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Abstract

This paper provides a general equilibrium multi-stage production model
to explain the co-existence and co-movement of output- and input-inventories.
The model offers a neoclassical perspective on the propagation mechanism
of demand uncertainty. It reveals that uncertainty in demand at down-
stream can be transmitted and amplified towards upstream by inventory
investment at all stages of production via input-output linkages, leading to
a chain-multiplier effect on aggregate output and employment. The model
is capable of explaining several long-standing puzzles of the business cycle
associated with inventories.
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1. Introduction

Given the sheer magnitude of volatility in inventory investment and its dispro-
portionately large contribution to output fluctuations, it is fair to say that un-
derstanding inventory behavior constitutes the ultimate frontier of business cycle
research.1 There are many long-standing puzzles associated with inventory behav-
ior. The most prominent among them are: 1) Production is more variable than
sales; 2) Input order is more variable than input usage; and 3) Input inventories
— defined here as raw materials and work-in-progress — are more volatile than
output inventories (see Blinder, 1986, Feldstein and Auerbach, 1976, and more
recently Humphreys, Maccini and Schuh 2001). While there is no shortage in
supply of explanations for the first puzzle, the literature on resolving the second
and third puzzle is remarkably thin, despite the fact that more than two thirds
of total inventory investment in the US is contributed by input inventories (e.g.,
see Blinder and Maccini, 1991).
These three prominent features of production and inventory behavior are puz-

zling because we usually think that a firm has not only an incentive to smooth
production in order to reduce production costs when facing uncertainty in out-
put sales, but also an incentive to smooth input production/orders when factor-
demand/input-usage is also uncertain. Furthermore, because output inventories
are presumably more liquid and hence more effective than input inventories in
meeting final demand for finished goods, it may not be profit maximizing for
firms to keep most inventories in the form of raw materials and work-in-progress
rather than in the form of finished output.
This paper conjectures that time lags involved in production/delivery at each

stage of the input-output chain of production could be the prime explanation
for these puzzles. In any economy the ultimate goal of production is always
to meet final consumption demand, regardless of how many intermediate stages
there are or how “round-about” the production process is. Hence, uncertainty
in final consumption demand at the downstream is presumably one of the most
fundamental uncertainties affecting firms and industries at all stages of production
in the economy. Because of production/delivery lags, however, output must be
produced in advance before demand uncertainty is resolved and input materials

1Inventory investment accounts for only less than one percent of GNP in mean yet the drop
in inventory investment has accounted for 87 percent of the drop in GNP during the average
postwar recession in the United States (e.g., see Blinder and Maccini, 1991).
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must be ordered in advance before production can take place. To avoid stockouts,
it is conceivable that profit-seeking firms opt to hold inventories at each stage of
the production process in order to fully guard against demand uncertainty. This
results in a motive for inventory investment in both output and input materials.
Such precautionary inventory investment may cause not only production to be
more volatile than sales on the output side, but also the order of materials to
be more volatile than the usage on the input side. Hence, uncertainty in final
demand at the downstream is transmitted backwards to upstream both within
and outside firms via the multi-stage fabrication and input-output linkage. And
more importantly, during the transmission, the uncertainty in demand may be
even magnified repeatedly at each link of the input-output production chain, as
the input demand at downstream is also the output supply at upstream.
I set up a general-equilibrium, rational-expectations, multi-stage-fabrication

model of production to put this conjecture to scrutiny. I show that with produc-
tion (or delivery) lags at each stage of production, uncertainty in demand at the
downstream indeed generates a motive for holding both output and input inven-
tories by all upstream firms in order to avoid possible stockouts. Such a motive
is sufficient for explaining the existence of both finished-goods inventories and
intermediate-goods inventories at all stages of production observed in the actual
economy. Furthermore, if shocks to final consumption demand at the downstream
are serially correlated, then output production/input ordering become more vari-
able than output sales/input usage, which causes the volatility of economic ac-
tivities to increase towards upstream firms. Consequently, the variance in final
consumption demand is not only propagated backwards to upstream industries via
input-output linkages, but also amplified repeatedly along the production chain.
This explains why in the US the variance of production at upstream industries is
usually about 50 percent larger than the variance of production at downstream
industries.2

