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Abstract

This paper studies asset allocation decisions in the presence of regime switching in asset returns. We

find evidence that four separate regimes - characterized as crash, slow growth, bull and recovery states

- are required to capture the joint distribution of stock and bond returns. Optimal asset allocations

vary considerably across these states and change over time as investors revise their estimates of the

state probabilities. In the crash state, buy-and-hold investors allocate more of their portfolio to stocks

the longer their investment horizon, while the optimal allocation to stocks declines as a function of

the investment horizon in bull markets. The joint effects of learning about state probabilities and

predictability of asset returns from the dividend yield give rise to a non-monotonic relationship between

the investment horizon and the demand for stocks. Welfare costs from ignoring regime switching can

be substantial even after accounting for parameter uncertainty. Out-of-sample forecasting experiments

confirm the economic importance of accounting for the presence of regimes in asset returns.

1. Introduction

For most investors the asset allocation decision — how much to invest in major asset classes such as cash,

stocks and bonds — is a key determinant of their portfolio performance. Asset allocation decisions can only

be made in the context of a model for the joint distribution of asset returns. Most studies assume that asset

returns are generated by a linear process with stable coefficients so the predictive power of state variables

such as dividend yields, default and term spreads does not vary over time. However, there is mounting

empirical evidence that asset returns follow a more complicated process with multiple “regimes”, each of

which is associated with a very different distribution of asset returns. Ang and Bekaert (2002a,b), Ang and

Chen (2002), Garcia and Perron (1996), Gray (1996), Guidolin and Timmermann (2005a,b, 2006a,b,c),

Perez-Quiros and Timmermann (2000), Turner, Startz and Nelson (1989) and Whitelaw (2001) all report

evidence of regimes in stock or bond returns.

This paper characterizes investors’ asset allocation decisions under a regime-switching model for asset

returns with four states that are characterized as crash, slow growth, bull and recovery states. Extending
∗We are grateful to John Campbell, Wouter den Haan, and two anonymous referees for comments and also thank seminar

participants at Caltech, the Innovations in Financial Econometrics conference at NYU, European Econometric Society meetings

in Stockholm, European Finance Association meetings in Maastricht, Federal Reserve Bank of St. Louis, North American

Summer meetings of the Econometric Society in Evanston, Australasian Econometric Society meetings in Melbourne, University
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earlier work in the literature, we allow the states to be unobservable to investors who filter state probabilities

from return observations and thus never know current or future states with certainty. The underlying states

offer very different investment opportunities so investors’ asset allocations vary significantly over time as

they revise their beliefs about the underlying state probabilities.

The economic intuition for our main findings is most easily explained with reference to Figure 1. For

each month over the period Jan. 1980 - Dec. 1999, Panel (a) shows which of the four regimes was most

likely at that point in time.1 The first regime is a low return, highly volatile crash/bear state, regimes

2 and 3 are low-volatility, bullish states, while regime 4 is a high-volatility, recovery state which tends

to follow crash regimes (more details are provided in Section 3). Regimes are seen to change frequently

although the states are quite persistent.

Panels (b)-(d) show the evolution in the asset allocation for a buy-and-hold investor who updates

the parameters of the four-state model and determines the portfolio weights recursively in time.2 The

portfolio weights of the short-term (12-month) investor in panel (b) vary considerably over time: Bear

states (e.g., 1983-1984) are associated with very moderate investments in stocks but large allocations to

bonds and T-bills; in contrast, bull markets (e.g., 1993-1996) see substantial bets on equities−especially
small stocks−and reduced allocations to bonds. Because regimes are persistent, short-horizon investors
clearly attempt to time the market by reducing (increasing) the allocation to the riskiest assets when

investment opportunities are poor (good).3

The portfolio weights for a long-horizon (10-year) investor (Panel (c)) are far more stable than those of

the short-horizon investor. What matters for the long-run investor is not so much the perceived identity

of the current state as the ability to correctly model the long-run return distribution. Interestingly, the

long-run investor’s asset allocation still differs substantially from those of an investor who ignores regimes

and instead assumes that asset returns are drawn from a time-invariant distribution (panel (d)), albeit with

parameters that get updated recursively over time and thus may induce a drift in the portfolio weights.

As indicated by Figure 1, the relation between a buy-and-hold investor’s investment horizon and the

optimal portfolio allocation also varies significantly across states. Since stocks are not very attractive in

the crash state, investors with a short horizon hold very little in stocks in this state. At longer investment

horizons, there is a high chance that the economy will switch to a better state and so investors allocate

more towards stocks. In the crash state the allocation to stocks is therefore an increasing function of the

investment horizon. In the more persistent slow growth and bull states, investors with a short horizon

hold large positions in stocks. At longer horizons investment opportunities will almost certainly worsen so

investors hold less in stocks, thereby creating a downward sloping relation between stock holdings and the

investment horizon.

Predictability of stock and bond returns has been documented by a large number of empirical studies,

so we next extend the regime switching model to include predictability from state variables such as the

dividend yield. Compared to a benchmark with constant expected returns, predictability from the dividend

yield in a linear vector autoregression (VAR) reduces risk at longer horizon and leads to an increased demand

1This plot shows the smoothed state probabilities. The dashed lines surrounding the bullets provide a measure of the degree

of uncertainty about the state.
2Details of the underlying modeling experiment are provided in Section 7.3.
3These are the optimal weights for an investor with power utility and constant relative risk aversion of 5.
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for stocks, the longer the investment horizon. In contrast, regime switching leads to a positive correlation

between return innovations and shocks to future expected returns, thereby increasing risk and lowering the

long-run demand for stocks.

These findings can be understood in terms of two effects: Investors’ learning about the underlying state

and mean reversion in the return generating process. To see this, consider the following simple two-period

example that decomposes returns on a risky asset, rt+1, into an expected component, Et[rt+1], and an

innovation, ut+1:

rt+1 = Et[rt+1] + ut+1,

where V art(rt+1) = σ2u. At the two-period horizon, cumulated returns become

rt+1 + rt+2 = Et[rt+1] + ut+1 +Et+1[rt+2] + ut+2,

and so the variance of two-period returns is

V ar(rt+1 + rt+2) = 2σ
2
u + V ar(Et+1[rt+2]) + 2Cov(ut+1, Et+1[rt+2]).

Comparing single-period and two-period return variances, we have

V ar(rt+1 + rt+2)

2V ar(rt+1)
= 1 +

1

2

µ
R2

1−R2

¶
β,

where

R2 =
V ar(Et[rt+1])

V ar(Et[rt+1]) + σ2u
, β =

Cov(ut+1, Et+1[rt+2])

σ2u
.

Models of learning where investors revise their expectations of future returns upwards following positive

return shocks imply that β > 0. For instance, in a pure regime switching model future positive shocks will

induce belief revisions in favor of states with high expected returns. This implies that the variance of

two-period returns exceeds twice the variance of the single-period return, suggesting that risk grows faster

than the rate implied by the constant expected return model (β = 0). Since the investment demand is

independent of the horizon under the constant expected return model, such learning effects tend to lead

to a demand for the risky asset that declines in the investment horizon.

Conversely, models of predictable, mean-reverting returns imply β < 0. For example, a negative shock

to returns in a VAR(1) model implies a higher value of the dividend yield and higher expected future

returns. Hence the risk of stock returns grows at a slower rate than if expected returns were constant. This

tends to lead to an increased demand for the risky asset, the longer the horizon.

These facts explain why we find many different shapes of the investment schedules relating portfolio

weights to the investment horizon, depending on assumptions about the initial state probabilities and the

form of the return generating process. As we go beyond models with constant expected returns with β = 0

to either models of predictable risk premia (a VAR(1) with β < 0) or models with learning (regime switching

with β > 0), we obtain different and increasingly realistic asset allocation implications. When both learning

and predictability are accounted for, non-monotonic relations between a buy-and-hold investor’s allocation

to stocks and the investment horizon appear. At short horizons the effect of regimes tends to dominate

while at longer horizons the mean reverting component in returns tracked by the yield dominates and leads

to an increasing demand for stocks.
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Once rebalancing opportunities are introduced, the results are quite different. The allocation to different

asset classes continues to differ across states, even for long investment horizons. However, as the rebalancing

frequency increases, asset holdings respond far less to the investment horizon as a reflection of the possibility

of changing asset allocations, in case investment opportunities change significantly before the end of the

investment horizon.

The plan of the paper is as follows. Section 2 motivates the presence of regimes in the return distribution

and reviews the existing literature. Section 3 introduces the multi-state model used to capture predictability

and regime switching in asset returns and reports empirical findings. Section 4 sets up the investor’s asset

allocation problem while Section 5 presents asset allocation results. Section 6 extends the model to allow

for predictability from the dividend yield and Section 7 presents utility cost calculations, investigates the

effect of parameter uncertainty and examines the out-of-sample performance of alternative asset allocation

schemes based on different models for the return distribution. This section also shows that a four-state

regime switching model is not only supported by statistical evidence that two states are insufficient in our

application, but also is a key determinant of the portfolio weights and (out-of-sample) return performance.

Section 8 concludes.

2. Motivation for Setup

2.1. Regimes in Return Distributions

There are good economic reasons why the equilibrium distribution of stock and bond returns should contain

regimes. Whitelaw (2001) constructs an equilibrium model where consumption growth follows a two-state

process so investors’ intertemporal marginal rate of substitution also follows a regime process. Suppose

that investors have constant relative risk aversion and that asset returns are determined from the standard

no-arbitrage, equilibrium relation

Et[Mt+1(1 + rt)] = 1,

where Mt+1 is the pricing kernel which is commonly restricted to be Mt+1 ≡ β(Ct+1/Ct)
−γ, with β a

discount factor and Ct+1/Ct real per-capita consumption growth. The risk premium (over and above the

conditionally risk-free rate, rft ) is then given by

Et[rt+1 − rft ] = −
Covt[Mt+1, (rt+1 − rft )]

Et[Mt+1]
.

Suppose consumption growth follows a simple regime switching process, gt+1 ∼ N(μst+1 , σ
2
st+1) (st+1 =

1, ..., k), i.e. both the mean and the variance of consumption growth depend on the underlying state of

the economy (e.g., expansions and recessions as found in Hamilton (1989)). This implies that the pricing

kernel also follows a k−state process and so

Et[rt+1 − rft ] = −
Pk

st+1|t=1
πst+1|tCov[Mt+1, (rt+1 − rft )|st+1]Pk
st+1|t=1

πst+1|tE[Mt+1|st+1]
,

where πst+1|t is the predicted state probability at time t+1 given information at time t. This simple model

thus implies that returns on risky assets in excess of the risk-free rate follow a regime switching process
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driven by states that reflect time-varying expected consumption growth and time-varying conditional co-

variances between asset returns and consumption growth.

There are also good reasons for incorporating time-variation in the relation between asset returns and

state variables such as interest rates or dividend yields. Interest rates serve both as determinants of the

discount rate used in calculating present values and are also likely to reflect expectations of future cash flows

through the Federal Reserve’s decisions on monetary policy — for example, higher interest rates may reflect

beliefs of strong future growth. Similarly, as shown by Campbell and Shiller (1988), the (log) dividend-price

ratio reflects expectations of future returns minus expected future dividend growth. If either risk premia

or cash flows are subject to regimes (e.g., recessions and expansions), this should also show up in predictive

return models that include the yield as a state variable. Integrating asset allocation decisions within a

fully-specified equilibrium framework is beyond the scope of our paper, but portfolio decisions are likely

to be closely related to the evolving uncertainty about the underlying state of the economy, here captured

through a regime switching process. Such regimes could be linked to business cycle variations in economic

growth (cash flows) associated with the economic cycle, breaks in macroeconomic volatility (e.g., Lettau,

Ludvigsson and Wachter (2005)) large macroeconomic shocks (e.g. oil prices) or institutional changes.4

Our paper takes the presence of regimes in stock and bond returns as a starting point and proceeds

to characterize asset allocation implications. Regime switching models can capture many properties of

the return distribution. These models typically identify regimes with very different mean, variance and

correlations across assets. As the underlying state probabilities change over time this leads to time-

varying expected returns, volatility persistence and changing correlations and predictability in higher order

moments. This is consistent with Äıt-Sahalia and Brandt (2001) who argue that higher order moments of

stock and bond returns are time-varying although different moments are typically predicted by different

combinations of economic variables. The degree of predictability of mean returns can also vary significantly

over time in regime switching models — a feature that seems present in stock return data (Bossaerts and

Hillion (1999).) Finally, regime switching models are capable of capturing even complicated forms of

heteroskedasticity, fat tails and skews in the underlying distribution of returns (Timmermann (2000).)

