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Uncovering the Risk–Return Relation

in the Stock Market

Abstract

There is an ongoing debate about the apparent weak or negative relation between risk (condi-

tional variance) and expected returns in the aggregate stock market. We develop and estimate an

empirical model based on the ICAPM that separately identifies the two components of expected

returns–the risk component and the component due to the desire to hedge changes in investment

opportunities. The estimated coefficient of relative risk aversion is positive, statistically signifi-

cant, and reasonable in magnitude. However, expected returns are driven primarily by the hedge

component. The omission of this component is partly responsible for the existing contradictory

results.



The return on the market portfolio plays a central role in the capital asset pricing model

(CAPM), the financial theory widely used by both academics and practitioners. However, the

intertemporal properties of stock market returns are not yet fully understood.1 In particular, there

is an ongoing debate in the literature about the relation between stock market risk and return and

the extent to which stock market volatility moves stock prices. This paper provides new evidence

on the risk-return relation by estimating a variant of Merton’s (1973) intertemporal capital asset

pricing model (ICAPM).

In his seminal paper, Merton (1973) shows that the conditional excess market return, Et−1rM,t−

rf,t, is a linear function of its conditional variance, σ2
M,t−1, (the risk component) and its covariance

with investment opportunities, σMF,t−1, (the hedge component), i.e.,

Et−1rM,t − rf,t = [
−JWW W

JW
]σ2

M,t−1 + [
−JWF

JW
]σMF,t−1 , (1)

where J(W (t), F (t), t) is the indirect utility function of the representative agent with subscripts

denoting partial derivatives, W (t) is wealth, and F (t) is a vector of state variables that describe

investment opportunities.2 −JWW W
JW

is a measure of relative risk aversion, which is usually assumed

to be constant over time. If people are risk averse, then this quantity should be positive.

Under certain conditions, Merton (1980) argues that the hedge component is negligible and

the conditional excess market return is proportional to its conditional variance.3 Since Merton’s

work, this specification has been subject to dozens of empirical investigations, but these papers

have drawn conflicting conclusions on the sign of the coefficient of relative risk aversion. In general,

however, despite widely differing specifications and estimation techniques, most studies find a weak

or negative relation. Examples include French, Schwert and Stambaugh (1987), Campbell (1987),

Glosten, Jagannathan and Runkle (1993), Whitelaw (1994), and more recent papers, including

Goyal and Santa-Clara (2003), Lettau and Ludvigson (2003) and Brandt and Kang (2004). Notable

exceptions are concurrent papers by Bali and Peng (2004) and Ghysels, Santa-Clara and Valkanov

(2004) that document a positive and significant relation. Bali and Peng (2004) use intraday data to

estimate the conditional variance and study the risk-return tradeoff at a daily frequency, in contrast

to much of the literature which uses lower frequency returns. Ghysels, Santa-Clara and Valkanov

(2004) use functions of long lags of squared daily returns to proxy for the monthly conditional

variance. However, neither paper focuses on the hedge component and its interaction with the risk

component as we do in this study.
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The failure to reach a definitive conclusion on the risk-return relation can be attributed to two

factors. First, neither the conditional expected return nor the conditional variance are directly

observable; certain restrictions must be imposed to identify these two variables. Instrumental

variable models and autoregressive conditional heteroscedasticity (ARCH) models are the two most

commonly used identification methods. In general, empirical results are sensitive to the restrictions

imposed by these models. For example, Campbell (1987) finds that the results depend on the

choice of instrumental variables. Specifically, the nominal risk-free rate is negatively related to

the expected return and positively related to the variance, and “these two results together give

a perverse negative relationship between the conditional mean and variance for common stock”

(Campbell (1987, p.391)). In the context of ARCH models, if the conditional distribution of the

return shock is changed from normal to student-t, the positive relation found by French, Schwert

and Stambaugh (1987) disappears (see Baillie and DeGennaro (1990)).

Second, there are no theoretical restrictions on the sign of the correlation between risk and

return. Backus and Gregory (1993) show that in a Lucas exchange economy, the correlation can

be positive or negative depending on the time series properties of the pricing kernel. This result

suggests that the hedge component can be a significant pricing factor and can have an important

effect on the risk-return relation. In general, the risk-return relation can be time-varying as observed

by Whitelaw (1994). The theory, however, still requires a positive partial relation between stock

market risk and return. The more relevant empirical issue is to disentangle the risk component

from the hedge component.

Scruggs (1998) presents some initial results on the decomposition of the expected excess market

return into risk and hedge components. Assuming that the long-term government bond return rep-

resents investment opportunities, he estimates equation (1) using a bivariate exponential GARCH

model and finds that the coefficient of relative risk aversion is positive and statistically significant.

However, his approach has some weaknesses. For example, he assumes that the conditional corre-

lation between stock returns and bond returns is constant, but Ibbotson Associates (1997) provide

evidence that it actually changes sign over time in historical data. After relaxing this assumption,

Scruggs and Glabadanidis (2003) fail to replicate the earlier results. Of course, this latter result

does not imply a rejection of equation (1); rather, it challenges the assumption that bond returns

are perfectly correlated with investment opportunities.
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In contrast, we develop an empirical specification based on Merton’s (1973) ICAPM and Camp-

bell and Shiller’s (1988) log-linearization method and implement estimation using instrumental

variables.4 Instead of working with the ex ante excess return, which is not directly observable,

we decompose the ex post excess return into five components: the risk component and the hedge

component, which together make up expected returns, revisions in these two components, which

measure unexpected returns due to shocks to expected returns, and a residual component reflecting

unexpected returns due to revisions in cash flow and interest rate forecasts. We explicitly model the

volatility feedback effect,5 and we also control for innovations in the hedge component. Therefore,

we explain part of the unexpected return on a contemporaneous basis and improve the efficiency

of the estimation and the identification of the risk and hedge components of expected returns.

Another innovation relative to previous work is that we use monthly volatility implied by S&P

100 index option prices as an instrumental variable for the conditional market variance.6 Implied

volatility is a powerful predictor of future volatility, subsuming the information content of other

predictors in some cases (see, for example, Christensen and Prabhala (1998) and Fleming (1998)).

Implied volatility is therefore an efficient instrumental variable and improves the precision of the

estimation.

We get three important and interesting results from estimating the model with the implied

volatility data. First, the coefficient of relative risk aversion is positive and precisely estimated,

e.g., 4.93 with a standard error of 2.14 in our fully specified model. Second, we find that expected

returns are primarily driven by changes in investment opportunities, not by changes in stock market

volatility. The two together explain 6.8% of the total variation in stock market returns, while the

latter alone explains less than 1% of the variation. Moreover, other than for two short episodes

associated with severe market declines, the variance of the estimated hedge component is larger than

that of the risk component. Third, the risk and hedge components are negatively correlated. Thus

the omitted variables problem caused by estimating equation (1) without the hedge component can

cause a severe downward bias in the estimate of relative risk aversion.

One concern is that the implied volatility data only start in November 1983. In order to

check the robustness of our results, we also estimate the model with longer samples of monthly

and quarterly data, in which the conditional market variance is estimated with lagged financial

variables. The results from this empirical exercise are also more readily compared to those in the
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existing literature. Similar results are found in this longer dataset. For the monthly data, the point

estimate of the coefficient of relative risk aversion is 2.05 with a standard error of 2.98. In spite of

the longer sample, the standard error is higher due to the imprecision associated with estimating

the conditional variance using financial variables rather than implied volatility. For the quarterly

data, the estimate of relative risk aversion is 7.75 with a standard error of 2.79. In both cases,

expected returns are driven primarily by changes in investment opportunities.

These analyses allow us to explain the counter-intuitive and contradictory evidence in the

current literature. The primary issue is a classical omitted variables problem. Because the omitted

variable, the hedge component, is large and negatively correlated with the included variable, the

risk component, the coefficient is severely downward biased and can even be driven negative. In

addition, the conditional variance is often measured poorly, thus generating large standard errors

and parameter estimates that can vary substantially across specifications. Finally, controlling for

the effect of shocks to expected returns on unexpected returns (i.e., the volatility feedback effect

and the analogous effect of innovations in the hedge component) can increase the efficency of our

estimation, sometimes substantially. However, the results suggest that care must be taken when

including these effects since misspecification and estimation error can cause the inclusion of these

components to degrade the performance of the model in some cases.

The remainder of the paper is organized as follows. Section I presents a log-linear model of

stock returns that decomposes ex post returns. The data are discussed in Section II. The empirical

investigation is conducted in Section III, and Section IV concludes the paper.

I. Theory

A. A Log-Linear Asset Pricing Model

We first derive an asset pricing model based on Merton’s ICAPM and Campbell and Shiller’s (1988)

log-linearization method. The log-linear approximation provides both tractability and accuracy.