It has long been well known that input inventories are far larger and more
volatile than finished goods inventories (e.g., see Feldstein and Auerbach, 1976).
Despite this, the vast bulk of theoretical work in the inventory literature has

2For example, according to monthly US production data for manufacturing sector (1960:01
- 1995:12), the variance of growth rate of production for raw materials is 0.00014 and that for
intermediate goods is 0.00009, implying a variance ratio of 1.6. Similarly, according to monthly
US data for housing sector (1968:01 - 1996:08), the variance of housing starts in total units is
130321 and the variance of housing completion in total units is 80770, implying a variance ratio
of 1.6.
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focused almost exclusively on finished goods inventories.3 As a consequence of
neglecting input inventories, the role of inventories in amplifying and propagating
the business cycle has not been well understood. This criticism of the inventory
literature has also been raised recently by Humphreys, Maccini and Schuh (2001).
Following the analysis of Humphreys, Maccini and Schuh (2001), this pa-

per takes a step further towards understanding and modeling input- and output-
inventory behavior simultaneously in general equilibrium. By extending the par-
tial equilibrium, single-stage fabrication inventory model of Reagan (1982), Able
(1985), and Kahn (1987) to a general equilibrium, multi-stage fabrication model,
which features separate decisions to order, use, and stock input materials and to
produce, sell, and store finished goods, this paper provides a theoretical foun-
dation for the important empirical works of Feldstein and Auerbach (1976) and
Ramey (1989), and especially the more recent work of Humphreys, Maccini and
Schuh (2001). In doing so, it offers not only a model of input-output inventories,
but also a neoclassical perspective on the theory of aggregate demand with respect
to the propagation of the business cycle. The general equilibrium approach takes
into account any potential feedbacks between inventories and competitive market
prices, hence it can avoid possible distortions in production and inventory behav-
ior that may arise in partial equilibrium models. The neoclassical model reveals
that small disturbances to final consumption demand can generate potentially
large aggregate fluctuations in output and employment via a chain-multiplier ef-
fect induced by precautionary inventory investment. Inventory investment can
thus appear to be highly destabilizing. However, since the multiplier mechanism
reflects optimal responses of a perfectly functioning market economy towards de-
mand uncertainty, it suggests that government interventions attempting to reduce
the volatility of aggregate output via monetary or fiscal policies may prove counter
productive when such policies (e.g., the Taylor rule) are based solely on output
volatility without looking into the causes behind.4

3See, e.g., Abel (1985), Amihud and Mendelson (1983), Bils and Kahn (2000), Blinder (1986),
Blinder and Maccini (1991), Kahn (1987), Karlin and Carr (1962), Maccini and Zabel (1996),
Reagan (1982), and Scheinkman and Schechtman (1983), among others. This is also true for
much empirical work on inventories, most notably, see Blanchard (1983), Eichenbaum (1984,
1989), Ramey (1991) and West (1986).

4This, however, by no means implies that in the real world all government interventions are
necessarily undesirable since market failures may exacerbate the neoclassical multiplier effect of
inventories. But the neoclassical theory does show the potential danger of policy interventions
based solely on output volatilities.
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The rest of the paper is organized as follows. Section 2 describes the model.
Section 3 derives equilibrium decision rules. Section 4 analyzes the empirical
implications of the model for inventory fluctuations and the business cycle. Section
5 concludes the paper.