2.2. Existing Results on Asset Allocation

Our paper is part of a growing literature that explores the asset allocation and utility cost implications of

return predictability from the perspective of a small, expected utility maximizing investor with a multi-

period horizon. In an analysis involving a single risky stock portfolio, Kandel and Stambaugh (1996) find

that predictability can be statistically small yet still have a large effect on the optimal asset allocation.

Barberis (2000) extends this result to long horizons. Campbell and Viceira (1999) derive closed-form

expressions using log-linear approximations for a discrete-time consumption and portfolio choice problem

with rebalancing and an infinite horizon. Brennan, Schwartz, and Lagnado (1997), Campbell and Viceira

4Lettau, Ludvigsson and Wachter (2005) link the high stock prices experienced during the 1990s to a shift towards lower

macroeconomic volatility levels using a two-state regime switching model fitted to the volatility and mean of consumption

growth. They report evidence of a break in the volatility of consumption growth around 1992 and a shift in the mean around

1995 and calibrate a stochastic discount factor model to capture the implications for stock prices of these breaks. Calvet and

Fisher (2005) propose an equilibrium model with regime shifts in the mean and volatility of consumption and dividend growth

rates. Regime shifts are shown to affect asset prices that converge to a multifractal jump-diffusion process.
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(2001, 2002) and Campbell, Chan and Viceira (2003) study strategic asset allocation and document large

effects of predictability on asset holdings and welfare costs. Bielecki, Pliska, and Sherris (2000) show that

under an infinite horizon objective that depends only on the long run growth rate of wealth and on variance,

the optimal portfolio becomes a function of the factors predicting expected returns.

The papers whose modeling approach is most closely related to ours are Ang and Bekaert (2002a), Honda

(2003), Detemple, Garcia and Rindisbacher (2003), Calvet and Fisher (2005) and Lettau, Ludvigsson and

Wachter (2005). Ang and Bekaert (2002) use a two-state model to evaluate the claim that the home bias

observed in holdings of international assets can be explained by return correlations that increase in bear

markets. Assuming observable states, they find that optimal portfolio weights depend both on the current

regime and on the investment horizon and that the cost of ignoring regime switching is of the same order

of magnitude as the cost of ignoring foreign equities in the optimal portfolio. While our paper shares a

similar regime switching setup, we address a very different question, namely a US investor’s asset allocation

between bonds, stocks and cash. We find that a four-state model is required to capture the rich dynamics of

the joint distribution of stock and bond returns. Furthermore, we model regimes as unobservable, calculate

asset allocations under optimal filtering and therefore explicitly address the effects on hedging demands

arising from investors’ recursive updating in their beliefs about the underlying state probabilities.

Honda (2003) solves a continuous-time portfolio and consumption problem in which the expected return

(drift) of a single risky asset depends on an unobservable regime governed by a continuous Markov chain

with two states.5 Optimal policies are computed using Monte Carlo methods. He finds that the shape of

the function relating optimal portfolio weights to the investment horizon may depend on the perception

of the current regime. Our paper shares a similar set up but extends Honda’s results in several direc-

tions by investigating an allocation problem for a relatively rich asset menu including long-term bonds,

by entertaining discrete-time regime switching models with more than two states, by accommodating het-

eroskedasticity in a regime-dependent fashion, and by jointly modeling regimes in excess asset returns and

in factors (such as the dividend yield) that predict future asset returns. We also evaluate the real-time,

out-of-sample performance of investment strategies that consider the impact of regimes.

Detemple, Garcia and Rindisbacher (2003) approach a wide class of portfolio choice problems in con-

tinuous time, including strategic asset allocation. Building on the widespread evidence that both interest

rates and the market price of risk(s) follow non-linear processes, they investigate the asset allocation im-

plications of non-linear predictability using simulation methods. They show that findings in the standard

VAR framework — e.g., that the equity allocation should be higher the longer the investment horizon — may

be overturned in the presence of non-linearities. For reasons similar to these authors, we resort to Monte

Carlo methods to solve for the optimal asset allocation. However, we explore the asset allocation under a

class of non-linear processes (multivariate regime switching) that is not nested in their framework.

3. Asset Returns under Regime Switching

3.1. Data

Our analysis considers a US investor’s choice among three major asset classes, namely stocks, bonds and

T-bills. We further divide the stock portfolio into large and small stocks in light of the empirical evidence

5David (1997) also investigates optimal consumption and portfolio rules in a two-state continuous time model.
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suggesting that these stocks have very different risk and return characteristics that vary across different

regimes, see Ang and Chen (2002) and Perez-Quiros and Timmermann (2000).

Our analysis uses monthly returns on all common stocks listed on the NYSE, AMEX and NASDAQ.

The first and second size-sorted CRSP decile portfolios are used to form a portfolio of small firm stocks,

while deciles 9 and 10 are used to form a portfolio of large firm stocks. We also consider the return on

the CRSP portfolio of 10-year T-bonds. Returns are continuously compounded and inclusive of any cash

distributions. To obtain excess returns we subtract the 30-day T-bill rate from these returns. Dividend

yields are also used in the analysis and are computed as dividends on a value-weighted portfolio of stocks

over the previous twelve month period divided by the current stock price. Our sample is January 1954 -

December 1999, a total of 552 observations. Consistent with the literature we only use data after the 1951

Treasury Accord. Data from 2000-2003 is not used for model selection or parameter estimation in order to

keep a genuine post-sample period. All data is obtained from the Center for Research in Security Prices.

3.2. Model

To capture the possibility of regimes in the joint distribution of asset returns and predictor variables,

consider an (n+m)×1 vector of asset returns in excess of the T-bill rate, rt = (r1t, r2t, ..., rnt)0 extended by
a set of m predictor variables, zt = (z1t, ..., zmt)

0. Suppose that the mean, covariance and serial correlations

in returns are driven by a common state variable, St, that takes integer values between 1 and k:Ã
rt

zt

!
=

Ã
μst

μzst

!
+

pX
j=1

Aj,st

Ã
rt−j

zt−j

!
+

Ã
εt

εzt

!
. (1)

Here μst and μzst are intercept vectors for rt and zt in state st, {Aj,st}
p
j=1 are (n+m)×(n+m) matrices of

autoregressive coefficients in state st, and (ε
0
t ε

0
zt)
0 ∼ N(0,Ωst), where Ωst is an (n+m×n+m) covariance

matrix. When k = 1, equation (1) simplifies to a standard vector autoregression. Our model thus nests as

a special case the standard linear (single-state) model used in much of the asset allocation literature. This

model gets selected if the data only supports a single regime.

Regime switches in the state variable, St, are assumed to be governed by the transition probability

matrix, P, with elements

Pr(st = i|st−1 = j) = pji, i, j = 1, .., k. (2)

Each regime is thus the realization of a first-order Markov chain with constant transition probabilities. St

is not observable but a filtered estimate can be computed from time series data on rt and zt.

While simple, this model is quite general and allows means, variances and correlations of asset returns

to vary across states. Hence the risk-return trade-off can vary across states in a way that may have

strong asset allocation implications. For example, knowing that the current state is a persistent bull state

will make most risky assets more attractive than in a bear state. Estimation proceeds by optimizing the

likelihood function associated with (1)-(2). Since the underlying state variable, St, is unobserved we treat

it as a latent variable and use the EM algorithm to update our parameter estimates, c.f. Hamilton (1989).
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3.3. Choice of model specification

Guidolin and Timmermann (2005a) provide a detailed specification analysis to determine the statistical

evidence in support of regimes in the univariate and joint distribution of stock and bond returns. Consid-

ering a range of values for the number of states, k = 1, 2, 3, 4, 5, 6 and the lag-order p = 0, 1, 2, 3, they use

information criteria and specification tests to select a four-state model.

Using similar methods, we considered a range of model specifications with up to six states.6 Although

none of the models passes all tests, the most parsimonious model that captures the distribution of both

large stock returns and bond returns is a four-state model with regime-dependent mean and covariance

matrix. Some aspects of small firms’ return distribution are not captured by this model, but most of the

test statistics tend to be quite small (albeit statistically significant). Models with fewer states or constant

volatility across states are clearly mis-specified, while models with more states have far more parameters

so we select a specification with four states. Interestingly, no VAR terms are required. This is consistent

with the common finding that asset returns are only weakly serially correlated.

3.4. Model estimates

Figure 2 plots the state probabilities for the four-state model while Table 1 shows the parameter estimates

for this model. Initially, we focus on the simplest case where m = 0 so no predictor variable is included to

model the dynamics in asset returns.7

It is easy to interpret the four regimes. Regime 1 is a ‘crash’ state characterized by large, negative

mean excess returns and high volatility. It includes the two oil price shocks in the 1970s, the October 1987

crash, the early 1990s, and the ‘Asian flu’. Regime 2 is a low growth regime characterized by low volatility

and small positive mean excess returns on all assets. Regime 3 is a sustained bull state where stock prices

– especially those of small firms– grow rapidly on average. Mean excess returns on long-term bonds are

negative in this state. States 2 and 3 identify a size effect in stock returns. In state 2 the mean return

of large stocks exceeds that of small stocks by about 7% per annum, while this gets reversed in state 3.

Regime 4 is a recovery state with strong market rallies and high volatility for small stocks and bonds.

Correlations between returns also appear to vary substantially across regimes. The estimated correlation

between large and small firms’ returns varies from a high of 0.82 in the crash state to a low of 0.50 in

the recovery state. The correlation between returns on large stocks and bonds even changes signs across

different regimes and varies from 0.37 in the recovery state to -0.40 in the crash state. Finally, the correlation

between small stock and bond returns goes from -0.26 in the crash state to 0.12 in the slow growth state.

This is consistent with the evidence of time-varying (regime-specific) correlations found in monthly equity

returns by Ang and Chen (2002). The ability of our model to identify the negative correlation between

stock and bond returns in the crash state−which the linear model is unable to do, see panel (a) of Figure
6We use the predictive density specification tests proposed by Berkowitz (2001) and based on the probability integral

transform or z−score. If the model is correctly specified, the z-scores should be independently and identically distributed
(IID) and uniform on the interval [0, 1]. Guidolin and Timmermann (2005a) provide detailed results for the data at hand.

7Attempts to simplify the number of parameters by imposing the restriction that mean returns are the same across the

four states or that the covariance matrices are identical in the high volatility states (states 1 and 4) were clearly rejected at

critical levels below 1 percent, c.f. Guidolin and Timmermann (2005a).
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1−is a sign of the potential value of adopting a multi-state model.8

Mean returns and volatilities are larger in absolute terms in the crash and recovery regimes, so it

is perhaps unsurprising that the persistence of the states also varies considerably. The crash state has

low persistence and on average only two months are spent in this regime. Interestingly, the transition

probability matrix has a very particular form. Exits from the crash state are almost always to the recovery

state and occur with close to 50 percent chance suggesting that, during volatile markets, months with

large, negative mean returns cluster with months that have high positive returns. The slow growth state

is far more persistent with an average duration of seven months while the bull state is the most persistent

state with an average duration of eight months. Finally, the recovery state is again not very persistent and

the market is expected to stay just over three months in this state. The steady state probabilities are 9%

(state 1), 40% (state 2), 28% (state 3) and 23% (state 4). Hence, although the crash state is clearly not

visited as often as the other states, it by no means only picks up extremely rare events.

It is interesting to relate these states to the underlying business cycle. Correlations between smoothed

state probabilities and NBER recession dates are 0.32 (state 1), -0.13 (state 2), -0.21 (state 3), and 0.18

(state 4). This suggests that indeed, the high-volatility states - states 1 and 4 - occur around official

recession periods.