As in Campbell and Shiller (1988), the continuously compounded market return rM,t+1 is defined

as

rM,t+1 = log(PM,t+1 + DM,t+1) − log(PM,t), (2)

where PM,t+1 is the price at the end of period t+1 and DM,t+1 is the dividend paid out during
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period t+1. Throughout this paper, we use upper case to denote the level and lower case to denote

the log. In addition, the subscript M will be suppressed for notational convenience.

Using a first-order Taylor expansion around the steady state of the log dividend price ratio

d − p , equation (2) can be rewritten as a first-order difference equation for the stock price,

rt+1 ≈ k + ρpt+1 − pt + (1− ρ)dt+1, (3)

where

ρ =
1

1 + exp(d− p)
, (4)

k = − log(ρ)− (1 − ρ) log(
1
ρ
− 1), (5)

and ρ is set equal to 0.997 for monthly data and 0.98 for quarterly data as in Campbell, Lo

and MacKinlay (1997, Chapter 7). Henceforth for simplicity we replace the approximation sign

in equation (3) with an equals sign. Although in general the approximation error may not be

negligible, Campbell, Lo and MacKinlay (1997, Chapter 7) provide evidence that it is very small

in our context.

Solving equation (3) forward and imposing the appropriate transversality condition, we get an

accounting identity for the price that also holds ex ante. Substituting this equation back into

(3), we get the standard decomposition of the ex post stock return into two parts–the expected

return and the shocks to the return (see, e.g., Campbell, Lo and MacKinlay (1997, Chapter 7)).

For the excess market return, et+1 ≡ rt+1 − rf,t+1, where rf,t+1 is the nominal risk-free rate, this

decomposition can be rewritten as

et+1 = Etet+1 −


Et+1

∞∑

j=1

ρjet+1+j − Et

∞∑

j=1

ρjet+1+j




−


Et+1

∞∑

j=1

ρjrf,t+1+j − Et

∞∑

j=1

ρjrf,t+1+j


 (6)

+


Et+1

∞∑

j=0

ρj∆dt+1+j − Et

∞∑

j=0

ρj∆dt+1+j


 ,

where ∆dt+1+j is dividend growth. Unexpected excess returns are made up of three components–

revisions in future expected excess returns, revisions in the risk-free rate forecasts, and revisions in

cash flow forecasts.
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Merton’s ICAPM (equation (1)) provides the model for expected excess returns

Etet+1 = γσ2
t + λσMF,t, (7)

where −JWW W
JW

= γ (the coefficient of relative risk aversion) and −JWF
JW

= λ, which are both

assumed to be constant over time. Substituting equation (7) into equation (6) and noting that

Etet+1+j = Et[Et+jet+1+j ] by iterated expectations, we get

et+1 = γσ2
t + λσMF,t − ησ,t+1 − ηF,t+1 − ηf,t+1 + ηd,t+1, (8)

where

ησ,t+1 = Et+1

∞∑

j=1

ρjγσ2
t+j − Et

∞∑

j=1

ρjγσ2
t+j , (9)

ηF,t+1 = Et+1

∞∑

j=1

ρjλt+jσMF,t+j − Et

∞∑

j=1

ρjλt+jσMF,t+j , (10)

ηf,t+1 = Et+1

∞∑

j=1

ρjrf,t+1+j − Et

∞∑

j=1

ρjrf,t+1+j , (11)

ηd,t+1 = Et+1

∞∑

j=0

ρj∆dt+1+j − Et

∞∑

j=0

ρj∆dt+1+j . (12)

The first two terms in equation (8) capture the expected excess return. The third and fourth

terms explicitly write out the unexpected return due to shocks to the risk component and hedge

component of expected returns, respectively. The remaining terms are shocks to risk-free rate

forecasts and cash flow forecasts.

B. Modeling the Risk and Hedge Components of Returns

The empirical implementation of equation (8) requires further specification of the risk and hedge

components of returns. By imposing a specific time series model on these components, we can also

reduce the shocks to these components, which are written in equation (8) as infinite sums, to more

manageable closed-form terms.

First consider the risk component of expected returns and the shock to this component. To

construct an empirical model of the conditional variance, we project the realized variance, v2
t+1, on

to a vector of state variables, Zt, i.e.,

v2
t+1 = ω0 + ω1Zt + ζt+1 (13)
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The fitted value from the estimation is used as a proxy for the conditional market variance,7 i.e.,

σ̂2
t = ω0 + ω1Zt (14)

For the longer sample period we use one lag of realized volatility in addition to a set of financial

predictor variables as the state variables. For periods during which we have implied volatility data,

we also add this variable to Zt. Discussion of the computation of the realized variance and the

choice of state variables is postponed until Section II.

In order to calculate the innovation in the risk component and its effect on unexpected returns

we need to compute the shock to this conditional variance, which, in turn, requires specifying a

process for the state variables. Following Campbell and Shiller (1988), among others, we assume

that the state variables, Zt+1, follow a vector autoregressive (VAR) process with a single lag:8

Zt+1 = B0 + B1Zt + εZ,t+1 (15)

Because Zt includes the realized variance, the VAR process in equation (15) subsumes equation

(13). Given this law of motion,

ησ,t+1 = ργω1(I − ρB1)−1εZ,t+1 (16)

where I is an identity matrix with the same dimension as the vector Zt (see the Appendix for

details). Note that the unexpected return due to revisions in the risk component is a linear function

of the shocks to the state variables that define the conditional variance. This term generates the

volatility feedback effect in equation (8), i.e., returns are negatively related to contemporaneous

innovations in the conditional variance.

There are several ways to estimate the hedge component (λσMF,t) in equation (8). Scruggs

(1998) uses a bivariate exponential GARCH model, in which he assumes that the long-term gov-

ernment bond return is perfectly correlated with investment opportunities. Following Campbell

(1996), we model the hedge component as a linear function of a vector of state variables, Xt, i.e.,

λ̂σMF,t = φ0 + φ1Xt. (17)

This formulation needs some explanation since, in the stock return predictability literature, it is

used to model total expected returns not just the component of expected returns due to hedging
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demands. The danger is that we may mistakenly attribute part of the risk component to the hedge

component, i.e., we will not be able to identify the two components separately. We avoid this

problem by ensuring that our proxy for conditional volatility subsumes most of the information

about the risk component that is contained in the state variables in equation (17). In particular,

we specify the hedge component state variables, Xt, as a subset of the conditional variance state

variables, Zt. Therefore, the process of projecting realized variance on these variables guarantees

that we have extracted all the (linear) information about future volatility that they contain. The

residual predictive power that these variables have for expected returns should be due only to the

hedge component.

One advantage of equation (17) is that it allows us to calculate the revision term for the hedge

component, ηF,t+1 in equation (8), directly as in Campbell and Shiller (1988), Campbell (1991)

and Campbell and Ammer (1993). By controlling for this component of returns, we can potentially

increase the efficiency of the estimation and the precision with which we estimate the coefficients.

Specifically, again assuming a VAR(1) for the state variables,9

Xt+1 = A0 + A1Xt + εX,t+1, (18)

the revision to the hedge component is

ηF,t+1 = ρφ1(I − ρA1)−1εX,t+1, (19)

where I is an identity matrix with the same dimension as the vector Xt. This result is analogous to

the result in equation (16), with the minor exception that the shock to the risk component includes

the coefficient of relative risk aversion, γ, as an additional multiplicative factor. As for the risk

component, innovations to the hedge component are a linear function of the shocks to the state

variables.

After substituting equations (14), (16), (17), and (19) into equation (8), we obtain the model

that is estimated in this paper:

et+1 = γ[ω0 + ω1Zt] + [φ0 + φ1Xt] − ργω1(I − ρB1)−1εZ,t+1 − ρφ1(I − ρA1)−1εX,t+1

−ηf,t+1 + ηd,t+1. (20)

This equation captures the six components of excess market returns: expected returns due to the

risk and hedge components, unexpected returns due to shocks to these components of expected
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returns, and shocks to cash flow and risk-free rate forecasts. The risk and risk revision terms

are linear functions of the estimated lagged conditional variance and the contemporaneous shock

to the state variables that define this conditional variance, respectively. The hedge and hedge

revision terms are written in terms of the lagged state variables and the shocks to these variables,

respectively. The shocks to the cash flow and risk-free rate forecasts are not written out explicitly,

and they form the regression residual in the specification that we estimate.

II. Data Description

The model is estimated with three sets of data. The first dataset utilizes the volatility implied

by S&P 100 index (OEX) option prices as an instrument for the conditional market variance and

covers the period November 1983 to May 2001. The implied volatility series only starts in 1983,

so we also use two other datasets over longer sample periods (July 1962 to May 2001 for monthly

data and 1952Q1 to 2002Q3 for quarterly data) that adopts commonly used financial variables as

instruments to estimate the conditional market variance.

