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Abstract

In the context of an international portfolio diversification problem, we find that small capitalization

equity portfolios become riskier in bear markets, i.e. display negative co-skewness with other stock indices

and high co-kurtosis. Because of this feature, a power utility investor ought to hold a well-diversified

portfolio, despite the high risk premium and Sharpe ratios offered by small capitalization stocks. On

the contrary small caps command large optimal weights when the investor ignores variance risk, by

incorrectly assuming joint normality of returns. The dominant factor in inducing such shifts in optimal

weights is represented by the co-skewness, the predictable, time-varying covariance between returns and

volatilities. We calculate that if an investor were to ignore co-skewness and co-kurtosis risk, he would

suffer a certainty-equivalent reduction in utility equal to 300 basis points per year under the steady-state

distribution for returns. Our results are qualitatively robust when both European and North American

small caps are introduced in the analysis. Therefore this paper offers robust evidence that predictable

covariances between means and variances of stock returns may have a first order effect on portfolio

composition.
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Abstract

In the context of an international portfolio diversification problem, we find that small cap-

italization equity portfolios become riskier in bear markets, i.e. display negative co-skewness

with other stock indices and high co-kurtosis. Because of this feature, a power utility investor

ought to hold a well-diversified portfolio, despite the high risk premium and Sharpe ratios of-

fered by small capitalization stocks. On the contrary small caps command large optimal weights

when the investor ignores variance risk, by incorrectly assuming joint normality of returns. The

dominant factor in inducing such shifts in optimal weights is represented by the co-skewness, the

predictable, time-varying covariance between returns and volatilities. We calculate that if an

investor were to ignore co-skewness and co-kurtosis risk, he would suffer a certainty-equivalent

reduction in utility equal to 300 basis points per year under the steady-state distribution for re-

turns. Our results are qualitatively robust when both European and North American small caps

are introduced in the analysis. Therefore this paper offers robust evidence that predictable co-

variances between means and variances of stock returns may have a first order effect on portfolio

composition.
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1. Introduction

The traditional, textbook mean-variance paradigm implies that in the presence of stable and high correla-

tions, the process of portfolio selection by an internationally diversified investor should be mostly driven

by simple reward-to-risk measures, such as the Sharpe ratio. As it is well known (see Ingersoll, 1987),

mean-variance portfolio choice is completely rational when either preferences are restricted to rather spe-

cial cases or asset returns are drawn from a symmetric, stable multivariate Gaussian density. However

the recent empirical finance literature has stressed that the assumption of identically and independently

normally distributed returns hardly provides a satisfactory fit to equity returns data at a variety of sam-

pling frequencies, including weekly and monthly returns. In particular, international equity returns display

pronounced volatility clustering (ARCH) effects (see e.g., De Santis and Gerard, 1997) and instability of

pairwise correlations (see e.g., Longin and Solnik, 2001). Ang and Bekaert (2002) show that international

stock returns are subject to regime switching dynamics which in its turn may generate both time-varying

volatility and correlations. Guidolin and Timmermann (2006) generalize and extend this evidence reveal-

ing the existence of important regime switching predictability patterns, both in expected returns and in

variances and covariances.

A few papers have drawn the attention of researchers and practitioners on the international diversifica-

tion opportunities offered by small capitalization companies, e.g. Eun, Huang, and Lai (2006) and Petrella

(2005), but always in simple mean-variance frameworks which implicitly assume that stock returns must

be drawn from a stable, homoskedastic multivariate symmetric distribution. Clearly, in such a set-up the

covariances between expected returns and variances, and between variances and variances across different

assets/equity portfolios are zero by construction. Yet, we know that small capitalization stocks are rather

peculiar assets in that their returns display — along with high risk premia and Sharpe ratios — asymmetric

risk across bull and bear markets (see Ang and Chen, 2002). Indeed, small caps generally imply higher

risk in cyclical downturns due to tighter credit constraints associated to lower firm collateral (Perez-Quiros

and Timmermann, 2000). Our paper sets out to investigate the contribution of small caps to the interna-

tional diversification of stock portfolios under realistic specifications for the stochastic process driving asset

returns, that allow for asymmetric risk and non-zero covariances between risk premia and variances.

Although the idea that the higher co-moments (i.e., covariances between powers of returns) may influence

portfolios and equilibrium asset prices goes as far back as the seminal paper by Kraus and Litzenberger

(1976), the empirical finance literature has recently re-discovered the importance of what we shall define

as variance risk in both asset pricing and portfolio choice applications. For instance, Harvey and Siddique

(2000), Dittmar (2002), and Barone-Adesi, Gagliardini, and Urga (2004) are recent papers that show that

the cross-sectional distribution of the equity risk premium is related to the covariance of individual stock

returns with variance (co-skewness risk) and the asymmetry (co-kurtosis risk) of returns on the market

portfolio. Ang, Chen, and Xing (2005) show that simple modifications of the CAPM (such as a “downside”

beta CAPM in which the betas may differ in bear and bull markets) cannot fully account for the effects

of co-skewness risk. Guidolin and Timmermann (2006) show that co-skewness and co-kurtosis risk may

explain (within a regime switching framework that nests the standard international CAPM) a large portion

of the alleged “home bias” in US equity portfolios, i.e. variance risk may generate substantial under-

diversification.1

1Jondeau and Rockinger (2006) also focus on the importance of skewness and kurtosis of final wealth for risk-averse investors.
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The basic intuition for all these recent papers is that an investor may dislike one particular asset or

portfolio because it generates negative returns when all other assets (i.e., the market portfolio) become

volatile; this is co-skewness risk. Additionally, an investor may shy away from one particular asset because

it generates negative returns when the market portfolio shows a left-asymmetry in its distribution (i.e.,

market losses are more likely than gains) or because the asset returns become volatile exactly when all

other assets are volatile; these are the “fundamentals” of co-kurtosis risk.

We use international data to investigate how variance risk affects the international diversification de-

cisions of a power utility investor under several alternative assumptions on risk aversion and investment

horizon. We focus on an international equity diversification problem in which both U.S. and European

small cap portfolios figure prominently. We find that small caps returns imply above-average levels of

variance risk, which substantially reduces their appeal. In fact, we provide three alternative measures of

the relevance of variance risk. The first is directly based on a few selected features of the predictive joint

distribution for stock portfolio returns, the co-skewness and co-kurtosis of each portfolio vs. both other

portfolios as well as the aggregate market portfolio. The second measure is the welfare cost induced by

restricting investors to stick to a myopic portfolio rule that ignores variance risks. Finally, we also compute

the welfare cost that an investor would incur in case he were restricted to asset menus excluding vehicles —

small capitalization stocks — that are more prone to such risks.

Measuring the effect of predictable co-skewness and co-kurtosis on portfolio choice requires abandoning

the traditional mean-variance approach. On the one hand, we assume that the investor has a power utility

function, implying a preference for positively skewed as well as aversion to kurtosis of final wealth. On the

other hand, we allow the return process to generate non-normal and/or predictable returns. In particular,

we examine the fit of competing models of asset returns, including a linear VAR as well as Markov switching

processes. It turns out that the latter are able to account for both non-normality, asymmetric correlations,

and predictability.2 Finally, a parametric Markov switching framework allows us to obtain precise estimates

of the moments that characterize variance risk.

Using a 1999-2003 weekly MSCI data set for four major portfolios, we find that the joint distribution of

international stock returns is well captured by a three-state model. The states can be ordered by increasing

risk premia. In the intermediate regime − that we label normal because of its high average duration −
European small caps returns exhibit both an extremely low variance and a high Sharpe ratio. Thus a risk

averse investor, who is assumed to start from this regime, would invest close to 100% of her stock portfolio in

European small caps for horizons up to two years. On the other hand, the change in regime-specific variance

is the highest just for European small caps: in particular, variance almost doubles when the regime shifts

from normal to bear. The high variance “excursion” across regimes is compounded by the presence of high

and negative co-skewness with other asset returns, which means that the European small variance is high

when other excess returns are negative, and European small returns are small when the ‘market’ is highly

volatile. Similarly, the co-kurtosis of European small excess returns with other excess returns series is high

− i.e. the variance of the European small class tends to correlate with the variance of other assets. Both
these features suggest a tendency of European small caps to display a disproportionate variance risk.

Our fundamental and admittedly striking result is that a rational investor ought to give European small

2Ang and Chen (2002) report that regime switching models may replicate the asymmetries in correlations observed in stock

returns data better than GARCH-M and Poisson jump processes.
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caps a limited weight (as low as 10%) when she is ignorant about the nature of the current regime, which

is a realistic situation. This shift from essentially a near 100% investment in European small caps to a

weight between 10 and 20% is enormous and represents the easiest possible way in which one may quantify

the adverse effects of basing international diversification choices on simplistic, stable Gaussian models that

constrain variance risk (i.e., co-skewness and co-kurtosis) to be zero. Further experiments reveal that the

dominant factor in inducing such shifts in optimal weights is represented by the co-skewness, the predictable,

time-varying covariance between returns and volatilities. This shows that higher moments of the return

distribution can considerably reduce the desirability of an asset. We quantify such an effect in about 300

basis points per year under the long-run, steady-state distribution for returns. These results provide a

demand-side justification for the dependence of asset prices on co-skewness − as uncovered by Harvey and
Siddique (2000).

Our results are qualitatively robust when both European and North American small caps are introduced

in the analysis. In this case, initializing the experiment to a state of ignorance on the regime, we obtain

that small caps − both North American and European − enter optimal long-run portfolios with a weight
exceeding 50% for all investment horizons. Moreover, the demand for small caps appears much more

stable across regimes, which is easily explained by the finding that both North American small caps and

Pacific stocks represent good hedges for European small caps that improve portfolio performance outside

the normal regime. However, the fact remains that equity portfolios with excellent Sharpe ratio properties

may command a limited optimum weight because of their variance risk properties.

One side implication of our paper is that the scarce interest for small capitalization firms of important

classes of investors − those with long horizons and unlikely to incur in high transaction costs due to the
limited liquidity of small stocks, see Gompers and Metrick (2001) − may be a rational response to the

statistical properties of the returns on small caps, in particular their variance risk.3 The claim that it

may be rational to limit the holdings of small caps does not imply that they are irrelevant in international

portfolio diversification terms. Even when their weight is moderate, we find that the welfare loss from

excluding small caps from the asset menu may lead to first-order magnitude costs (e.g. 3 percent for long

horizons).

There are at least four papers that appear to be closely related to ours.4 Explaining similarities and

differences vs. these papers may help us to better explain what are our contributions. Petrella (2005)

performs mean-variance spanning tests to assess the diversification effects of investing in euro area small

capitalization stocks and finds that European small capitalization stocks are truly distinct asset classes that

3The size premium has been often interpreted as a reward for the lower liquidity of small caps. If this is the case, then

investors with longer horizons (hence unlikely to actively trade stocks) ought to consider small caps an attractive diversification

vehicle, since they would earn the small cap premium without incurring into large illiquidity costs (Amihud and Mendelsohn,

1986). However, the results in Gompers and Metrick (2001) imply that institutional investors such as pension funds and

university endowments − which often have longer horizons than individuals − have low ownership shares in small caps.
4More generally, our work contributes to the literature on the effects of predictability on intertemporal portfolio choice

summarized in Campbell and Viceira (2002). Notice that in this literature the consensus seems to be that predictable variance

does not exert a large effect on portfolio composition. For instance, Das and Uppal (2004) have studied optimal international

equity portfolios when equity returns are generated by a multivariate jump diffusion process that generates co-skewness and

co-kurtosis. They find very weak effects from jumps. We extend and qualify this literature by showing that the interaction

of predictable variance with predictable mean returns has first order effects on investors’ choices provided that assets with

non-symmetric return distributions are included in the investment set.
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expand the mean-variance opportunity set. This result holds both relative to euro area large caps and other

international asset classes, including US small caps, i.e. in asset menus similar to the ones we experiment

with. However, Petrella’s tests rely entirely on the mean-variance-correlation properties of small caps vs.

other asset classes, while small stocks are well known to display time-varying variances and correlations that

induce strong departures from normality (e.g. Perez-Quiros and Timmermann, 2000). Our paper shows

that also their higher order moments are relevant in an international portfolio diversification setting. In

fact, when an investor has power utility that implies a preference for all odd moments (not only mean)

and a dislike for all even moments (besides variance) of wealth, our results show that the contribution of

higher-order moments may even be dominant and hence mean-variance spanning tests misspecified.

Eun, Huang, and Lai (2006) assess the potential of small-cap stocks as a vehicle for international

portfolio diversification during the period 1980-1999. They notice that, increasingly, large-cap stocks or

stock market indices tend to co-move, mitigating the benefits from international diversification. In contrast,

stocks of locally oriented, small companies do not exhibit the same tendency. In a classical mean-variance

framework, they find that small-cap funds (indices) cannot be spanned by global stock market indices

or large-cap funds. Further, international small-cap funds have relatively low correlations not only with

large-cap funds, but also with each other. Thus, international diversification would be more effective with

a combination of large- and small-cap funds than with large-cap funds alone.5 As in the case of Petrella

(2005), our paper has much less rosy implications for the role of small capitalization stocks in international

portfolio diversification. While Eun, Huang, and Lai (2006) critically rely on the correlation properties of

small caps for their results (and assume that correlations and volatilities are constant over time, to validate

the mean-variance approach), in our paper we adopt a regime switching framework in which not only

correlations are time-varying, but the endogenously generated higher order co-moments cause the optimal

portfolios to shy away from small capitalization stocks for many realistic scenarios.

Two additional papers share with ours a similar approach. Guidolin and Nicodano (2007) presents a

related application to international portfolio diversification, although their focus is mostly on the comparison

of the asset allocation results across a variety of econometric frameworks — Markov switching VARs, dynamic

conditional correlation models, and multivariate EGARCH (with variance-in-mean effects) — that are known

to generate variance risk. Additionally, Guidolin and Nicodano use different data. In fact, our paper reaches

two important objectives which are not pursued by Guidolin and Nicodano. First, we show that the main

result — that co-skewness and co-kurtosis risk dry up the demand of small capitalization firms to large

extents — is robust to a remarkable number of variations over our baseline exercise, including the use of

long, monthly time series data that span the period 1989-2004. Second, our paper provides an important

decomposition of the baseline result and show that — consistently with the asset pricing results in Dittmar

(2002) and portfolio choice findings in Guidolin and Timmermann (2006) — it is co-skewness risk that plays

a key role. Guidolin and Hyde (2006) study optimal portfolio choices across major and small-open economy

(Ireland) stock indices under regime switching in expected returns, variances, and correlations. They also

find that letting one’s portfolio decisions be uniquely informed by Sharpe ratio criteria and ignoring the

existence of regime shifts in the reward-to-risk ratios presents perils that are difficult to under-state. The

5The optimal international portfolio tends to comprise the U.S. market index and foreign small-cap funds; neither foreign

market indices nor mid-cap funds receive positive weights during their sample period. The extra gains from the augmented

diversification with small-cap funds are statistically significant unless additional transaction costs for small-cap funds become

excessive.
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tale in our paper is similar, in the sense what shines in a Sharpe ratio metric needs not to be preferred by a

power utility investor when regimes are taken into account. However Guidolin and Hyde limit themselves

to compute mean-variance weights which are obviously at best an approximation to the correct weights

that take into account the existence of regimes. As a result, they fail to focus their discussion on the effects

of higher-order (co-)moments for optimal portfolio diversification.

The paper is organized as follows. Section 2 presents the portfolio choice problem and gives details

on the multivariate regime switching model used in this paper to represent the return process. Section 3

describes the data, while Section 4 reports our econometric estimates and provides an assessment of their

economic implications for portfolio choice. This section presents the most interesting results of the paper

and is organized around three sub-sections, each describing homogeneous sets of experiments for alternative

asset menus. Section 5 extends the asset menu to include North American small caps, besides European

small stocks. Section 6 performs a number of robustness checks. Section 7 concludes. We collect technical

details in three short Appendices.

