are greater in absolute terms in the crash and recovery

regimes, so it is perhaps unsurprising that persistence also varies considerably across states.

The crash state has low persistence and on average only two months are spent in this regime.

Interestingly, the transition probability matrix has a very particular form. Exits from the

crash state are almost always to the recovery state and occur with close to 50 percent chance

suggesting that, during volatile markets, months with large, negative mean returns cluster

with months that have high positive returns. The slow growth state is far more persistent

7The volatility estimate may seem low for the large stocks. However, it should be recalled that, for each

state, the volatility estimate is measured around the mean return for that state. Estimates of the conditional

volatility starting from state four also depend on the probability of shifting to another state, multiplied by

the squared value of the difference between that state’s mean and the mean return in state four, summed

across states 1-3.
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with an average duration of seven months. The bull state is the most persistent state with

a ‘stayer’ probability of 0.88. On average the market spends eight successive months in this

state. Finally, the recovery state is again not very persistent and the market is expected

to stay just over three months in this state. The steady state probabilities, reflecting the

average time spent in the various regimes are 9% (state 1), 40% (state 2), 28% (state 3) and

23% (state 4). Hence, although the crash state is clearly not visited as often as the other

states, it is by no means an ‘outlier’ state that only picks up extremely rare events.

It is interesting to relate these states to the underlying business cycle. Correlations

between smoothed state probabilities and NBER recession dates are 0.32 (state 1), -0.13

(state 2), -0.21 (state 3), and 0.18 (state 4). Notice that since the state probabilities sum

to one, by construction if some correlations are positive, others must be negative. This

suggests that indeed, the high-volatility states - states 1 and 4 - occur around official recession

periods.8

3.3 Mean and Variance Restrictions

The preferred four-state regime switching model is characterized by a large number of pa-

rameters so it is therefore legitimate to ask whether a more parsimonious specification can

be constructed by imposing further restrictions on the parameter space, as in, e.g., Ang and

Bekaert (2002a, pp. 1148-1150).

Although the results reported in Table 3 confirm that most of the mean excess returns

parameters in µst are significantly different from zero and differ from each other, it is com-

monly found that mean asset returns are difficult to estimate precisely, suggesting that the

fit of our model would not be greatly reduced by restricting the intercept vector µ to be

identical across regimes:

yt = µ+ εt εt ∼ N(0,Ωst), (12)

8It could be argued that the state probabilities backed out from movements in financial asset returns

should lead economic recession months. Indeed, the correlation between the state-1 probability lagged 6

months and the NBER recession indicator rises to 0.40.
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Table 4 reports the parameter estimates from this restricted model. The imposed restrictions

lead to important changes in the transition dynamics. Regime 1 in the restricted model has

no persistence and is best characterized as a purely transient state that leads to regime 4

(P̂ [1, 4] = 0.99). Furthermore, regime 1 itself is likely to be accessed mostly from regime 4

(P̂ [4, 1] = 0.24), so the resulting model implies a sequence of relatively calm periods (regimes

2 and 3) briefly interspersed by a period with highly volatile markets (regimes 1 and 4). In

view of the similarity between Ω̂1 and Ω̂4 in this model, effectively the constrained model is

an overparameterized version of a much simpler three-state model with regime-independent

µ. The parametric restrictions implied by the null hypothesis that mean returns do not vary

across states are strongly rejected using a likelihood-ratio test,

LR = 2(3462.91− 3447.88) = 30.06.

This yields a p-value of 0.0004.

Another restriction naturally suggested by the results in Tables 3 and 4 is that the covari-

ance matrices are identical in the highly volatile crash and recovery regimes. To investigate

this possibility, we estimated the four-state model (5) subject to the restriction Ω̂1 = Ω̂4.

Results are provided in Table 5. The resulting estimates of the high-variance covariance

matrix are, as expected, an average of the unrestricted estimates of Ω̂1 and Ω̂4. The six

parameter restrictions implied by the null hypothesis that Ω̂1 = Ω̂4 were strongly rejected

by means of a likelihood-ratio test,

LR = 2(3462.91− 3449.09) = 27.64,

which implies a p-value of 0.0001. Clearly the data supports correlations and volatilities

that are different even in the two regimes with the highest volatility.
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4 Additional Predictor variables

Equation (5) can easily be extended to incorporate an m× 1 vector of additional predictor
variables, xt−1. Define the (m+ n)× 1 vector zt = (y0t x0t)0. Then (5) is readily extended to

zt =

 µst

µxst

+ pX
j=1

A∗j,stzt−j +

 εt

εxt

 , (st = 1, ..., k) (13)

where µxst = (µx1st , ..., µxmst)
0 is the intercept vector for xt in state st, {A∗j,st}pj=1 are now

(n+m)×(n+m)matrices of autoregressive coefficients in state st, and (ε0t ε0xt)0 ∼MN(0,Ω∗st),
where Ω∗st is an (n+m× n+m) covariance matrix.
In this extended model predictability of returns occurs through two channels. Most obvi-

ously, if the autoregressive terms or lagged predictor variables are significant, the conditional

mean of stock and bond returns are predictable. Even in the absence of time-varying predic-

tor variables or autoregressive terms, predictability arises in general as long as there are two

states, st and s0t for which µst 6= µs0t. Variation in the state probabilities over time will then
lead to time-variation in expected returns. Variations in the covariance matrix across states,

will lead to further predictability in higher order moments such as volatility, correlations and

skews.