2. A General Equilibrium Model of Input and Output In-
ventories

Consider an economy similar to that described by Humphreys, Maccini, and Schuh
(2001), in which most firms produce goods in stages. A typical firm orders input
materials from an upstream supplier and uses them to produce intermediate goods,
which are combined with other factor inputs to produce finished goods. Many
firms sell their finished goods to downstream firms as input materials. Figure
1 presents a schematic illustration of the model (which is a near replication of
the diagram in Humphreys, Maccini, and Schuh, 2001). The diagram focuses on
flows through the multi-stage-production process employed by a social planner to
transform raw materials (or labor) into intermediate goods inventories (or work-
in-progress) and then further into output inventories (finished goods) to meet
final demand of consumer (or another downstream firm). More precisely, at the
beginning of a period, say t − 2, based on expected future demand for finished
goods (c) the planner orders raw materials (n) in order to produce intermediate
goods (y2). Since production/delivery takes one period, y2 is not available until
period t − 1. In this next period, based on updated information about final
demand (c) the planner decides how much of the intermediate goods to be kept as
inventories (s2) and how much of them (in the amount m) to be combined with
other factor inputs (such as l) to produce finished goods (y1). Again due to time
lags in production/delivery, y1 is not available until period t. In this period, the
uncertainty in final demand for finished goods (c) is resolved, the planner then
decides on how much of the finished goods to be kept as output inventories (s1)
for future consumption purpose and how much to be consumed in period t.
This economy can be easily decentralized or mapped to a competitive market

economy in which consumers choose labor supply and final demand given market
prices for output and factor payments, and downstream firms choose the order,
usage, and storage of intermediated goods, as well as production and inventory
investment in finished goods given expected prices of finished goods and input
materials; and upstream suppliers choose production of intermediate goods and
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demand for raw materials given expected output price for intermediate goods and
input price for raw materials. More stages of production can be added if needed.
In this paper I adopt the social planner version of the model. By the welfare

theorems, competitive equilibrium interpretations will also be applied throughout
the paper to enhance understanding. In the model a social planner chooses se-
quentially first the order of raw materials (n) to produce intermediate goods (y2)
two periods in advance based on expected consumption (Et−2ct), knowing that
the intermediate goods is not available for further processing until period t − 1.
In the next period (t − 1) the planner than decides how much of the intermedi-
ate goods to be kept as inventories and how much to be combined with labor to
produce finished goods (y1) based on updated information regarding the expected
consumption, Et−1ct. The resource constraint for intermediate goods is given by

mt + s2t = (1− δ2)s2t−1 + y2t,

where δ2 is the depreciation rate for intermediate goods inventories (s2). Notice
that y2t is a predetermined variable when decisions for {mt, s2t} are being made
in period t− 1.5 In period t, based on realized preference shocks (θ) the planner
chooses how much of the output (y1) is to be consumed and how much is to be
kept as inventories for future consumption. Again due to a one-period produc-
tion/delivery lag, the finished goods output (y1) is not available for consumption
until period t. The resource constraint for finished goods is then given by

ct + s1t = (1− δ1)s1t−1 + y1t,

where δ1 is the depreciation rate for finished goods inventories and y1t is prede-
termined in period t − 1. The production technologies for finished goods and
intermediate goods are given by

y1t = f(mt, lt)

and
y2t = g(nt)

5Denoting mt rather than mt−1 as the usage of intermediate goods that is determined in
period t − 1 is just a notation choice. The same rule applies to other variables in the paper.
Thus, variables with time subscript t do not necessarily imply that they are choice variables in
time period t.
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respectively.6 The sequential optimization problem for the planner is then to solve

max
{nt}

E−2

(
max

{mt,lt,s2t}
E−1

(
max
{ct,s1t}

E0

( ∞X
t=0

βt [u(ct, θt)− wlt − ant]
)))

,

subject to
ct + s1t = f(mt, lt) + (1− δ1)s1t−1

mt + s2t = g(nt) + (1− δ2)s2t−1

for all t and two nonnegativity constraints on final-goods inventories and intermediate-
goods inventories:

s1t ≥ 0,
s2t ≥ 0.

The operator Ej in the objective function denotes expectations based on informa-
tion available in period j, and θ in the utility function represents random shifts in
consumption demand (preference shocks) and it is assumed to follows a stationary
AR(1) process:

θt = γ + ρθt−1 + εt,

where ε is i.i.d with zero mean and variance σ2ε .
In order to yield simple closed-form solutions, it is assumed that the utility

function on consumption goods is quadratic,7

u(c, θ) = θc− 1
2
c2,

the marginal costs for labor (w) and raw materials (a) are constant, and that the
two production functions satisfy constant returns to scale:

g(n) = n

f(m, l) = min {m, l} .
6Since the crucial element in generating the results of the paper is time lag between the

decision of input (e.g., nt) and the availability of the output (e.g., y2t), it does not matter
whether we introduce the time lag in the resource constraint as a delivery lag or in the production
function as a production lag.