The implied volatility series is a combination of the data constructed by Christensen and Prab-

hala (1998) and the VIX data calculated by the CBOE. Christensen and Prabhala (1998) compute

non-overlapping monthly implied volatility data for the S&P 100 index spanning the period Novem-

ber 1983 to May 1995. It is important to note that the S&P 100 index option contract expires on

the third Saturday of each month. Christensen and Prabhala compute implied volatility based on a

contract that expires in twenty-four days. The sampling month is thus different from the calendar

month; moreover, some trading days are not included in any contract. For example, the implied

volatility for October 1987 is calculated using the option price on September 23, 1987 for the option

that expires on October 17, 1987. For November 1987, it is based on the option price on October

28, 1987 for the option that expires on November 21, 1987. Thus, trading days between October 17,

1987, and October 28, 1987, including the October 19, 1987 stock market crash, are not included

in any contract. We extend this series to May 2001 by using the VIX, which is a calendar month

implied volatility series constructed from options with expiration dates that straddle the relevant

month end.10

One alternative to splicing these two series is to use the VIX series from its inception in January
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1986. We do not pursue this alternative for two reasons. First, the Christensen and Prabhala series

starts in November 1983, providing an extra two years of data. Second, and more important,

the Christensen and Prabhala series is likely to have less measurement error. Christensen and

Prabhala use a single option maturity for each observation, and we match our realized variance to

this maturity date. In contrast, in the VIX series each data point is actually an average of implied

volatilities from options with less than a month to maturity and options with more than a month

to maturity. This maturity mismatch induces measurement errors. Consistent with this intuition,

rerunning the analysis using just the VIX series produces similar results except that the predictive

power of implied volatility for realized variance is lower and the resulting estimates of the coefficient

of relative risk aversion are less precise. Apart from the measurement error problem, there appear

to be no significant differences between the two series; therefore, we use the merged series in the

results that we report.11

The monthly excess market return and realized variance are constructed from daily excess

market returns. We use daily value-weighted market returns (VWRET) from CRSP as daily market

returns. The daily risk-free rate data are not directly available. Following Nelson (1991) and others,

we assume that the risk-free rate is constant within each month and calculate the daily risk-free

rate by dividing the monthly short-term government bill rate (from Ibbotson Associates (1997)

or CRSP) by the number of trading days in the month. The daily excess market return is the

difference between the daily risk-free rate and the daily market return.

The realized monthly market variance is defined as12

v2
t =

τt∑

k=1

e2
t,k + 2

τt−1∑

k=1

et,ket,k+1, (21)

where τt is the number of days to expiration of the option contract in month t, when we are using

the Christensen and Prabhala (1998) implied volatility data, or the number of days in the calendar

month otherwise, and et,k is the daily excess market return. Equation (21) assumes a mean daily

return of zero; however, adjusting the variance for the realized mean daily return over the month has

no appreciable affect on the results. Equation (21) also adjusts for the first order autocorrelation in

daily returns induced by non-synchronous trading in the stocks in the index (as in French, Schwert

and Stambaugh (1987)).13 The monthly excess market return is the sum of daily excess market

returns, and quarterly returns and realized market variances are defined analogously.
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For the longer sample period we estimate the conditional market variance by projecting realized

variance on its own lag and two predetermined variables: (1) the consumption-wealth ratio (CAY)

(see Lettau and Ludvigson (2001)), and (2) the stochastically detrended risk-free rate (RREL). The

latter variable is defined as

RRELt = rf,t −
1
12

12∑

k=1

rf,t−k. (22)

The risk-free rate is taken from Ibbotson Associates (1997) or CRSP, and the consumption-wealth

ratio is computed and supplied by Martin Lettau.14 For both sample periods we use the same

two state variables, the consumption-wealth ratio and the detrended risk-free rate, to estimate the

hedge component of returns.15

It is worth noting that the cointegrating vector used in computing the consumption-wealth

ratio is estimated over the full sample. This methodology has been questioned, particularly in

the context of out-of-sample predictability. Our focus is on understanding the economics of the

in-sample risk-return tradeoff, and we can see no apparent reason why the use of the full sample

cointegrating vector will spuriously affect the estimation of this relation. The reason to go with the

full sample estimate is that it greatly reduces the estimation error. Moreover, we obtain similar

results with a less parsimonious specification that has more instrumental variables.

Finally, we employ three additional variables as instruments in order to calculate overidentifying

restrictions tests for various models. The natural choice is a set of variables that has been shown

to predict returns and/or volatility, and we use the default spread (i.e., the yield spread between

Baa-rated and Aaa-rated bonds), the dividend yield, and the term spread (i.e., the yield spread

between long-term and short-term Treasury securities).

III. Empirical Results

A. Econometric Strategy

We simultaneously estimate equations (15) and (20) using GMM:

Zt+1 = B0 + B1Zt + εZ,t+1 (23)

et+1 = γ[ω0 + ω1Zt] + [φ0 + φ1Xt]

−ργω1(I − ρB1)−1εZ,t+1 − ρφ1(I − ρA1)−1εX,t+1 + εt+1. (24)
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Recall that equation (23) subsumes both equations (13) and (18) because both the realized variance

and the hedge component state variables are included in the vector Zt. Thus the parameters ω0 and

ω1 are rows of B0 and B1, respectively, A1 is a submatrix of B1, and εX,t+1 is a subvector of εZ,t+1.

Throughout we first estimate an unrestricted VAR and then reestimate the model zeroing out the

statistically insignificant coefficients from the first stage. This procedure has no meaningful effect

on the estimation of the model in equation (24), but it has the distinct advantage of highlighting

the key interactions between the variables.

For estimating equations (23), we use the standard OLS moment conditions. The only subtlety

is in formulating the moment conditions for equation (24). Note that theory does not imply that

the terms εZ,t+1 and εX,t+1 are orthogonal to the contemporaneous regression error εt+1; therefore,

these variables should not be used as instruments. Using a constant, Xt and the fitted conditional

variance (ω0 + ω1Zt) as instruments is sufficient to identify the free parameters. The two shocks

are functions of the fitted residuals from equation (23), the estimated parameters B1, A1, ω0 and

ω1 also come from this equation, and ρ is set to 0.997 (see Section I). γ, φ0 and φ1 are identified

by equation (24). What then is the value of including the two terms that represent shocks to the

two components of expected returns? First, by reducing the amount of unexplained variation, they

should improve the efficiency of the estimation and the accuracy with which the parameters of

interest can be estimated. Second, these terms also depend on the parameters, and thus imposing

the theoretical restrictions implied by the model may also help to pin down these parameters.

In order to understand what is driving our results relative to the existing literature and to

understand the gains from imposing the additional restrictions on the revision terms, we also

estimate restricted versions of the model that exclude various terms in equation (24). Specifically,

we consider the following 5 cases:

1: et+1 = φ0 + γ[ω0 + ω1Zt−1] + εt+1 (25)

2: et+1 = φ0 + γ[ω0 + ω1Zt−1]− ργω1(I − ρB1)−1εZ,t+1 + εt+1 (26)

3: et+1 = φ0 + φ1Xt + εt+1 (27)

4: et+1 = γ[ω0 + ω1Zt−1] + [φ0 + φ1Xt] + εt+1 (28)

5: et+1 = γ[ω0 + ω1Zt−1] + [φ0 + φ1Xt]− ργω1(I − ρB1)−1εZ,t+1 + εt+1 (29)

Model 6 is the full model in equation (24). In each case, we use the set of instruments corresponding
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to the independent variables in the GMM estimation, i.e., a constant, plus Xt and/or the fitted

conditional variance. For example, in Model 1 there are two parameters to be estimated (φ0 and

γ) and we use two instruments (the conditional variance and a constant). Model 2 is similar,

except that the inclusion of the revision term should help to identify γ. In Model 3 we use a

constant and the vector of variables Xt as instruments, and the remaining models use the full set

of instruments. Thus, all the models are exactly identified. We also reestimate Models 1-3 using

the full set of instruments and test the resulting overidentifying restrictions. For example, the

overidentified version of Model 1 also uses the vector of variables Xt as instruments. Finally, we

reestimate Models 4-6 using three additional state variables as instruments (the default spread, the

term spread, and the dividend yield) and compute the resulting overidentifying restrictions test.

B. Estimation with Implied Volatility Data

It is well known that we can predict stock market volatility with variables such as the nominal risk-

free rate, the consumption-wealth ratio and lagged realized variance (see, for example, Campbell

(1987), French, Schwert and Stambaugh (1987) and Lettau and Ludvigson (2003)).16 To test the

information content of implied volatility, we regress the realized variance on the implied variance

from S&P100 options, V 2
t , and these additional variables, i.e.,

v2
t = a0 + a1Xt−1 + a2v

2
t−1 + a3V

2
t−1 + ζt. (30)

We estimate equation (30), and restricted versions thereof, with GMM, and the parameter estimates

and heteroscedasticity consistent standard errors are reported in Table I. Insert

Table I

here.