This setup is directly relevant to the large literature in finance that has reported evidence

of predictability in stock and bond returns. While many predictor variables have been

proposed, one of the key instruments is the dividend yield; see, e.g., Campbell and Shiller

(1988) and Fama and French (1988, 1993).

Notice that when k = 1, equation (13) simplifies to a standard vector autoregression.

Our model thus nests as a special case the standard linear (single-state) model used in much

of the asset allocation literature; see e.g. Barberis (2000).

4.1 Empirical Results

Again we conducted a battery of tests to determine the best model specification. To select

the lag order for the extended model we first estimate a range of VAR(p) models, where
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p is gradually augmented and information criteria used to evaluate the effect of including

additional lags.9 All information criteria as well as a sequential likelihood ratio test pointed

towards a VAR(1) model. This is unsurprising given the strong persistence of the dividend

yield.

Turning next to the search across different numbers of states, k, table 6 suggests that,

although the model has now been extended by an autoregressive term, a four-state model

continues to provide the best trade-off between fit and parsimony.10 Table 7 shows the

parameter estimates for the preferred model specification. Results for a comparable single

state VAR(1) model are shown to provide a benchmark for the richer four-state model.

In the linear model the dividend yield predicts returns on small stocks but does not

appear to be significant in the equations for returns on large stocks and long-term bonds.11

As expected, the dividend yield is highly persistent and the estimated correlation matrix

shows a strong positive correlation between the returns of small and large stocks while stock

returns are strongly negatively correlated with simultaneous shocks to the dividend yield.

Estimates of the autoregressive matrices, Âj, suggest that the effect of changes in the

dividend yield on asset returns continues to be strong in the multi-state model. Inclusion

of the dividend yield therefore does not weaken the evidence of multiple states, nor does

the presence of such states in a framework that allows for heteroskedasticity remove the

predictive power of the dividend yield over asset returns.12

As in the pure return regime-switching model, the transition probability matrix continues

to have a very special structure. Exits from states 1 and 2 are almost always to the bull-burst

9As suggested by Krolzig (1997, p. 128) the autoregressive order p in a regime switching model can

conveniently be pre-selected as the maximal lag order p obtained in the single state VAR.
10There is clear evidence of separate regimes in the univariate dividend yield series. Independently of the

specific form of the estimated regime switching model, the null of linearity was rejected using Davies’ (1977)

upper bounds for the p-values of likelihood ratio tests in the presence of nuisance parameters.
11A one standard deviation increase in the dividend yield incrases the annualized mean excess return on

small stocks by 1.2%. The corresponding figures for large stocks and bonds are 0.23% and 0.25%, respectively.
12After controlling for regime switching in a univariate model for the returns of a value-weighted portfolio of

stocks, Schaller and van Norden (1997) find that the dividend yield remains significant in a regime switching

model with homoskedastic shocks but is insignificant once the volatility is allowed to be state-dependent.
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state 4, while exits from states 3 and 4 are predominantly to the crash state 1.

To assist with the economic interpretation of the four regimes, Figure 5 plots the smoothed

state probabilities. Regime 1 continues to pick up market crashes, characterized by nega-

tive, double-digit (on an annualized basis) mean excess returns (-38% and -49% for large

and small firms and -10% for bonds).13 The dividend yield is relatively high in this state

(4%) and volatility is also above average. The probability of regime 1 is highest around

the oil price shocks of the 1970s, the recession of the early 1980s, the October 1987 stock

market crash, the Kuwait Invasion in 1990 and the Asian flu. It matches the beginning of

major U.S. business cycle contractions and also picks up many well-known episodes with low

returns and high volatility. In steady state this regime occurs 15% of the time although it

has an average duration of only two months. The autoregressive coefficients indicate sub-

stantial predictability of small and large firms’ returns in this state. Lagged bond returns

and dividend yields have the strongest predictive power and small stocks’ returns are also

strongly serially correlated. The dividend yield is highly persistent but unpredictable from

past asset returns in this state.

Regime 2 is a slow growth state characterized by single-digit mean excess stock returns

(9.9% and 8.8% for large and small firms, respectively) and moderate volatility. Long periods

of time was spent in this state during the stagnating markets of the mid-1970s and the first

half of the 1990s. This state is highly persistent, lasting on average almost 16 months and

occurring close to one-third of the time. There is less predictability of returns in this regime

although the dividend yield still affects stock returns, again with the expected positive sign.

Regime 3 is a bull state in which the annualized mean excess return on large and small

stocks is 11% and 14%, respectively. This state includes the long expansions of the 1950s

and 1960s, the high growth periods of 1971-1973, the protracted boom of the 1980s as well as

13The mean excess return in each regime (k) is estimated as the weighted sample average of mean excess

returns: (
1999:12X
t=1954:02

bπk,t)−1( 1999:12X
t=1954:02

bπk,tEt−1[yt|st−1 = k])

where Et−1[yt|st−1 = k] = µ̂st−1=k + Âst−1=kyt−1.
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some periods in the early 1990s. It is often accompanied by interest rate cuts and therefore

by positive mean excess returns on long-term bonds. At 2.8%, the mean dividend yield,

on the other hand, is low. Return volatilities reach intermediate levels. This regime is also

highly persistent and occurs one third of the time, lasting on average almost 15 months.

Return predictability is weak in this state although the dividend yield remains positively

correlated with stock returns.