4. The Investor’s Asset Allocation Problem

We next study the asset allocation implications of regime dynamics in the joint distribution of stock and

bond returns. First consider the ‘pure’ asset allocation problem for an investor with power utility defined

over terminal wealth, Wt+T , coefficient of relative risk aversion γ > 1, and an investment horizon T :

u(Wt+T ) =
W 1−γ

t+T

1− γ
. (3)

The investor is assumed to maximize expected utility by choosing at time t a portfolio allocation to large

stocks, small stocks and bonds, ωT
t ≡ (ωlt(T ) ωst (T ) ωbt(T ))0, while 1−(ωT

t )
0ι3 is invested in riskless T-bills.9

For simplicity we assume the investor has unit initial wealth. Portfolio weights are adjusted every ϕ = T
B

months at B equally spaced points t, t+ T
B , t+2

T
B , ..., t+(B− 1)

T
B .When B = 1, ϕ = T and the investor

simply implements a buy-and-hold strategy.

Let ωb (b = 0, 1, ..., B−1) be the portfolio weights on the risky assets at these rebalancing times. Then
1− ωb

0ι3 is the weight on T-bills at time t+ bTB and

u(WB) =
W 1−γ

t+T

1− γ
=

W 1−γ
B

1− γ
.

8Recent work by Andersen, Bollerslev, Diebold, and Vega (2004) reaches the same conclusion: stock and bond returns

move together insofar as the correlation is sizeable and important, but the correlation switches sign across different regimes

and may appear spuriously small when averaged across states.
9Following standard practice we consider a partial equilibrium framework which takes the asset return process as exogeneous

(see e.g., Ang and Bekaert (2002a)) and assume that the risk-free rate is constant and equal to the average 1-month T-bill

yield over the sample period (5.3% per year).
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With regular rebalancing the investor’s optimization problem is

max
{ωj}B−1j=0

Et

"
W 1−γ

B

1− γ

#
s.t. Wb+1 =Wb

n
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b exp

³
Rb+1 + ϕrfι3

´o
(4)

Rb+1 ≡ rtb+1 + rtb+2 + ...+ rtb+1 , b = 0, 1, ..., B − 1.

The wealth equation is exact when asset returns are continuously compounded and excess returns are

computed as the difference between asset returns and the risk-free rate. Incorporating investors’ use of

predictor variables zb, at the decision times b = 0, 1, ..., B−1, we get the following derived utility of wealth

J(Wb, rb, zb,θb,πb, tb) ≡ max
{ωj}B−1j=b

Etb

"
W 1−γ

B

1− γ

#
. (5)

Here θb =

µn
μi,μzi,Ω

∗
i,b, {A∗j,i,b}

p
j=1

ok
i=1

,Pb

¶
collects the parameters of the regime switching model and

πb is the (column) vector of probabilities for each of the k possible states conditional on information at

time tb. Consistent with common practice, we rule out short-selling. Let ej be a 3×1 vector of zeros with a
1 in the j-th place and ι3 be a 3×1 vector of ones. No short sales then means that e0jωb ∈ [0, 1] (j = 1, 2, 3)
and ω0bι3 ≤ 1.10 We also ignore capital gains taxes and other frictions.

Under power utility the Bellman equation conveniently simplifies to

J(Wb, rb, zb,θb,πb, tb) =
W 1−γ

b

1− γ
Q(rb, zb,θb,πb, tb) (γ 6= 1). (6)

Since the states are unobservable, investors’ learning is incorporated in this setup by letting them optimally

revise their beliefs about the underlying state at each point in time using the updating equation

πb+1(θ̂t) =

³
π0b(θ̂t)P̂

ϕ
t

´0
¯ η(yb+1; θ̂t)

[(π0b(θ̂t)P̂
ϕ
t )
0 ¯ η(yb+1; θ̂t))]0ιk

, (7)

where a ‘hat’ on top of a parameter indicates that it is an estimate, ¯ denotes the element-by-element

product, yb ≡ (r0b z0b)0, P̂
ϕ
t ≡

Qϕ
i=1 P̂t, and η(yb+1) is the k×1 vector whose j-th element gives the density

10Short-selling constraints only have a marginal impact on our results as they are not binding except at the very short

investment horizons. This finding is similar to results in Detemple, Garcia, and Rindisbacher (2003). The intuition is that

nonlinear processes may imply long-run (ergodic) densities of the data that are far less ‘extreme’ (in terms of portfolio weights)

than those obtained by iterating on linear VAR models of predictable expected returns over long horizons. As pointed out by

Kandel and Stambaugh (1996), the portfolio can go bankrupt if it is fully invested in an asset with a return of -100%. With

zero wealth, the investor’s objective function becomes unbounded, preventing an interior solution from existing. We use a

simple rejection algorithm to ensure that wealth remains positive at all horizons along all simulation paths. This is equivalent

to truncating the joint density from which asset returns are drawn. In practice we never found that rejections occurred on the

simulated paths.
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of observation yb+1 in the jth state at time tb+1 conditional on θ̂b:

η(yb+1; θ̂b) ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2π)−
N
2 |Ω̂−11 |

1
2 exp

∙
-12

³
yb − μ̂1 −

Pp−1
j=0 Â1jytb−j

´0
Ω̂−11

³
yb − μ̂1 −

Pp−1
j=0 Â1jytb−j

´¸
(2π)−

N
2 |Ω̂−12 |

1
2 exp

∙
-12

³
yb − μ̂2 −

Pp−1
j=0 Â2jytb−j

´0
Ω̂−12

³
yb − μ̂2 −

Pp−1
j=0 Â2jytb−j

´¸
...

(2π)−
N
2 |Ω̂−1k |

1
2 exp

∙
-12

³
yb − μ̂k −

Pp−1
j=0 Âkjytb−j

´0
Ω̂−1k

³
yb − μ̂k −

Pp−1
j=0 Âkjytb−j

´¸

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

Our approach is consistent with the notion that investors never observe the true state. Learning effects can

be important since optimal portfolio choices depend not only on future values of asset returns and predictor

variables (rb, zb), but also on future perceptions of the likelihood of being in each of the unobservable

regimes (πtb+j).

Since Wb is known at time tb, Q(·) simplifies to

Q(rb, zb,πb, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1−γ
Q (rb+1, zb+1,πb+1, tb+1)

#
. (9)

In the absence of predictor variables, zt, the investor’s perception of the regime probabilities, πb, is the

only state variable and the basic recursions can be written as:

Q(πb, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1−γ
Q (πb+1, tb+1)

#
,

πb+1(θ̂t) =
(π0b(θ̂t)P̂

ϕ
t )
0 ¯ η(rb+1; θ̂t)

[(π0b(θ̂t)P̂
ϕ
t )
0 ¯ η(rb+1; θ̂t)]0ιk

. (10)

4.1. Solution Methods

A variety of approaches have been followed in the literature on portfolio allocation under predictable

returns. Barberis (2000) employs simulation methods to study a ‘pure’ allocation problem without interim

consumption. Ang and Bekaert (2002a) solve for the optimal asset allocation using Gaussian quadrature

methods. Campbell and Viceira (1999, 2001) and Campbell, Chan and Viceira (2003) derive approximate

analytical solutions for an infinitely lived investor. Finally, some papers have derived closed-form solutions

by working in continuous-time, e.g. Kim and Omberg (1996) for the case without interim consumption

and Wachter (2002) for the case with interim consumption and complete markets.

Ang and Bekaert (2002a) were the first to study asset allocation under regime switching. They consider

pairs of international stock market portfolios under regime switching with observable states, so the state

variable simplifies to a set of dummy indicators. This setup allows them to apply quadrature methods

based on a discretization scheme. Our framework is quite different since we treat the state as unobservable

and calculate asset allocations under optimal filtering (7).

To deal with the latent state we use Monte-Carlo methods for integral (expected utility) approximation.

For example, for a buy-and-hold investor, we follow Barberis (2000) and Honda (2003) and approximate
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the integral in the expected utility functional as follows:

max
ωt

N−1
NX
n=1

⎧⎪⎨⎪⎩
h
(1−ω0tι3) exp

¡
Trf

¢
+ ω0t exp

³PT
i=1(r

f ι3 + rt+i,n)
´i1−γ

1− γ

⎫⎪⎬⎪⎭ . (11)

Here ω0t exp
³PT

i=1(r
f ι3 + rt+i,n)

´
is the portfolio return in the n-th Monte Carlo simulation. Each sim-

ulated path of portfolio returns is generated using draws from the model (1)-(2) that allow regimes to

shift randomly as governed by the transition matrix, P. We use N = 30, 000 simulations. As pointed out

by Detemple, Garcia, and Rindisbacher (2003), numerical schemes based either on grid approximation of

partial differential equations or on quadrature discretization of the state space suffer from a dimensionality

curse that Monte Carlo simulation methods can help alleviate. This makes Monte Carlo methods particu-

larly suitable to multivariate problems such as ours. Guidolin and Timmermann (2005a) and Section 5.4

provide further details on the numerical techniques employed in the solutions.

5. Asset Allocation Results

As a benchmark we first consider the asset allocation strategy of a buy-and-hold investor who solves the

asset allocation problem once, at time t. Brennan and Xia (2001) point out that this is an interesting

special case since it corresponds to the problem solved by an investor who has set aside predetermined

savings for retirement and commits to a portfolio that maximizes the expected utility from consumption

upon retirement. At the end of the section we introduce rebalancing. Following Äıt-Sahalia and Brandt

(2001) we vary the investment horizon T between six and 120 months in increments of six months. The

coefficient of relative risk aversion is initially set at γ = 5.11

5.1. Optimal asset allocation in the four regimes

We found in Section 2 that the four regimes identified in the joint distribution of stock and bond returns

had economic interpretations as crash, slow growth, bull and recovery states. To better understand the role

of these economic states in asset allocation, Figure 3 shows optimal asset allocations starting from each of

the states, i.e. π = ej (j = 1, 2, 3, 4), but allowing for uncertainty about future states due to randomly

occurring regime shifts driven by (2). Initial state probabilities are clearly an important determinant of

the portfolio weights.

State 1 is a low return state with little persistence. As the investment horizon (T ) grows, investors

can be reasonably certain of leaving this state and move to better ones. The weight on stocks is therefore

negligible for small T but increases as T grows, producing an upward-sloping curve. Although stocks

are almost completely ignored at short horizons, the low persistence of regime 1 along with the high

probability of switching to the recovery state leads to a rapid increase in the optimal allocation to stocks

as the investment horizon expands. Even so, the optimal allocation to stocks never exceeds 35% when

starting from the crash state. The allocation to bonds grows from zero to 30%, while the allocation to

T-bills shows the opposite pattern, starting at 100% of the portfolio and declining to 40% at the 10-year

horizon.

11Guidolin and Timmermann (2005a) show that the asset allocation results are robust to values of γ in the range [0, 20].
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In the slow growth state (regime 2) the small firm effect is negative and the demand for small stocks

is always zero while conversely that for large stocks is very high, starting at 100% at the shortest horizon

before declining to a level near two-thirds of the portfolio at horizons longer than six months. The remainder

of the portfolio is invested in bonds and T-bills. The bull state (regime 3) is associated with a sizeable

small firm effect and small stocks take up 70% of the portfolio at short horizons before declining to 20% for

horizons greater than six months. The reverse pattern is seen for large stocks that start at 30% for short

horizons and grow to a level near 50% for horizons longer than six months. Bond and T-bill allocations

are close to zero at short horizons, rising to around 10% and 15%, respectively, at long horizons.

Finally, starting from the recovery state, at short horizons 100% of the portfolio is allocated to small

stocks. This proportion declines to 40% for horizons longer than one year, while the allocation to large

stocks and bonds rise from zero to 30% as the horizon is extended from one to 12 months. In this state

practically nothing is invested in T-bills.