We first exclude implied volatility in order to verify the predictive power of the other variables

in our sample period. Both the consumption-wealth ratio and lagged variance enter significantly,

with the signs of the coefficients consistent with the existing literature, and the explanatory power

is substantial, with an R2 of 27%. The risk-free rate does not have any marginal explanatory

power, but this may be specific to our sample period. When the implied variance is added to

the specification, it is highly significant, and the R2 increases to 39%. The consumption-wealth

ratio remains significant at the 10% level, but the magnitude of the coefficient is reduced by

approximately a factor of two.17 Finally, we also report estimates from a regression of realized

variance on the implied variance alone. The R2 declines slightly to 37%, but it is clear that implied
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variance is the best single predictor and that little is lost by excluding the other explanatory

variables. Consequently, we select the implied variance as the single explanatory variable in the

variance equation. Of equal importance, these results imply that we will be able to separately

identify the two components of expected returns. The explanatory variables used for the hedge

component (i.e., the consumption-wealth ratio and the risk-free rate) will pick up little of the

risk component because they have limited marginal explanatory power for future variance, after

controlling for the predictive power of implied volatility. Including the additional variables in the

model for conditional variance has no meaningful effect on the later estimation of the full model;

therefore, for ease of exposition we ignore them.

If implied variance is a conditionally unbiased predictor of future variance, then in Table I the

intercept in the last regression should be equal to zero and the coefficient on implied variance should

be equal to one. However, an extensive literature has documented positive intercepts and slopes less

than unity in similar regressions (see Poon and Granger (2002) for a survey of this literature). This

bias may be related to the market price of volatility risk (see, e.g., Bollerslev and Zhou (2004)). In

addition, if the S&P 100 differs in an economically significant way from the value-weighted CRSP

index, then the parameter estimates may also differ from zero and one. This is almost certainly

the case since the realized variance of the S&P 100 index is larger than the realized variance of the

CRSP value-weighted portfolio, most likely because the S&P 100 is not a well-diversified portfolio.

Table I shows that while the estimated coefficient is positive, it is significantly less than one, and

the intercept is significantly positive, although it is small. Thus, while implied volatility may be

informationally efficient relative to other variables it is not conditionally unbiased. As a result, we

use the fitted value from this estimation as our proxy for conditional variance in the estimation of

the full model.

Table II reports results from the estimation of equations (23)-(24) using monthly implied volatil-

ity data for the January 1983 to May 2001 period. The results for the conditional variance process,

estimated using the implied volatility data, are shown in the first line of Panel A, which is just

the last line of Table I. The estimated processes for the state variables for both the risk and hedge Insert

Table II

here.

components are shown in regressions 2 through 4 in the same panel. For implied volatility, the

AR(1) coefficient is positive and significant at the 1% level, as expected, although the estimated

degree of persistence is not very large. Both the remaining state variables, the consumption-wealth
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ratio and the relative T-bill rate, are quite persistent. Over this sample none of the state variables

show statistically significant predictive power for their counterparts, so we have zeroed out these

coefficients for ease of presentation and interpretation. The results that follow are not sensitive to

this choice.

The results from the estimation of the model for returns are reported in Panel B. Recall that

we estimate six different specifications–five restricted models given in equations (25)-(29) and the

full specification given in equation (24). In addition, we estimate both an exactly identified and

an overidentified specification for the each model. Model 1 is the standard risk-return model

estimated in much of the literature, i.e., a regression of returns on a measure of the conditional

variance. However, in contrast to many existing results, we find a coefficient that is positive, albeit

statistically insignificant, and reasonable in magnitude.18 If the hedge component is unimportant

or orthogonal to the risk component, the coefficient value of 2.5 represents an estimate of the

coefficient of relative risk aversion of the representative agent; although, this estimate may be

biased downwards slightly due to measurement error in the conditional variance. The absence of a

hedge component also implies that the constant in the regression should be zero–a hypothesis that

cannot be rejected at the 10% significance level. However, the R2 of the regression of less than

1% is very small, and adding the consumption-wealth ratio and risk-free rate as instruments yields

a convincing rejection of the overidentifying restrictions. Even though the model can be rejected

with these additional instruments, the estimate for relative risk aversion is larger and significant at

the 5% level.

Model 2 attempts to refine the specification by controlling for the effect of shocks to the risk

component on unexpected returns, i.e., the volatility feedback effect. Adding this term leaves

the parameter estimates unchanged in the exactly identified specification because it is orthogonal

to the estimated conditional variance by construction. Nevertheless, the estimation does provide

some corroborating evidence for the existence of a risk component in that the R2 increases to

20%. It is not necessarily surprising that the R2 from model 2 greatly exceeds that from model

1. We know from extensive empirical investigations that expected returns are a small component

of returns, and therefore the explanatory power of model 1 (and models 3 and 4 to come) is sure

to be relatively small. In contrast, model 2 (and models 5 and 6 to come) exploit the correlation

between innovations in the state variables that describe expected returns and unexpected returns.
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Nevertheless, the model does put structure on the way that this correlation is exploited. Specifically,

a fixed function of the innovations (based on parameters estimated in a separate set of equations)

is added to the righthand side of the regression. If the correlation is of the wrong sign or the shocks

are of the wrong magnitude, adding this term can reduce the R2. In any case, these particular

results should be interpreted with caution since the overidentified model can still be rejected at the

10% significance level.

These initial results suggest two conclusions. First, sample period issues aside, improving the

quality of the proxy for conditional variance, in our case using implied volatility, seems to help in

recovering the theoretically justified positive risk-return relation. In concurrent work, Bollerslev

and Zhou (2004) find a similar result using implied volatility. Ghysels, Santa-Clara and Valkanov

(2004) also present evidence consistent with this conclusion using functions of daily squared returns

data to form a better proxy for conditional variance. They get a positive and significant coefficient

when regressing monthly returns on this measure over a longer sample period. Second, while there

is some evidence of a positive risk-return relation, statistical power is weak, and the model can be

rejected. Thus, controlling for the hedge component of expected returns may be important.

Model 3 estimates the standard return predictability regression from the literature using our

two state variables. In our case, however, we interpret this regression as an estimation of the

hedge component of expected returns without controlling for the risk component. The signs of the

coefficients, positive on the consumption-wealth ratio and negative on the relative T-bill rate, are

consistent with the results in the literature, as is the R2 of just over 3%. The consumption-wealth

ratio is significant at the 5% level, and the predictive power is substantially greater than that

found for the risk component in model 1. However, using the estimated conditional variance as an

additional instrument leads to a rejection of the model at the 5% level.

Under the ICAPM, both models 1 and 3 are misspecified since theoretically both the risk

and hedge components should enter the model for expected returns. Model 4 combines these two

terms, and the results are positive. First and foremost, estimated risk aversion is now 5.6 and

it is significant at the 1% level. The risk-return relation is highly statistically significant and

of a reasonable magnitude–a reversal of the weak and/or negative results in the literature. One

natural explanation is that Model 1, and more generally similar specifications in the literature,

suffer from a classical omitted variables problem, i.e., they do not control for the hedge component
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of expected returns. The effect of an omitted variable on the estimated coefficient of the included

variable depends on the covariance of this variable with the included variable. In this case, if

the covariance is negative, i.e., the risk and hedge components are negatively correlated, then the

coefficient on conditional variance, when this term is included alone, will be biased downwards.

Second, including the risk component also helps in identifying the hedge component; the coefficient

on the consumption-wealth ratio is now more significant. Third, the joint explanatory power of

the two components exceeds the sum of the individual explained variations from the separate

regressions–the R2 increases to 6.8%. Fourth, the results give us added confidence that we are

correctly identifying the risk and hedge components. The hedge component is positively related

to CAY, while the conditional variance is negatively related to CAY (see Table I). Finally, the

model cannot be rejected using the dividend yield, default spread and term spread as additional

instruments.

While model 4 is theoretically well-specified, it is possible that our identification of the com-

ponents of returns can be improved by controlling for the effects of shocks to expected returns on

contemporaneous unexpected returns. This issue is addressed by models 5 and 6. These models

trade off efficiency and potential specification error via the inclusion of innovations in expected

returns. Which model provides the best tradeoff is largely an empirical question. In model 5,

we add the shock to the risk component of expected returns. The results are not dramatically

different from those of model 4, but a couple of observations are worth making. First, including

the shock to the conditional variance can effect both the estimate of relative risk aversion and the

hedge component. In this case, γ drops from 5.6 to 4.4 for the just identified specifications, and

the coefficients on both the state variables are closer to zero. Second, controlling for some of the

variation of unexpected returns can increase the efficency of the estimation. In this case, the R2

increases from 6.8% to 23.0%, and the standard errors on the coefficients drop by between 1% and

29%. As with model 4, model 5 cannot be rejected using the three additional instruments.