Finally, regime 4 is again a bull-burst regime with strong stock market rallies accompanied

by substantial volatility. Annualized mean excess returns on large and small stocks are 57%

and 95%, respectively, while long-term bonds have mean excess returns of 17%. This state

thus picks up either the initial and more impetuous stages of business cycle upturns or

market ‘rebounds’ following crashes. Many peaks of U.S. expansions and market booms

such as 1985-1986, or the ‘new economy’ of 1997-1999 occurred during this state which does

not last long with an average duration of only 2 months. Nevertheless, at 18%, its steady-

state probability is quite high. As in the first state, there is some predictability and the

dividend yield forecasts returns on small caps and long-term bonds in the fourth state.

4.2 Relation to Fama-French Factors

Fama and French (1993) proposed a number of factors to explain the cross-sectional variation

in stock and bond returns. For stock returns they considered the market portfolio, a portfolio

capturing book-to-market effects (HML) and a portfolio capturing size (SMB). For bond

returns they considered a default premium and a term premium factor.

Although the analysis of Fama and French (1993) was primarily concerned with explaining

patterns in the cross-section of returns on stock and bond returns by means of factors

measured during the same period, while our analysis is concerned with predictive patterns

in returns, it is interesting to relate expected returns implied by our four-state model to

the five Fama-French factors. To do so, we estimate univariate predictive regressions of the

expected stock and bond returns implied by the regime switching model (ŷit) on the lagged
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values of the Fama-French factors:

ŷit = β0i + β1iHMLt−1 + β2iSMBt−1 + β3ir
MKT
t−1 + β4iDEFt−1 + β5iTERMt−1 + εit, (14)

whereHML is the return on the Fama-French ‘High-minus-Low Book-to-Market’ stock port-

folio, SMB is the return on the Fama-French ‘Small-minus-Big Size’ stock portfolio, rMKT

is the excess return on the market (the value-weighted CRSP portfolio), DEF is the default

premium (difference between the yield on Moody’s BAA and AAA corporate bonds), and

TERM is the term premium (difference between the return on long-term government bond

yields and 30-day T-bill rates). Results are shown in Figure 6. The correlation coefficients

between expected returns calculated from (14) vs. the ones implies by the four-state regime

model estimated in Section 3 are 0.053 for bonds, 0.273 for small caps and 0.331 for large

caps. Hence, there is a positive but weak relationship between the lagged Fama-French

factors and expected returns under the regime switching model.

5 Conclusion

The joint process of stock and bond returns follows a rich and complex dynamic pattern.

We found evidence that standard linear models do not capture essential features of this

distribution and that four regimes are required to capture the time-variation in the mean,

variance and correlation between large and small firms’ stock returns and long-term bond

returns. Two regimes capture periods with high volatility and low persistence and two

regimes are intermediate states with higher persistence. Furthermore, transitions between

these regimes take a very special form with exits from the highly volatile bear state mostly

being to the volatile recovery state with high expected returns, suggesting the presence of

bounce-back effects after a period with large negative returns. These conclusions do not

change when we add the dividend yield as a predictor in our model.

There are several extensions of this work that would be interesting to consider. First,

while we used diagnostic tests and information criteria to choose the number of regimes in

the univariate and multivariate models, another possibility is to select the preferred model
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on the basis of its forecasting performance in an out-of-sample experiment. It is a common

finding in economics that nonlinear models provide good in-sample fits, but perform worse

out-of-sample. One could select the architecture of the regime switching model - primarily

the number of states and the number of autoregressive terms - on the basis of its out-of-

sample forecasting performance.

A second extension of our results is to consider their asset allocation implications. This is

done in Guidolin and Timmermann (2003). It turns out that the regime switching model not

only affects the optimal level of asset holdings across a range of preference specifications, but

also affects how the optimal asset allocation relates to the investor’s time horizon, bear states

giving rise to upward sloping demand for stocks while bull states give rise to a downward

sloping demand for stocks as a function of the investment horizon.
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Table 1 

Univariate Regime Switching Models for Stock and Bond Returns 
This table reports estimation results for the model 
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where st is governed by an unobservable, discrete, first-order Markov chain that can assume k values (states). uti is 
IIN(0,1). i =1, 2, 3 indexes excess returns on portfolios of large and small stocks and 10-year T-bonds. Data are 
monthly and obtained from the CRSP tapes. The sample period is 1954:01 � 1999:12. For likelihood ratio tests we 
report in square brackets the p-value based on the χ2(r) distribution (r is the number of restrictions) and in curly 
brackets the p-value based on Davies� (1977) upper bound. 

Parameter Large caps Small caps Bonds Large caps Small caps Bonds 
 Panel A � Two-State AR(0) Models Panel B � Two-State AR(1) Models 

µ1 -0.0083 0.0045 0.0015 -0.0239 0.0042 0.0012 

µ2 0.0097 0.0109 -0.0012 0.0154 0.0070 -0.0007 
a 1 NA NA NA 0.4400 0.1555 0.0645 
a 2 NA NA NA -0.1639 0.2553 0.2989 
σ1 0.0641 0.0852 0.0246 0.0444 0.0873 0.0247 

σ2 0.0335 0.0360 0.0070 0.0347 0.0366 0.0071 
P11 0.7298 0.8910 0.9721 0.3819 0.8768 0.9757 
P22 0.9424 0.9218 0.9196 0.8521 0.9285 0.9315 

Log-likelihood 996.3292 804.2038 1394.8273 993.5284 816.2982 1399.0809 
Linear Log-lik. 976.9035 756.5298 1334.0423 975.1871 765.8890 1333.1040 