5.2. Uncertainty about the initial state

While Ang and Bekaert (2002a) use quadrature methods that require the regimes to be observable, our

Monte Carlo simulation approach to computing portfolio weights allows the states to be unobservable. In

fact, in our model investors have to account for revisions in future beliefs about the unknown state when

determining their current asset allocation. In this sense our paper extends the rational learning exercise in

Barberis (2000) to cover multivariate regime switching. Our ability to handle unknown initial and future

states is important, both because states are never observable in practice and because, as shown by Veronesi

(1999), uncertainty about the underlying regime may be key to understanding asset price dynamics.

We examine the asset allocation implications of uncertainty about the initial state by considering two

scenarios. The first assumes that the states have the same probability (25%) while the second scenario

assumes steady-state probabilities (9%, 40%, 28% and 23% for states 1-4). The extent to which asset

allocations depend on the underlying state beliefs is clear from Figure 4: At short horizons the sign of the

slope of the investment demand for stocks is reversed in the two scenarios.

These results show that uncertainty about the initial state can significantly affect portfolio decisions.

The shapes of some of the investment schedules in Figure 4 differ from all the shapes shown in Figure 3

and are thus not merely (probability-) weighted averages of the schedules found when the initial regime is

assumed to be known to the investor. Moreover, investors’ perceptions of the current state probabilities

are a key determinant of the relationship between the investment horizon and the optimal asset allocation,

and therefore affect how an investor attempts to exploit predictability in asset returns.

5.3. Investment horizon effects

One of the key questions addressed in the literature on optimal asset allocation is how the investment

horizon affects optimal portfolio weights. In the absence of predictor variables, standard models imply

constant portfolio weights. In contrast, using the dividend yield as a predictor, Barberis (2000) finds that

the weight on stocks should increase as a function of the investor’s horizon. With reference to Figures 3

and 4, we next show that this no longer is the case when changes in regimes can occur.

Figure 3 shows that, in three of four states, the buy-and-hold investor gets more cautious about stocks
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as the investment horizon rises. Although the return on bonds is also uncertain across states, the allocation

to bonds increases as a function of the horizon in three of four states. There are two reasons for this. First,

the difference in mean returns across states is far smaller for bonds than for stocks. Second, the correlation

between stock and bond returns is generally very low, so bond holdings diversify the risk of stock holdings

independently of which state occurs.

Figure 4 further suggests that the weight on stocks increases in the investment horizon only when the

investor initially assigns a sufficiently high weight to the crash state. Even under steady-state probabilities

the allocation to stocks declines as the investment horizon grows. The well-known advice of increased

exposure to stocks the longer the investment horizon appears not to be robust to how predictability in

returns is modeled and may even be more of an exception than the rule.

5.4. Rebalancing

The buy-and-hold results presented thus far ignore the possibility of rebalancing. However, in the presence

of time-varying investment opportunities, investors should adjust their portfolio weights as new informa-

tion arrives. We therefore consider the effects of periodic rebalancing on optimal asset allocations. We

numerically solve the Bellman equation by discretizing the interval that defines the domain of each of the

state variables on G points and use backward induction methods. Suppose that Q (πb+1, tb+1) is known at

all points πb+1 = πj
b+1, j = 1, 2, ..., G

k−1. This will be true at time tB ≡ t + T as Q(πj
B, tB) = 1 for all

values of πj
B on the grid. Then we can solve equation (4) to obtain Q (πb, tb) by choosing ωb to maximize

Etb

∙n
(1−ω0bι3) exp

³
ϕrf

´
+ω0b exp(Rb+1,n(sb) + ϕrf ι3)

o1−γ
Q(πj

b+1, tb+1)

¸
. (12)

The multiple integral defining the conditional expectation is again calculated by Monte Carlo methods. For

each πb = πj
b, j = 1, 2, ..., G

k−1 on the grid we draw N samples of ϕ−period excess returns {Rb+1,n(sb) ≡Pϕ
i=1 rtb+i,n(sb)}Nn=1 from the regime switching model and approximate (12) as

N−1
NX
n=1

∙n
(1− ω0bι3) exp

³
ϕrf

´
+ ω0b exp(Rb+1,n(sb) + ϕrf ι3)

o1−γ
Q(π

(j,n)
b+1 , tb+1)

¸
. (13)

Here π
(j,n)
b+1 denotes the element π

j
b+1 on the grid used to discretize the state space that−using the distance

measure
Pk−1

i=1 |π
j
b+1ei − πb+1,nei|−is closest to

πb+1,n =
(π0bP̂

ϕ
t )
0 ¯ η(rb+1,n; θ̂t)

[(π0bP̂
ϕ
t )
0 ¯ η(rb+1,n; θ̂t)]0ιk

.

Starting from tB−1, we work backwards through the B rebalancing points until ωt ≡ ω0 is obtained.
12

Table 2 shows optimal portfolio weights for stocks and bonds under different values of the rebalancing

frequency, ϕ = 1, 3, 6, 12, 24 months as well as under the buy-and-hold scenario, ϕ = T . For a given

investment horizon, T, as ϕ declines investors become more responsive to the current state probabilities.

The smaller is ϕ, the shorter is the period over which the investor commits wealth to a given portfolio.

12See Guidolin and Timmermann (2005a) for details. Simulation experiments indicate that five grid discretization points

(for rebalancing problems) and N ≥ 20, 000 guarantee sufficient accuracy in the calculations of optimal choices.
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As a result, the investor puts less weight on the steady-state return distribution and increasing weight

on the current state, St. Consequently, the weight on stocks in the crash state declines as ϕ decreases

and rebalancing becomes more frequent. For instance, when T = 120 and ϕ = 1 (monthly rebalancing),

investors hold no stocks in the crash state, preferring instead to wait for an improvement in the investment

opportunity set. In contrast, when ϕ exceeds the average duration of this regime (e.g., ϕ = 12), it is

optimal to invest some money in stocks (40%), although the weight remains quite low. In states 2-4

investors increase their allocation to stocks as the time between rebalancing declines. In fact, when ϕ = 1,

the optimal weight on stocks is close to 100% in these three regimes, irrespective of the investment horizon.

Keeping the rebalancing frequency, ϕ, constant, the demand for stocks is mostly upward sloping although

increasingly flat as ϕ declines. Once again, we find that it is not generally true that investors with longer

horizons should allocate more to stocks.

As the investment horizon grows, non-monotonic patterns are observed in the allocation to bonds

which in most cases first rises and then declines. Starting from the crash state the allocation to bonds is

generally lower, the more frequent the rebalancing (smaller ϕ) since the investor does not have to account

for unexpected shifts to a better state but can afford to wait for such a shift to occur. If rebalancing

can occur frequently, little or nothing is invested in bonds since market timing opportunities are more

significant for stocks and the remainder can be held in T-bills.

6. Asset Allocation Under Predictability from the Dividend Yield

6.1. Allocations under a single state model

Asset allocation implications of linear predictability in returns from variables such as the dividend yield

have been considered by Barberis (2000), Campbell and Viceira (1999), Campbell, Chan, and Viceira

(2003), and Kandel and Stambaugh (1996). It is therefore natural to compare our results to those arising

from a standard VAR(1) model comprising asset returns and the dividend yield:Ã
rt

dyt

!
=

Ã
μ

μdy

!
+A

Ã
rt−1

dyt−1

!
+

Ã
εt

εdy,t

!
. (14)

where rt ≡ (rlt rst rbt )0 and (ε0t εdy,t)0 ∼ N(0,Ω). MLE estimates are as follows:

Ã
rt

dyt

!
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.0021
(0.0070)

−0.0160
(0.0102)

−0.0032
(0.0036)

0.0004
(0.0003)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−0.0466
(0.0635)

0.0370
(0.0412)

0.2299
(0.0839)

0.1261
(0.2028)

0.1236
(0.0925)

0.1244
(0.0600)

0.2624
(0.1233)

0.6641
(0.2953)

−0.0442
(0.0330)

−0.0261
(0.0214)

0.1070
(0.0436)

0.1322
(0.1054)

−0.0005
(0.0024)

−0.0005
(0.0016)

−0.0098
(0.0032)

0.9856
(0.0077)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ã

rt−1

dyt−1

!
+

Ã
εt

εdy,t

!

Ω̂∗ =

⎡⎢⎢⎢⎢⎣
0.1417∗∗∗ 0.0018 0.0002 −5.86e−05

0.7285∗∗∗ 0.2063∗∗∗ 0.0002 −7.10e−05

0.2466∗ 0.1353 0.0736∗∗∗ −7.95e−06

−0.9243∗∗∗ −0.7695∗∗∗ −0.2413 0.0056∗∗∗

⎤⎥⎥⎥⎥⎦ ,
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where rt ≡ [rlt rst rbt ]0. Standard errors are in parenthesis below the point estimates of the conditional mean
coefficients.13 The estimate of Â∗ suggests that a higher dividend yield forecasts higher asset returns. The

dividend yield is highly persistent — its autoregressive coefficient estimate is almost 0.99 — and shocks to

the dividend yield are highly negatively correlated with shocks to stock returns (-0.92 and -0.76 for large

and small stocks, respectively), suggesting that time-variations in the dividend yield may induce a large

hedging demand for stocks. In contrast, shocks to the dividend yield are only mildly and insignificantly

correlated with shocks to bond returns (-0.24).14

We computed allocations to stocks and bonds under the VAR(1) for a range of values of the dividend

yield.15 Our results are comparable to earlier findings: For most values of the dividend yield the overall

allocation to stocks is larger, the longer the investment horizon or the higher the initial value of the

dividend yield. We also found slightly non-monotonic investment schedules for stocks under the VAR(1)

model, which is not completely surprising. Äıt-Sahalia and Brandt (2001), Brandt (1999) and Barberis

(2000) have found increasing equity demand, the longer the investment horizon when conditioning on a

value of the dividend yield close to its sample average. However, when the dividend yield is further away

from its unconditional mean, asset allocation results become more mixed and there are cases where, at

short-to-intermediate investment horizons, equity demand is declining in the horizon. Medium—to-high

dividend yields favor small stocks while medium-low yields increase the demand for large stocks. The

reason for this is the greater sensitivity of the small stocks’ returns to the dividend yield (0.66) compared

with the sensitivity of the large stocks (0.12).

There is very little room for bonds in the optimal asset allocation under a VAR(1) model. This holds

across all initial values of the dividend yield. When the dividend yield is either low or very low — so stocks

are unattractive — short-term investors respond not by holding a larger proportion of bonds, but rather by

increasing their allocation to T-bills.

6.2. Regimes and predictability from the dividend yield

We next investigate the effect of adding the dividend yield to our model. The resulting regime switching

VAR model nests many of the models in the existing literature and enables the correlation between the

dividend yield and asset returns to vary across different regimes. The relationship between stock returns

and the dividend yield is linear within a given regime. However, since the coefficient on the dividend yield

varies across regimes, as the regime probabilities change the model is capable of tracking a non-linear

relationship between asset returns and the yield. This is important given the evidence of a non-linear

relationship between the yield and stock returns uncovered by Ang and Bekaert (2004).16

Again we conducted a battery of tests to determine the best model specification. The (unreported)

results suggest that a four-state VAR(1) model is supported by the data as this model passes all diagnostic

13For the estimated covariance matrix, we report annualized volatilities on the main diagonal. Coefficients below the diagonal

are correlation coefficients. * denotes significance at the 10%, ** at the 5%, and *** at the 1% level.
14Our choice of an unrestricted VAR(1) model is consistent with Campbell, Chan, and Viceira (2003). In asset allocation

problems involving investments in bonds it is important to allow for predictability from lagged bond returns to current stock

returns and the zero restrictions on the VAR(1) return coefficients are strongly rejected by a likelihood ratio test.
15Detailed results are available in Guidolin and Timmermann (2005a).
16Other specifications are of course possible — for example a model that allows state transition probabilities to vary over

time as a function of a set of state variables as in Perez-Quiros and Timmermann (2000) or Ang and Bekaert (2002a).
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tests. Unsurprisingly, given the persistence in the dividend yield, a single lag is required for this extended

model. Regime 1 continues to be characterized by large, negative mean excess returns. The dividend yield

is relatively high in this state (4%) and volatility is also above average. In steady state this regime occurs

15% of the time although it has an average duration of only two months. Regime 2 remains a slow growth

state with moderate volatility. This state is highly persistent, lasting on average almost 16 months and

occurring close to one-third of the time. Regime 3 continues to be a highly persistent bull state that lasts

on average almost 15 months. Finally, regime 4 is again a recovery state with strong stock market rallies

accompanied by substantial volatility. This state has an average duration of only two months. Nevertheless,

at 18%, its steady-state probability is quite high.