2. The Model

2.1. The General Portfolio Problem

Consider an investor with power utility defined over terminal wealth, Wt+T , coefficient of relative risk

aversion γ > 0, and horizon T :

u(Wt+T ) =
W 1−γ

t+T

1− γ
(1)

The investor is assumed to maximize expected utility by choosing a vector of portfolio shares at time t,

that can be adjusted every ϕ = T
B months at B equally spaced points. When B = 1 the investor simply

implements a buy-and-hold strategy. Let ωb be the portfolio weights on m ≥ 1 risky assets at these

rebalancing times. Defining WB ≡ Wt+T , and assuming for simplicity a unit initial wealth, the investor’s

optimization problem is:

max
{ωj}B−1j=0

Et

"
W 1−γ

B

1− γ

#
s.t. Wb+1 =Wbω

0
b exp (Rb+1) (2)

where exp (Rb+1) ≡ [exp (R1,b+1) exp (R2,b+1) ... exp (Rm,b+1)]
0 denotes an m × 1 vector of cumulative,

gross returns between two rebalancing points (under continuous compounding). The derived utility of

wealth function can be simplified, for γ 6= 1, to:

J(Wb, rb,θb,πb, tb) ≡ max
{ωj}B−1j=b

Eb

"
W 1−γ

B

1− γ

#
=

W 1−γ
b

1− γ
Q(rb,θb,πb, tb), (3)

i.e. the optimal value function can be factored in such a way to be homogeneous in wealth. Here θb and πb

are both vectors that collect the parameters of the return generating process, conditional on information

at time b, the precise content of which will be specified later on.
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2.2. The Return Generating Process

The popular press often acknowledges the existence of stock market states by referring to them as “bull”

and “bear” markets. Here we consider that the distribution of each international equity index may depend

on states characterizing international stock markets. Thus we write the joint distribution of a vector of m

returns, conditional on an unobservable state variable St, as:
6

rt = μSt +

pX
j=1

Aj,Strt−j + εt εt ∼ N(0,ΣSt) (4)

rt is the m × 1 vector collecting asset returns, μSt is a vector of intercepts (corresponding to rt−j = 0

for j = 1, ..., p) in state St, Aj,St is the matrix of autoregressive coefficients at lag j in state St, and

εt ∼ N(0,ΣSt) is the vector of return innovations which are assumed to be jointly normally distributed

with zero mean and state-specific covariance matrix ΣSt . St is an indicator variable taking values 1, 2, ...k,

where k is the number of states. The presence of heteroskedasticity is allowed in the form of regime-specific

covariance matrices.7

Crucially, St is never observed and the nature of the state at time t may at most be inferred (filtered)

by the econometrician (i.e. our investor) using the entire history of asset returns. Similarly to most of

the literature on regime switching models (see e.g. Ang and Bekaert, 2002), we assume that St follows a

first-order Markov chain. Moves between states are assumed to be governed by the transition probability

matrix, P, with generic element pij defined as

Pr(st = i|st−1 = j) = pij , i, j = 1, .., k, (5)

i.e. the probability of switching to state i between t and t+ 1 given that at time t the market is in state j.

While we allow for the presence of regimes, we do not exogenously impose or characterized them,

consistently with the true unobservable nature of the state of the markets in real life. On the contrary,

in the sections that follow we will conduct a thorough specification search − based on both information
criteria and standard misspecification tests − for each asset menu, letting the data endogenously determine
the number of regimes k (as well as the VAR order, p).8

Notice that (4) nests several return processes as special cases. If there is a single market regime, we obtain

the linear VAR model with predictable mean returns that is commonly used in the literature on strategic

asset allocation, see e.g. Campbell and Viceira (1999), and Kandel and Stambaugh (1996).9 However,

when multiple regimes are allowed, (4) implies various types of predictability in the return distribution.

When either μSt or Aj,St (j = 1, ..., p) do depend on the underlying, latent regime, then expected returns

vary over time. Similarly, when the covariance matrices differ across states there will be predictability in

6While many papers have found evidence of regimes in univariate stock portfolio returns (e.g., Perez-Quiros and Tim-

mermann (2000), Ramchand and Susmel (1998), Turner, Startz and Nelson (1989), Whitelaw (2001)), we model the joint

conditional distribution of m returns.
7Unconditional returns thus follow a Gaussian mixture distribution (which is generally not Gaussian), the weighted average

of the conditional distributions, with weights - the regime probabilities - that are updated as new return data arrive.
8See also Appendix B. On the contrary, Butler and Joaquin (2002) exogenously define bear, normal, and bull regimes

according to the level of US returns. Each regime is constrained to collect one-third of the sample.
9The i.i.d. Gaussian model − also often adopted as a benchmark in the portfolio choice literature (see e.g. Barberis, 2000

and Brennan and Xia, 2001) − obtains instead when both k = 1 and p = 0.
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higher order moments such as volatilities, correlations, skews and tail thickness, see Timmermann (2000).

Predictability is therefore not confined to mean returns but carries over to the entire return distribution.

Notice further that while current returns are normally distributed conditional on the state, the one-

period ahead return distribution is not simply normal with regime dependent conditional mean and/or

regime dependent conditional volatility, because it is instead a mixture of normal variates. Furthermore,

the two-period ahead distribution is a mixture of a mixture, thus higher order moments become more

relevant as T grows − given the number of regimes. Appendix C explicitly computes skewness and kurtosis
of T -period ahead portfolio returns, when conditional mean and variance are regime dependent.

2.3. The Dynamics of Beliefs about the Prevailing State

Since we treat the state of the market as unobservable − which is consistent with the idea that investors
cannot observe the true state but can use the time-series of returns to obtain information about it − we
model the evolution of the investors’ beliefs using the standard Bayesian updating algorithm. Investors

update their beliefs about the prevailing state at the next rebalancing point using (see Hamilton, 1994):

πb+1(θ̂b) =

³
π0b(θ̂b)P̂

ϕ
b

´0
¯ f(rb+1; θ̂b)

[(π0b(θ̂b)P̂
ϕ
b )
0 ¯ f(rb+1; θ̂b)]0ιk

. (6)

Here πb(θ̂b) collects the k×1 vector of state probabilities and θ̂b all the estimated parameters characterizing
(4); ¯ denotes the element-by-element product, P̂ϕ

t ≡
Qϕ

i=1 P̂t is the Markov transition matrix relevant to

periods of length ϕ ≥ 1, and f(·) is the density of returns at the next rebalancing point conditional on the
regime, on past returns and on estimated parameters

f(rb+1; θ̂b) ≡

⎡⎢⎢⎣
f(rb+1|sb+1 = 1, {rb−j}p−1j=0; θ̂b)

...

f(rb+1|sb+1 = k, {rb−j}p−1j=0; θ̂b)

⎤⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣
(2π)−

N
2 |Σ̂−11 |

1
2 exp

∙
-12

³
rb − μ̂1 −

Pp−1
j=0 Â1jrb−j

´0
Σ̂−11

³
rb − μ̂1 −

Pp−1
j=0 Â1jrb−j

´¸
...

(2π)−
N
2 |Σ̂−1k |

1
2 exp

∙
-12

³
rb − μ̂k −

Pp−1
j=0 Âkjrb−j

´0
Σ̂−11

³
rb − μ̂k −

Pp−1
j=0 Âkjrb−j

´¸
⎤⎥⎥⎥⎥⎥⎦ ,

which exploits the fact that conditional on the state, asset returns have a Gaussian distribution. (6) implies

that the probability of the states at the rebalancing date b + 1 is a weighted average of the ϕ-step ahead

predicted probabilities (π0b(θ̂b)P̂
ϕ
b ), with weights provided by the likelihood of observing the realized returns

rb+1 conditional on each of the possible states, as represented by scaled versions of f(rb+1; θ̂b).

An Appendix in Guidolin and Nicodano (2007) gives further details on the methods applied to solve (2)

under multivariate regime switching returns. Here we only stress that, since Guidolin and Nicodano (2007)

remind us that the backward solution of (2) implies the relationship

Q(rb,πb, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1−γ
Q (rb+1,πb+1, tb+1)

#
,
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it is clear that portfolio choices will reflect not only hedging demands for assets due to stochastic shifts

in investment opportunities but also a hedging motive caused by changes in investors’ beliefs concerning

future state probabilities, πb+1.

2.4. The Buy-and-Hold Problem

One interesting special case is the buy-and-hold framework in which ϕ = T. Under this assumption Guidolin

and Nicodano (2007) show that, similarly to Barberis (2000), the integral defining the expected utility

functional can be approximated as follows:

max
ωt

N−1
NX
n=1

⎧⎪⎨⎪⎩
h
ω0t exp

³PT
i=1 rt+i,n

´i1−γ
1− γ

⎫⎪⎬⎪⎭ ,

where N is the number of simulations, and ω0t exp
³PT

i=1 rt+i,n

´
is the portfolio return in the n-th Monte

Carlo simulation when the portfolio structure is given by ωt. Each simulated path of portfolio returns

is generated using draws from the model (4)-(5) that allow regimes to shift randomly as governed by the

transition matrix, P. We use N = 30, 000 simulations.10 Guidolin and Nicodano (2007) provide details on

the numerical techniques employed in the solutions and extends these methods to the case of an investor

who adjusts portfolio weights every ϕ < T months.

2.5. Welfare Cost Measures

To quantify the utility costs of restricting the investor’s asset allocation problem, we follow Ang and Bekaert

(2002), Ang and Chen (2002), and Guidolin and Timmermann (2005a,b). Call ω̂R
t the vector of portfolio

weights obtained by imposing restrictions on the portfolio problem, for instance, when the investor is forced

to avoid small caps. We aim at comparing the investor’s expected utility under the unrestricted model −
leading to some optimal set of controls ω̂t − to the utility derived assuming the investor is constrained.
Since a restricted model is a special case of an unrestricted model, the following relationship between the

value functions holds:

J(Wt, rt, π̂t; ω̂
R
t ) ≤ J(Wt, rt, π̂t; ω̂t),

i.e. restrictions reduce the derived utility from wealth. The compensatory premium, λRt , is computed as:

λRt =

∙
J(Wt, rt, π̂t; ω̂t)

J(Wt, rt, π̂t; ω̂
R
t )

¸ 1
1−γ
− 1. (7)

The interpretation is that an investor would be willing to pay λRt in order to get rid of the restriction.

3. Data

We use weekly data from the MSCI total return indices data base for Pacific, North American Small,

European Small Caps and European Large Caps (MSCI Europe Benchmark). Returns on North American

10Experiments with similar problems in Guidolin and Timmermann (2005b) indicated that form = 4, a number of simulations

N between 20,000 and 40,000 trials delivers satisfactory results in terms of accuracy and minimization of simulation errors vs.

computational speed. To provide a rough sense of the latter dimension, with N = 30, 000 and m = 4, the calculation of each

long-run vector of optimal portfolio weights requires 51 minutes using a Pentium IV 3.60 GHz CPU.
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Large Caps are computed as a weighted average of the MSCI U.S. Large Cap 300 Index and the D.R.I.

Toronto Stock Exchange 300, using as weights the relative capitalizations of U.S. and Canada.11 In practice,

the U.S. large caps index receives a weight of 94.4% vs. a 5.6% for the Canadian index.

We use total return data series, inclusive of dividends, adjusted for stock splits, etc. Returns are

expressed in the local currencies as provided by MSCI. This implies a rather common assumption − see
e.g. De Santis and Gerard (1997), Ang and Bekaert (2002), and Butler and Joaquin (2002) − that our
investor is sophisticated enough to fully hedge her currency positions, so that her wealth is unrelated to

the dynamics of exchange rates.

The sample period is January 1, 1999 - June 30, 2003. A Jan. 1, 1999 starting date for our study is

justified by the evidence of substantial portfolio reallocations induced by the disappearing currency risk

in the European Monetary Union (Galati and Tsatsaronis, 2001; European Central Bank, 2001). Given

the relatively short sample period enforced by the ‘Euro structural break’ in an asset menu that includes

European stock returns, we employ data at a weekly frequency, which anyway guarantee the availability

of 234 observations for each of the series. Furthermore, notice that our sample does straddle one complete

stock market cycle, capturing both the last months of the stock market rally of 1998-1999, its fall in March

2000, the crash of September 11, 2001, and the subsequent, timid recovery.

Tables 1 and 2 report summary statistics for stock returns. Since about half of our sample is characterized

by bear markets, average mean returns are low for all portfolios under consideration. However − as

discussed in the Introduction − small caps represent an exception. In particular, European small caps are
characterized by a non-negligible annualized 14.4% positive median return, followed by North American

small caps with 12.8% per year.12 The resulting (median-based) Sharpe ratios for small capitalization firms

make them highly appealing from a portfolio perspective: North American small caps display a 0.59 Sharpe

ratio, while European small caps score a stunning 0.89.13

On the other hand, Table 1 questions the validity of an approach that relies only on the Sharpe ratio: the

small caps skewness is negative, indicating that there are asymmetries in the marginal density that make

negative returns more likely than positive ones; their kurtosis exceeds the Gaussian benchmark (three),

indicating that extreme realizations are more likely than in a simple Gaussian i.i.d. framework. Second,

opposite remarks apply to other stock indices, in particular the North American large caps and Asian

Pacific ones: their skewness is positive, which may be seen as an expected utility-enhancing feature by

many investors; their kurtosis is moderate, close to what a Gaussian i.i.d. framework implies. These

remarks beg the question: When and how much do higher order moments matter for asset allocation?

The last two columns reveal that while serial correlation in levels is limited to European and small caps

portfolios, the evidence of volatility clustering − i.e. the tendency of squared returns to concentrate in time
− is widespread, which points to the possible need for models that capture heteroskedastic patterns.

Finally, Table 2 reports correlation coefficients. Pacific stock returns have lower correlations (around

0.4 - 0.6 only) with other portfolios than all other pairs in the table. This feature makes Pacific stocks an

11While the MSCI Europe Benchmark index targets mainly large capitalization firms, no equivalent for North America (i.e.

US and Canada) is available from MSCI.
12We use the median of returns as estimators of location: for variables characterized by substantial asymmetries (negative

skewness), the median is a more representative location parameter than the mean.
13Alternatively, we take the ratio between median returns and their interquartile range, a measure of risk that does not rely

on the standard variance measure. We find ratios of 0.87 and 0.47 for European and North American small caps, respectively.

The ratio is only 0.03 for Asian Pacific stocks and it is obviously negative for European and North American large caps.
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excellent hedging tool. All other pairs display correlations in the order of 0.7 - 0.8, which is fairly high but

also expected in the light of the evidence in the literature that all major international stock markets are

becoming increasingly prone to synchronous co-movements (e.g. Longin and Solnik, 1995).

4. International Portfolio Diversification with European Small Caps

In this section we discuss the main results of the paper. We start by presenting econometric estimates of

the return generating process and calculate optimal portfolio weights for an asset menu which allows for

European small caps in addition to traditional stock portfolios, such as Asian Pacific, North American large,

and European large caps portfolios (m = 4).14 For the time being we impose no-short sale restrictions and

focus on the simpler buy-and-hold case. All of these restrictions are removed in later Sections, as a way

to check the robustness of our findings. We also solve a traditional portfolio problem in which the asset

menu includes no small cap portfolios (m = 3). The purpose of this benchmark exercise is to enable us

to compute the welfare gains obtainable by expanding the asset menu to include small caps. Since this

portfolio problem is merely entertained as a benchmark, details are reported in Appendix A.