LR test of linearity 
38.8514 
[0.000] 
{0.000} 

95.3481 
[0.000] 
{0.000} 

121.5699 
[0.000] 
{0.000} 

36.6825 
[0.000] 
{0.000} 

100.8184 
[0.000] 
{0.000} 

131.9537 
[0.000] 
{0.000} 

Hannan-Quinn -3.5698 -2.8737 -5.0137 -3.5528 -2.9095 -5.0248 
 Panel C � Three-State AR(0) Models Panel D � Three-State AR(1) Models 

µ1 -0.0169 -0.0245 0.0029 -0.0289 -0.0155 0.0000 

µ2 0.0061 0.0121 -0.0014 0.0057 0.0070 -0.0003 

µ3 0.0371 0.0867 0.0006 0.0306 0.1106 0.0026 
a 1 NA NA NA 0.3804 0.1215 0.0948 
a 2 NA NA NA -0.0290 0.2612 0.5497 
a 3 NA NA NA -0.2615 -0.3356 0.0486 
σ1 0.0722 0.0744 0.0337 0.0452 0.0753 0.0170 

σ2 0.0354 0.0365 0.0056 0.0300 0.0359 0.0029 

σ3 0.0181 0.0762 0.0181 0.0371 0.0726 0.0334 
p11 0.7356 0.8578 0.9799 0.4578 0.8776 0.9809 
p22 0.9663 0.9232 0.9206 0.9562 0.9347 0.8932 
p33 0.6716 0.4533 0.9726 0.7155 0.3433 0.9800 
p12 0.0017 0.0011 0.0069 0.0079 0.0014 0.0118 
p21 0.0313 0.0645 0.0001 0.0418 0.0592 0.1067 
P31 0.0052 0.0029 0.0077 0.2129 0.0082 0.0116 

Log-likelihood 1004.7285 814.9706 1420.7636 1005.6759 826.5749 1429.0516 
Linear Log-lik. 976.9035 756.5298 1334.0423 975.1871 765.8890 1334.1040 

LR test of linearity 
55.6501 
[0.000] 
{0.000} 

116.8817 
[0.000] 
{0.000} 

173.4425 
[0.000] 
{0.000} 

60.9775 
[0.000] 
{0.000} 

121.3719 
[0.000] 
{0.000} 

191.8951 
[0.000] 
{0.000} 

Hannan-Quinn -3.5602 -2.8727 -5.0676 -3.5501 -2.9000 -5.0868 
 



Table 2 

Model Selection for Stock and Bond Returns (joint model) 
This table reports values of the log-likelihood function, linearity tests and information criterion values for the 
multivariate Markov switching conditionally heteroskedastic VAR model: 
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where 
ts

µ  is the intercept vector in state st, 
tjs

A  is the matrix of autoregressive coefficients at lag j = 1 in state st and 

ε t= ),( ~]'  [ 321 tsttt N Ω0εεε . St is governed by a first-order Markov chain that can assume k values. p autoregressive 
terms are considered. The three monthly return series comprise a portfolio of large stocks (ninth and tenth CRSP size 
decile portfolios), a portfolio of small stocks (first and second CRSP deciles), and 10-year T-bonds. Returns are 
measured in excess of the 30-day T-bill rate. The data was obtained from the CRSP tapes. The sample period is 
1954:01 � 1999:12. MMSIA is short for Multivariate Markov Switching with regime-dependent Intercept and 
Autoregressive terms, while MMSIAH introduces regime-dependent heteroskedasticity. 

Model 
(k,p) 

Number of 
parameters 

Log-
likelihood 

LR test for 
linearity 

Hannan-
Quinn 

 Base model: MSIA(1,0) 
MMSIA(1,0) 9 3290.82 NA -11.8632 

MMSIA(1,1) 18 3314.34 NA -11.9099 

MMSIA(1,2) 27 3314.72 NA -11.8618 
 Base model: MSIA(2,0) 

MMSIA(2,0) 14 3316.24 50.8244 
(0.000) -11.8552 

MMSIAH(2,0) 20 3392.79 203.9312 
(0.000) -12.1592 

MMSIAH(2,1) 38 3436.99 245.2865 
(0.000) -12.2213 

MMSIAH(2,2) 56 3438.51 253.5739 
(0.000) -12.1285 

 Base model: MSIA(3,0) 

MMSIA(3,0) 21 3340.86 100.0658 
(0.000) -11.9643 

MMSIAH(3,0) 33 3418.03 254.4206 
(0.000) -12.1639 

MMSIAH(3,1) 60 3468.10 307.5043 
(0.000) -12.1871 

MMSIAH(3,2) 87 3480.08 336.7194 
(0.000) -12.0721 

 Base model: MSIA(4,0) 

MMSIA(4,0) 30 3380.29 178.9327 
(0.000) -12.0471 

MMSIAH(4,0) 48 3462.91 344.1803 
(0.000) -12.2263 

MMSIAH(4,1) 84 3517.36 406.0404 
(0.000) -12.2054 

MMSIAH(4,2) 120 3554.56 485.6775 
(0.000) -12.1218 

MMSIAH(4,3) 156 3589.30 550.8718 
(0.000) -12.0291 

 



Table 2 (continued) 

Model Selection for Stock and Bond Returns (joint model) 
 

Model 
(k,p) 

Number of 
parameters 

Log-
likelihood 

LR test for 
linearity 

Hannan-
Quinn 

 Base model: MSIA(5,0) 

MMSIA(5,0) 41 3406.45 231.2536 
(0.000) -12.0685 

MMSIAH(5,0) 65 3485.78 389.9136 
(0.000) 

-12.1957 

MMSIAH(5,1) 110 3546.33 463.9703 
(0.000) 

-12.1367 

MMSIAH(5,2) 155 3599.75 576.0651 
(0.000) 