To study the asset allocation effects of regimes and predictability from the yield we report two exercises.

The first, presented in Figure 5, shows optimal allocations as a function of the horizon when the dividend

yield is set at its overall sample average. Asset allocations continue to vary significantly across the four

states. Starting from state 1 the allocation to stocks (small stocks in particular) continues to rise as a

function of the horizon and peaks at 40% of the portfolio at the 10-year horizon. The allocation to bonds

is non-monotonic, starting from zero at the shortest horizon, rising to a level close to 90% at the six month

horizon before declining to 60% at the longest horizon. T-bills form 100% of the portfolio at the shortest

1-month horizon but then see their allocation decline sharply to zero at horizons longer than six months.

The allocation to stocks continues to decline when the model starts from states two or four, although

it only declines to a level near 80-85% at the 10-year horizon. The allocation to bonds makes up for the

remainder and there is no demand for T-bills in these two states. In the third (bull) state the allocation

to stocks is now mildly upward sloping as a function of the horizon in contrast to what we found in the

model without the dividend yield shown in Figure 3.

We also computed the effect of changing the dividend yield using a range of values spanning its mean

value plus or minus three standard deviations. As expected, the higher the dividend yield, the larger the

allocation to stocks. This is consistent with the common finding of a positive correlation between the yield

and expected returns. The allocation to small stocks is more sensitive to the yield than that of the large

stocks. When the yield is very low, the allocation to stocks is very small and the allocation to T-bills is

large, but it declines as a function of the investment horizon. Irrespective of the presence of regimes, we

get very sensible results for the effect of changing the dividend yield on the optimal asset allocation.

We summarize these findings as follows. First, by comparing Figures 3 and 5, it is obvious that the

dividend yield continues to have an important effect on the optimal asset allocation even in the presence

of regimes. In the model extended to include the yield there is less of a role for T-bills, while conversely

long-term bonds and large stocks form a larger part of the portfolio. Furthermore, irrespective of the

presence of regimes, the higher the yield, the greater the typical allocation to stocks.

6.3. Understanding the term structure of reward-to-risk

As mentioned in the introduction, learning models — where investors revise their expectations of future

returns upwards following positive return shocks — imply that β > 0, where

V ar
³PT

j=1 rt+j

´
V ar(rt+1)T

= 1 +
1

2

µ
R2

1−R2

¶
β.
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Constant expected return models — such as our Gaussian IID benchmark — imply that β = 0, i.e. the

variance of T -period returns grows in proportion with T . Models of predictable, mean-reverting returns

produce a β < 0, i.e. risk grows at a slower rate than if expected returns were constant. This simple

analysis provides intuition for our basic findings. The analysis is of course complicated by the fact that

under regime switching both the mean and variance of returns depend on the state probabilities. The

exception to this is when the state probabilities are set at their steady-state values in which case expected

returns become independent of the investment horizon. For this scenario Figure 6 plots the volatility

and Sharpe ratio implied by the models considered so far (these are plots of the “term structure” of the

reward-to-risk trade-off, in the sense recently used by and Campbell and Viceira (2005) and Guidolin and

Timmermann (2006b)). We only show results for small and large stocks since the effects are much smaller

for bonds. The volatility and Sharpe ratio are normalized by dividing by
√
T so the benchmark IID model

corresponds to a straight line.

First consider the pure regime switching model. Starting from the steady state probabilities the mean

return is constant whereas the volatility per month increases as a function of the investment horizon. This

leads to a Sharpe ratio that declines in the investment horizon and hence to a lower allocation to risky

assets. Consistent with this, Figure 3 showed that it is only when the model starts from the crash state

that the overall allocation to stocks is increasing in the horizon−the reason being that the mean return
increases as a function of the investment horizon while the risk declines when starting from this state.

Next consider the VAR(1) model where the initial dividend yield is set at its unconditional mean. For

this model Figure 6 shows that the volatility decreases and hence the Sharpe ratio increases (relative to

the IID benchmark) as a function of the investment horizon, leading to a greater allocation to stocks the

longer the investment horizon, as we found in Section 6.1.

In the four-state model extended to include the dividend yield, learning effects — which tend to lower the

allocation to stocks — compete with mean reversion effects, which tend to increase the allocation to stocks

the longer the investment horizon. Which effect dominates is an empirical issue that also depends on the

initial values assumed for the dividend yield and the state probabilities. In practice, it seems that learning

effects are stronger at short horizons, so that Sharpe ratios tend to decrease in T . However, at horizons

in excess of one or two years, learning effects become weaker as the predictive distribution of returns

converges to the steady state distribution, so mean-reversion effects captured by linear predictability from

the dividend yield eventually lead to increasing Sharpe ratios.

7. Economic Importance of Regimes

So far we established that the presence of regime switching in the joint distribution of asset returns can affect

portfolio decisions substantially. This evidence does not imply, however, that investors are necessarily better

off by accounting for regimes in the return distribution. In this section we therefore assess the economic

importance of regimes. We do so by computing the certainty equivalent of ignoring regimes (Section 7.1),

by checking whether differences in portfolio weights from a regime switching versus a time-invariant model

of the return distribution are mostly due to parameter uncertainty (Section 7.2), and by evaluating the

out-of-sample performance of alternative investment strategies (Sections 7.3-7.4). Section 7.5 finally asks

the more specific question whether there is any added value to selecting a four-state model over a simpler
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two-state model. In all cases we focus on buy-and-hold results for an investor with γ = 5.

7.1. Utility cost calculations

It is natural to report a measure of the economic value of accounting for regimes in investors’ asset allocation

decisions. We obtain an estimate of this by comparing the investor’s expected utility under the regime

switching model to that assuming the investor is constrained to choose optimal portfolio weights ωIID
t

under the assumption that asset returns follow a simple IID process. In the latter case the portfolio choice

is independent of the investment horizon and the value function for the constrained investor is

JIIDt ≡ 1

1− γ

BX
b=0

βbEt

h
W 1−γ

b

i
Wb =Wb−1

h
(1− (ωIID

t )0ι3) exp
³
ϕrf

´
+ ω0b exp

³
Rb+1 + ϕrf ι3

´i
.

(15)

The assumption of IID returns is a constrained special case of the model with regime switching, so

JIIDt ≤ J(Wt, rt, zt,πt, t),

where J(Wt, rt, zt,πt, t) is the value function for the four-state model. We compute the compensatory

premium, ηIIDt , that an investor would be willing to pay to obtain the same expected utility from the

constrained and unconstrained consumption and asset allocation problems:

ηIIDt =

(
Q(rb, zb,πb, tb)

(1− ψIID
t )1−γ

PB
b=0 β

bEt [(Wb)1−γ ]

) 1
1−γ

− 1. (16)

Figure 7 plots the annualized compensation rate, 100× [
¡
1 + ηIIDt

¢ 12
T − 1], needed to make a buy-and-hold

investor indifferent between implementing strategies that exploit the presence of regimes and using the

IID portfolio when the current regime probabilities are set at their steady-state values. The utility cost

of ignoring regimes is as high as 3% at short horizons — where investors can exploit market timing more

aggressively — while, at the longest horizons, the compensating rate is around 130 basis points per annum.

7.2. Parameter uncertainty

The presence of four regimes complicates parameter estimation so we consider the effect of parameter

estimation errors on our results. Since we use Monte Carlo methods to derive optimal portfolio weights we

can exploit that, in large samples, √
T
³bθ − θ´ A→ N(0,Vθ).

This allows us to set up the following bootstrap procedure. In the qth iteration we draw a vector of

parameters,
b̂
θ
q

, from N(bθ, T−1V̂θ) where V̂θ is a consistent estimator of Vθ. Conditional on this draw,b̂
θ
q

, we solve (4) to obtain a new vector of portfolio weights b̂ωq
. We repeat this process Q times. Confidence

intervals for the optimal asset allocation ω̂t can then be derived from the distribution for b̂ωq
, q = 1, 2, ..., Q.

This approach is computationally intensive as (4) must be solved numerically so we restrict the number

of bootstrap trials to Q = 1, 000. Table 3 shows the optimal asset allocation plus or minus one standard

deviation of the bootstrapped distribution. Figures in bold indicate that this band does not include the
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IID asset allocation, which represents a formal test of the difference between portfolio weights with and

without regimes. Standard error bands are wide, but sufficiently narrow to confirm the validity of our

conclusions concerning the optimal shape of equity investment schedules as a function of the investment

horizon. The allocation to stocks is upward sloping only in the crash state. In regimes 2-4, however, the

equity investment schedules are downward sloping, as their bands decline from a maximum of [0.7, 1] at

T = 1 to [0.4, 0.8] for long investment horizons.

These methods also allow us to consider the joint effect of parameter estimation uncertainty and uncer-

tainty about the underlying state. We do so by calculating the compensating variation ηIID,q
t 1,000 times

using parameter estimates
b̂
θ
q

drawn from their asymptotic distribution. Figure 8 shows confidence intervals

under steady state probabilities. The null hypothesis of zero welfare loss implies that such intervals should

include zero for all T s. Evidence that the lower bound of the interval is positive suggests that ignoring

regime switching in asset allocation problems leads to a significant reduction in expected utility. The null

of no significant welfare cost from ignoring regime switching is strongly rejected. The lower bound of the

confidence band is positive and also economically significant. At longer horizons the lower bound attains

levels of 7-8%, which is a considerable fraction of wealth. Using a misspecified model in asset allocation

decisions may thus be quite costly.

7.3. Out-of-sample performance

A legitimate concern about the results so far is that although the regime switching model leads to sensible

portfolio choice recommendations at the end of our sample, it may be difficult to use in ‘real time’ due to

parameter estimation errors which could translate into implausible time-variations in the portfolio weights.

This concern is related to the prediction model’s out-of-sample performance. To get a sufficiently long

evaluation sample, we first perform a ‘pseudo’ real time asset allocation exercise for the period 1980:01-

1999:12, a total of 240 months. We focus on the buy-and-hold asset allocation problem for three horizons,

T = 1, 12, and 120 months. We compare the performance of a four-state regime switching model, the

VAR(1) model (14), a four-state regime switching model that includes predictability from the dividend

yield, and a simple IID model with constant means and covariance matrix. As additional benchmarks, we

also report results for a minimum-variance portfolio and a static, mean-variance tangency portfolio.17 We

preclude the investor from having any benefit of hindsight. For instance, the four-state regime switching

model is estimated for 1954:01-1979:12 and the estimates and state probabilities as of 1979:12 are used to

calculate portfolio performance for 1980:01. Next period the sample is extended to 1954:01-1980:01 and

estimation and portfolio optimization is repeated, and so forth.

For this exercise Figure 1 showed the optimal portfolio weights under the four state (panels (b) and

(c)) and IID (panel (d)) models. Interestingly, the turnover in the equity portfolio was found to be smaller

under pure regime switching than under the VAR(1) model. Once the dividend yield is included in the

regime switching model, the volatility of the equity weights increases and becomes comparable to that

under the VAR(1) benchmark. Regime switching increases the overall demand for stocks (approximately

55%) relative to the benchmark VAR(1) model (40%) because the models that include the dividend yield

17Minimum-variance and tangency portfolios are calculated using sample moments for T−period returns. For T = 120 we
use overlapping returns to have enough sample observations to be able to calculate the required moments.
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as a predictor shift out of stocks during parts of the 1990s. Regimes also have a strong effect on the average

demand for small stocks. The weight on these stocks is approximately 35% under regime switching, less

than 25% when both regimes and the dividend yield are included, and only 10% under the VAR(1) model.18

Bonds receive a substantial weight under regime switching − between 25% and 40%, depending on T and

irrespective of whether the dividend yield is included as a predictor. Conversely, the VAR(1) model puts a

large weight on cash investments (in excess of 50%). This suggests that the presence of regimes is important

in understanding the demand for long-term bonds.