Finally, model 6 also includes the shock to the hedge component in the regression. The estimated

coefficients for both the exactly identified and the overidentified specifications are similar to those

from model 5 and the R2s are marginally higher. However, the standard errors are larger, although

relative risk aversion still remains significant at the 5% level for the overidentified specification.

These results are somewhat disappointing because if the hedge component is persistent (see Panel
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A) and explains expected returns (see Panel B, model 3), then shocks to the hedge component should

explain a significant fraction of unexpected returns. Moreover, the denominator of CAY includes

financial wealth (i.e., the level of the stock market) and thus innovations in CAY are negatively

correlated with returns almost by construction. As such, the fact that the R2 does not increase more

is testament to the strength of the theoretical restrictions imposed on the innovation term. The most

likely explanation for these results is that the monthly consumption-wealth ratio is mismeasured.

The monthly series is computed from the quarterly series via interpolation. Mismeasurement will

not have a large adverse effect on the estimation of the hedge component because the consumption-

wealth ratio and expected returns are persistent. However, the shock to the hedge component is

unpredictable by definition, and mismeasurement of the consumption-wealth ratio could easily lead

to a substantial degradation in the quality of the shock to this variable. Evidence to this effect is

contained in the estimation with quarterly data that is discussed later.

In order to better illustrate the omitted variables problem and to gain some economic under-

standing of the results, we construct the fitted risk and hedge components of expected returns

using the parameter estimates from the overidentified specification of model 6. However, given the

similarities between the parameter estimates for all four specifications of models 5 and 6, all of

these models generate the same conclusions. The two series are plotted in Figure 1 along with the

NBER business cycle peaks and troughs (shaded bars represent recessions, i.e., the period between

the peak of the cycle and the subsequent trough). In general, the hedge component is more variable Insert

Figure 1

here.

than the risk component of expected returns, although the sample variance of the latter is larger

due to two spikes in implied volatility in November 1987 and September-October 1998 (following

steep declines in the market). The two series are negatively correlated, with a sample correlation of

-0.41; thus, omitting the hedge component causes the coefficient on the risk component to be biased

downwards. The magnitude of this bias depends on the covariance between the hedge component

and the included variable (i.e., the conditional variance) relative to the variance of the included

variable times its true coefficient (i.e., the true coefficient of relative risk aversion). In this sample,

the covariance is -4.13 while the product of the estimated value of γ (from the overidentified spec-

ification of model 6) times the variance of the implied variance is 14.56. The bias is not sufficient

to reverse the sign of the estimated coefficient in models 1 and 2, but it is substantial.

From an economic standpoint, the hedge component appears to exhibit some countercyclical
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variation (i.e., it increases over the course of recessions), but there are only two recessions in the

sample, one of which is only partially within the sample period, so this interpretation is extremely

casual. The risk component exhibits little or no apparent business cycle patterns, although, as

noted above, variation in this series is dominated by increases in implied volatility following large

market declines. Of some interest, the hedge component is negative for substantial periods of time,

implying that at these times the stock market serves as a hedge against adverse shifts in investment

opportunities.

C. Estimation with Financial State Variables

The results of Section III.B go a long way to resurrecting the positive risk-return relation, but the

analysis suffers from two problems: (i) the sample period is relatively short, and (ii) it relies on

implied volatility data that are not available in all periods or across all markets. Consequently,

we now turn to an analysis that constructs conditional variance estimates from ex post variance

computed using daily returns and conditioning variables that include lagged realized variance and

our two state variables, the consumption-wealth ratio and the relative T-bill rate.

Before proceeding to the full estimation, we first examine the variance process more closely by

estimating a regression of realized variance on two lags plus the two state variables:

v2
t = a0 +

2∑

i=1

a1,iv
2
t−i +

2∑

k=1

a2,kXk,t−1 + ζt. (31)

Realized stock market variance shoots up to 0.0755 in October 1987 and returns to a more normal

level soon thereafter. The crash has a confounding effect on the estimation of equation (31), which

is reported in Table III. Although the first lag of the market variance is the dominant explanatory Insert

Table III

here.

variable in the pre-crash (9/62-9/87) sub-sample and to a lesser extent in the post-crash (1/88-5/01)

sub-sample (the first two regressions reported in Table III, respectively), the second lag of market

variance is also equally economically and more statistically significant in the full sample (the third

regression). Not surprisingly, the R2 of this third regression is also much lower (5% versus 30% and

28% in the subsamples), and the sum of the coefficients on the lagged variance terms is also much

lower (0.26 versus 0.61 and 0.48). Basically, including the crash significantly degrades the predictive

power of the regression over all the other months because this one observation dominates the sample

in a OLS context. To reduce the impact of the October 1987 market crash, we somewhat arbitrarily
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set the realized stock market variance of October 1987 to 0.0190 basis points, the second largest

realization in our sample.19 The corresponding results are shown in the fourth regression in Table

III. The coefficients and explanatory power look similar across the subperiods and the full sample

after this adjustment, and the coefficient on the second lag of realized variance is relatively small

but statistically significant (at the 1% level) in the full sample. However, this second lag does not

add much to the explanatory power, as demonstrated by the fifth regression, which excludes this

term. The R2 drops only 3%, from 25% to 22%. Of some interest, the consumption-wealth ratio is

a significant predictor of future variance in all but the pre-crash regression, entering with a negative

coefficient. Consequently, our final specification for the conditional variance has the consumption-

wealth ratio and a single lag of the realized variance, where the October 1987 variance is adjusted

as described above.

Table IV reports results for the estimation of the full system in equations (23)-(24) using

monthly data over the period September 1962 to May 2001. The estimation of the variance process

is reported in the first line of Panel A. Other than the substantial degree of explained variation, the Insert

Table IV

here.

key result is that the conditional variance is negatively and significantly related to the consumption-

wealth ratio. Panel A also reports the estimation of the process for the two state variables. The

results are comparable, although not identical, to those estimated over the shorter sample period

in Table II. Again, both variables exhibit strong persistence and cross-variable predictability is

limited.

Panel B reports the major results of interest, i.e., the estimates from the six models in Section

III.A and also estimated using the implied volatility data in Section III.B. Models 1 and 2 contain

only the risk component (the conditional variance) plus, in the latter case, the innovation in this

component of expected returns. The effects of the omitted variable, i.e., the hedge component,

and measurement issues in the conditional variance are clear. The coefficient on the conditional

variance is predominantly negative and the standard error is large. The negative coefficient is

consistent with previous studies that have documented a negative risk-return relation over similar

sample periods (e.g., Whitelaw (1994)). The fact that the standard error is 50% or more larger

than in the shorter sample period (which uses implied volatility) is testament to the value of finding

better proxies for the conditional variance. Not surprisingly, using the consumption-wealth ratio

and risk-free rate as additional instruments generates rejections of the model at all conventional
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levels.

When both components are estimated together, as in model 4, the coefficient on the conditional

variance is still negative for the exactly identified specification, and the standard error is still high

for both specifications. Moreover, the estimated risk component of expected returns is small; the

R2 of 3.6% in model 4 is no higher than that of model 3 which excludes the risk component. In

contrast, the hedge component appears to be identified well, with the coefficients on both state

variables significant at least the 5% level. It is interesting to note that the hedge component, in

contrast to the conditional variance, is positively related to the consumption-wealth ratio. Thus, we

get the negative covariance between the hedge and risk components that exacerbates the omitted

variable problem in models 1 and 2 and also aids in separate identification of the two components

of expected returns.

Adding shocks to the risk component of expected returns in model 5 has almost no effect on the

results. In contrast, the innovation in the hedge component, included in model 6, causes a slight

improvement in the R2, and the imprecise estimate of the relative risk aversion is of a reasonable

magnitude. Given that neither the risk nor hedge components of expected returns are identified

very well due to estimation error and possible misspecification, it is not totally surprising that the

shocks to these components provide little assistance.

The results in Tables II and IV are not directly comparable because they cover different sample

periods. Consequently, as a robustness check, we reestimate the models in Table IV using the

sample period in Table II and report the results in Table V. The Table V results confirm those of

Table IV. Of course, the processes for CAY and RREL are identical to those in Table II, as is model Insert

Table V

here.