-12.0517 

 



Table 3 

Estimates of Regime Switching Model for Stock and Bond Returns  
This table reports parameter estimates for the multivariate regime switching model 

tst t
y εµ += , 

where 
ts

µ  is the intercept vector in state st and ε t= ),( ~]'  [ 321 tsttt N Ω0εεε . St is governed by a first-order Markov 
chain that can assume four values. The three monthly return series comprise a portfolio of large stocks (ninth and 
tenth CRSP size decile portfolios), a portfolio of small stocks (first and second CRSP deciles), and 10-year T-bonds. 
Returns are measured in excess of the 30-day T-bill rate. The data was obtained from the CRSP tapes. The sample is 
1954:01 � 1999:12. The first panel refers to the single-state benchmark case (k = 1). Values on the diagonals of the 
correlation matrices are annualized volatilities. Asterisks attached to correlation coefficients refer to covariance 
estimates. For mean coefficients and transition probabilities, standard errors are reported in parentheses. 

 Panel A � Single State Model 
 Large caps Small caps Long-term bonds 
1. Mean excess return 0.0066 (0.0018) 0.0082 (0.0026) 0.0008 (0.0009) 
2. Correlations/Volatilities    
Large caps 0.1428***   
Small caps 0.7215** 0.1481***  
Long-term bonds 0.2516 0.1196 0.0748*** 
 Panel B � Four State Model 
 Large caps Small caps Long-term bonds 
1. Mean excess return    
Regime 1 (crash) -0.0510 (0.0146) -0.0810 (0.0219) -0.0131 (0.0047) 
Regime 2 (slow growth) 0.0069 (0.0027) 0.0008 (0.0033) 0.0009 (0.0016) 
Regime 3 (bull) 0.0116 (0.0032) 0.0167 (0.0048) -0.0023 (0.0007) 
Regime 4 (recovery) 0.0226 (0.0055) 0.0458 (0.0098) 0.0098 (0.0033) 
2. Correlations/Volatilities    
Regime 1 (crash):    
Large caps 0.1625***   
Small caps 0.8233*** 0.2479***  
Long-term bonds -0.4060* -0.2590 0.0902*** 
Regime 2 (slow growth):    
Large caps 0.1118***   
Small caps 0.7655*** 0.1099***  
Long-term bonds 0.2043*** 0.1223 0.0688*** 
Regime 3 (bull):    
Large caps 0.1133***   
Small caps 0.6707*** 0.1730***  
Long-term bonds 0.1521 -0.0976 0.0261*** 
Regime 4 (recovery):    
Large caps 0.1479***   
Small caps 0.5013*** 0.2429***  
Long-term bonds 0.3692*** -0.0011 0.1000*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 (crash) 0.4940 (0.1078) 0.0001 (0.0001) 0.02409 (0.0417) 0.4818 
Regime 2 (slow growth) 0.0483 (0.0233) 0.8529 (0.0403) 0.0307 (0.0110) 0.0682 
Regime 3 (bull) 0.0439 (0.0252) 0.0701 (0.0296) 0.8822 (0.0403) 0.0038 
Regime 4 (recovery) 0.0616 (0.0501) 0.1722 (0.0718) 0.0827 (0.0498) 0.6836 

* significant at the 10% level, ** significant at the 5% level, *** significant at the 1%. level 



Table 4 

Estimates of Multivariate Regime Switching Model for Stock and Bond Returns  
Under Mean Restrictions 

This table reports parameter estimates for the multivariate regime switching model 

tty εµ += , 

where ε t= ),( ~]'  [ 321 tsttt N Ω0εεε  is the vector of unpredictable return innovations. The model is estimated under 
the restriction that the vector of mean excess returns (µ ) is regime-independent. The unobserved state variable, St, is 
governed by a first-order Markov chain that can assume four values. The three monthly return series comprise a 
portfolio of large stocks (ninth and tenth CRSP size decile portfolios), a portfolio of small stocks (first and second 
CRSP deciles), and 10-year T-bonds. Returns are measured in excess of the 30-day T-bill rate. The data was obtained 
from the CRSP tapes. The sample is 1954:01 � 1999:12. The first panel refers to the single-state benchmark (k = 1). 
Values reported on the diagonals of the correlation matrices are annualized volatilities. Asterisks attached to 
correlation coefficients refer to covariance estimates. For mean coefficients and transition probabilities, standard errors 
are reported in parentheses. 

 Panel A � Single State Model 
 Large caps Small caps Long-term bonds 
1. Mean excess return 0.0066 (0.0018) 0.0082 (0.0026) 0.0008 (0.0009) 
2. Correlations/Volatilities    
Large caps 0.1428***   
Small caps 0.7215** 0.1481***  
Long-term bonds 0.2516 0.1196 0.0748*** 
 Panel B � Four State Model under Mean Restrictions 
 Large caps Small caps Long-term bonds 
1. Mean excess return 0.0066 (0.0017) 0.0082 (0.0021) 0.0008 (0.0007) 
2. Correlations/Volatilities    
Regime 1 (crash)    
Large caps 0.1897***   
Small caps 0.9683*** 0.3032***  
Long-term bonds -0.5424** -0.4251** 0.0625*** 
Regime 2 (slow growth):    
Large caps 0.1069***   
Small caps 0.7087*** 0.1074***  
Long-term bonds 0.0789 0.0688 0.0617*** 
Regime 3 (bull):    
Large caps 0.1163***   
Small caps 0.7324*** 0.1637***  
Long-term bonds 0.2473** 0.0196 0.0064*** 
Regime 4 (recovery):    
Large caps 0.1661***   
Small caps 0.6520*** 0.2682***  
Long-term bonds 0.4821*** 0.2502 0.1012*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 (crash) 0.0001 (0.0469) 0.0000 (0.0230) 0.0000 (0.0123) 0.9999 
Regime 2 (slow growth) 0.0385 (0.0197) 0.9234 (0.0285) 0.0000 (0.0181) 0.0381 
Regime 3 (bull) 0.0007 (0.0322) 0.0436 (0.0265) 0.9182 (0.0332) 0.0375 
Regime 4 (recovery) 0.2350 (0.1041) 0.0434 (0.0267) 0.0413 (0.0193) 0.6803 

* significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level. 