We next calculated realized utility under the different models, each associated with a particular portfolio

weight ω̂T
t and hence a different realized utility:

V T
t ≡

£
WT (ω̂

T
t )
¤1−γ

1− γ
=

h
(1− (ω̂T

t )
0ι3) exp

¡
Trf

¢
+ (ω̂T

t )
0 exp

³PT
j=1 rt+j + Trf ι3

´i1−γ
1− γ

.

Here γ = 5, T = 1, 12 and 120 months and {rt+τ}Tτ=1 are the realized (excess) asset returns between
t + 1 and t + T . The period-t weights, ω̂T

t , are computed by maximizing the objective Et[W
1−γ
T /1 − γ]

so that for each investment horizon, T , and each asset allocation model we obtain a time series {V T
τ },

τ =1980:01,...,1999:12-T of realized utilities. Panels A and B of Table 4 reports summary statistics for the

distribution of {−V T
τ } with smaller values indicating higher welfare. Following Guidolin and Timmermann

(2006b), we use a block bootstrap (with 50,000 independent trials) for the empirical distribution of −V T
τ

to account for the fact that realized utility levels are likely to be serially dependent as time-variations in

the conditional distribution of asset returns may translate into dependencies in the portfolio weights and

hence in realized utilities.

The VAR(1) model performs best over the shortest investment horizon (T = 1) although the 5% and

10% confidence intervals for the realized utility overlap under the VAR(1) and regime switching models

suggesting that their performances are statistically indistinguishable. For the longer horizons, T = 12, 120

months, the pure regime switching model produces the highest mean realized utility. At the twelve month

horizon the out-of-sample forecasting performance of this model is sufficiently good to be statistically

significant against three of the five alternative models.

7.4. Performance during 2000-2003

Although our pseudo out-of-sample results for the period 1980-1999 do not use any data for parameter

estimation that was unavailable at the time of the forecast, the choice of model specification could itself

have benefited from full-sample information that only became available in 1999. To address this concern

and to see how the various models performed during 2000-2003, we compute asset allocations and realized

utilities over this post-sample period.

Results from this experiment are reported in Panels C and D of Table 4. All models generally suggest

a more cautious asset allocation over this period, as reflected by an increase in the demand for T-bills and

bonds. At the shortest investment horizon (T = 1) the myopic IID, VAR(1) and regime switching model

18Once the dividend yield is included as a predictor, the demand for stocks is close to zero between 1993 and 1997. This is

consistent with the real time results reported by Campbell and Viceira (1999, 2001) and is explained by the low value of the

dividend yield after 1993 (less than 2.5% vs. an unconditional sample mean of 3.4%).
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extended by the dividend yield produce almost identical realized utilities. At the intermediate (T = 12)

horizon, the pure regime switching model performs somewhat worse due to its continued high investment

in stocks (70% on average) which stands in contrast to the models that include the dividend yield as a

regressor. Since the dividend yield was below its unconditional mean during this sample, both the VAR(1)

and regime switching model with the yield included lead to far smaller portions (less than 20%) invested

in stocks over this period.

Viewed over the entire out-of-sample period 1980-2003 — and hence averaging across the lengthy bull

and bear states of recent years — the four-state model continues to produce the best average realized

utility performance at the 1-month and 120-month horizons, while the VAR(1) model generates the best

out-of-sample results for the interim 12-month horizon.

7.5. Do we need four states?

Throughout our analysis we maintained a four-state model for the joint distribution of stock and bond

returns rather than a more common two-state model (e.g. Ang and Bekaert (2002a)). Readers might be

concerned that the four-state model overfits the data and, because of imprecisely estimated parameters,

performs worse out-of-sample than the simpler two-state model.

To explore these issues, we generated 2,000 independent samples (each containing 600 periods to repro-

duce the sample 1954:01 — 2003:12) based on the four-state model whose parameters are reported in Table

1. For each sample we conducted the out-of-sample tests of Section 7.3 by recursively estimating three al-

ternative models—a (correctly specified) four-state regime switching model, a misspecified two-state regime

switching model, and a Gaussian IID model. The first 312 observations (corresponding to 1954:01-1980:01)

was used to estimate the initial set of model parameters. The estimation window was then expanded recur-

sively and the portfolio weights were computed at each point in time for an investor with γ = 5. Results

are reported by means of the realized portfolio return, Sharpe ratio and realized utility averaged over the

288 out-of-sample data points.

Table 5 reports the results from these simulations. If keeping four states is economically important,

we should expect to see a decline in the portfolio performance and realized utility when using the simpler

(misspecified) models.19 In fact, the table reports clear (and statistically significant) evidence that correctly

specifying the number of regimes is important in portfolio choice applications. Panel A shows that the

portfolio weights are very different under the two- and four-state models. At short horizons allocations

under the two-state model assign too little weight to small caps, while at long horizons this model puts too

big a weight on such stocks. The two-state model also puts far too much weight on long-term bonds−which
appear to be less risky than they truly are−and too little weight on T-bills. Most of these differences in
portfolio weights are significant at the 10% level in the sense that the confidence bounds fail to overlap.

Conversely, the two-state model generates weights that, on average, are not particularly different from the

myopic IID weights. The only discernible difference concerns the relative weights of bonds and T-bills.

Panel B of Table 5 reveals that using a two-state model when the data supports a four-state model

19In unreported results we found that the two-state model provides a poor fit to our data. Instead of detecting bull and

bear states (as one would expect) the two regimes isolate low and high volatility periods, with considerable persistence but

weakly significant risk premia.
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generates statistically significant welfare costs, as measured by the out-of-sample realized utility. In partic-

ular, for both T = 1 and T = 12, the realized utility is significantly higher under the four-state model than

under the other models. Panels C and D show that a four-state model also delivers higher realized portfolio

returns, higher Sharpe ratios, and higher compensatory variation of ignoring regimes. In the latter case,

the differences are also statistically significant for T = 1 and T = 12 months.20

8. Conclusion

This paper explored the asset allocation implications of the presence of regimes in the joint distribution

of stock and bond returns. Our model captures predictability not just in the conditional mean of returns

(which most of the existing literature has focused on) but in the full (joint) return distribution. While two

states were transitory (the crash and recovery state), the slow growth and bull state are persistent with

average durations of several months. This means that the regime switching model captures both short-term

and long-term variations in investment opportunities.

We found that the optimal asset allocation varies significantly across regimes as the weights on the

various asset classes strongly depend on which state the economy is perceived to be in. Asset allocations

therefore vary significantly over time even in the absence of ‘outside’ predictor variables such as the dividend

yield. Stock allocations were found to be monotonically increasing as the investment horizon gets longer

in only one of the four regimes. In the other regimes we observed a downward sloping allocation to stocks.

The common investment advice of allocating more money to stocks the longer the investment horizon

should therefore be made conditional on the underlying state.

Our framework can be extended in several ways. We evaluated the effects on the optimal asset allocation

of modeling asset returns as a data-driven mixture of distributions that can vary significantly across regimes.

In related research Brennan and Xia (2001) and Pástor (2000) propose a Bayesian framework to address

optimal portfolio choice when investors face model uncertainty and asset return distributions take the

form of mixtures over a range of theoretical and data-driven models. Such extensions are likely to deepen

our understanding of the effects of multiple regimes on asset allocation. Finally, one could extend our

framework to jointly modeling regimes in equity and bond returns as well as in short-term interest rates

which are well-known to incorporate strong non-linearities (see e.g. Ang and Bekaert (2002b) and Detemple

et al. (2003)).
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Table 1 

Estimates of Regime Switching Model for Stock and Bond Returns  
This table reports the estimation output for the regime switching model: 

tst t
εμr +=  

where 
ts

μ  is the intercept vector in state st and ),( ~]'  [ 321 tstttt N Ω= 0ε εεε  is the vector of return innovations. The 
unobserved state variable St is governed by a first-order Markov chain that can assume k = 4 values. The three monthly 
return series comprise a portfolio of large stocks (ninth and tenth CRSP size decile portfolios), a portfolio of small stocks 
(first and second CRSP deciles), and 10-year bonds all in excess of the return on 30-day T-bills. The sample is 1954:01 – 
1999:12. Panel A refers to the case (k = 1) and represents a single-state benchmark. The data reported on the diagonals of 
the correlation matrices are annualized volatilities. Asterisks attached to correlation coefficients refer to covariance 
estimates. For mean coefficients and transition probabilities, standard errors are reported in parenthesis. 

 Panel A – Single State Model 
 Large caps Small caps Long-term bonds 
1. Mean excess return 0.0066 (0.0018) 0.0082 (0.0026) 0.0008 (0.0009) 
2. Correlations/Volatilities    
Large caps 0.1428***   
Small caps 0.7215** 0.2129***  
Long-term bonds 0.2516 0.1196 0.0748*** 
 Panel B – Four State Model 
 Large caps Small caps Long-term bonds 
1. Mean excess return    
Regime 1 (crash) -0.0510 (0.0146) -0.0410 (0.0219) -0.0131 (0.0047) 
Regime 2 (slow growth) 0.0069 (0.0027) 0.0008 (0.0033) 0.0009 (0.0016) 
Regime 3 (bull) 0.0116 (0.0032) 0.0187 (0.0048) -0.0023 (0.0007) 
Regime 4 (recovery) 0.0519 (0.0055) 0.0478 (0.0098) 0.0136 (0.0033) 
2. Correlations/Volatilities    
Regime 1 (crash):    
Large caps 0.1625***   
Small caps 0.8233*** 0.2479***  
Long-term bonds -0.4060* -0.2590 0.0902*** 
Regime 2 (slow growth):    
Large caps 0.1118***   
Small caps 0.7655*** 0.1099***  
Long-term bonds 0.2043*** 0.1223 0.0688*** 
Regime 3 (bull):    
Large caps 0.1133***   
Small caps 0.6707*** 0.1730***  
Long-term bonds 0.1521 -0.0976 0.0261*** 
Regime 4 (recovery):    
Large caps 0.1479***   
Small caps 0.5013*** 0.2429***  
Long-term bonds 0.3692*** -0.0011 0.1000*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 (crash) 0.4940 (0.1078) 0.0001 (0.0001) 0.02409 (0.0417) 0.4818 
Regime 2 (slow growth) 0.0483 (0.0233) 0.8529 (0.0403) 0.0307 (0.0110) 0.0682 
Regime 3 (bull) 0.0439 (0.0252) 0.0701 (0.0296) 0.8822 (0.0403) 0.0038 
Regime 4 (recovery) 0.0616 (0.0501) 0.1722 (0.0718) 0.0827 (0.0498) 0.6836 

* denotes 10% significance, ** significance at 5%, *** significance at 1%. 
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Table 2 

Effects of Rebalancing on Asset Allocation 
This table reports the optimal weight on stocks (small and large) and bonds as a function of the rebalancing frequency ϕ 
for an investor with power utility and a constant relative risk aversion coefficient of 5. Excess returns are assumed to be 
generated by the regime switching model 

tst t
εμr +=  

where 
ts

μ  is the intercept vector in state st and ),( ~]'  [ 321 tstttt N Ω= 0ε εεε  is the vector of return innovations. 