4.1. The estimated return generating process

We estimate several multivariate regime switching models, including the special cases of no regimes, and/or

no VAR, and/or homoskedasticity.15 The evidence against the null of a linear, IID Gaussian model is

overwhelming in terms of likelihood ratio tests. The information criteria provide contrasting indications,

but in the light of the pervasive evidence of volatility clustering in Table 1, we select a three-state model

that allows greater flexibility in capturing heteroskedastic patterns. Appendix B reports the results of the

model specification search.

Panel B of Table 3 reports parameter estimates for the selected 3-state process. Most of the estimated

mean returns and covariance matrices are highly significant. The second regime, that we label normal, is

the dominant one in terms of long-run ergodic probability (72%). In this state, mean returns are essentially

zero, volatilities are moderate (around 15% a year for all portfolios), and correlations are high. This regime

is highly persistent with an average duration in excess of 7 months.

When international equity markets are not in a normal state, with an ergodic probability of 13%, they

are in the first, bear regime, when mean returns are negative across all portfolios.16 The bear regime is also

a high-volatility state: the variance of all portfolios drastically increases when markets switch from normal

to bear states, with peaks of volatility in excess of 21% per year (for European stocks). Interestingly, some

of the implied correlations strongly decline when going from regime 2 to 1, with Pacific stocks being almost

uncorrelated with both North American and European large caps. However, the persistence of regime 1

is low: starting from a bear state there is only a 22% probability of staying in such a state. As a result,

14Details concerning the model specification search are collected in Appendix B.
15Estimation of the model is relatively straightforward and proceeds by optimizing the likelihood function associated with

our model. Since the underlying state variable, St, is unobserved we treat it as latent and use the EM algorithm to update our

parameter estimates, c.f. Hamilton (1989).
16Readers may be concerned for the equilibrium justification of the existence of a state with negative stock returns. However

− unless all investors have 1-week investment horizons − this does not imply a zero or negligible demand for stocks, as for

longer horizons switching to better states with zero or positive mean returns is not only possible, but almost certain provided

the horizon is long enough.
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the average duration of such a state is less than 2 weeks. This fits the common wisdom that sharp market

declines happen suddenly and tend to span only a few consecutive trading days.

The rest of the time (15%), the markets are in a bull regime in which mean returns are positive, high,

and significant. European large caps are characterized by the highest mean, 3.7% in a week. Once more,

volatility is high in the bull regime: this is true for all markets, although the wedge vs. the normal volatilities

are extreme for both large caps portfolios, for which bull volatility is almost twice the normal one (e.g. 27%

in annualized terms for European large caps). Correlations decline when compared to the normal regime.

Those involving Pacific stocks become systematically negative, which makes of Pacific equities an excellent

hedge in this regime. The bull regime has low persistence, with a ‘stayer’ probability of only 29% and an

average duration of less than 2 weeks.

An unreported plot for the smoothed state probabilities reveals that the bear state occurs relatively

frequently in our sample (e.g. the week of September 11, 2001 is picked up by this state) but it rarely lasts

more than 3 weeks. It also shows that bull states tend to cluster in the same periods in which bear states

appear. The sum of the probability of the two regimes gives an estimate of the probability of being in a

high volatility state, revealing that the ‘high volatility’ regime is persistent although its components are

not. It captures periods which have been ex-post recognized as extremely volatile, e.g. early 2001 with

the accounting scandals in the U.S. or the Fall of 2001, after the terror attacks to New York City. This is

confirmed by the structure of the estimated transition matrix in Table 3: although the ‘stayer’ probabilities

of bull and bear regimes are small, they both have rather high probabilities (0.78 and 0.54, respectively)

of switching from bear to bull and from bull to bear. Thus several weeks may be characterized by highly

volatile returns, although the signs of the means may be quickly switching back and forth.

4.2. Implied portfolio weights

We discuss two sets of portfolio weights. A first exercise computes optimal asset allocation at the end of

June 2003 for an investor who, using all past data for estimation purposes, has obtained the estimates in

Table 3. This is a simulation exercise in which the unknown model parameters are calibrated to coincide

with the full-sample estimates. In such a type of exercise the assessment of the role played by the different

equity portfolios in international diversification may dramatically depend on the peculiar set of parameter

estimates one obtains. As a result, we supplement this first exercise with calculations of real time optimal

portfolio weights, each vector being based on a recursively updated set of parameter estimates.

The role of European small caps (henceforth EUSC) in portfolio choice may strongly depend on the

regime: indeed they have the best and second-best Sharpe ratios in the normal and bull states (a non-

negligible 0.21 and a stellar 0.77, respectively), and display the worst possible combination (negative mean

and high variance) in the bear state. However, it is not clear how this contrasting information may influence

the choice of investors who cannot observe the state. Furthermore, speculating on the Sharpe ratio to trace

back portfolio implication may be incorrect when portfolios have higher-moment properties featuring high

variance risk.

Figure 1 shows optimal portfolio shares as a function of the investment horizon for a buy-and hold

investor who employs parameter estimates at end of June 2003. Results for two alternative levels of relative

risk aversion are reported, γ = 5 and 10. Each plot concerns one of the available equity portfolios and

reports five alternative schedules: three of them condition on knowledge of the current, initial state of the
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markets (bear, normal or bull); one further schedule implies the existence of uncertainty on the nature of

the regime and assumes that the regime probabilities are set to match their long run, ergodic frequencies

(in this case 0.13, 0.72, 0.15, for bull, normal and bear states); one last schedule depicts the optimal choice

by a myopic investor who incorrectly believes that international stock returns are drawn by a multivariate

Gaussian model with time invariant means and covariance matrix.17 Importantly, this last set of results

corresponds to the case in which variance risk is disregarded altogether.

The demand for EUSC in Figure 1 is roughly independent of the horizon and of γ when the state

is normal. Approximate independence of the horizon is justified by the fact that the normal state is

highly persistent. The schedule for the bull state provides first evidence that using the Sharpe ratio may be

misleading: in regime 3, EUSC are never demanded as all the weight is given to North American large, which

provide a respectable 0.62 Sharpe ratio, and Pacific stocks, that provide their perfect hedge. Unsurprisingly,

EUSC fail to enter the optimal portfolio in the bear state.

Even more interesting is the result concerning the ‘steady-state’ allocation to EUSC, when the investor

assumes that all regimes are possible with a probability equal to their long-run measure. In this case − the
most realistic situation since regimes are in fact not observable − EUSC play a limited role. Their weight is
zero for short horizons (T = 1, 2 weeks) and grows to an unimpressive 10% for longer horizon. Once more,

the steady-state portfolio puts almost identical weights on North American and Pacific equities. On the

opposite, the IID myopic portfolio would be grossly incorrect, when compared to the steady-state regime

switching weights, as it would place high weights on EUSC (87%) and Pacific stocks (13%).18

Figure 2 shows our estimates of the (annualized) welfare costs of ignoring the existence of variance

risks (regimes). Since Figure 1 stresses the existence of large differences between regime-switching and IID

myopic weights, it is less than surprising to see that the utility loss from ignoring variance risk is of a

first-order magnitude: for instance, a highly risk-averse (γ = 10), long-horizon (T = 2 years) investor who

assigns ergodic probabilities to the states would be indifferent to account for regimes if compensated by

a sum equal to roughly 4% of her initial wealth. These sums are of course much larger should we endow

the investor with precise information on the nature of the current state (especially when the information is

profitable, as it is in the bear and bull regimes), as the welfare loss climbs to 15-20% of wealth.

Next, we recursively estimate our three-state model and compute optimal portfolio weights with data

covering the expanding samples Jan. 1999 - Dec. 2001, Jan. 1999 - first week of Jan. 2002, etc. up to

the full sample Jan. 1999 - June 2003 previously employed. The previous results do not entirely depend

on the point in time in which they have been performed. The average weight assigned to EUSC remains

only approximately 39%, while European large caps acquire importance (26%), followed by North American

large and Pacific stocks (23 and 12%).19 Also in this case, ignoring variance risk would assign way too high

a weight to EUSC, in excess of 80% on average (the rest goes to Pacific stocks). As a result, our recursive

estimates of the welfare loss of ignoring regime switching (not reported) are extremely large over certain

parts of the sample, exceeding annualized compensatory variation of 5-10% even under the most adverse

17These schedules are flat, implying that the investment horizon is irrelevant for asset allocation purposes.
18There is no reason to think that the IID schedule ought to be an average of the regime-specific ones: the unconditional

(long-run) joint distribution implied by a Gaussian IID and a multivariate regime switching model need not be the same; on

the opposite, our specification tests offer evidence that the null of a Gaussian IID model is rejected, an indication that the

unconditional density of the data differs from the one implied by a switching model.
19These weights are also obtained by averaging across investment horizons, although slopes tend to be moderate, consistently

with the shapes reported in Figure 2. These results are for the γ = 5 case. Under γ = 10, they are 36, 23, 26, and 15 percent.
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parameters and investment horizons.

4.3. Making sense of the results: variance risk

Our simulations find that, under realistic assumptions concerning knowledge of the state, a rational investor

should invest a limited proportion of her wealth in EUSC despite their high Sharpe ratio. Tables 4 and

5 report several findings that help us put this result into perspective. It is well known that investors

with power utility functions are not only averse to variance and high correlations between pairs of asset

returns − as normally recognized − but also averse to negative co-skewness and to high co-kurtosis, i.e. to
properties of the higher order co-moments of the joint distribution of asset returns. For instance, investors

dislike assets whose returns tend to become highly volatile at times in which the price of most of the other

assets declines: in this situation, the expected utility of the investor is hurt by both the low expected mean

portfolio returns as well as the high variance contributed by the asset. Similarly, investors ought to be wary

of assets the price of which declines when the volatility of most other assets increases. Investors will also

dislike assets whose volatility increases when most other assets are also volatile. We say that an asset that

suffers from this bad higher co-moment properties is subject to high variance risk.

Tables 4 and 5 pin down these undesirable properties of EUSC. In Table 4 we calculate the co-skewness

coefficients,

Si,j,l ≡
E[(ri −E[ri])(rj −E[rj ])(rl −E[rl])]

{E[(ri −E[ri])2]E[(rj −E[rj ])2]E[(rl −E[rl])2]}1/2
,

between all possible triplets of portfolio returns i, j, l. We do that both with reference to the data as well

for the three-state model estimated in Section 4.1. In the latter case, since closed-form solutions for higher

order moments are hard to come by in the multivariate regime switching case, we employ simulations to

produce Monte Carlo estimates of the co-moments under regime switching. Calculations are performed both

unconditionally (i.e. averaging across regimes) and conditioning on knowledge of the initial regime. In the

latter case, the conditional co-moments refer to the one-step ahead predictive joint density of asset returns.

Based on our definition, variance risk relates to the cases in which the triplet boils down to a pair, i.e. either

i = j, or i = l, or j = l.20 When i = j = l we will be looking at the standard own skewness coefficient of

some portfolio return. In Table 4, bold coefficients highlight point estimates’ significance at standard levels

(5 percent). There is an amazing correspondence between signs and magnitudes of co-skewness coefficients

in the data and the unconditional estimates under our estimated regime switching model. Similarly to Das

and Uppal (2004) we interpret this result as a sign of correct specification of the model. Furthermore,

notice that the co-skewness coefficients SEUSC,EUSC,j are all negative and large in absolute value for all

possible js: the volatility of EUSC is indeed higher when each of the other portfolios performs poorly. On

the opposite, similar co-skewness coefficients for most other indices (e.g. SEU large,EU large,j for varying js)

are close to zero and sometimes even positive. Worse, a few of the SEUSC,j,j coefficients are also large

and negative (when j = Pacific), an indication that EUSC may be losing ground exactly when some of

the other assets become volatile. Therefore EUSC does display considerable variance risk. On the top of

variance risk, from Tables 1 and 4 it emerges that EUSC also show high and negative own-skewness (i.e. left

asymmetries in the marginal distribution which imply higher probability of below-mean returns), another

20Coefficient estimates for the cases in which i 6= j 6= l are available but are hard to interpret. However our comments

concerning the general agreements between sample and model-implied co-moment estimates also extend to the i 6= j 6= l case.
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feature a risk-averse investor ought to dislike.

The results in the second column of Table 4 are relevant to interpret long-run portfolio choices, when

the statistical properties of stock returns are well-approximated by their unconditional density. Table 4

also reports regime-specific, one-step ahead co-skewness coefficients, when the initial state is known. In the

highly persistent normal regime 2, departures from multivariate normality are minimal and in fact none

of the co-skewness coefficients is significantly different from zero. Therefore, at least for short investment

horizons of a few weeks at most, using the Sharpe ratio for portfolio allocation purposes may be justified and

− consistently with the results in Figure 2 − EUSC ought to receive considerable weight because of their
excellent mean-risk trade-off properties. On the opposite, the bear and bull regimes 1 and 3 imply some

important departures of the joint predictive density of stock returns even over short investment horizons. In

particular, EUSC have a tendency to decline when the volatility of Pacific stocks is above average, while the

volatility of EUSC tends to be high when each of the other markets is bearish. Because conditional on the

current regime the properties of the predictive joint density are similar (although departures from normality

are not as strong) to those found for the unconditional, long-run distribution, the optimal portfolio weights

on regimes 1 and 3 in Figure 1 are relatively insensitive to the investment horizon and generally imply a

modest role (or none at all) for EUSC.

Of course, it may be hard to balance off co-skewness coefficients involving EUSC with different magni-

tudes or signs. Therefore it is helpful to calculate quantities similar to those in Table 4 for portfolio returns

vs. some aggregate portfolio benchmark. For our purposes we use an equally weighted portfolio (EW ptf ,

25% in each stock index), although results proved fairly robust to other notions (e.g. value-weighted) of

benchmark portfolio. For instance, Si,EW ptf,EW ptf for the generic portfolio i has expression

Si,EW ptf,EW ptf ≡
E[(ri −E[ri])(rEW ptf −E[rEW ptf ])

2]p
V ar[ri]V ar[rEW ptf ]

,

the notion of co-skewness between a security i and the market portfolio employed in Harvey and Siddique

(2000) and Ang, Chen, and Xing (2005). Once more the match between data- and model-implied coefficients

is striking. In particular, in panel A of Table 5 we obtain model estimates SEUSC,EUSC,EW ptf = −0.60
and SEUSC,EW ptf,EW ptf = −0.44, i.e. the variance of EUSC is high when equally weighted returns are
below average, and EUSC returns are below average when the variance of the equally weighted portfolio is

high. This is another powerful indication of the presence of variance risk plaguing EUSC. For comparison

purposes, in panel B of Table 5 we repeat calculations for European large stocks and obtain negligible (or

even positive) coefficients.21

The co-skewness SEUSC,EW ptf,EW ptf is the unconditional version of the moment used by Harvey and

Siddique (2000) to write a three-moment CAPM. It is also akin to the covariance between EUSC return

and market illiquidity , while SEUSC,EUSC,EW ptf is reminiscent of the covariance between EUSC illiquidity

and market return that explains a large part of the small cap premium in the liquidity CAPM of Acharya

and Pedersen (2005). In a sense, we are providing a portfolio choice rationale for their pricing formula,

without resorting to exogenous illiquidity costs that are necessary in a mean-variance framework.