Table 5 

Estimates of the Multivariate Regime Switching Model for Stock and Bond Returns Under  
Covariance Restrictions 

This table reports parameter estimates for the multivariate regime switching model: 

tst t
y εµ +=  

where 
ts

µ  is the intercept vector in state st and ε t= ),( ~]'  [ 321 tsttt N Ω0εεε  is the vector of unpredictable return 

innovations. The model is estimated under the restriction that 41 Ω=Ω . St is governed by a first-order Markov chain 
that can assume four values. The three monthly return series comprise a portfolio of large stocks (ninth and tenth 
CRSP size decile portfolios), a portfolio of small stocks (first and second CRSP deciles), and 10-year bonds. Returns 
are measured in excess of the 30-day T-bill rate. The data was obtained from the CRSP tapes. The sample is 1954:01 � 
1999:12. The first panel refers to the single-state benchmark (k = 1). Values reported on the diagonals of the 
correlation matrices are annualized volatilities. Asterisks attached to correlation coefficients refer to covariance 
estimates. For mean coefficients and transition probabilities, standard errors are reported in parentheses. 

 Panel A � Single State Model 
 Large caps Small caps Long-term bonds 
1. Mean excess return 0.0066 (0.0018) 0.0082 (0.0026) 0.0008 (0.0009) 
2. Correlations/Volatilities    
Large caps 0.1428***   
Small caps 0.7215** 0.1481***  
Long-term bonds 0.2516 0.1196 0.0748*** 
 Panel B � Four State Model with 41 Ω=Ω  
 Large caps Small caps Long-term bonds 
1. Mean excess return    
Regime 1 (crash) -0.0574 (0.0143) -0.0922 (0.0208) -0.0100 (0.0055) 
Regime 2 (slow growth) 0.0061 (0.0028) 0.0001 (0.0034) 0.0001 (0.0017) 
Regime 3 (bull) 0.0103 (0.0033) 0.0133 (0.0059) -0.0015 (0.0008) 
Regime 4 (recovery) 0.0210 (0.0055) 0.0424 (0.0099) 0.0066 (0.0033) 
2. Correlations/Volatilities    
Regimes 1-4 (high volatility)    
Large caps 0.1514***   
Small caps 0.5885*** 0.2380***  
Long-term bonds 0.1786* -0.0246 0.0967*** 
Regime 2 (slow growth):    
Large caps 0.1103***   
Small caps 0.7687*** 0.1118***  
Long-term bonds 0.1496*** 0.1541 0.0687*** 
Regime 3 (bull):    
Large caps 0.1096***   
Small caps 0.6929*** 0.1676***  
Long-term bonds 0.0291 -0.0071 0.0228*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 (crash) 0.4543 (0.1169) 0.0000 (0.0572) 0.0102 (0.0298) 0.5355 
Regime 2 (slow growth) 0.0487 (0.0244) 0.8538 (0.0379) 0.0000 (0.0491) 0.0975 
Regime 3 (bull) 0.0491 (0.0293) 0.0657 (0.0338) 0.8817 (0.0389) 0.0035 
Regime 4 (recovery) 0.0346 (0.0350) 0.1521 (0.0819) 0.0963 (0.0894) 0.7170 

* significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level. 



Table 6 

Selection of Regime Switching Model for Stock and Bond Returns, Dividend Yield 
This table reports estimation results for the extended regime switching model 

t

p

j
jtjsst yAy

tt
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∑
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where yt is a (n+m x 1) random vector collecting excess asset returns in the first n positions followed by m predictor 
variables, 

ts
µ  is the intercept vector in state st, 

tjs
A  is the matrix of autoregressive coefficients associated with lag j = 

1 in state st and ε t= ),( ~]'   [ 4321 tstttt N Ω0εεεε . The unobserved state variable, St, is governed by a first-order 
Markov chain that can assume k distinct values. The three monthly return series comprise a portfolio of large stocks 
(ninth and tenth CRSP size decile portfolios), a portfolio of small stocks (first and second CRSP deciles), and 10-year 
T-bonds. Returns are measured in excess of the 30-day T-bill rate. The predictor is the dividend yield. The data was 
obtained from the CRSP tapes. The sample period is 1954:01 � 1999:12. MMSIA is short for Multivariate Markov 
Switching with regime-dependent Intercept and Autoregressive terms, while MMSIAH introduces regime-dependent 
heteroskedasticity. Models of the class MMSIAH(1, p) correspond to Gaussian VAR models of order p. 