Rebalancing Frequency ϕ Investment Horizon T (in months) 
A - Optimal Allocation to Stocks 

 T=1 T=6 T=12 T=24 T=60 T=120 
 Crash regime 1 

ϕ = T (buy-and-hold) 0.00 0.24 0.34 0.48 0.58 0.60 
ϕ = 24 months --- --- --- --- 0.50 0.50 
ϕ = 12 months --- --- --- 0.37 0.39 0.40 
ϕ = 6 months --- --- 0.28 0.31 0.33 0.34 
ϕ = 3 months --- 0.00 0.00 0.00 0.00 0.00 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Slow growth regime 2 
ϕ = T (buy-and-hold) 1.00 0.68 0.65 0.65 0.65 0.64 

ϕ = 24 months --- --- --- --- 0.70 0.80 
ϕ = 12 months --- --- --- 0.72 0.82 0.93 
ϕ = 6 months --- --- 0.71 0.77 0.88 0.96 
ϕ = 3 months --- 0.92 0.85 0.89 0.95 0.99 
ϕ = 1 month 1.00 1.00 1.00 1.00 1.00 1.00 

 Bull regime 3 
ϕ = T (buy-and-hold) 1.00 0.67 0.66 0.65 0.65 0.65 

ϕ = 24 months --- --- --- --- 0.72 0.83 
ϕ = 12 months --- --- --- 0.74 0.85 0.88 
ϕ = 6 months --- --- 0.74 0.80 0.90 0.95 
ϕ = 3 months --- 0.94 0.96 0.98 1.00 1.00 
ϕ = 1 month 1.00 1.00 1.00 1.00 1.00 1.00 

 Recovery regime 4 
ϕ = T (buy-and-hold) 1.00 0.82 0.71 0.69 0.68 0.66 

ϕ = 24 months --- --- --- --- 0.71 0.74 
ϕ = 12 months --- --- --- 0.72 0.74 0.77 
ϕ = 6 months --- --- 0.75 0.79 0.82 0.85 
ϕ = 3 months --- 0.98 1.00 1.00 1.00 1.00 
ϕ = 1 month 1.00 1.00 1.00 1.00 1.00 1.00 

 Steady-state probabilities 
ϕ = T (buy-and-hold) 1.00 0.73 0.68 0.67 0.65 0.64 

ϕ = 24 months --- --- --- --- 0.71 0.77 
ϕ = 12 months --- --- --- 0.73 0.78 0.81 
ϕ = 6 months --- --- 0.78 0.81 0.84 0.83 
ϕ = 3 months --- 0.88 0.85 0.84 0.84 0.84 
ϕ = 1 month 1.00 0.98 0.98 0.98 0.98 0.98 
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Table 2(continued) 

Effects of Rebalancing 
 
 

Rebalancing Frequency ϕ Investment Horizon T (in months) 
B - Optimal Allocation to Long-Term Bonds 

 T=1 T=6 T=12 T=24 T=60 T=120 
 Crash regime 1 

ϕ = T (buy-and-hold) 0.00 0.34 0.29 0.19 0.12 0.08 
ϕ = 24 months --- --- --- --- 0.16 0.10 
ϕ = 12 months --- --- --- 0.21 0.17 0.11 
ϕ = 6 months --- --- 0.28 0.18 0.15 0.10 
ϕ = 3 months --- 0.18 0.16 0.13 0.11 0.05 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Slow growth regime 2 
ϕ = T (buy-and-hold) 0.00 0.32 0.34 0.19 0.14 0.08 

ϕ = 24 months --- --- --- --- 0.17 0.13 
ϕ = 12 months --- --- --- 0.20 0.14 0.01 
ϕ = 6 months --- --- 0.21 0.13 0.04 0.00 
ϕ = 3 months --- 0.05 0.13 0.04 0.00 0.00 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Bull regime 3 
ϕ = T (buy-and-hold) 0.00 0.00 0.00 0.00 0.00 0.00 

ϕ = 24 months --- --- --- --- 0.05 0.00 
ϕ = 12 months --- --- --- 0.06 0.03 0.00 
ϕ = 6 months --- --- 0.07 0.02 0.00 0.00 
ϕ = 3 months --- 0.02 0.00 0.00 0.00 0.00 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Recovery regime 4 
ϕ = T (buy-and-hold) 0.00 0.17 0.12 0.10 0.08 0.08 

ϕ = 24 months --- --- --- --- 0.01 0.01 
ϕ = 12 months --- --- --- 0.00 0.00 0.00 
ϕ = 6 months --- --- 0.00 0.00 0.00 0.00 
ϕ = 3 months --- 0.00 0.00 0.00 0.00 0.00 
ϕ = 1 month 0.00 0.00 0.00 0.00 0.00 0.00 

 Steady-state probabilities 
ϕ = T (buy-and-hold) 0.00 0.03 0.04 0.05 0.07 0.06 

ϕ = 24 months --- --- --- --- 0.10 0.12 
ϕ = 12 months --- --- --- 0.08 0.12 0.14 
ϕ = 6 months --- --- 0.07 0.10 0.16 0.17 
ϕ = 3 months --- 0.06 0.15 0.12 0.11 0.10 
ϕ = 1 month 0.00 0.02 0.02 0.02 0.02 0.02 
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Table 3 

Effect of Parameter Estimation Uncertainty on Asset Allocation 
 

This table reports confidence bands for a buy-and-hold investor’s optimal portfolio weights at different investment 
horizons, T, assuming power utility and a constant relative risk aversion coefficient of 5. Portfolio returns under regime 
switching are assumed to be generated by the model 

tst t
εμr +=  

where ),( ~]'  [ 321 tstttt N Ω= 0ε εεε  is the vector of return innovations. In the IID case, k = 1. Boldfaced blocks of cells 
indicate a portfolio weight confidence interval that fails to include the IID weight. 
 

  Investment Horizon T 
  T=1 T=6 T=24 T=48 T=72 T=96 T=120 
 A: Allocation to Small Stocks 

Mean + 1*SD 0.000 0.319 0.393 0.392 0.395 0.390 0.394 
Mean 0.000 0.173 0.230 0.228 0.228 0.225 0.226 Crash 

regime 1 Mean - 1*SD 0.000 0.028 0.067 0.063 0.061 0.060 0.058 
Mean + 1*SD 0.211 0.277 0.357 0.375 0.385 0.383 0.383 
Mean 0.061 0.127 0.197 0.212 0.217 0.218 0.217 

Slow growth 
regime 2 Mean - 1*SD 0.000 0.000 0.037 0.049 0.050 0.053 0.052 

Mean + 1*SD 0.915 0.530 0.432 0.410 0.404 0.403 0.401 
Mean 0.632 0.313 0.258 0.242 0.235 0.233 0.231 Bull 

regime 3 Mean - 1*SD 0.349 0.096 0.083 0.073 0.067 0.064 0.060 
Mean + 1*SD 1.000 0.607 0.457 0.424 0.417 0.410 0.411 
Mean 0.890 0.406 0.279 0.252 0.245 0.238 0.236 

Recovery 
regime 4 Mean - 1*SD 0.706 0.205 0.101 0.080 0.073 0.066 0.061 

Mean + 1*SD 1.000 0.573 0.447 0.418 0.407 0.405 0.401 
Mean 0.827 0.361 0.270 0.247 0.238 0.235 0.231 Steady-

state Mean - 1*SD 0.634 0.149 0.092 0.076 0.069 0.065 0.061 
 B: Allocation to Large Stocks 

Mean + 1*SD 0.050 0.290 0.497 0.553 0.573 0.579 0.590 
Mean 0.005 0.114 0.275 0.323 0.341 0.347 0.355 Crash 

regime 1 Mean - 1*SD 0.000 0.000 0.053 0.093 0.109 0.116 0.119 
Mean + 1*SD 1.000 0.709 0.629 0.616 0.613 0.611 0.613 
Mean 0.834 0.470 0.395 0.384 0.380 0.379 0.380 Slow growth 

regime 2 Mean - 1*SD 0.621 0.232 0.161 0.151 0.148 0.147 0.147 
Mean + 1*SD 0.630 0.703 0.632 0.620 0.616 0.619 0.616 
Mean 0.351 0.441 0.393 0.384 0.382 0.384 0.381 Bull 

regime 3 Mean - 1*SD 0.073 0.179 0.154 0.148 0.147 0.148 0.146 
Mean + 1*SD 0.275 0.500 0.570 0.591 0.592 0.603 0.604 
Mean 0.101 0.268 0.336 0.356 0.360 0.368 0.369 Recovery 

regime 4 Mean - 1*SD 0.000 0.039 0.102 0.122 0.128 0.132 0.135 
Mean + 1*SD 0.724 0.648 0.611 0.608 0.609 0.610 0.608 
Mean 0.174 0.406 0.386 0.381 0.380 0.378 0.380 Steady-

state Mean - 1*SD 0.195 0.145 0.135 0.137 0.139 0.139 0.140 
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Table 3- continued 

  Investment Horizon T 
  T=1 T=6 T=24 T=48 T=72 T=96 T=120 
 C: Allocation to Bonds 

Mean + 1*SD 0.033 0.481 0.406 0.375 0.363 0.360 0.356 
Mean 0.000 0.264 0.221 0.200 0.190 0.190 0.186 Crash 

regime 1 Mean - 1*SD 0.000 0.047 0.036 0.024 0.018 0.019 0.015 
Mean + 1*SD 0.229 0.383 0.359 0.348 0.345 0.343 0.343 
Mean 0.084 0.206 0.191 0.183 0.180 0.179 0.178 

Slow growth 
regime 2 Mean - 1*SD 0.000 0.028 0.025 0.019 0.015 0.014 0.012 

Mean + 1*SD 0.000 0.043 0.221 0.276 0.296 0.307 0.313 
Mean 0.000 0.010 0.095 0.130 0.143 0.151 0.156 Bull 

regime 3 Mean - 1*SD 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
Mean + 1*SD 0.037 0.401 0.371 0.357 0.350 0.346 0.347 
Mean 0.006 0.230 0.203 0.191 0.185 0.180 0.182 

Recovery 
regime 4 Mean - 1*SD 0.000 0.059 0.036 0.024 0.021 0.014 0.017 

Mean + 1*SD 0.000 0.125 0.255 0.295 0.309 0.318 0.321 
Mean 0.000 0.043 0.117 0.143 0.152 0.158 0.161 Steady-

state Mean - 1*SD 0.000 0.000 0.000 0.000 0.000 0.000 0.001 
 D: Allocation to T-bills 

Mean + 1*SD 1.000 0.607 0.489 0.453 0.442 0.438 0.433 
Mean 0.996 0.349 0.275 0.250 0.240 0.238 0.233 Crash 

regime 1 Mean - 1*SD 0.966 0.091 0.060 0.046 0.039 0.038 0.034 
Mean + 1*SD 0.083 0.391 0.408 0.413 0.415 0.416 0.418 
Mean 0.024 0.202 0.217 0.221 0.223 0.224 0.225 

Slow growth 
regime 2 Mean - 1*SD 0.000 0.012 0.027 0.030 0.031 0.032 0.032 

Mean + 1*SD 0.000 0.392 0.435 0.431 0.430 0.424 0.423 
Mean 0.000 0.225 0.249 0.240 0.237 0.229 0.229 Bull 

regime 3 Mean - 1*SD 0.000 0.059 0.064 0.049 0.044 0.035 0.035 
Mean + 1*SD 0.000 0.222 0.356 0.385 0.396 0.401 0.402 
Mean 0.000 0.090 0.178 0.198 0.207 0.211 0.211 

Recovery 
regime 4 Mean - 1*SD 0.000 0.000 0.000 0.012 0.019 0.022 0.019 

Mean + 1*SD 0.000 0.347 0.410 0.418 0.421 0.420 0.419 
Mean 0.000 0.188 0.226 0.228 0.228 0.227 0.226 Steady-

state Mean - 1*SD 0.000 0.030 0.043 0.038 0.036 0.033 0.033 
 E: Overall Allocation to Stocks (Small and Large) 

Mean + 1*SD 0.000 0.478 0.701 0.745 0.766 0.769 0.779 
Mean 0.000 0.284 0.500 0.545 0.565 0.569 0.576 Crash 

regime 1 Mean - 1*SD 0.000 0.091 0.299 0.346 0.363 0.369 0.374 
Mean + 1*SD 1.000 0.794 0.781 0.786 0.790 0.789 0.792 
Mean 0.893 0.590 0.586 0.591 0.593 0.592 0.593 

Slow growth 
regime 2 Mean - 1*SD 0.736 0.387 0.392 0.396 0.396 0.395 0.394 

Mean + 1*SD 1.000 0.925 0.836 0.816 0.810 0.814 0.809 
Mean 1.000 0.760 0.651 0.625 0.616 0.617 0.611 