Table 6 performs an operation similar to Table 4, but with reference to the fourth co-moments of equity

returns.22 Once more − although some discrepancies appear (as the order of moments grows their accurate
21Results are similar for North American large and Pacific portfolios and are available upon request.
22Also in this case, coefficient estimates for the cases in which i 6= j 6= l 6= b are available on request.
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estimation becomes more troublesome) − we find a striking correspondence between co-kurtosis coefficients
measured in the data and unconditional coefficients implied by our regime switching model. Generally

speaking, EUSC have dreadful co-kurtosis properties: for instance KEUSC,EUSC,j,j exceeds 2.2 for all js

and tends to be higher than all other similar coefficients involving other portfolios, which means that the

volatility of EUSC is high exactly when the volatility of all other portfolios is high. As already revealed

by Table 1, also the own-kurtosis of EUSC substantially exceeds a Gaussian reference point of 3. Table 6

confirms that also the model-implied KEUSC,EUSC,EW ptf,EW pft is 3.3, which is one of the highest among

these types of coefficients. KEUSC,EUSC,EW ptf,EW pft is reminiscent of an indicator of covariance between

EUSC illiquidity and market illiquidity. All in all, we have also some evidence that the extreme tails of the

marginal density of EUSC tends to be fatter than for other portfolios and that their volatility might be

dangerously co-moving with that of other assets. In conclusion, while the demand for European large caps

is modest (with the exception of the bull state and T = 1, 2 weeks) because of their low Sharpe ratios and

high correlation compared with Pacific stocks, the demand for EUSC is limited by their poor higher (co-)

moment properties, in particular by their asymmetric marginal density variance risk.23

4.4. Decomposing Variance Risk

Tables 4 and 6 suggest a precise ranking of the contribution of higher order co-moments to EUSC’s variance

risk. First, the negative co-skewness of EUSC is particularly strong for all horizons, while the differences

of co-kurtosis across stock portfolios are less striking. Second, for short investment horizons, the only im-

portant departure of our asset allocation framework under regimes from the single-regime IID Gaussian

benchmark is provided by the co-skewness properties of EUSC. However, both these claims only rely on

comparisons concerning the value taken by model-implied moments or at most their differential statistical

significance. The actual relative importance of the factors underlying variance risk for optimal asset alloca-

tion can be directly assessed through the computation of portfolio weights when all but one of the sources

of variance risk are left in operation.24

We start by considering the case in which co-skewness effects are shut off so that only co-kurtosis effects

may affect asset allocation decisions. This can be obtained by calculating portfolio weights under a special

regime switching model in which μ is made independent of the state St, while Σst remains a function of

the regime, i.e.

rt = μ+ εt εt ∼ N(0,Σst), (8)

This model aims at capturing pure heteroskedasticity effects since expected stock returns are constrained

to be constant over time. It is possible to show (see Appendix C for details) that (8) implies that any

departure from multivariate IID normality must come from even co-higher moments differing from their

normal counterparts.

We therefore proceed to estimate (8) and to calculate optimal portfolio weights for an investor with γ = 5.

23Table 6 also shows regime-specific, conditional (one-step ahead) co-kurtosis coefficients. They tend to be close to their mul-

tivariate Gaussian counterparts. This means that while long-run portfolio choices are also driven by the co-kurtosis properties

of the stock portfolios under investigation, this is hardly the case for short horizons, when co-skewness is the only important

factor.
24This is also relevant for our purpose of providing the portfolio choice counterpart of Harvey Siddique (2000) and

Dittmar(2002), because in their papers coskewness appears to have a more relevant impact than cokurtosis on expected

returns.
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Insofar as volatilities and correlations are concerned, the (unreported) parameter estimates are generally

rather close to those appearing in Table 3. Table 7 reports buy-and-hold optimal portfolio weights for a few

alternative investment horizons and compares them with the results underlying Figure 2, for the unrestricted

model. The table suggests that odd high-order co-moments (co-skewness) have first-order effects in reducing

the portfolio role of EUSC. In fact, under model (8) the long-run, ergodic optimal portfolio weights (86%

in EUSC and the reminder in Pacific stocks) are essentially the same as those obtainable under the false

assumption of a multivariate Gaussian model with no regimes. Otherwise, EUSC remain very important

when the investor is given information on the current, initial state being of a ‘normal’ type, but in the bear

and bull regimes their weight differs dramatically from Figure 2.

A similar experiment involves the model in which Σ is made independent of the state St, while μSt is

regime-specific, i.e.

rt = μSt + εt εt ∼ N(0,Σ), (9)

a model aimed at capturing predictability in expected returns, while homoskedasticity is (incorrectly)

imposed.25 Notice that (9) corresponds to a simplified, homoskedastic version of (4) in which the potential

for co-skewness is reduced by the fact that the covariance matrix is fixed over time.

Co-skewness turns out to have first-order effects. We estimate (9) and calculate optimal portfolio weights

for an investor with γ = 5. The three regimes have characterizations and persistence very similar to those

reported in Table 3, implying that the nature of the three states is essentially dominated by the properties

of expected stock returns. Additionally, the estimated regime-dependent expected returns are very similar

to those appearing in Table 3. In the realistic case in which the regime is not known, the weight to EUSC

is rather moderate, zero for short investment horizons and progressively increasing towards 30-35% for

horizons exceeding one year. The reduction of the EUSC weight from 75-86% when only even co-moments

are taken into account to about 10% when odd co-moments effects are added, measures the first-order role

played by co-skewness in portfolio diversification.26

One final doubt is whether the portfolio results from model (9) are associated to plain predictability in

mean as opposed to predictable interaction of mean and variance. Indeed, model (9) not only magnifies

the impact of co-skewness over co-kurtosis, but also allows for changes in the conditional mean of EUSC.

In order to isolate the effects of changing conditional mean, we compute optimal mean-variance portfolio

weights, i.e. we focus on the objective

V (Wt+T ) = {Et[Wt+T ]}1−γ
½

1

1− γ
− 1
2
γV art[Wt+T ]

¾
obtained by applying a second-order Taylor expansion — around the mean of the optimal wealth process — to

the standard utility function in (1). Since it is easy to show that, when γ > 1, ∂V (Wt+T )/∂Et[Wt+T ] > 0 and

∂V (Wt+T )/∂V art[Wt+T ] < 0, this objective function has the usual properties of a mean-variance functional

that — by construction — will not depend on any conditional moments higher than the first two. For the case

25Appendix D argues that this restriction is unable to shut completely off the portfolio effects of even moments. However,

under regime-independent conditional variance, departures of the third central moment from a Gaussian IID benchmark are of

order 3, while fourth central moment deviations will be at most of order four. Therefore (9) represents a second-best device to

investigate the portfolio weight effects of adding potential co-skewness driven variance risk.
26The difference between these results and the full-coskewness results of Table 7 and Figure 1 illustrates the finding that the

first-order effects of skewness derive from time-varying risk premia and not second moments. Detailed results for this special

model with homoskedastic variances are available upon request.
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of γ = 5, we report in Table 7 buy-and hold weights for this special case (labeled as “M-V + No Co-skew”).

Clearly, regime-dependent expected returns fail to be responsible for the results reported in Section 4.2.

under mean-variance preferences. When the initial regime is unknown, the optimal weight is either 100%

or anyway very high for short investment horizons (1-8 weeks) and declines to roughly 1/5 of the portfolio

for long horizons up to two years. We conclude that it is the implications of our regime-switching model for

the co-skewness properties of EUSC vs. other portfolios that mostly drives the surprising portfolio results

found in this paper.

4.5. Welfare Costs of Ignoring European Small Caps

Gompers andMetrick (2001) observe that institutions do not usually invest in small caps, because they prefer

liquid assets. This is surprising for long-horizon investors, such as pension funds and university endowments,

that could profit from their higher Sharpe ratios and diversification potential without incurring too often

large transaction costs. Our evidence concerning the high variance risk of EUSC may in principle be able

to explain their neglect as higher moments of their return distribution increase undesired skewness and

kurtosis of wealth. However: Does this mean that there is no utility loss from restricting the available asset

menu to exclude small caps?

We provide a preliminary answer for the case of EUSC. We consider this exercise informative because

we found that EUSC have a limited role in optimal portfolios despite their full-sample unconditional Sharpe

ratios; and display bad co-higher moment properties, i.e. their variance risk is high. Thus we may suspect

that eliminating European small caps from the asset menu will only slightly reduce welfare.

We compute compensatory variations, using the approach illustrated in Section 2.5. In this case we

identify J(Wt, rt; ω̂
R
t ) with the value function under a restricted asset menu that rules our EUSC (see

Appendix A); on the other hand, J(Wt, rt; ω̂t) is the value function of the problem solved in this Section

4.2. In the comparison, we assume that the investor chooses the best specification for the return generating

process for each asset menu. It follows that J(Wt, rt; ω̂
R
t ) ≤ J(Wt, rt; ω̂t) does not hold as the two value

functions concern portfolio problems solved under different statistical models and parameter estimates.

The conclusion drawn from Table 8 is that − in spite of their limited optimal weight − the loss from
disregarding EUSC would be of a first-order magnitude. Therefore there is no direct mapping between

Gompers and Metrick’s result that small caps seem to be unimportant and the conclusion that their market

is irrelevant. However, long horizon investors suffer a smaller loss than short horizon ones, which can exploit

small caps for tactical purposes with lower probability of incurring into a regime shift. In particular, end-of-

sample calculations (panel A, no short sales) show that the annualized utility loss of ignoring EUSC declines

with the investment horizons, starts at exceptionally high levels (e.g. 60% a year in the ergodic probability

case) for a weekly horizon to diminish to approximately 3 % when T = 2 years. Panel B documents real

time results, distinguishing between three different samples (the last two break down Jan. 2002 - June 2003

into two shorter, 9-month periods to have a sense for the stability of the results over time). Interestingly,

mean compensatory variations are now even higher, reaching levels in excess of 10 % per year even at long

horizons and in the worst real time sub-samples.27

27Panel B of Table 8 also displays standard deviations for welfare loss estimations. In only one case the pseudo t-statistic is

not significant at a standard 5% size. This means that our conclusion that omitting EUSC in real time implies high utility loss

does not purely depend on some isolated peaks.
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When faced with compensatory variation in excess of 3% per year (up to 10% per year) that can

be considered as upper bounds for the transaction costs, it is difficult to think that small caps are not

important for international diversification purposes. Although it is well-known that the effective costs paid

when transacting on small caps depend on the nature of the trader, on tax considerations, and on the

frequency of trading, it is unlikely that any sensible estimate of the costs implied by long-run buy-and-hold

positions (i.e. infrequently revised) may systematically exceed the spectrum of welfare loss estimates we

have found. So, modest optimal weights and high doses of variance risk are still compatible with a claim

that small caps are key to expected utility enhancing international portfolio diversification.

5. The Role of Small Caps in an Extended Asset Menu

In this Section we proceed to generalize the problem to also include North American small caps (NASC),

besides the North American large portfolio, i.e. m = 5. We repeat the analysis of Section 4 and therefore

omit many details to save space.

5.1. The return generating process

In Table 9, the characterization of the regimes is very similar to Section 4.1: the second regime is a normal,

highly persistent state in which both mean returns (with the exception of NASC) and volatilities are small;

correlations are all fairly high, including those involving Pacific stocks. The first regime is a bear state

in which mean returns are significantly negative and large (e.g. -4% per week for European large caps),

volatilities are high (between 25 and 50% higher than in the normal state), and correlations moderate. The

third regime is a bull state implying high and significant means, high volatilities and modest correlations.

Notice that once more all correlations involving Pacific stocks turn negative and some of them are now

even significantly so. The bear and bull states are non-persistent; however, the structure of the estimated

transition matrix is such that the world equity markets may easily enter a high volatility meta-state in

which they cycle between regimes 1 and 3 with sustained fluctuations but relatively small chances to settle

down to the normal state of affairs. A comparison of Tables 9 and 3 shows that the characterization of

the states is essentially unchanged when we add NASC to the asset menu: this is an important finding

that corroborates the validity of our three-state regime switching model. The ergodic probabilities of the

regimes are almost unchanged, 0.17, 0.65, and 0.18, respectively.

5.2. Implied portfolio weights

Although Section 4.2 has provided one example that illustrates how both unconditional and regime-specific

Sharpe ratios may be misleading, we start by stressing how in this metric NASC dominate EUSC and all

other equity portfolios. Panel A of Table 9 shows that NASC have a Sharpe ratio of 0.06 vs. 0.01 for EUSC

and negative ratios for all other portfolios. Figure 3 plots optimal portfolio schedules. As a reflection of

the difference in Sharpe ratios, a myopic investor that ignores variance risk would invest most of her wealth

(58%) in NASC, another important proportion in EUSC (29%), and the remainder (13%) in Pacific stocks,

essentially for hedging reasons. This means that a stunning 87% of the overall wealth ought to be invested

in small caps, North American and European.

This portfolio recommendation is again incorrect, both because it ignores the existence of predictability
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patterns induced by the structure of the transition matrix, and because it does not take into account variance

risk. In fact, the regime switching portfolio schedules in Figure 3 contain dramatic departures from the

solid, bold lines flattened by the IID myopic assumption: focussing on the case of γ = 5 and assuming the

investor ignores the current regime, her commitment to NASC would remain large (and increasing in T )

but would be in the 40-50% range; once more, EUSC imply large amounts of variance risk and poor third-

and fourth-order moment properties, which brings their weights down to 15-20%.

Optimal allocations also turn out to be strongly regime-dependent: for instance, the bear state 1 is

highly favorable to NASC investments as these stocks have the highest Sharpe ratio in this regime, while

Pacific stocks provide a relatively good hedge; however as T grows the probability of leaving the bear state

grows, so that investment schedules revert to their ergodic counterparts. Finally, North American large

caps appear with moderate weights only in the extreme regimes 1 and 3.

We also perform calculations of co-skewness and co-kurtosis coefficients vs. an equally weighted portfolio,

both under the available data and under the three-state regime switching model of Table 9. In the latter

case, simulations are employed. We find estimates SNASC,EW ptf,EW ptf = −0.29 and SNASC,NASC,EW ptf =

−0.25 that approximately fit the sample moments; KNASC,NASC,EW ptf,EW ptf = 2.20 is furthermore close

to the sample estimate of 2.75.28 This means that for both small cap portfolios we have evidence that their

variance increases when the variance of the market is high, that their variance is high when the market is

bear, and that their returns are below average when the market is unstable. These properties (along with

own kurtosis and skewness) explain why our portfolio results do not completely reflect simple Sharpe ratio-

based arguments and why both portfolios receive a much higher weight under the myopic IID calculations

than in the plots in Figure 2. The estimates we obtain also make it clear that NASC imply less variance

risk than EUSC − hence their higher weights in Figure 3.
Once more, real time results (for γ = 5) confirm that our conclusions are far from an artifact of the

end-of-sample estimates: small caps play a substantial role in international diversification although their

variance risk reduces somewhat their relevance, for instance from an average 90% myopic IID weight to less

than 60% under regime switching. This wedge of roughly 30% in portfolio weight is a prima facie measure

of the importance of variance risk in international diversification.

We conclude by performing the usual welfare cost calculations. While the utility loss of ignoring pre-

dictability remains large (especially when the investor is given knowledge of the current state), the most

important result concerns the utility loss of ruling out diversification through small caps, similarly to Table

8. Assuming γ = 5, we find that the utility loss of excluding both NASC and EUSC from the asset menu is

large (in annualized terms) over the short horizon (e.g. 39% for T = 1 week) and remains of the same order

of magnitude as in Section 4.4 over long horizons (e.g. 4.7% for T = 1 year and 3.7% for T = 2 years).

Results are only slightly smaller when risk aversion is set to higher levels (e.g. under γ = 10 we have 2.4%

for T = 1 year and 1.5% for T = 2 years). Even a welfare loss of ‘only’ 150 basis points on an annualized,

riskless basis appears enormous in light of the utility losses normally reported in the literature (e.g. Ang

and Bekaert, 2002).