Model 

(k,p) 

Number of 
parameters 

Log-
likelihood 

LR test for 
linearity 

Hannan-
Quinn 

 Base model: MSIA(1,0) 

MMSIA(1,0) 14 5131.15 NA 
(NA) -18.4976 

MMSIA(1,1) 30 6673.70 NA 
(NA) -24.0233 

MMSIA(1,2) 46 6674.33 NA 
(NA) -23.9549 

 Base model: MSIA(3,0) 

MMSIA(3,0) 28 5549.51 836.7187 
(0.000) -19.9200 

MMSIAH(3,0) 48 5594.02 925.7533 
(0.000) -19.9477 

MMSIAH(3,1) 96 6960.39 573.3915 
(0.000) -24.6226 

MMSIAH(3,2) 144 6978.27 611.8806 
(0.000) -24.4109 

 Base model: MSIA(4,0) 

MMSIA(4,0) 38 5503.87 745.4456 
(0.000) -19.6879 

MMSIAH(4,0) 68 5611.97 961.6513 
(0.000) -19.8792 

MMSIAH(4,1) 132 7029.66 711.9237 
(0.000) -24.6333 

MMSIAH(4,2) 196 7083.13 821.5979 
(0.000) -24.4439 

MMSIAH(4,3) 260 7155.59 958.2742 
(0.000) -24.3232 

 



Table 7 

Estimates of Regime Switching Model for Stock and Bond Returns and the Dividend Yield 
This table reports parameter estimates for the multivariate regime switching model 

*
t1

**
s εµ

t
++= −tst zAz

t
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where zt is a 4× 1 vector collecting excess asset returns in the first three positions plus an additional prediction variable 
(the dividend yield), *

st
µ  is the intercept vector in state st, *

ts
A  is the matrix of autoregressive coefficients associated 

with lag 1 in state st and ε*t= ),( ~]' [ *
tsxtt N Ω0εε . The unobservable state st is governed by a first-order Markov 

chain that can assume four distinct values. The three monthly return series comprise a portfolio of large stocks (ninth 
and tenth CRSP size decile portfolios), a portfolio of small stocks (first and second CRSP deciles), and 10-year bonds 
all in excess of the return on 30-day T-bills. The predictor is the dividend yield. The first panel refers to the single-state 
benchmark (k = 1). Asterisks attached to correlation coefficients refer to covariance estimates. For mean coefficients 
and transition probabilities, standard errors are reported in parentheses. 

 Panel A � VAR(1) (single state) Model 
 Large caps Small caps Long-term bonds Dividend Yield 
1. Intercept term 0.0021 (0.0070) -0.0160 (0.0102) -0.0032 (0.0036) 0.0004(0.0003) 
2. VAR(1) Matrix     
Large caps -0.0466 (0.0635) 0.0370 (0.0925) 0.2299(0.0330) 0.1261(0.0024) 
Small caps 0.1236 (0.0412) 0.1244 (0.0600) 0.2624 (0.0214) 0.6641 (0.0016) 
Long-term bonds -0.0442 (0.0839) -0.0261 (0.1223) 0.1070 (0.0436) 0.1322 (0.0032) 
Dividend Yield -0.0005 (0.2028) -0.0005 (0.2953) -0.0098 (0.1054) 0.9856 (0.0077) 
3. Correlations/Volatilities     
Large caps 0.1417***    
Small caps 0.7285*** 0.2063***   
Long-term bonds 0.2466* 0.1353 0.0736***  
Dividend Yield -0.9243*** -0.7695*** -0.2413 0.0056*** 
 Panel B � Four State Model 
 Large caps Small caps Long-term bonds Dividend Yield 
1. Intercept term     
Regime 1 (crash) -0.0848 (0.1065) -0.1152 (0.1528) -0.0150 (0.0396) 0.0014 (0.0514) 
Regime 2 (slow growth) -0.0232 (0.0338) -0.0188 (0.0516) -0.0016 (0.0115) 0.0011 (0.0010) 
Regime 3 (bull) 0.0122 (0.0539) -0.0323 (0.0471) 0.0048 (0.0278) 0.0002 (0.0021) 
Regime 4 (recovery) 0.0370 (0.0490) 0.0179 (0.0940) -0.0038 (0.0324) 0.0007 (0.0019) 
2. VAR(1) Matrix     
Regime 1 (crash):     
Large caps -0.0494 (0.5360) 0.2391 (0.3875) 0.3092 (0.7164) 1.2089 (2.8282) 
Small caps -0.0357 (0.9401) 0.2424 (0.6332) 0.7277 (1.0894) 1.5972 (4.0047) 
Long-term bonds 0.0136 (0.4381) -0.0059 (0.2641) -0.0215 (0.4246) 0.1838 (1.0283) 
Dividend Yield 0.0002 (0.0262) -0.0076 (0.0192) -0.0170 (0.0301) 1.0074 (0.1302) 
Regime 2 (slow growth):     
Large caps -0.0563 (0.3064) -0.0311 (0.1609) 0.0526 (0.4049) 1.1417 (1.1539) 
Small caps -0.0029 (0.5142) 0.2710 (0.2795) -0.0077 (0.7227) 0.8963 (1.7180) 
Long-term bonds -0.0430 (0.1539) -0.0056 (0.0896) 0.4234 (0.1888) 0.0813 (0.3948) 
Dividend Yield 0.0010 (0.0096) 0.0007 (0.0051) -0.0013 (0.0132) 0.9552 (0.0340) 
Regime 3 (bull):     
Large caps -0.0535 (0.3682) -0.0789 (0.3452) -0.0800 (0.4560) -0.0810 (1.4631) 
Small caps 0.0200 (0.3399) 0.1878 (0.3256) -0.1707 (0.4503) 1.0675 (1.2817) 
Long-term bonds -0.0272 (0.1568) -0.0550 (0.1518) -0.0057 (0.1809) -0.1571 (0.7925) 
Dividend Yield -0.0022 (0.0124) 0.0032 (0.0113) 0.0055 (0.0162) 0.9924 (0.0566) 