3 (without the overidentifying restrictions). Of primary interest, the estimate of γ is negative over

the shorter sample period when only the risk component is included, and the sign is reversed when

controlling for the hedge component. Again, the estimate of relative risk aversion is reasonable in

magnitude but statistically insignificant at conventional levels. As before, the innovations in the

risk and hedge components do not dramatically improve the fit of the model. In other words, the

qualitative nature of the results in Table IV are preserved in the subsample covered by the implied

volatility data in Table II. Thus, we have confidence that the evidence in Table II is not sample

specific.

Finally, we reestimate the six models using quarterly data over the sample period 1952Q3-
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2002Q3 and report the results in Table VI. The quarterly frequency may produce better results

because the monthly CAY series may be subject to measurement error as mentioned above, the

predictive ability for returns of variables such as the consumption-wealth ratio tends to increase at

longer horizons (Lettau and Ludvigson (2001)), and longer lags of realized variance can be useful

in predicting returns (Ghysels, Santa-Clara, and Valkanov (2004)). Insert

Table VI

here.

The results at the quarterly horizon confirm those of Table IV, but there is superior identification

of the coefficient of relative risk aversion. The variance process and the process for the other state

variables in Panel A exhibit the same features. Models 1 and 2 show that the standard risk-

return regression generates a negative coefficient, as it does at the monthly frequency. In fact,

the overidentified specifications generate estimates that are negative and statistically significant.

However, these models are strongly rejected using the consumption-wealth ratio and risk-free rate

as additional instruments, indicating the serious misspecification problem caused by omitting the

hedge component.

In model 3, the hedge component shows increased explanatory power relative to the monthly

frequency (with R2s of 13.1% for both specifications versus 3.6% in Table IV) consistent with the

return predictability literature. The majority of the additional explained variation comes from

an increase in the coefficient on the consumption-wealth ratio from 0.39 in Table IV to 1.94 in

Table VI. However, the model can be rejected at the 5% level using the conditional variance as an

additional instrument. More important, putting the risk and hedge components together in model

4 has a sizable effect on both terms. That is, the effect of omitting either term is more dramatic

than in the monthly data. γ increases to 6.3 (significant at the 5% level), the coefficient on CAY

increases by almost 50%, and the R2s climb to over 15%. The ability of the state variables in

the hedge component to help identify the risk component is further evidence that their predictive

power is not spurious. Moreover, this theoretically well-specified model cannot be rejected using

the three additional financial predictors as instruments.

Inclusion of the innovation to the risk component in model 5 degrades the fit of the model,

although the parameter estimates are largely unaffected and the estimate of relative risk aversion

remains significant in the overidentified specification. This comparatively weak performance ap-

pears to be attributable to instability in the relation between the conditional variance and the

consumption-wealth ratio over the longer sample period. Excluding this variable from the vari-
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ance process in Panel A of Table VI improves the fit of model 5, but the parameter estimates are

relatively unaffected.

In contrast, adding the innovation in the hedge component in model 6 improves the fit substan-

tially. The R2s increase to 42.9% and 44.7% for the just identified and overidentified specifications,

respectively, the standard errors fall, and the model produces reasonable estimates of γ of 6.5 and

7.7, which are statistically significant at the 5% level. One important lesson is that controlling for

the shocks to expected returns is only useful when these innovations are measured with reasonable

accuracy.

Figure 2 plots the fitted risk and hedge components (from the overidentified specification of

model 6) over the longer sample period, with the NBER business cycle peaks and troughs marked

as in Figure 1. Several observations are in order. First, the hedge component is much more variable Insert

Figure 2

here.

than the risk component of expected returns. The variances differ by a factor of approximately

5. Second, the correlation between the risk and hedge components is -0.55, which generates a

severe omitted variables problem when the latter is excluded. The covariance between the hedge

component and the conditional variance of -4.95 is larger than the value of 4.84 for γ times the

variance of the conditional variance. Thus, the omitted variables bias is sufficient to drive the

estimate of relative risk aversion negative in models 1 and 2.

From an economic standpoint, the countercyclical variation in the hedge component is much

clearer than in the shorter sample period. The hedge component reaches its lowest values at business

cycle peaks and its highest values at business cycle troughs. This result is not terribly surprising

given the dependence of the hedge component on the consumption-wealth ratio, which is known

to be a business cycle variable. Nevertheless, our decomposition allows us to give this variation

a clear interpretation as variation in the ability of the stock market to hedge shifts in investment

opportunities. Specifically, stocks appear to provide this hedge at the peak of the cycle, but not

at the trough, when investors require compensation for holding an asset that covaries positively

with investment opportunities. The hedge component can take on a negative value for extended

periods, and because it sometimes dominates the risk component the total fitted expected excess

return is also negative for certain periods. From a theoretical standpoint this result is possible (e.g.,

see Whitelaw (2000)), but it may not be intuitively plausible. However, it is important to keep in

mind that these fitted values have associated standard errors, which may be quite large given the
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standard errors of the coefficient estimates. Moreover, while the linear specification of the hedge

component appears to be a reasonable approximation, it is most likely to break down for extreme

values of the independent variables and thus be less accurate for extreme fitted expected returns.

There are two important conclusions to be drawn from an analysis of the results in Tables II,

IV, and VI. First, correcting for the omission of the hedge component in the model of expected

returns can help to restore the positive partial risk-return relation that has been so difficult to find

in the literature. This omitted variables problem is especially severe because the hedge component

is negatively correlated with the risk component of expected returns and is more volatile. Second,

superior proxies for conditional variance, such as implied volatility from option prices, also make

identification of this relation much easier.

IV. Conclusion

In this paper, we estimate a variant of Merton’s (1973) intertemporal capital asset pricing model,

and we find a positive relation between stock market risk and return. The estimated coefficient

of relative risk aversion is reasonable in magnitude (between 1.6 and 7.7 depending on the sample

period, frequency, and precise specification of the model); therefore, the power utility function

appears to describe the data fairly well. The conflicting results found in previous studies are due,

in large part, to the fact that they do not adequately distinguish the risk component of expected

returns from the hedge component. Specifically, omitting the hedge component from the estimation

causes a large downward bias in the estimate of relative risk aversion due to the negative correlation

between these series.

Although stock market volatility is positively priced, in most cases it only explains a small

fraction of return variation. Expected returns are driven primarily by changes in the ability of the

stock market to hedge shifts in investment opportunities. Many existing economic theories can

explain neither why the investment opportunity set moves so dramatically nor the macroeconomic

forces behind this variation. Some recent research tries to fill this gap. For example, Campbell

and Cochrane (1999) address changing investment opportunities in a habit formation model. In

their model, when consumption approaches the habit level, the agent becomes extremely risk averse

and demands a large expected return. Guo (2004) studies an infinite horizon heterogeneous agent
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model in which only one type of agent holds stocks. If there are borrowing constraints and id-

iosyncratic labor income shocks, shareholders require a large equity premium when their borrowing

constraints are close to binding. The investment opportunities are therefore determined by share-

holders’ liquidity conditions.20 In contrast, Whitelaw (2000) generates large changes in investment

opportunities by modeling the underlying economy as a two-regime process. Because regimes are

persistent, regime shifts represent large movements in investment opportunities with corresponding

changes in required returns.

The focus of this paper is on understanding risk and expected returns at the market level in

a time series context; however, a significant piece of the empirical asset pricing literature focuses

on the cross-section of expected returns across individual securities or portfolios. Interestingly, the

importance of hedging changes in the investment opportunity set at the aggregate level is also likely

to have strong implications in the cross-section. In particular, if volatility is not the primary source

of priced risk at the market level, then the dynamic CAPM will not hold and market betas will not

be the correct proxies for expected returns in the cross-section. Clearly, this issue warrants further

investigation from both an empirical and theoretical standpoint.
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Appendix: Derivation of Equation (16)

The estimated conditional market variance (equation (14)) is

σ̂2
t = ω0 + ω1Zt (A1)

where the state variables follow the process

Zt+1 = B0 + B1Zt + εZ,t+1 (A2)

as in equation (15). The revision of the risk component is defined as:

ησ,t+1 = Et+1

∞∑

j=1

ρjγσ2
t+j − Et

∞∑

j=1

ρjγσ2
t+j

=
∞∑

j=1

ρjγ(Et+1[σ2
t+j ] − Et[σ2

t+j ])

=
∞∑

j=1

ρjγ[Et+1(ω0 + ω1Zt+j) − Et(ω0 + ω1Zt+j)]

=
∞∑

j=1

ρjγω1[Et+1Zt+j − EtZt+j ]. (A3)

The process for the state variables implies

EtZt+j = (I − B
j
1)(I − B1)−1B0 + B

j
1Zt (A4)

Therefore

ησ,t+1 =
∞∑

j=1

ρjγω1[(I − Bj−1
1 )(I − B1)−1B0 + Bj−1

1 Zt+1 − (I − Bj
1)(I − B1)−1B0 − Bj

1Zt]

=
∞∑

j=1

ρjγω1B
j−1
1 [Zt+1 − B1Zt − B0]

= ργω1(I − ρB1)−1εZ,t+1 (A5)

which is equation (16).
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Footnotes

1The expected stock market return was long considered to be constant until relatively recent work

documenting the predictability of market returns (e.g., Fama and French (1989)). It is now well un-

derstood that time-varying expected returns are consistent with rational expectations. See Camp-

bell and Cochrane (1999) and Guo (2003) for recent examples of this literature.
2Strictly speaking, equation (1) is the discrete time version of Merton’s ICAPM (see Long [1974]).