It may well be that transaction costs associated with small caps exceeds 3-4%, the annualized welfare

28The evidence of variance risk remains strong for EUSC: the regime switching estimates are SEUSC,EW ptf,EW ptf = −0.31,
SEUSC,EUSC,EW ptf = −0.28, and KEUSC,EUSC,EW ptf,EW ptf = 3.06. Notice that these values are different from those in

Table 8 as they are obtained for a different asset menu and statistical model. Complete results are available from the authors

upon request.
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gain from including small caps into the portfolio of a 2-year investor. While the effective spread on the

four most illiquid NYSE and AMEX stock deciles ranges from 0.98 to 4.16% (see Chalmers and Kadlec,

1998), the transaction costs associated with EUSC could be higher, for two reasons. First, some European

markets are less liquid than the NYSE.29 Second, total transaction costs include not only bid-ask costs but

commissions as well. For instance, Lesmond (2005) estimates total round-trip costs to be equal, on average,

to 8.5% in the Hungarian market. However, a moderately risk averse investor with horizons shorter than 1

year and annualized welfare gains larger than 11.5%, should still have an incentive to invest in small caps

in light of the above estimates. We therefore guess that − even after taking transaction costs into account
− the availability of small caps significantly increases expected utility through better risk diversification
opportunities.

6. Robustness Checks

6.1. Dynamic Rebalancing

Section 4 focusses on the buy-and-hold case, ϕ = T . We now repeat calculations of portfolio weights from

Section 4.2, including EUSC, for γ = 5 and a few alternative assumptions on the rebalancing frequency,

ϕ = 1 (weekly rebalancing) 4, 16, 26, and 52 (annual rebalancing). Given the short average durations of

regimes 1 and 3, the cases ϕ = 1 and 4 seem the most plausible ones, although un-modeled transaction

costs and other frictions may suggest in practice using higher values of ϕ.

Table 10 reports optimal weights.30 Rebalancing hardly changes the main implications found under

simpler, buy-and-hold strategies, although it makes portfolio weights much more reactive to the initial

state, and less sensitive to the investment horizon. Dynamic strategies imply high weights on EUSC only

when the investor knows the state is the normal one. In this case the optimal weight is extreme, 100%,

because EUSC have excellent Sharpe ratio. Since this is also fairly high in the bull state, a positive

demand exists also in this case, even though the proportions are small and limited to very high rebalancing

frequencies. The demand for EUSC in the steady-state case is instead limited, zero for short horizons and

up to 20% for T = 2 years. Rebalancing possibilities fail to overturn our previous finding that − because
of their poor skewness properties − small caps may in practice result much less attractive than what their
high Sharpe ratios may lead us to conjecture.

6.2. Long Horizons

Some institutional investor have horizons much longer than the 2-year ceiling we have used. Although some

caution should be used when extending the horizon beyond the length of our data set (four and half years),

we also calculate (unreported) optimal portfolio schedules when the investment horizon is extended up to

T = 5 years. For simplicity, we comment on results only for buy-and-hold portfolio directly comparable

to Section 4.2, i.e. when the asset menu includes EUSC. We notice a phenomenon already highlighted

by Guidolin and Timmermann (2005a) in other applications: even though short- to medium-term horizon

29However Swan and Westerholm (2004) estimate the mean and standard deviation of effective spreads to be respectively

equal to 1.28% and 1.95% on the NYSE, 0.3 and 0.7 on the London Stock Exchange, and 0.6 and 1.2 on the Milan Stock

Exchange. In a global European definition, the latter market clearly lists many small capitalization firms.
30Results are also available for the restricted asset menu case m = 3 but are not reported to save space.
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weights may strongly depend on the regime, as T grows all optimal investment schedules tend to converge

towards their steady-state counterparts. Indeed, the best long-run forecast an agent may form about the

future state is that all regimes are possible with probabilities identical to their ergodic frequencies. More

importantly for our application, we obtain evidence that even for very long horizons compatible with the

objectives of institutional investors, the optimal weight assigned to EUSC appears limited relative to the

(local) mean-variance case as a result of their high variance risk. Furthermore, even assuming a strong

initial belief in the normal regime 2, for T = 5 years we have that the EUSC weight will be at most 55%,

since over long periods markets are bound to transition out of the normal state and spend a fair share of

time in both bull and bear states where North American large stocks dominate.

6.3. Short Sales

Although selling short equity indices appears to be more problematic than shorting individual stocks, the

strategic asset allocation literature has developed a tradition of allowing for both negative positions and

positions exceeding 100% of the initial wealth. We therefore perform afresh portfolio calculations for the case

in which weights are allowed to vary between -400% and +400%.31 Removing the no-short sale constraint

hardly changes our conclusion concerning the desirability of EUSC in international diversification: while

a myopic investor who operates under a (false) IID framework would in fact invest in excess of 130% of

her initial wealth in EUSC to exploit their high Sharpe ratio, in a regime switching framework the demand

for EUSC depends on the initial state. It is still very high under the second, normal regime (in excess of

250%!), but in the most plausible case of unknown regime, the weight is only 20%, not very different from

the results of Section 4.2. Risk aversion increases this proportion to almost 40%, but it remains true that

the highest regime switching weights still keep involving other assets.32

Table 8 contains compensatory variation estimates. In particular the ergodic panel highlights that

admitting short sales enhances our estimate of the welfare gains from using small caps in international

portfolio diversification, as most estimates (for both γ = 5 and 10) do increase. The worst-case estimate

remains a long-run annualized riskless 3%, obtained assuming γ = 10. Therefore also in this experiment,

small caps command only moderate portfolio weight but also imply rather large welfare improvements.

6.4. Out-of-Sample Performance

Although our models suggest sizeable utility losses from ignoring variance risk, our estimated model in

Table 3 and the implied co-skewness and co-kurtosis estimates in Tables 4-6 may be difficult to use in

‘real time’ due to parameter estimation errors which could translate into implausible time-variations in

the portfolio weights. This concern is related to the prediction model’s out-of-sample asset allocation

performance, see Guidolin and Timmermann (2005a). To address this point, we perform a “real time”

31As discussed by Barberis (2000) and Kandel and Stambaugh (1996), allowing short-sales creates problems when returns

come from an unbounded density, because bankruptcy becomes possible and expected utility is not defined for non positive

terminal wealth. As stressed in Guidolin and Timmermann (2005a), when Monte Carlo methods are used, this forces the

researcher to truncate the distribution from which returns are simulated to avoid instances of bankruptcy. Thus returns are

not simulated from the econometric models estimated in Section 4, but from a suitably truncated distribution in which the

probability mass is redistributed to sum to one. We accomplish the truncation by applying rejection methods.
32Since differences between IID and regime switching weights widen when short sales are admitted, we generally find that in

this case the welfare costs of ignoring regimes are much higher than those reported in Sections 4.1.2 and 4.2.2.
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asset allocation experiment for the period January 2002 - June 2003, a total of 78 weeks. To make the

experiment computationally feasible, we focus on the buy-and-hold portfolio problem at horizons T = 1

and 16 weeks. We compare the performance of the three-state Markov switching model and the single-

state Gaussian IID model that ignores variance risk. Additionally, we also propose minimum variance,

tangency, and equally weighted portfolios as additional benchmarks. The investor is precluded from having

any benefit of hindsight. For instance, to predict the return distribution for the first week in January 2002,

the parameter estimates are based only on information up to the end of December 2001. These estimates

are then updated recursively as the point of the forecast progresses through time.

To measure investment performance we consider realized portfolio returns as well as realized utility

under the different models, each of which is associated with a particular portfolio weight ω̂T
t and hence a

different realized utility:

V (ω̂T
t ) ≡

£
WT (ω̂

T
t )
¤1−γ

1− γ
=

1

1− γ

£
ω̂T1t exp

¡
R1T
¢
+ ω̂T2t exp

¡
R2T
¢
+ ...+ ω̂Tmt exp (R

m
T )
¤1−γ

. (10)

Here Ri
T (i = 1, ...,m) are realized (cumulated) returns between t+1 and t+T . The period-t weights, ω̂T

it,

are computed by maximizing the objective Et[W
1−γ
T /1 − γ] so that for each investment horizon, T , and

each portfolio selection model we obtain time series {WT (ω̂
T
τ ), V (ω̂

T
τ )}, for τ that changes between January

2002 and June 2003, of realized wealth levels and utilities.

Table 11 reports summary statistics for the distribution of net returns {WT (ω̂
T
t )−1} and ‘realized utility’

{V T (ω̂T
t )} for γ = 5 and 10. Notice that smaller absolute values indicate higher utility. Following Guidolin

and Timmermann (2005a), we use a block bootstrap (with 50,000 simulation trials) for the empirical

distribution of the objects of interest to account for the fact that realized utility levels are likely to be

serially dependent since time-variations in the conditional distribution of asset returns may translate into

dependencies in the portfolio weights and hence in realized utilities.

First consider the results for the wealth distribution when T = 1 week and γ = 5. The three-state model

returns the highest mean wealth and a remarkable 0.44 Sharpe ratio (in annualized terms). All the other

portfolio strategies actually return a net loss over the pseudo-out-of-sample period. The Markov switching

framework is also the model yielding the highest realized utility, with a positive certainty equivalent return

(CER) of 193 basis points (on an annualized basis). However, notice that in the case of realized utility,

the bootstrapped confidence intervals for the CER are very wide, also because of the limited number of

observations available. For T = 4 months, the results are essentially unchanged, although both the Sharpe

ratio and the CER for the three-state model considerably decline. Finally, the bottom panel of the table

shows that if we were to use higher levels of risk aversion, these findings would remain essentially unaltered.

Table 11 therefore provides strong support to the notion that ignoring variance risk may seriously hinder

portfolio performance (presumably, through an over-investiment in small capitalization stocks) not only

ex-ante (see the results in Section 4.2), but also ex-post, in real time simulated experiments.

6.5. Longer Series

One final check concerns the length of the series employed: although sample size is not a major concern, one

might doubt the generality of results obtained for the period 1999-2003. We collect weekly European total

return indices published by Standard & Poors in conjunction with Citigroup (SPCG) for the period July
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1989 - December 2004, a total of 808 data points.33 In particular, we focus on SPCG returns (expressed in

local currencies) for two alternative portfolios: a large cap European portfolio that covers only companies

with capitalization exceeding 1.5 billion U.S. dollars; a small cap portfolio that covers companies with

market capitalization below 500 million U.S. dollars. These SPCG series are completed by MSCI return

series for Pacific stocks extended to cover the period 1989-2004, as well as a North American large cap

portfolio constructed following the same criteria detailed in Section 3.

Table 1 provides further summary statistics for the new as well as the extended series over a common

1989-2004 sample. Spanning multiple market cycles delivers annualized mean returns in the range of 8-9

%, although pervasive negative skewness still makes mean much smaller than median stock returns (in the

range 13-16 % per year). The unsurprising exception is represented by Asian Pacific markets, which failed

to make any progress in this 15-year period. Pairwise correlations are similar to those reported in Table

2, again with Pacific stocks only weakly correlated with other indices (with correlations in the 0.39 - 0.47

range). Median Sharpe ratios for EUSC remain highly attractive, for instance 1.07 vs. 1.06 and 1.03 for

European and North Americam large caps, respectively. Taking into account their imperfect correlation

with other portfolios (e.g. 0.5 vs. North American large caps), there is little doubt that a naive portfolio

strategy disregarding variance risk ought to assign considerable weight to EUSC.

However, we have shown that the differential variance risk of EUSC may drive an important wedge

between simple portfolio strategies and more sophisticated ones. In fact, Table 1 already shows that EUSC

have lower negative skewness and higher excess kurtosis than other portfolios. We therefore proceed to

estimate the same multivariate three-state, heteroskedastic model of Section 4. Estimation outputs are

reported in Table 12. Most of the specific parameter estimates fall within a two-standard deviation interval

from the corresponding estimates obtained in Table 3.34 The only relevant difference is that now the bear

and bull states are also relatively persistent, with average durations of 9 and 6 weeks, respectively. As a

result, the steady state probabilities of regimes 1 and 3 are now higher, 0.24 and 0.23, respectively.

Next, we proceed to calculate portfolio shares for an investor with γ = 5. Figure 5 reports the cor-

responding weights at alternative investment horizons. Although detailed results are different from those

obtained employing the data set in Section 4, a few broad implications still hold. First, while the myopic

weight is approximately two-thirds in EUSC, the ergodic switching weight is below 10%.35 Second, also in

this case there is only one specific regime in which the EUSC demand should be of first-order magnitude

(in excess of 40%); however, in this case the regime is the bull state, when the EUSC portfolio gives an

astonishing annualized 74% expected return and a Sharpe ratio in excess of 7. Third, the demand for Eu-

ropean large caps remains modest and limited to short horizons and one specific regime (the normal state,

when they display an annualized 1.3 Sharpe ratio), while the North American weight is now important and

33All companies in applicable markets are included provided they have available (float) market capitalisation greater than

100 million US dollars. Only issues that a non-domiciled investor may purchase are included. Each issue is weighted by the

proportion of its available equity capital.
34The only interesting exceptions concern volatilities in the bull regime (now very similar to the estimates characterizing

the normal state, in line with the usual finding that volatilites are higher in bear states) and pairwise correlations between

European large and small caps (now always higher than 0.82).
35Again, we find poor co-skewness and co-kurtosis properties of EUSC. For instance, when measured against an equally

weighted portfolio, SEUSC,EUSC,EW ptf = −0.73, SEUSC,EW ptf,EW ptf = −0.66, and KEUSC,EUSC,EW ptf,EW pft = 5.30.

These values are closely matched by the three-state regime switching model under ergodic state probabilities (we obtain -0.58,

-0.55, and 4.34; all coefficients differ significantly from Gaussian benchmark values).
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grossly in excess of the corresponding myopic weight, with upward sloping schedules.

In conclusion, although the optimal portfolio policies obviously remain a function of the quality and

structure of the data used to estimate the econometric model in (4), this exercise shows that our results

are robust when it comes to highlighting the role of variance risk at reducing the demand for small caps.

7. Conclusion

We have been able to precisely measure three important components of the variance risk of an asset class

that adversely affect the skewness and the kurtosis of wealth. These are the negative covariance between

its returns and the volatility of other assets, the negative covariance between its volatility and returns of

other assets, and the covariance between volatilities, that are reminiscent of the priced factor in the cross

section of returns reported by Harvey and Siddique (2000) and Dittmar (2002). In this metric, we have

shown that small caps have large variance risk.

A powerful display of the effects of variance risk on portfolio choice is our result that the optimal

portfolio share of European small caps under state-dependent returns − when the state of the stock market
is unobservable − is always less than 20%, while their optimal weight in a myopic portfolio ought to be
close to 90%. This result stands when the asset menu is extended to include a North American small

capitalization portfolio. In spite of the exceptional average premia and Sharpe ratio that NASC have

yielded, we find that under realistic assumptions the combined weights of European and North American

small caps fails to exceed 50% and remains at least 30% below what we would have obtained assuming a

simple IID framework that ignores variance risk and higher-moment properties.

There are several natural extensions to our paper. First, our results support an emerging view in the

asset pricing literature that the so-called size premium may be not an anomaly but instead a rational

premium associated with the illiquidity and variance risk of small caps. As a matter of fact, we have

found that the demand for small caps might be severely limited by their variance risk, thus potentially

explaining low equilibrium prices and high returns. However, our model is not an equilibrium model as

most contributions to the intertemporal portfolio choice framework, while extensions in this direction would

be interesting. Acharya and Pedersen (2005) is a first example, although in a mean-variance set up. Second,

we have concluded that small capitalization stocks are helpful in international diversification programs, as

revealed by welfare losses caused by excluding them. Needless to say, small caps are known to be traded

on illiquid and expensive markets. It would be interesting to introduce transaction costs in our exercise

and explicitly check the robustness of our results. Balduzzi and Lynch (1999) show how this could be

accomplished in discrete time frameworks akin to ours.
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Appendix A − Portfolio Choice with a Benchmark Asset Menu

The results in this Appendix set up the background against which we proceed to measure the variance

risk characterizing small caps. High LR statistics (with associated p-values generally equal to 0.000) show

that most regime switching models (k ≥ 2) perform better than simpler linear models in capturing the

salient features of the joint density of the stock returns data. We conclude that the absence of regime

switching in international stock returns data is rejected, similar to the findings in Ang and Bekaert (2002)

and Ramchand and Susmel (1998). Importantly, in this case we obtain that the same model minimizes both

the BIC and the H-Q criteria. This is achieved by a relatively simple and parsimonious (20 parameters vs.

a total of 702 observations) model with k = 2, p = 0, and regime-dependent covariance matrix.