Bull 
regime 3 

Mean - 1*SD 1.000 0.595 0.468 0.434 0.423 0.418 0.412 
Mean + 1*SD 1.000 0.872 0.808 0.802 0.799 0.804 0.805 
Mean 0.994 0.676 0.614 0.607 0.603 0.604 0.604 

Recovery 
regime 4 Mean - 1*SD 0.962 0.481 0.421 0.411 0.407 0.404 0.403 

Mean + 1*SD 1.000 0.926 0.839 0.817 0.809 0.808 0.807 
Mean 1.000 0.764 0.652 0.625 0.615 0.611 0.610 Steady-

state Mean - 1*SD 1.000 0.602 0.466 0.433 0.420 0.414 0.411 
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Table 4 

Real-time Out-of-Sample Performance of Predictability Models 
This table reports out-of-sample performance measures for portfolio choices under alternative return prediction models and for three investment horizons: 1, 12, 
and 120 months. The monthly return series comprise a portfolio of large stocks (ninth and tenth CRSP size decile portfolios), a portfolio of small stocks (first and 
second CRSP deciles), and 10-year bonds all in excess of the return on 30-day T-bills. The predictor is the dividend yield. For realized power utility (γ = 5), we 
report the negative of the calculated values. Investors aim at minimizing such values. In panels A and C, ‘c.i.’ stands for confidence interval. In panels B and D, 
positive differences reflect higher realized ex-post utilities for the MSIH(4,0) model. Panels A and B refer to the (pseudo) out-of-sample period, 1980:01-1999:12; 
panels C and D include the genuine out-of-sample period 2000:01-2003:12. In the table, MSIAH(k,p) denotes a k-state multivariate regime switching (MS) model, 
with shifts in intercepts (I),  covariance matrices (H), and p autoregressive (A) lags. 
  
 MSIAH(4,0) VAR(1) MSIAH(4,1) IID/Myopic Min. Variance ptf. Tangency ptf. 
 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120

 A – (Pseudo) Out-of-sample (1980:01 – 1999:12) realized power utility 
Mean 0.248 0.196 0.009 0.244 0.198 0.021 0.247 0.209 0.034 0.246 0.212 0.028 0.246 0.207 0.012 0.245 0.197 0.011 
St. deviation 0.048 0.091 0.004 0.032 0.083 0.015 0.038 0.082 0.028 0.026 0.087 0.011 0.024 0.074 0.005 0.047 0.106 0.006 
5% c.i.-lower 0.243 0.168 0.007 0.240 0.174 0.017 0.243 0.185 0.017 0.243 0.183 0.022 0.243 0.180 0.010 0.239 0.161 0.008 
5% c.i.-upper 0.255 0.225 0.011 0.248 0.223 0.025 0.252 0.233 0.051 0.249 0.241 0.034 0.249 0.231 0.015 0.251 0.231 0.014 
10% c.i.-lower 0.243 0.173 0.007 0.241 0.178 0.018 0.243 0.189 0.019 0.243 0.187 0.023 0.244 0.184 0.010 0.240 0.166 0.008 
10% c.i.-upper 0.253 0.220 0.011 0.248 0.218 0.025 0.251 0.230 0.049 0.249 0.236 0.033 0.249 0.227 0.015 0.250 0.225 0.014 

 B – 100 × Differences in out-of-sample realized power utility vs. four-state regime switching model  (1980:01 - 1999:12) 
Mean NA NA NA -0.381 0.017 1.203 -0.115 1.270 2.331 -0.104 1. 460 1.764 -0.183 0.991 0.029 -0.288 0.058 0.036 
St. deviation NA NA NA 0.930 0.602 1.408 0.438 0.511 2.435 0.326 0.353 0.077 0.393 0.402 0.028 0.423 0.057 0.033 
t-stat NA NA NA 0.410 0.116 0.854 0.262 2.489 0.957 0.319 4.115 2.306 0.466 2.479 1.049 0.681 1.023 1.070 

 C – Out-of-sample (2000:01 – 2003:12) realized power utility  
Mean 0.247 0.420 NA 0.247 0.223 NA 0.247 0.207 NA 0.250 0.208 NA 0.249 0.241 NA 0.253 0.370 NA 
St. deviation 0.046 0.236 NA 0.036 0.031 NA 0.039 0.053 NA 0.023 0.040 NA 0.018 0.034 NA 0.042 0.221 NA 
5% c.i.-lower 0.243 0.377 NA 0.240 0.209 NA 0.243 0.197 NA 0.243 0.189 NA 0.243 0.217 NA 0.239 0.298 NA 
5% c.i.-upper 0.255 0.616 NA 0.248 0.251 NA 0.252 0.220 NA 0.249 0.227 NA 0.249 0.256 NA 0.251 0.548 NA 
10% c.i.-lower 0.243 0.400 NA 0.241 0.211 NA 0.243 0.199 NA 0.243 0.192 NA 0.244 0.219 NA 0.240 0.317 NA 
10% c.i.-upper 0.253 0.602 NA 0.248 0.248 NA 0.251 0.218 NA 0.249 0.225 NA 0.249 0.252 NA 0.250 0.529 NA 

 D – 100 × Differences in out-of-sample realized power utility vs. four-state regime switching model (2000:01 - 2003:12) 
Mean NA NA NA 0.000 -0.197 NA 0.001 -0.212 NA 0.003 -0.211 NA 0.001 -0.179 NA 0.006 -0.050 NA 
St. deviation NA NA NA 0.044 0.229 NA 0.038 0.234 NA 0.038 0.210 NA 0.048 0.243 NA 0.022 0.146 NA 
t-stat NA NA NA 0.002 -0.858 NA 0.010 -0.910 NA 0.083 -1.005 NA 0.025 -0.735 NA 0.253 -0.344 NA 
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Table 5 

Comparison of Out-of-Sample Performance in Simulated Samples  
This table reports portfolio weights and measures of out-of-sample portfolio performance under three alternative return 
models, a four-state MSIH(4,0), a two-state MSIH(2,0), and a simple Gaussian IID benchmark. The statistics are 
computed over 2,000 independent, 600-month long samples drawn from the four-state regime switching model 
reported in Table 1. For each sample, the three models are estimated recursively, and portfolio weights are computed 
(for three alternative horizons) on the basis of the updated vector of parameter estimates. In particular, the statistics are 
based on averages over the (288 – T)-month long out-of-sample periods. Realized portfolio returns and utility are 
computed for the last 288-T months in each of the simulated samples. In the table, ‘10% ci-l’ and ‘10% ci-u’ indicate the 
lower and upper limits of the 10% confidence bound based on the simulated distribution of each of the statistics across 
the 2,000 independent trials. For the two-state and Gaussian IID models, boldfaced statistics indicate that they fall 
outside the 10% simulated confidence interval obtained for the four-state model. 

T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120

Mean 0.424 0.219 0.174 0.248 0.256 0.248 0.261 0.261 0.261
Small Stocks 10% ci-l 0.363 0.195 0.168 0.215 0.247 0.243 0.245 0.245 0.245

10% ci-u 0.486 0.243 0.183 0.279 0.268 0.255 0.278 0.278 0.278
Mean 0.408 0.445 0.474 0.509 0.500 0.505 0.537 0.537 0.537

Large Stocks 10% ci-l 0.351 0.414 0.464 0.456 0.473 0.497 0.513 0.513 0.513
10% ci-u 0.463 0.474 0.483 0.561 0.526 0.514 0.559 0.559 0.559
Mean 0.029 0.131 0.119 0.146 0.120 0.107 0.196 0.196 0.196

Bonds 10% ci-l 0.014 0.112 0.109 0.110 0.100 0.100 0.177 0.177 0.177
10% ci-u 0.046 0.152 0.127 0.180 0.137 0.113 0.211 0.211 0.211
Mean 0.139 0.205 0.233 0.097 0.124 0.140 0.006 0.006 0.006

1-month T-bills 10% ci-l 0.094 0.169 0.224 0.054 0.098 0.125 0.000 0.000 0.000
10% ci-u 0.181 0.244 0.239 0.129 0.137 0.156 0.059 0.059 0.059

-0.234 -0.177 -0.036 -0.245 -0.209 -0.052 -0.247 -0.259 -0.056
-0.240 -0.194 -0.130 -0.252 -0.236 -0.156 -0.253 -0.319 -0.080
-0.229 -0.158 -0.009 -0.240 -0.183 -0.013 -0.241 -0.220 -0.045

Mean 1.182 9.757 232.6 0.837 9.825 234.2 0.688 7.742 137.1
Total return (%) 10% ci-l 0.572 1.837 150.7 0.292 1.341 135.1 0.130 1.420 34.49

10% ci-u 1.791 17.68 314.5 1.383 18.31 333.4 1.247 12.42 221.7
Mean 0.162 0.123 0.209 0.111 0.122 0.198 0.069 0.062 0.098

Sharpe ratio 10% ci-l 0.152 0.074 0.072 0.099 0.057 -0.021 0.055 0.039 0.054
10% ci-u 0.173 0.176 0.314 0.122 0.191 0.443 0.089 0.084 0.129

3.360 0.846 1.016 2.182 0.300 0.412 NA NA NA
2.532 0.546 0.147 2.033 0.113 0.283 NA NA NA
4.189 1.146 2.178 2.330 0.488 0.541 NA NA NA

C - Realized portfolio returns (average over 288-T out-of-sample simulated periods)

Four-state model MSIH(4,0) Two-state model MSIH(2,0) IID/Myopic

A - Portfolio weights (average over 288 simulated out-of-sample periods)

Mean
10% ci-lower
10% ci-upper

B - Realized power utility (average over 288-T out-of-sample simulated periods)

D - Annual (%) Compensatory variation (average over 288 out-of-sample simulated periods)
Mean
10% ci-lower
10% ci-upper  
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Figure 1 

Evolution in Buy-and-Hold Investor’ Asset Allocation Weights 
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(b) Portfolio composition (12-month horizon)
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(c) Portfolio composition (10-year horizon)  
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(d) Portfolio composition under myopic IID choices  
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Figure 2 
Smoothed State Probabilities: Four-state model for Stock and Bond Returns 

The graphs plot the smoothed probabilities of regimes 1-4 for the multivariate regime switching model comprising 
returns on large and small firms and 10-year bonds all in excess of the return on 30-day T-bills. 
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Figure 3 

Optimal Buy-and-Hold Portfolio Allocation as a Function of the Investment Horizon: 
Known Initial States 
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Figure 4 

Effect of Uncertain States on Buy-and-Hold Portfolio Decisions 
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Figure 5 

Predictability from the Dividend Yield under Regime Switching: Buy-and-Hold Results 
The graphs plot the optimal allocation as a function of the investment horizon for an investor with constant relative 
risk aversion γ = 5 for six configurations of initial state probabilities: certainty of being in regimes 1-4, equal state 
probabilities, and ergodic state probabilities. In each graph, the dividend yield is set at its unconditional sample mean. 
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Figure 6 

Volatility and Sharpe Ratios as a Function of the Investment Horizon 
These graphs plot monthly volatility and Sharpe ratios of returns on each asset class under three alternative models 
(four-state, MSIH(4,0), four-state VAR(1) model with predictability from the dividend yield, MSIAH(4,1), single-state 
model with predictability from the dividend yield, VAR(1)). State probabilities and the dividend yield are set at their 
steady-state values. 
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Figure 7 

Utility Costs from Ignoring Regimes 
The graph plots the compensation (as an annualized percentage) required to persuade a buy and hold investor with 
power utility (and γ = 5) to be willing to ignore regimes in asset returns, starting from steady-state probabilities. 
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Figure 8 

90% Bootstrapped Confidence Bands for Utility Costs from Ignoring Regimes 
The graphs plot means and bootstrap confidence intervals for the compensation (as a fraction of initial wealth) required 
to persuade a buy-and-hold investor with power utility (and γ = 5) to be willing to ignore regimes in asset returns. State 
probabilities are set at their steady-state values. 
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