In addition, the equation holds for the aggregate wealth portfolio for which we use the market

portfolio as a proxy.
3Specifically, if the optimal consumption function of the representative agent is much less sensitive

to the state variables that describe investment opportunities than to wealth or if the variance of

the change in wealth is much larger than the variance of the change in the state variables, then

this approximation will be reasonable (see footnote 12 in his paper).
4French, Schwert and Stambaugh (1987) argue that full information maximum likelihood estimators

such as GARCH are generally more sensitive to model misspecification than instrumental variable

estimators.
5Pindyck (1984, 1988), Poterba and Summers (1986), French, Schwert and Stambaugh (1987),

Campbell and Hentschel (1992) and Wu (2001) all emphasize the importance of the volatility feed-

back effect in detecting the risk-return relation.
6Part of the implied volatility data are constructed by Christensen and Prabhala (1998) and are

kindly provided to us by N. Prabhala.
7This type of specification has a long history in the literature. For example, French, Schwert and

Stambaugh (1987) use a time series model of realized variance to model the conditional variance.

Numerous papers since then have employed predetermined financial variables as additional predic-

tors.
8Extending the VAR to longer lags is conceptually straightforward, but it adds nothing to the

intuition from the model.
9Since Xt is a subset of Zt, equation (18) is inconsistent with equation (15) unless the additional

variables do not enter equation (18). In implementing this procedure we guarantee consistency by

zeroing out the statistically insignificant coefficients throughout. Consequently, equation (18) is
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subsumed by equation (15)
10See the CBOE web site (http://www.cboe.com) for details and the historical data series.
11Restricting the sample to the November 1983 to May 1995 subperiod spanned by the Christensen

and Prabhala series also produces qualitatively similar results.
12See Anderson, Bollerslev, Diebold and Labys (2003) and the references therein for a discussion of

the theory of quadratic variation and the conditions under which realized variance is an unbiased

and efficient predictor of return volatility.
13In our sample, the first order autocorrelation of daily returns is 13.9% and all higher order auto-

correlations are essentially zero.
14See his web site, http://pages.stern.nyu.edu/ m̃lettau/, for details.
15An earlier version of the paper used a somewhat different set of four instrumental variables for

both the variance and the hedge component of returns: (1) RREL, (2) the yield spread between

Baa-rated and Aaa-rated bonds, (3) the yield spread between 6-month commercial paper and 3-

month Treasury bills, and (4) the dividend yield. The results are qualitatively similar, and the new

specification is more parsimonious.
16Other variables such as the commercial paper–Treasury spread and longer lags of realized vari-

ance have a small amount of marginal predictive power over and above CAY and RREL in our

sample. However, the results are invariant to including these additional variables and we restrict

the set of variables for parsimony.
17Note that throughout the paper significance levels are based on two-sided tests. To the extent

that one-sided tests are appropriate in some cases, the relevant significance level is half of that

reported.
18The standard errors are computed via GMM and are asymptotic. Given the sample size, there

is some question as to whether asymptotic standard errors are appropriate. This question is im-

possible to answer definitively, but we also compute small sample standard errors using a block

bootstrap methodology. The resulting standard errors on the state variables are actually slightly

lower than those reported in Table II, but the standard errors on γ are somewhat higher.
19Campbell et al (2000) suggest this type of adjustment to the crash variance, although a similar

result could be achieved by dropping this observation from the sample. There may be other reasons

to exclude the October 19, 1987 market crash from the sample. Schwert (1990b) shows it is unusual
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in many ways, and Seyhun (1990) argues that it is not explained by the fundamentals. It is not

predicted by the option data used in this paper.
20Aiyagari and Gertler (1999) and Allen and Gale (1994) emphasize the liquidity effect on stock

market volatility.
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Table I: The Efficiency of Implied Volatility
We estimate equation (30) and restricted versions thereof over the period from January 1984 to May 2001.
Heteroscedasticity consistent standard errors are reported in parentheses. Coefficients that are significant at
the 1%, 5% and 10% levels are marked by ***, ** and *, respectively. aThe constant has been scaled by a
factor of 100 for presentation purposes.

Const. CAYt−1 RRELt−1 v2
t−1 V 2

t R2

v2
t 0.020*** -0.043*** 0.246 0.394*** 0.274

(0.006) (0.013) (0.186) (0.091)
v2
t 0.011* -0.023* 0.045 0.105 0.420*** 0.386

(0.006) (0.014) (0.163) (0.122) (0.101)
v2
t 0.057***a 0.530*** 0.365

(0.019) (0.073)
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Table II: Estimation Results with Implied Volatility
For Panel A we estimate the processes in equation (23) with statistically insignificant coefficients zeroed
out. For Panel B we estimate the model in equation (24) and various restricted versions thereof (see Section
III.A). In each case, the equations are estimated jointly via GMM over the period from January 1984 to
May 2001. Heteroscedasticity consistent standard errors are reported in parentheses. Coefficients that are
significant at the 1%, 5% and 10% levels are marked by ***, ** and *, respectively. The last two columns
provide the degrees of freedom, test statistic, and p-value (in brackets) for the overidentifying restrictions test
(see Section III.A for details). aThe constant has been scaled by a factor of 100 for presentation purposes.

Panel A: The Conditional Variance Process and the Processes for the State Variables
Const. vt V 2

t CAYt RRELt R2

v2
t+1 0.057***a 0.530*** 0.365

(0.019) (0.073)
V 2

t+1 0.001*** 0.641*** 0.411
(0.000) (0.118)

CAYt+1 0.063*** 0.859*** 0.738
(0.016) (0.035)

RRELt+1 -0.002a 0.846*** 0.702
(0.003) (0.045)

Panel B: The Model
Const. γ CAY RREL R2 DF χ2

Model 1 0.003 2.485 0.008 0
(0.004) (1.909)

Model 1 0.004 3.842** 0.008 2 9.411
(0.004) (1.918) [0.009]

Model 2 0.003 2.485 0.203 0
(0.004) (1.909)

Model 2 0.001 4.571*** 0.203 2 4.974
(0.003) (1.705) [0.083]

Model 3 -0.211** 0.493** -4.706 0.034 0
(0.097) (0.215) (3.500)

Model 3 -0.221** 0.513** -4.395 0.034 1 4.778
(0.097) (0.214) (3.505) [0.029]

Model 4 -0.334*** 5.623*** 0.744*** -5.767 0.068 0
(0.103) (1.885) (0.266) (3.503)

Model 4 -0.327*** 5.919*** 0.727*** -5.616* 0.068 3 0.298
(0.101) (1.731) (0.222) (3.382) [0.960]

Model 5 -0.191** 4.350*** 0.426** -5.161 0.230 0
(0.084) (1.623) (0.188) (3.426)

Model 5 -0.201** 3.656*** 0.453** -4.279 0.227 3 1.038
(0.083) (1.352) (0.184) (3.221) [0.792]

Model 6 -0.189** 4.311 0.424** -2.875 0.248 0
(0.085) (2.692) (0.193) (3.794)

Model 6 -0.144** 4.928** 0.322** -3.462 0.278 3 0.831
(0.060) (2.142) (0.133) (3.066) [0.842]
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Table III: Variance Predictability Regressions
We estimate equation (31) for various subsamples. Heteroscedasticity consistent standard errors are reported
in parentheses. Coefficients that are significant at the 1%, 5% and 10% levels are marked by ***, ** and *,
respectively. bThe market variance of October 1987 is adjusted as discussed in Section III.C.