Detailed estimates of a simple two-state model are available upon request. The first panel refers to the

benchmark IID case, with constant mean and variance. For this restricted asset menu, estimated means

are never significant, which is not a new finding in the regime switching class, while second moments

are precisely estimated. The very persistent regime (average duration exceeds 6 months), which we label

“normal”, implies moderate volatilities (roughly 17-18% on annualized basis) and high correlation across

pairs of stock indices. The “bear” state is less persistent (its average duration is only 9 weeks) and implies

much higher volatilities (as high as 40% a year in the case of European large caps) as well as lower mean

returns (in the order of -0.2 to -0.5% per week).

Also in this case, we compute optimal portfolio shares as a function of the investment horizon for a buy-and

hold investor who employs parameter estimates at end of June 2003. Results for two alternative levels

of relative risk aversion are visualized, γ = 5 and 10 (complete results are available upon request). The

only demand for European large stocks is generated for γ = 10 and the normal state, when the variance

of European large stocks is particularly small. Investors should otherwise demand North American large

and Pacific stocks. North American large stocks are more attractive in the short-run and in the bear state

(regime 2) when their mean returns are higher than all other stock portfolios. However, as the horizon T

grows, the weight in North American large stocks declines. In the normal state, the slopes are reversed: the

North American schedule becomes upward sloping while the Pacific one is downward sloping. This occurs

because Pacific stocks have the highest Sharpe ratio in the normal state, but the probability of a switch

from the normal to the bear regime increases over time thus justifying increased caution.

Importantly, there are marked differences between the regime-switching portfolio weights and the IID

benchmark that ignores predictability, especially for the case of the normal regime when γ = 5: while

the IID weights are 38% in North American large stocks and 62% in Pacific stocks, the regime-dependent

optimal choices assign much less weight to the former portfolio (the difference is almost 20% at long horizons

when the comparison is performed with the steady-state schedule).
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We have calculated, but do not report for brevity, the welfare costs of ignoring regimes and adopting instead

a IID return generating process. These are the utility losses from ignoring the existence of state-dependence

in the moments of the joint distribution of asset returns, and hence variance risk itself. The welfare costs

strongly depend on the assumed initial state as well as on risk-aversion, being higher under moderate values

for γ and in regime 1 (normal). However, an investor who ignores the initial regime and purely conditions

on long-run ergodic probabilities would ‘feel’ a long-run (for T = 2 years) welfare loss of almost 20% of her

initial wealth. This estimate is large and stresses that regimes should not be ignored when approaching

international diversification problems.

In order to assess how sensitive portfolio choice is to the arrival of new information on the prevailing

regime, we recursively estimate the parameters of the regime switching model. Unreported plots show that

our previous remarks are not an artifact of the sample period selected: The demand for Pacific stocks is

stable, both over time and over investment horizons. Even though European large caps have become less

attractive over time, as the incidence of the bear state increased, their demand has always been limited. We

also compute recursive estimates of the utility costs of ignoring regimes and observe that for long enough

horizons the loss oscillates between 1 and 3% in annualized terms over most of the sample. Peaks of 5% (in

annual terms) and higher are reached in correspondence to periods characterized as a bear state (e.g. the

Summer of 2002).

Appendix B − Selection of the Return Generating Processes

We estimate several multivariate regime switching models, including the special cases of no regimes, and/or

no VAR, and/or homoskedasticity. Clearly, both k = 1 and p = 0 result in a multivariate Gaussian return

distribution that implies the absence of predictability. Otherwise, our model search allows for k = 1, 2, 3,

and 4, for p = 0, 1, 2, and entertains both homoskedastic and heteroskedastic models.

Detailed results on our specification search are available upon request. Three different statistics are com-

puted for specification purposes: the likelihood ratio (LR) statistic for the test of k = 1, when the model

reduces to a homoskedastic Gaussian VAR(p). Similarly to Guidolin and Timmermann (2005a,b) we cal-

culate corrected, Davies (1977)-type upper bound for the associated p-values that correct for nuisance

parameter problems. The evidence against the null of a linear, IID Gaussian model is overwhelming in

terms of likelihood ratio tests. We also look at two information criteria, the Bayesian (BIC) and Hannan-

Quinn (H-Q) statistics. Their purpose is to allow the calculation of synthetic measures trading-off in-sample

fit against parsimony and hence out-of-sample forecasting accuracy. By construction, the best performing

model ought to minimize such criteria.

The information criteria provide contrasting indications: while the H-Q sides for a rather ‘expensive’ (in

terms of number of parameters, 52) two-regime model with a VAR(1) structure, the BIC is ‘undecided’

between a homoskedastic three-regime model and a heteroskedastic one (in both cases p = 0). Given

the pervasive evidence of volatility clustering in Table 1 (see the Ljung-Box statistic for squared returns)

− which is unsurprising in weekly data − we select the latter three-state model. The three-state model
implies the estimation of 48 parameters, although with 936 observations this still amounts to a reasonable

saturation ratio of 936/48 = 19.5, i.e. roughly 20 observations per parameter.

We perform our model selection search when we also allow for North American small caps. Unreported

results show that both the BIC and H-Q criteria keep selecting a three-state heteroskedastic regime switching

model with p = 0, i.e. in which regime switching is responsible of most of the autoregressive structure in

levels noticed in Table 1. Such a model implies estimation of as many as 66 parameters, although with

1,170 observations this still gives an acceptable ratio of 18 observations per estimated parameter.
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Appendix C − Moment Implications of Model Restrictions

Guidolin and Timmermann (2004) show that when the VAR order (p) is zero, then the third and fourth

central moments of portfolio returns are respectively equal to
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whereM is defined as a k×m matrix stacking in each of its rows the 1×m vectors μ1, μ2, ..., μk, ωt is a

weight vector, ej is a k× 1 vector with a 1 in its j-th position and zero everywhere else, so that π0tPTej is

the time t predicted probability of regime j = 1, ..., k.

The third central moment of the T -step ahead portfolio returns, (11, is a predicted probability-weighted av-

erage of the sum of two types of terms over the k possible regimes:
h
μ0jωt − π0tPTMωt

i3
, where π0tP

TMωt

is simply the T -step predicted portfolio return, i.e. cubic powers of the difference between the regime-specific

expected return μ0jωt and the T -step forecast across regimes; 3
h
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i
(ω0tΣjωt)

2 , an interac-

tion term between the squared portfolio return regime-specific variance (ω0tΣjωt), and once more the differ-

ence between the regime-specific expected return and the T -step forecast across regimes. Interestingly, when

μ0j = μ for j = 1, ..., k like in (8), μ0jωt = π0tP
TMωt by construction so that Et[(ω

0
trt+T −Et[ω

0
trt+T ])

3] = 0

∀t. Since terms of the type Et[(ω
0
trt+T −Et[ω

0
trt+T ])

3] are at the numerator of any skewness coefficient, this

shows that regime-independent conditional mean implies zero skewness and co-skewness for all the assets.

The fourth central moment, (12), involves terms with similar structure, but with different multiplicative

coefficients and raised to even powers. Interestingly, a regime-independent mean, μ0jωt = π0tP
TMωt, fails

now to imply Et[(ω
0
trt+T −Et[ω

0
trt+T ])

4] = 0 ∀t. Since terms like Et[(ω
0
trt+T −Et[ω

0
trt+T ])

4] will appear at

the numerator of any kurtosis coefficient, (8) may imply (time-varying) kurtosis and co-kurtosis in excess

of a Gaussian benchmark.

Thus, both third and fourth central moments will differ from their Gaussian IID counterparts under regime-

independent conditional variance (9). This means that the impact of odd-moment (skewness) variance risk

may be measured only by taking the difference of the two portfolio weight vectors in Table 8. However,

under (9) EIID
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On the contrary, deviations in the fourth central moment will be at most of order four:
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(we define V arIIDt ≡ EIID
t [(ω0trt+T −Et[ω

0
trt+T ])

2]). Therefore (9) represents a good device to investigate

the portfolio effects of adding co-skewness driven variance risk.
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Table 1 

Summary Statistics for International Stock Returns 
The table reports basic moments for weekly equity total return series (including dividends, adjusted for stock splits, etc.) 
for a few international portfolios and two sample periods. All returns are expressed in local currencies. Means, medians, 
and standard deviations are annualized by multiplying weekly moments by 52 and 52 , respectively. LB(j) denotes the 
j-th order Ljung-Box statistic. 

 

Portfolio Mean Median St. Dev. Skewness Kurtosis LB(4) LB(4)- 
squares 

 January 1999 – June 2003 
MSCI Europe – Large Caps -0.079 -0.081 0.267 0.186 4.975 20.031** 32.329** 

MSCI Europe – Small Caps 0.012 0.144 0.161 -0.778 4.815 16.202** 29.975** 

North America – Large Caps -0.012 -0.114 0.206 0.277 3.673 6.981 12.396* 

MSCI North America –  
Small Caps 0.101 0.128 0.218 -0.181 3.384 15.849** 11.374* 

MSCI Asia Pacific -0.035 0.006 0.187 -0.086 3.395 3.138 2.667 

 July 1989 – December 2004 
SPCG Europe – Large Caps 0.092 0.160 0.151 -0.338 5.550 14.581** 175.8** 

SPCG Europe – Small Caps 0.080 0.136 0.127 -0.824 6.740 144.6** 206.5** 

North America – Large Caps 0.084 0.158 0.153 -0.460 5.921 13.821** 63.285** 

MSCI Asia Pacific -0.034 0.002 0.173 -0.119 3.950 2.114 108.5** 

 * denotes 5% significance, ** significance at 1%. 
 

 

 

Table 2 

Correlation Matrix of International Stock Returns 
The table reports linear correlation coefficients for weekly equity total return series (including dividends, adjusted for 
stock splits, etc.) for a few international portfolios. The sample period is January 1999 – June 2003. All returns are 
expressed in local currencies.  

 

 EU – Large EU – Small North 
America 

North Am. – 
Large 

North Am. – 
Small Pacific 

EU – Large Caps 1 0.782 0.747 0.754 0.695 0.509 

EU – Small Caps  1 0.668 0.672 0.727 0.540 

North America   1 0.997 0.795 0.484 

North Am. – Large Caps    1 0.795 0.484 

North Am. – Small Caps     1 0.427 

Pacific      1 
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Table 3 

Estimates of a Three-State Regime Switching Model for European, North American,  
and Pacific Equity Portfolios – Effects of Adding European Small Caps 

The table shows estimation results for the regime switching model: 

tst t
r εμ +=  

where rt is a 4×1 vector collecting weekly total return series, 
tsμ  is the intercept vector in state st, and 

),( ~]'  [ 4321 tsttttt N Σ= 0ε εεεε . The unobservable state st is governed by a first-order Markov chain that can assume 
three values. The first panel refers to the single-state case k = 1. Asterisks attached to correlation coefficients refer to 
covariance estimates. For mean coefficients and transition probabilities, standard errors are reported in parenthesis. 
 

 Panel A – Single State Model 
 Europe – Large caps North America Large Pacific Europe – Small caps
1. Mean return -0.0015 -0.0008 -0.0007 0.0002 
2. Correlations/Volatilities     
Europe – Large caps 0.0370***    
North America - Large caps 0.7470*** 0.0285***   
Pacific 0.5086*** 0.4843*** 0.0259***  
Europe – Small caps 0.7816*** 0.6680*** 0.5403*** 0.0222*** 
 Panel B – Three State Model 
 Europe – Large caps North America Large Pacific Europe – Small caps
1. Mean return     
Bear State -0.0501*** -0.0268*** -0.0256*** -0.0288*** 
Normal State -0.0005 -0.0006 0.0007 0.0032** 
Bull State 0.0374*** 0.0214*** 0.0157*** 0.0136*** 
2. Correlations/Volatilities     
Bear state:     
Europe – Large caps 0.0300***    
North America - Large caps 0.6181*** 0.0247***   
Pacific 0.1000 0.0544 0.0277***  
Europe – Small caps 0.7028*** 0.5843*** 0.5045** 0.0290*** 
Normal state:     
Europe – Large caps 0.0246***    
North America - Large caps 0.7182*** 0.0226***   
Pacific 0.5694*** 0.6022*** 0.0219***  
Europe – Small caps 0.7062*** 0.6369*** 0.5759*** 0.0153*** 
Bull state:     
Europe – Large caps 0.0370***    
North America - Large caps 0.5739*** 0.0343***   
Pacific -0.1242 -0.0515 0.0241***  
Europe – Small caps 0.7114*** 0.5137*** -0.3581** 0.0177*** 
3. Transition probabilities Bear State Normal State Bull State 
Bear State 0.2190* 0.0012 0.7798** 
Normal State 0.0349 0.9650*** 0.0001 
Bull State 0.5416*** 0.1698 0.2886** 

* denotes 10% significance, ** significance at 5%, *** significance at 1%. 
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Table 4 

Sample and Implied Co-Skewness Coefficients 
The table reports the sample co-skewness coefficients, 

2/1222,, ]}])[[(]])[[(]])[[({
])][])([])([[(

lljjii

lljjii
lji rErErErErErE

rErrErrErE
S

−−−

−−−
≡    

(i, j, l = Europe large, North America large, Pacific, Europe small) and compares them with the co-skewness 
coefficients implied by a three-state regime switching model: 

=tr
tt ss Σ+μ εt . 

εt )I,( ~ 40I.I.D.  N  is an unpredictable return innovation. Coefficients under regime switching are calculated 
employing simulations (50,000 trials) and averaging across simulated samples of length equal to the available data 
(January 1999 – June 2003). In the table NA stands for ‘North American small caps’, and Pac for ‘Pacific’ portfolios. 
Bold coefficients are significantly different from zero. 
 
 

Coeff. Sample MS – ergodic Regime 1 Regime 2 Regime 3
SEU_large,EU_large,NA 0.110 0.025 0.003 -0.006 0.051 
SEU_large,EU_large,Pac -0.126 -0.131 -0.155 -0.016 -0.058 

SEU_large,EU_large,EU_small -0.167 -0.228 -0.101 -0.035 -0.047 
SNA,NA,Pac 0.005 -0.007 -0.021 0.006 0.027 

SNA,NA,EU_small -0.111 -0.070 -0.014 -0.011 0.016 
SNA,NA,EU_large 0.149 0.095 0.079 0.004 0.105 
SPac,Pac,EU_small -0.493 -0.341 -0.333 -0.048 -0.255 
SPac,Pac,EU_large -0.203 -0.151 -0.174 -0.023 -0.103 

SPac,Pac,NA -0.140 -0.086 -0.128 -0.010 -0.071 
SEU_small,EU_small,EU_large -0.467 -0.460 -0.240 -0.063 -0.187 

SEU_small,EU_small,NA -0.367 -0.323 -0.195 -0.046 -0.152 
SEU_small,EU_small,Pac -0.525 -0.487 -0.431 -0.067 -0.342 

      
SEU_large, EU_large, EU_large 0.186 0.110 0.023 -0.012 0.075 

SNA,NA,NA 0.237 0.170 0.140 0.012 0.147 
SPac,Pac,Pac -0.086 -0.169 -0.109 -0.022 -0.079 

SEU_small, EU_small, EU_small -0.711 -0.722 -0.332 -0.081 -0.290 
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Table 5 

Sample and Implied Co-Skewness and C-Kurtosis Coefficients of European Small Caps vs. 
an Equally Weighted International Equity Portfolio 

The table reports average sample co-skewness coefficients, 
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(i, j, l = Europe large, North America large, Pacific, Europe small, Equally weighted portfolio) and compares them with 
the co-kurtosis coefficients implied by a three-state regime switching model. Coefficients under multivariate regime 
switching are calculated employing simulations. Bold co-skewness coefficients are significantly different from zero; bold 
co-kurtosis coefficients are significantly different from their Gaussian counterparts. 
 