 



 

Table 7 (continued) 

Estimates of Regime Switching Model for Stock and Bond Returns and the Dividend Yield 
 

 Panel B (cont�d) � MMSIAH(4,1) Model 
 Large caps Small caps Long-term bonds Dividend Yield 
2. VAR(1) Matrix (cont�d)     
Regime 4 (recovery):     
Large caps -0.1994 (0.4243) -0.0419 (0.2394) 0.2603 (0.4992) -0.0123 (1.3605) 
Small caps 0.3832 (0.7902) -0.1739 (0.4847) 0.0481 (1.0007) 1.1191 (2.6891) 
Long-term bonds -0.1465 (0.3439) -0.0113 (0.1973) 0.0606 (0.3846) 0.4777 (0.8776) 
Dividend Yield 0.0047 (0.0154) 0.0024 (0.0086) -0.0105 (0.0180) 0.9428 (0.0504) 
3. Correlations/Volatilities     
Regime 1 (crash):     
Large caps 0.1206*    
Small caps 0.7530 0.2044*   
Long-term bonds -0.2128 -0.1487 0.0906*  
Dividend Yield -0.9289 -0.7885 0.1688 0.0056 
Regime 2 (slow growth):     
Large caps 0.0896***    
Small caps 0.7496*** 0.1513***   
Long-term bonds 0.2344 0.0006 0.0431***  
Dividend Yield -0.9322*** -0.7939*** -0.1808 0.0027*** 
Regime 3 (bull):     
Large caps 0.1224***    
Small caps 0.7524*** 0.1239***   
Long-term bonds 0.1083** 0.1450 0.0577***  
Dividend Yield -0.9099*** -0.7261*** -0.1174 0.0043*** 
Regime 4 (recovery):     
Large caps 0.1191*    
Small caps 0.3668 0.2189***   
Long-term bonds 0.2600 -0.1320 0.0949**  
Dividend Yield -0.9312* -0.5573 -0.1909 0.0041* 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 (crash) 0.4606 (0.1868) 0.0623 (0.1117) 4.51e-19 (0.0733) 0.4771 
Regime 2 (slow growth) 2.29e-05 (0.0541) 0.9151 (0.0670) 9.07e-15 (0.0440) 0.0848 
Regime 3 (bull) 0.0598 (0.0727) 5.71e-22 (0.0106) 0.9329 (0.0696) 0.0074 
Regime 4 (recovery) 0.3223 (0.1939) 0.0809 (0.0935) 0.1160 (0.1063) 0.4808 

* significant at the 10% level, ** significant at the 5% level, *** significant at the 1% level. 

 



Figure 1 

Smoothed State Probabilities from Two-State Models for Stock and Bond Returns 
The graphs plot the smoothed probability of regime 1 estimated from the Markov switching model 

itisisit uy
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σµ += , 

where sit is governed by an unobservable first-order Markov chain that can assume two distinct values (states). uit is 
IIN(0,1). i =1, 2, 3 are indexes for returns on large stocks, small stocks and 10-year T-bonds portfolio. The data are 
monthly and obtained from the CRSP tapes. Excess returns are calculated as the difference between portfolio returns 
and the 30-day T-bill rate. The sample period is 1954:01 � 1999:12.  
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Figure 2 

Smoothed State Probabilities from Two-State Models for Stock and Bond Returns 
The graphs plot pair-wise scatter diagrams of smoothed probabilities of state 1 estimated from the Markov switching 
model 
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σµ += , 

where sit is governed by an unobservable, discrete, first-order Markov chain that can assume two distinct values 
(states). uit is IIN(0,1). i =1, 2, 3 indexes excess returns on a large cap portfolio (ninth and tenth size deciles), a small 
cap portfolio (first and second deciles), and a 10-year T-bond portfolio. The data are monthly and obtained from the 
CRSP tapes. Excess returns are calculated as the difference between portfolio returns and the 30-day T-bill rate. The 
sample period is 1954:01 � 1999:12. 
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Figure 3 

Smoothed State Probabilities from Three-State Models for Stock and Bond Returns 
The graphs plot the smoothed probability of regimes 1-3 from the Markov switching model 

itisisit uy
tt

σµ += , 

where st is governed by an unobservable, first-order Markov chain that can assume three distinct values (states). uit is 
IIN(0,1). j =1, 2, 3 are indexes for returns on large stocks, small stocks and 10-year T-bonds. The data are monthly and 
obtained from the CRSP tapes. Excess returns are calculated as the difference between portfolio returns and the 30-
day T-bill rate. The sample period is 1954:01 � 1999:12.  
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Figure 4 
Smoothed State Probabilities: Four-State Model for Stock and Bond Returns 

The graphs plot the smoothed probabilities of regimes 1-4 for the multivariate Markov Switching model comprising 
returns on large and small firms and 10-year T-bonds all in excess of the return on 30-day T-bills. 
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Figure 5 

Smoothed State Probabilities: Four-State Model for Stock and Bond Returns and the 
Dividend Yield 

The graphs plot the smoothed probabilities of regimes 1-4 for the multivariate Markov Switching model comprising 
returns on large and small firms and 10-year bonds all in excess of the return on 30-day T-bills and extended by the 
dividend yield.  
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Figure 6 

Expected Returns from Four-state Markov Switching Model and from  
5-Factor Fama-French Linear Model 
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