Subperiod Const. CAYt−1 RRELt−1 v2
t−1 v2

t−2 R2

9/62-9/87 v2
t 0.004 -0.009 -0.009 0.441*** 0.172** 0.298

(0.003) (0.006) (0.087) (0.117) (0.067)
1/88-5/01 v2

t 0.015** -0.032** 0.141 0.268*** 0.213** 0.278
(0.007) (0.015) (0.185) (0.094) (0.098)

9/62-5/01 v2
t 0.012*** -0.023** 0.016 0.151* 0.113** 0.048

(0.004) (0.009) (0.093) (0.077) (0.056)
9/62-5/01b v2

t 0.007*** -0.015** 0.015 0.360*** 0.207*** 0.252
(0.002) (0.006) (0.078) (0.066) (0.047)

9/62-5/01b v2
t 0.008*** -0.015*** -0.014 0.453*** 0.219

(0.003) (0.006) (0.084) (0.067)
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Table IV: Estimation Results with Financial State Variables
For Panel A we estimate the processes in equation (23) with statistically insignificant coefficients zeroed
out. For Panel B we estimate the model in equation (24) and various restricted versions thereof (see Section
III.A). In each case, the equations are estimated jointly via GMM over the period from September 1962 to
May 2001. Heteroscedasticity consistent standard errors are reported in parentheses. Coefficients that are
significant at the 1%, 5% and 10% levels are marked by ***, ** and *, respectively. The last two columns
provide the degrees of freedom, test statistic, and p-value (in brackets) for the overidentifying restrictions
test (see Section III.A for details).

Panel A: The Conditional Variance Process and the Processes for the State Variables
Const. v2

t CAYt RRELt R2

v2
t+1 0.008*** 0.454*** -0.015*** 0.219

(0.003) (0.067) (0.006)
CAYt+1 0.066*** 0.851*** 0.726

(0.011) (0.026)
RRELt+1 0.002** -0.004** 0.813*** 0.672

(0.001) (0.002) (0.056)

Panel B: The Model
Const. γ CAY RREL R2 DF χ2

Model 1 0.008 -1.459 0.001 0
(0.006) (3.039)

Model 1 0.011* -2.917 0.001 2 15.130
(0.006) (3.233) [0.001]

Model 2 0.008 -1.468 0.001 0
(0.006) (3.066)

Model 2 0.004 1.455 0.030 2 14.500
(0.004) (2.182) [0.001]

Model 3 -0.166*** 0.390*** -5.827*** 0.036 0
(0.058) (0.133) (2.117)

Model 3 -0.166*** 0.391*** -5.812*** 0.036 1 0.003
(0.058) (0.132) (2.097) [0.958]

Model 4 -0.164** -0.160 0.387** -5.832*** 0.036 0
(0.068) (3.051) (0.148) (2.132)

Model 4 -0.175*** 0.657 0.408*** -5.637*** 0.035 3 0.925
(0.065) (2.777) (0.142) (2.105) [0.819]

Model 5 -0.164** -0.161 0.387*** -5.827*** 0.035 0
(0.067) (3.070) (0.147) (2.115)

Model 5 -0.167** -0.084 0.392*** -5.716*** 0.035 3 0.978
(0.065) (2.898) (0.143) (2.110) [0.807]

Model 6 -0.182** 1.597 0.421*** -5.474** 0.040 0
(0.070) (3.482) (0.153) (2.326)

Model 6 -0.179*** 2.053 0.412*** -2.816 0.067 3 4.272
(0.066) (2.979) (0.145) (1.851) [0.234]
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Table V: Estimation Results with Financial State Variables–11/83-5/01 Subsample
For Panel A we estimate the processes in equation (23) with statistically insignificant coefficients zeroed
out. For Panel B we estimate the model in equation (24) and various restricted versions thereof (see Section
III.A). In each case, the equations are estimated jointly via GMM over the period from January 1984 to
May 2001. Heteroscedasticity consistent standard errors are reported in parentheses. Coefficients that are
significant at the 1%, 5% and 10% levels are marked by ***, ** and *, respectively. The last two columns
provide the degrees of freedom, test statistic, and p-value (in brackets) for the overidentifying restrictions test
(see Section III.A for details). aThe constant has been scaled by a factor of 100 for presentation purposes.

Panel A: The Conditional Variance Process and the Processes for the State Variables
Const. v2

t CAYt RRELt R2

v2
t+1 0.020*** 0.390*** -0.043*** 0.269

(0.006) (0.090) (0.013)
CAYt+1 0.063*** 0.859*** 0.738

(0.016) (0.035)
RRELt+1 -0.002a 0.846*** 0.702

(0.003) (0.045)

Panel B: The Model
Const. γ CAY RREL R2 DF χ2

Model 1 0.013** -2.029 0.004 0
(0.005) (2.639)

Model 1 0.014*** -1.564 0.003 2 5.851
(0.005) (2.448) [0.054]

Model 2 0.013** -2.083 0.032 0
(0.005) (2.730)

Model 2 0.019*** -4.984* 0.052 2 5.008
(0.005) (2.470) [0.082]

Model 3 -0.211** 0.493** -4.706 0.034 0
(0.097) (0.215) (3.500)

Model 3 -0.207** 0.485** -4.941 0.034 1 0.900
(0.097) (0.214) (3.493) [0.343]

Model 4 -0.303** 3.070 0.687** -4.486 0.039 0
(0.146) (3.247) (0.316) (3.516)

Model 4 -0.305** 2.950 0.690** -3.706 0.039 3 1.047
(0.143) (3.272) (0.308) (3.342) [0.790]

Model 5 -0.308* 3.202 0.697** -5.183 0.001 0
(0.156) (3.616) (0.336) (3.773)

Model 5 -0.194* -0.566 0.457* -4.368 0.047 3 1.801
(0.114) (1.993) (0.249) (3.314) [0.615]

Model 6 -0.311** 3.419 0.704** -1.428 0.122 0
(0.143) (3.390) (0.309) (3.683)

Model 6 -0.287** 4.116 0.647** -1.856 0.131 3 0.495
(0.134) (3.037) (0.289) (3.064) [0.920]
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Table VI: Estimation Results with Financial State Variables–Quarterly Data
For Panel A we estimate the processes in equation (23) with statistically insignificant coefficients
zeroed out. For Panel B we estimate the model in equation (24) and various restricted versions
thereof (see Section III.A). In each case, the equations are estimated jointly via GMM over the
period 1952Q4-2002Q3. Heteroscedasticity consistent standard errors are reported in parentheses.
Coefficients that are significant at the 1%, 5% and 10% levels are marked by ***, ** and *,
respectively. The last two columns provide the degrees of freedom, test statistic, and p-value (in
brackets) for the overidentifying restrictions test (see Section III.A for details). aThe constant has
been scaled by a factor of 100 for presentation purposes.

Panel A: The Conditional Variance Process and the Processes for the State Variables
Const. v2

t CAYt RRELt R2

v2
t+1 0.003*** 0.423*** -0.095*** 0.231

(0.000) (0.088) (0.027)
CAYt+1 -0.002a 0.833*** 0.693

(0.048) (0.038)
RRELt+1 -0.001a -0.022** 0.711*** 0.527

(0.014) (0.009) (0.081)

Panel B: The Model
Const. γ CAY RREL R2 DF χ2

Model 1 0.024 -1.379 0.002 0
(0.016) (3.107)

Model 1 0.057*** -8.712*** 0.004 2 16.893
(0.013) (2.420) [0.000]

Model 2 0.025 -1.547 0.080 0
(0.018) (3.435)

Model 2 0.071*** -10.658*** 0.184 2 10.931
(0.013) (2.382) [0.004]

Model 3 0.017*** 1.945*** -5.599*** 0.131 0
(0.005) (0.399) (1.994)

Model 3 0.014*** 1.946*** -5.240*** 0.131 1 3.947
(0.005) (0.399) (1.989) [0.047]

Model 4 -0.018 6.273** 2.709*** -5.158** 0.154 0
(0.017) (3.082) (0.573) (1.962)

Model 4 -0.014 6.187** 2.446*** -6.210*** 0.152 3 4.615
(0.016) (2.883) (0.523) (1.904) [0.202]

Model 5 -0.024 7.375 2.822*** -6.091** 0.001 0
(0.027) (4.880) (0.727) (2.402)

Model 5 -0.018 6.433** 2.522*** -6.902** 0.006 3 2.563
(0.019) (3.235) (0.565) (2.177) [0.464]

Model 6 -0.019 6.515** 2.779*** -3.216 0.429 0
(0.019) (3.258) (0.586) (2.107)

Model 6 -0.027 7.746** 2.970*** -3.091* 0.447 3 2.903
(0.017) (2.795) (0.587) (1.740) [0.407]
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Figure 1: The Components of Expected Returns using Implied Volatility 
The risk (dashed line) and hedge (solid line) components of monthly expected excess returns for the 
period 3/84 to 5/01, using the implied volatility data. The estimation results are reported in Table II, Panel 
C, Model 6, overidentified specification. Recessions are marked as shaded bars. 
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Figure 2: The Components of Expected Returns using Financial State Variables 
The risk (dashed line) and hedge (solid line) components of quarterly expected excess returns for the 
period 1952Q2 to 2002Q3, using instrumental variables to estimate the conditional variance. The 
estimation results are reported in Table VI, Panel B, Model 6, overidentified specification. Recessions are 
marked as shaded bars. 
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