 

 Co-Skewness Co-Kurtosis 
 Sample MS - ergodic Sample MS - ergodic 
 European Small Caps 
SEU_small,EU_small,EW_ptf -0.604 -0.566 − − 
SEU_small,EW_ptf,EW_ptf -0.440 -0.412 − − 
SEU_small,EU_small,Pac,EW_ptf − − 2.094 2.133 

SEU_small,EU_small,NA,EW_ptf − − 2.623 2.460 

SEU_small,EU_small,EU_large,EW_ptf − − 3.220 2.927 

SEW_ptf,EW_ptf,EU_small,Pac − − 1.945 2.133 

SEW_ptf,EW_ptf,EU_small,NA − − 2.680 2.428 

SEW_ptf,EW_ptf,EU_small,EU_large − − 3.168 2.790 

SEW_ptf,EW_ptf,EU_small,EU_small − − 3.460 3.262 

SEW_ptf,EW_ptf,EU_ptf,EU_small − − 3.903 3.713 

SEU_small,EU_small,EU_small,EU_ptf − − 3.315 3.071 
 European Large Caps 
SEU_large,EU_large,EW_ptf 0.031 -0.074 − − 
SEU_large,EW_ptf,EW_ptf -0.097 -0.154 − − 
SEU_large,EU_large,NA,EW_ptf − − 3.128 2.483 

SEU_large,EU_large,Pac,EW_ptf − − 1.465 1.616 
SEU_large,EU_large,EU_small,EW_ptf − − 3.320 2.730 

SEW_ptf,EW_ptf,EU_large,Pac − − 1.691 1.841 
SEW_ptf,EW_ptf,EU_large,NA − − 2.997 2.521 

SEW_ptf,EW_ptf,EU_large,EU_small − − 3.168 2.790 

SEW_ptf,EW_ptf,EU_large,EU_large − − 3.650 3.005 

SEW_ptf,EW_ptf,EU_ptf,EU_large − − 3.458 3.021 

SEU_large,EU_large,EU_large,EU_ptf − − 4.119 3.190 
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Table 6 

Sample and Implied Co-Kurtosis Coefficients 
The table reports the sample co-kurtosis coefficients, 

2/12222,,, }])[[(]])[[(]])[[(]])[[({
])][])([])([])([[(

bblljjii

bblljjii
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≡  

(i, j, l, b = Europe large, North America large, Pacific, Europe small) and compares them with the co-kurtosis 
coefficients implied by a three-state regime switching model: 

=tr
tt ss Σ+μ εt , 

where εt )I,( ~ 40I.I.D.  N  is an unpredictable return innovation. Coefficients under multivariate regime switching are 
calculated employing simulations (50,000 trials) and averaging across simulated samples. In the table NA stands for 
‘North American small caps’, and Pac for ‘Pacific’ equity portfolios. Bold co-skewness coefficients are significantly 
different from zero; bold co-kurtosis coefficients are significantly different from their Gaussian counterparts. 
 

Coeff. Sample MS – erg. Regime 1 Regime 2 Regime 3

KEU_large, EU_large,NA, EU_small 2.725 2.125 1.884 1.667 1.877 
KEU_large, EU_large,NA, Pac 1.137 1.123 1.071 1.379 1.156 

KEU_large, EU_large,Pac, EU_small 1.234 1.377 1.194 1.370 1.284 
KNA,NA,EU_large,Pac 1.215 1.131 1.100 1.377 1.192 

KNA,NA,EU_large,EU_small 2.395 2.002 1.908 1.682 1.906 
KNA,NA,Pac,EU_small 1.086 1.129 1.023 1.317 1.141 

KPac,Pac,EU_large,EU_small 1.330 1.496 1.495 1.466 1.505 
KPac,Pac,EU_large,NA 1.243 1.273 1.268 1.364 1.301 
KPac,Pac,EU_large,NA 1.117 1.221 1.322 1.467 1.356 

KEU_small,EU_small,EU_large,NA 2.505 2.191 1.918 1.689 1.900 
KEU_small,EU_small,EU_large,Pac 1.517 1.655 1.276 1.378 1.346 

KEU_small,EU_small,,NA,Pac 1.246 1.376 1.089 1.331 1.176 
      

KEU_large,EU_large,NA,NA 2.985 2.412 2.259 2.221 2.273 
KEU_large,EU_large,Pac,Pac 1.229 1.562 1.751 1.929 1.773 

KEU_large,EU_large,EU_small,EU_small 3.324 2.856 2.416 2.226 2.380 
KNA,NA,Pac,Pac 1.510 1.495 1.697 1.953 1.735 

KNA,NA,EU_small,EU_small 2.369 2.198 2.142 2.073 2.144 
KPac,Pac,EU_small,EU_small 2.193 2.080 1.885 1.958 1.898 

      
KEU_large,EU_large,EU_large,NA 3.450 2.586 2.199 2.131 2.212 
KEU_large,EU_large,EU_large,Pac 1.354 1.457 1.365 1.619 1.452 

KEU_large,EU_large,EU_large,EU_small 3.727 2.847 2.376 2.122 2.352 
KNA,NA,NA,Pac 1.549 1.381 1.200 1.674 1.325 

KNA,NA,NA,EU_small 2.463 2.212 2.054 1.885 2.070 
KPac,EU_small,EU_small,EU_small 1.922 1.852 1.406 1.653 1.554 

KNA,NA,NA,EU_large 2.955 2.536 2.253 2.136 2.271 
KPac,Pac,Pac,EU_large 1.469 1.606 1.471 1.628 1.541 

KEU_small,EU_small,EU_small,EU_large 3.508 3.290 2.469 2.132 2.419 
KPac,Pac,Pac,NA 1.394 1.455 1.232 1.679 1.336 

KEU_small,EU_small,EU_small,NA 2.760 2.665 2.100 1.891 2.090 
KEU_small,EU_small,EU_small,Pac 2.437 2.363 1.454 1.666 1.585 

      
KEU_large,EU_large,EU_large,EU_large 4.975 3.646 2.994 3.130 3.008 

KNA,NA,NA,NA 3.689 3.434 3.094 3.136 3.110 
KPac,Pac,Pac,Pac 3.395 3.258 3.105 3.124 3.094 

KEU_small,EU_small,EU_small,EU_small 4.815 4.758 3.164 3.152 3.140 
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Table 7 

Comparing Optimal Buy-and-Hold Weights with and without Co-Skewness Risks 
The table reports optimal portfolio weights obtained from two alternative regime switching models. The first one 
corresponds to the parameter estimates in Table 6 and implies regime-specific expected stock returns. Therefore it 
implies that all high co-moments (including co-skewness) may affect portfolio behavior (‘Co-Skew’ column). The 
second model constrains expected returns to be independent of regimes and therefore implies that only even co-higher 
moments (e.g. co-kurtosis) affect portfolio choices (‘No Co-Skew’ column). For comparison, the ‘Gaussian IID’ row 
reports results under a multivariate Gaussian benchmark with no regimes. The investor is assumed to have power utility 
and a constant relative risk aversion coefficient of 5. 
 

Investment European small caps European large caps North American large Pacific large 
Horizon (T) Co-

Skew 

No 
Co-

skew 

M-V + 
No Co-
skew 

Co-
Skew

No 
Co-

skew 

M-V + 
No Co-
skew 

Co-
Skew 

No 
Co-

skew 

M-V + 
No Co-
skew 

Co-
Skew 

No 
Co-

skew 

M-V + 
No Co-
skew 

 Gaussian IID (Single-regime) 
 0.87 0.94 0.00 0.00 0.00 0.00 0.13 0.06 
 Regime 1 (Bear) 
1 week 0.00 0.21 0.00 0.00 0.00 0.00 0.44 0.42 0.00 0.66 0.27 1.00 
1 month 0.00 0.59 0.00 0.00 0.00 0.00 0.59 0.09 0.93 0.41 0.32 0.07 
2 months 0.00 0.68 0.03 0.00 0.00 0.00 0.61 0.03 0.73 0.39 0.29 0.24 
4 months 0.00 0.73 0.15 0.00 0.00 0.00 0.60 0.00 0.52 0.40 0.27 0.33 
1 year 0.00 0.82 0.48 0.04 0.00 0.04 0.57 0.00 0.26 0.39 0.18 0.22 
2 years 0.00 0.83 0.23 0.05 0.00 0.43 0.57 0.00 0.15 0.38 0.17 0.19 
 Regime 2 (Normal) 
1 week 1.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1 month 1.00 1.00 0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 
2 months 1.00 1.00 0.73 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.23 
4 months 1.00 0.99 0.53 0.00 0.00 0.00 0.00 0.00 0.17 0.00 0.01 0.30 
1 year 0.99 0.93 0.45 0.00 0.00 0.09 0.01 0.00 0.12 0.00 0.06 0.34 
2 years 0.97 0.91 0.18 0.00 0.00 0.48 0.03 0.00 0.06 0.00 0.06 0.28 
 Regime 3 (Bull) 
1 week 0.00 0.68 0.00 1.00 0.00 1.00 0.00 0.02 0.00 0.00 0.30 0.00 
1 month 0.00 0.70 0.02 0.37 0.00 0.90 0.30 0.01 0.05 0.23 0.29 0.03 
2 months 0.00 0.72 0.13 0.03 0.00 0.23 0.56 0.01 0.15 0.41 0.27 0.49 
4 months 0.00 0.75 0.26 0.00 0.00 0.09 0.57 0.00 0.22 0.43 0.25 0.43 
1 year 0.01 0.82 0.31 0.00 0.00 0.15 0.57 0.00 0.19 0.42 0.18 0.35 
2 years 0.06 0.84 0.18 0.00 0.00 0.50 0.54 0.00 0.06 0.40 0.16 0.26 
 Steady-state (Ergodic) 
1 week 0.00 0.75 1.00 0.00 0.00 0.00 0.55 0.00 0.00 0.45 0.25 0.00 
1 month 0.00 0.79 0.94 0.00 0.00 0.00 0.53 0.00 0.02 0.47 0.21 0.04 
2 months 0.05 0.78 0.69 0.00 0.00 0.00 0.51 0.00 0.05 0.44 0.22 0.36 
4 months 0.10 0.81 0.49 0.00 0.00 0.02 0.47 0.00 0.14 0.43 0.19 0.35 
1 year 0.11 0.85 0.33 0.00 0.00 0.12 0.46 0.00 0.10 0.43 0.15 0.45 
2 years 0.13 0.86 0.25 0.00 0.00 0.50 0.46 0.00 0.07 0.41 0.14 0.18 
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Table 8 

Annualized Percentage Welfare Costs from Ignoring European Small Caps 
The table reports the (annualized, percentage) compensatory variation from restricting the asset menu to exclude 
European small caps. The table shows welfare costs as a function of the investment horizon; calculations were 
performed under a variety of assumptions concerning the coefficient of relative risk aversion and the possibility to 
short-sell. The investor is assumed to have a simple buy-and-hold objective. Panel A and B present results for end-of-
sample simulations (when assumptions are imposed on the regime probabilities) and for real-time portfolios, 
respectively. 
 

 Investment Horizon T (in weeks) 
 T=1 T=4 T=12 T=24 T=52 T=104 

Panel A – Simulations (based on end-of-sample parameter estimates) 
 Equal probabilities 

γ =5 34.94 11.87 5.92 4.38 4.33 2.96 
γ =10 3.57 1.86 1.24 1.06 1.03 0.74 

γ =5, short sales allowed 42.42 19.42 12.55 11.77 11.97 7.77 
γ =10, short sales allowed 3.53 1.43 0.79 0.61 0.53 0.41 

 Ergodic Probabilities 
γ =5 60.11 10.55 5.79 4.63 4.62 3.17 
γ =10 8.40 2.19 1.18 0.97 0.88 0.69 

γ =5, short sales allowed 77.90 9.95 5.68 4.95 5.02 3.51 
γ =10, short sales allowed 41.81 9.86 5.21 4.26 3.89 3.00 

Panel B – Real time recursive results 
 Full sample  (Jan. 2002 – June 2003) 

Mean 40.31 21.21 22.11 22.86 23.79 16.26 
Median 39.98 26.43 24.39 22.71 22.82 15.41 

Standard deviation 23.16 8.44 6.23 8.49 14.58 15.76 
t-stat 1.80 5.62 13.92 15.27 14.41 13.94 

 First sub-sample (Jan. 2002 – Sept. 2003) 
Mean 21.27 24.63 27.71 29.12 30.36 20.47 

Median 59.35 37.47 32.66 32.92 33.17 21.69 
Standard deviation 22.14 8.91 6.42 8.34 14.47 15.92 

t-stat 0.76 4.32 11.75 13.79 13.10 12.52 
 Second sub-sample (Oct. 2002 – June 2003) 

Mean 62.28 17.88 16.70 16.76 17.22 11.88 
Median 32.16 23.72 21.11 20.35 20.00 13.63 

Standard deviation 24.26 7.99 5.18 6.88 11.52 12.14 
t-stat 1.74 3.60 9.10 9.91 9.34 9.16 
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Table 9 

Estimates of a Three-State Regime Switching Model – Effects of Adding European and 
North American Small Caps 

The table shows estimation results for the regime switching model: 

tst t
r εμ +=  

where rt is a 4×1 vector collecting weekly total return series, 
tsμ  is the intercept vector in state st, and 

),( ~]'  [ 54321 tstttttt N Σ= 0ε εεεεε . The unobservable state st is governed by a first-order Markov chain that can 
assume three values. The first panel refers to the single-state case k = 1. Asterisks attached to correlation coefficients 
refer to covariance estimates.  

 Panel A – Single State Model 
 Europe – Large 

caps 
North America – 

Large caps Pacific Europe – 
Small caps 

North America 
– Small caps 

1. Mean return -0.0015 -0.0010 -0.0007 0.0002 0.0019 
2. Correlations/Volatilities      
Europe – Large caps 0.0370***     
North America – Large caps 0.7537*** 0.0285***    
Pacific 0.5086** 0.4822** 0.0259***   
Europe – Small caps 0.7816*** 0.6718*** 0.5403** 0.0222***  
North America – Small caps 0.6948*** 0.7992*** 0.4267** 0.7275*** 0.0301 
 Panel B – Three State Model 
 Europe – Large 

caps 
North America – 

Large caps Pacific Europe – 
Small caps 

North America 
– Small caps 

1. Mean return      
Bear State -0.0403*** -0.0248*** -0.0218*** -0.0214*** -0.0216** 
Normal State -0.0015 -0.0009 0.0004 0.0024* 0.0046** 
Bull State 0.0337*** 0.0204*** 0.0153*** 0.0131*** 0.0134** 
2. Correlations/Volatilities      
Bear state:      
Europe – Large caps 0.0365***     
North America – Large caps 0.6850*** 0.0256***    
Pacific 0.3579** 0.2229* 0.0285***   
Europe – Small caps 0.8049*** 0.6547*** 0.6004*** 0.0324***  
North America – Small caps 0.7759*** 0.6757*** 0.3714** 0.7092*** 0.0378*** 
Normal state:      
Europe – Large caps 0.0242***     
North America – Large caps 0.7443*** 0.0216***    
Pacific 0.5445** 0.6008*** 0.0212***   
Europe – Small caps 0.7096*** 0.6616*** 0.6046*** 0.0146***  
North America – Small caps 0.6869*** 0.8410*** 0.5779** 0.7370*** 0.0234*** 
Bull state:      
Europe – Large caps 0.0359***     
North America – Large caps 0.5386*** 0.0330***    
Pacific -0.0551 -0.0067 0.0245***   
Europe – Small caps 0.6581*** 0.4863** -0.3451* 0.0167***  
North America – Small caps 0.4895* 0.7983*** -0.2535* 0.5554*** 0.0314*** 
3. Transition probabilities Bear State Normal State Bull State 
Bear State 0.2450** 0.0005 0.7545 
Normal State 0.0457* 0.9542*** 0.0001 
Bull State 0.5351** 0.1656* 0.2993* 
* denotes 10% significance, ** significance at 5%, *** significance at 1%. 
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Table 10 

Effects of the Rebalancing Frequency 
This table reports the optimal weight to be invested in the various equity portfolios as a function of the rebalancing 
frequency for an investor with power utility and a constant relative risk aversion coefficient of 5.  

Rebalancing Frequency Investment Horizon T (in months) 
 T=1 T=4 T=12 T=24 T=52 T=104 

Panel A - Optimal Allocation to European Small Cap Stocks 
IID (no predictability) 0.87 0.87 0.87 0.87 0.87 0.87 

 Bear state 1 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.01 0.03 
Weekly 0.00 0.05 0.01 0.02 0.03 0.04 

 Normal state 2 
Buy-and-hold 1.00 1.00 1.00 1.00 1.00 1.00 
Bi-annually 1.00 1.00 1.00 1.00 1.00 1.00 
Quarterly 1.00 1.00 1.00 1.00 1.00 1.00 
Monthly 1.00 1.00 1.00 1.00 1.00 1.00 
Weekly 1.00 1.00 1.00 1.00 1.00 1.00 

 Bull state 3 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.03 0.04 
Quarterly 0.00 0.00 0.00 0.00 0.04 0.05 
Monthly 0.00 0.00 0.00 0.01 0.01 0.02 
Weekly 0.00 0.00 0.00 0.01 0.01 0.01 

 Steady-state probabilities 
Buy-and-hold 0.00 0.00 0.05 0.11 0.10 0.10 
Bi-annually 0.00 0.00 0.05 0.11 0.18 0.18 
Quarterly 0.00 0.00 0.05 0.11 0.18 0.19 
Monthly 0.00 0.00 0.08 0.13 0.20 0.20 
Weekly 0.00 0.00 0.00 0.02 0.06 0.07 

Panel B - Optimal Allocation to European Large Cap Stocks 
IID (no predictability) 0.00 0.00 0.00 0.00 0.00 0.00 

 Bear state 1 
Buy-and-hold 0.00 0.00 0.00 0.00 0.04 0.05 
Bi-annually 0.00 0.00 0.00 0.00 0.08 0.09 
Quarterly 0.00 0.00 0.00 0.00 0.09 0.10 
Monthly 0.00 0.00 0.09 0.08 0.07 0.06 
Weekly 0.00 0.00 0.04 0.02 0.01 0.00 

 Normal state 2 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.00 0.00 
Weekly 0.00 0.00 0.00 0.00 0.00 0.00 

 Bull state 3 
Buy-and-hold 1.00 0.37 0.03 0.00 0.00 0.00 
Bi-annually 1.00 0.37 0.03 0.00 0.00 0.00 
Quarterly 1.00 0.37 0.03 0.00 0.00 0.00 
Monthly 1.00 0.37 0.18 0.09 0.08 0.08 
Weekly 1.00 1.00 0.97 0.90 0.88 0.87 

 Steady-state probabilities 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.00 0.00 
Weekly 0.00 0.00 0.00 0.00 0.00 0.00 
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Table 10 (continued) 

Effects of the Rebalancing Frequency 
Rebalancing Frequency Investment Horizon T (in months) 

Panel C - Optimal Allocation to North American Large Cap Stocks 
 T=1 T=4 T=12 T=24 T=52 T=104 

IID (no predictability) 0.00 0.00 0.00 0.00 0.00 0.00 
 Bear state 1 

Buy-and-hold 0.44 0.59 0.60 0.60 0.57 0.57 
Bi-annually 0.44 0.59 0.60 0.60 0.51 0.50 
Quarterly 0.44 0.59 0.60 0.60 0.50 0.49 
Monthly 0.44 0.59 0.49 0.50 0.50 0.49 
Weekly 0.44 0.46 0.48 0.49 0.50 0.50 

 Normal state 2 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.00 0.00 
Weekly 0.00 0.00 0.00 0.00 0.00 0.00 

 Bull state 3 
Buy-and-hold 0.00 0.30 0.56 0.57 0.57 0.56 
Bi-annually 0.00 0.30 0.56 0.57 0.59 0.59 
Quarterly 0.00 0.30 0.56 0.57 0.58 0.58 
Monthly 0.00 0.30 0.42 0.50 0.54 0.53 
Weekly 0.00 0.00 0.00 0.00 0.02 0.02 

 Steady-state probabilities 
Buy-and-hold 0.55 0.53 0.51 0.46 0.46 0.46 
Bi-annually 0.55 0.53 0.51 0.46 0.40 0.40 
Quarterly 0.55 0.53 0.51 0.46 0.40 0.39 
Monthly 0.55 0.53 0.47 0.45 0.39 0.38 
Weekly 0.55 0.51 0.46 0.43 0.38 0.36 

Panel D - Optimal Allocation to Pacific Stocks 
 T=1 T=4 T=12 T=24 T=52 T=104 

IID (no predictability) 0.13 0.13 0.13 0.13 0.13 0.13 
 Bear state 1 

Buy-and-hold 0.56 0.41 0.40 0.40 0.39 0.38 
Bi-annually 0.56 0.41 0.40 0.40 0.41 0.41 
Quarterly 0.56 0.41 0.40 0.40 0.41 0.41 
Monthly 0.56 0.41 0.42 0.42 0.42 0.42 
Weekly 0.56 0.49 0.47 0.47 0.46 0.46 

 Normal state 2 
Buy-and-hold 0.00 0.00 0.00 0.00 0.00 0.00 
Bi-annually 0.00 0.00 0.00 0.00 0.00 0.00 
Quarterly 0.00 0.00 0.00 0.00 0.00 0.00 
Monthly 0.00 0.00 0.00 0.00 0.00 0.00 
Weekly 0.00 0.00 0.00 0.00 0.00 0.00 

 Bull state 3 
Buy-and-hold 0.00 0.33 0.41 0.43 0.43 0.44 
Bi-annually 0.00 0.33 0.41 0.43 0.38 0.37 
Quarterly 0.00 0.33 0.41 0.43 0.38 0.37 
Monthly 0.00 0.33 0.40 0.40 0.37 0.37 
Weekly 0.00 0.00 0.03 0.09 0.09 0.10 

 Steady-state probabilities 
Buy-and-hold 0.45 0.47 0.44 0.43 0.44 0.44 
Bi-annually 0.45 0.47 0.44 0.43 0.42 0.42 
Quarterly 0.45 0.47 0.44 0.43 0.42 0.42 
Monthly 0.45 0.47 0.45 0.42 0.41 0.42 
Weekly 0.45 0.49 0.54 0.55 0.56 0.57 
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Table 11 

Recursive, Out-of-Sample Portfolio Outcomes 
The table reports summary statistics for realized utility (defined by a power utility preference functional) and wealth obtained from recursive portfolio weights 
computed on the basis of a range of models, including a three-state regime switching model and a single-state Gaussian IID model. Asset allocations across 
international equity markets are calculated for a two investment horizons. Short sales are not allowed. The sample period is January 2002 – June 2003. 90 percent 
confidence bands for mean CERs and mean wealth are computed bootstrapping realized values using a block design to correct for dependence (serial correlation and 
heteroskedasticity) in realized outcomes. SD denotes standard deviations; the CER is the annualized certainty equivalent of a given mean realized utility; SR is the 
Sharpe ratio of a given series of wealth outcomes. For comparison purposes, SR is reported on an annualized basis. ‘MV ptf’ is the minimum-variance portfolio; 
‘Tangency’ is the tangency portfolio; ‘Equal weight’ is a portfolio that assigns equal weight to all international equity portfolios. 
 

 γ = 5 
 T=1 week T=4 months 
 Realized Utility Wealth Realized Utility Wealth 
 Mean SD 90pc. 

lower 
CER 90pc. 

upper
90pc. 
lower

Mean 90pc. 
upper

SD SR Mean SD 90pc. 
lower

CER 90pc. 
upper

90pc. 
lower

Mean 90pc. 
upper

SD SR 

Three-state RS -0.250 0.033 -26.2 1.93 40.0 0.997 1.003 1.009 0.031 0.44 -0.249 0.085 -14.3 0.33 21.3 0.963 1.020 1.078 0.093 0.09 
IID Myopic -0.253 0.024 -32.9 -15.7 5.77 0.994 0.998 1.002 0.023 -0..92 -0.349 0.135 -36.6 -23.7 -5.26 0.883 0.941 1.001 0.093 -1.45 
MV ptf. -0.253 0.030 -37.2 -16.5 10.6 0.993 0.999 1.004 0.030 -0.57 -0.337 0.162 -36.8 -21.5 0.89 0.893 0.960 1.023 0.113 -0.88 
Tangency -0.254 0.033 -40.1 -17.7 12.9 0.993 0.999 1.005 0.034 -0.43 -0.337 0.162 -34.9 -21.6 0.63 0.883 0.960 1.001 0.113 -0.89 
Equal weight -0.254 0.029 -37.9 -18.3 7.28 0.993 0.998 1.003 0.028 -0.74 -0.366 0.160 -39.8 -26.6 -7.44 0.875 0.936 0.997 0.160 -1.42 
 γ = 10 
 T=1 week T=4 months 
 Realized Utility Wealth Realized Utility Wealth 
 Mean SD 90pc. 

lower 
CER 90pc. 

upper
90pc. 
lower

Mean 90pc. 
upper

SD SR Mean SD 90pc. 
lower

CER 90pc. 
upper

90pc. 
lower

Mean 90pc. 
upper

SD SR 

Three-state RS -0.112 0.035 -32.5 0.66 31.6 0.998 1.004 1.009 0.030 0.65 -0.110 0.071 -22.8 2.07 40.9 1.003 1.026 1.050 0.073 0.55 
IID Myopic -0.117 0.028 -40.8 -23.8 -1.60 0.993 0.998 1.002 0.025 -0.91 -0.139 0.077 -43.4 -27.7 -4.80 0.973 0.992 1.010 0.056 -0.80 
MV ptf. -0.116 0.027 -39.8 -22.5 -0.61 0.994 0.998 1.003 0.025 -0.79 -0.134 0.066 -38.2 -23.4 -3.64 0.977 0.993 1.008 0.051 -0.81 
Tangency -0.116 0.033 -43.1 -22.4 5.55 0.994 1.000 1.006 0.033 -0.19 -0.150 0.094 -49.4 -35.3 -14.9 0.969 0.988 1.008 0.067 -0.83 
Equal weight -0.118 0.030 -45.5 -28.0 -4.90 0.992 0.998 1.003 0.029 -0.81 -0.138 0.073 -41.6 -27.1 -7.19 0.974 0.991 1.008 0.055 -0.86 



 41

Table 12 

Estimates of a Three-State Regime Switching Model for European,  
North American, and Pacific Equity Portfolios: Longer Time Series (1989-2004) 

The table shows estimation results for the regime switching model: 

tst t
r εμ +=  

where rt is a 4×1 vector collecting weekly total return series, 
tsμ  is the intercept vector in state st, and 

),( ~]'  [ 4321 tsttttt N Σ= 0ε εεεε . The unobservable state st is governed by a first-order Markov chain that can assume 
three values. The first panel refers to the single-state case k = 1. Asterisks attached to correlation coefficients refer to 
covariance estimates. For mean coefficients and transition probabilities, standard errors are reported in parenthesis. 
 

 Panel A – Single State Model 
 Europe – Large caps North America Large Pacific Europe – Small caps
1. Mean return 0.0018 0.0016 -0.0007 0.0015 
2. Correlations/Volatilities     
Europe – Large caps 0.0209***    
North America - Large caps 0.6156*** 0.0212***   
Pacific 0.4669*** 0.3844** 0.0241***  
Europe – Small caps 0.8951*** 0.5000*** 0.4466*** 0.0176*** 
 Panel B – Three State Model 
 Europe – Large caps North America Large Pacific Europe – Small caps
1. Mean return     
Bear State -0.0094*** -0.0034* -0.0070** -0.0121*** 
Normal State 0.0028** 0.0021** -0.0007 0.0023*** 
Bull State 0.0112*** 0.0058*** 0.0061** 0.0142*** 
2. Correlations/Volatilities     
Bear state:     
Europe – Large caps 0.0289***    
North America - Large caps 0.6620*** 0.0309***   
Pacific 0.5139** 0.3782* 0.0320***  
Europe – Small caps 0.9253*** 0.5947*** 0.5151** 0.0227*** 
Normal state:     
Europe – Large caps 0.0153***    
North America - Large caps 0.5411*** 0.0157***   
Pacific 0.5027*** 0.4420*** 0.0186***  
Europe – Small caps 0.8811*** 0.4271** 0.4511*** 0.0110*** 
Bull state:     
Europe – Large caps 0.0163***    
North America - Large caps 0.5587*** 0.0185***   
Pacific 0.1426 0.2309* 0.0236***  
Europe – Small caps 0.8159*** 0.3221** 0.1317 0.0131*** 
3. Transition probabilities Bear State Normal State Bull State 
Bear State 0.8820*** 0.0463 0.0717* 
Normal State 0.0440 0.9178*** 0.0382 
Bull State 0.0218 0.1440** 0.8342*** 

* denotes 10% significance, ** significance at 5%, *** significance at 1%. 
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Figure 1 

Buy-and-Hold Optimal Allocation 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state Markov Switching 
model as a function of: (i) the coefficient of relative risk aversion; (ii) the investment horizon. As a benchmark (bold 
horizontal lines) we also report the IID/Myopic allocation. The asset menu includes European small caps. 
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Figure 2 

Welfare Costs of Ignoring Regime Switching 
The graphs plot the (annualized) percentage compensatory variation from ignoring the presence of regime switches in 
the multivariate process of asset returns. The graphs plot the welfare costs as a function of the investment horizon; 
calculations were performed for two alternative levels of the coefficient of relative risk aversion. The investor is 
assumed to have a simple buy-and-hold objective. 
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Figure 3 

Buy-and-Hold Optimal Allocation – Asset Menu Expanded to North American Small Caps 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state Markov Switching 
model as a function of: (i) the coefficient of relative risk aversion; (ii) the investment horizon.  
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Figure 4 

Buy-and-Hold Optimal Allocation – Longer Data Set 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state Markov Switching 
model estimated on July 1989 – December 2004 weekly returns data. As a benchmark (bold horizontal lines) we report 
the IID/Myopic allocation. The investor is assumed to have a simple buy-and-hold objective and constant relative risk 
aversion equal to 5. 

 
European Small Caps

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4 8 12 16 20 24
Horizon (in months)

Bear Normal Bull
Ergodic probs. IID/Myopic  

European Large Caps

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4 8 12 16 20 24
Horizon (in months)

Bear Normal Bull
Ergodic probs. IID/Myopic  

North American Large Caps

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4 8 12 16 20 24
Horizon (in months)

Bear Normal Bull
Ergodic probs. IID/Myopic  

Pacific

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 4 8 12 16 20 24
Horizon (in months)

Bear Normal Bull
Ergodic probs. IID/Myopic  

 