7This assumption is not necessary for closed-form solutions but it simplifies expressions.
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That is, one unit of raw materials (labor n) can be transformed into one unit
of intermediate goods at the marginal cost of a, and one unit of intermediate
goods (m) can be combined with one unit of labor (l) to be transformed into one
unit of consumption goods at the marginal cost of w+ λm, where λm denotes the
shadow price (Lagrangian multiplier) of intermediate goods. The shadow price
(Lagrangian multiplier) of final goods is simply the marginal utility of consump-
tion, λc = θ − c. For simplicity without loss of generality, I assume that the
depreciation rates for both types of inventory goods are zero, δ1 = δ2 = 0. Notice
that in equilibrium both forms of inventories may coexist, because without know-
ing precisely the optimal final demand of consumption goods the planner may
opt not to transform all the intermediate goods inventories into finished goods
inventories if the expected demand for finished goods next period is low. This can
postpone the labor cost of producing finished goods.
The first order conditions for optimal plans for the variables {c, s1,m, s2, n}

are given respectively by (note: cost minimization by downstream firms implies
l = m):

θt − ct = λct (1)

λct = βEtλ
c
t+1 + πct (2)

w + λmt = Et−1λ
c
t (3)

λmt = βEt−1λmt+1 + πmt (4)

a = Et−2λmt (5)

plus two market clearing conditions,

ct + s1t = mt + s1t−1 (6)

mt + s2t = nt + s2t−1

and two complementary slackness (Kuhn-Tucker) conditions associated with the
nonnegativity constraints on inventories,

πcts1t = 0 (7)

πmt s2t = 0.

Equation (1) says that the optimal consumption level is chosen at the point
where the marginal utility of consumption equals its marginal cost (the shadow
price of finished goods). Equation (2) says that the optimal inventory holding of

9



finished goods is chosen at the point such that the cost of obtaining one extra unit
of inventory (the shadow price of finished goods) equals the discounted benefit
of having one extra unit of inventory available next period (βEtλ

c
t+1) plus the

value gained by relaxing the slackness constraint (πc). Equation (3) says that
the optimal usage of intermediate goods (i.e., the production of finished goods)
is chosen, based on information available in period t− 1, such that the marginal
cost of production (w + λmt ) — including both labor and input material costs —
equals the expected value of marginal product (Et−1λct). Notice that the value
of finished goods (λct) is not known in period t − 1 when decision for finished
goods production is being made. Equation (4) says that the optimal level of
intermediate goods inventory is chosen such that the cost of obtaining one extra
unit of intermediate-goods inventory (λm) equals the discounted benefit of having
one extra unit of such inventory available next period (βEt−1λmt+1) plus the value
gained by relaxing the slackness constraint (πm). Note that the shadow value
of intermediate goods (λmt ) is known in period t − 1. Equation (5) says that the
optimal level of production for intermediate goods is chosen based on information
in period t − 2 at the point so that the marginal input cost of raw materials (a)
equals the expected value of marginal product (Et−2λmt ).
A sequential equilibrium in the model is defined as sequences of a set of decision

rules, {ct, s1t,mt, s2t, nt, y1t, y2t, lt}∞t=0 , such that equations (1)-(7) are satisfied.
Denoting Ωt as the information set for period t, the equilibrium decision rules of
the model take the following form:

nt = n(Ωt−2), y2t = y2(Ωt−2),mt = m(Ωt−1), lt = l(Ωt−1),
y1t = y1(Ωt−1), s2t = s2(Ωt−1), ct = c(Ωt), s1t = s1(Ωt).

Clearly, although all variables here have time subscript t, some of them may be
functions of information sets earlier than t and hence are state variables rather
than controls in period t. In particular, to avoid confusion in understanding
the resource constraint (6) and the form of decision rules, notice again that the
assumption of production/delivery lags for intermediate goods and finished goods
are reflected by the fact that intermediate goods output y2t is determined in period
t− 2 but is available as input materials for producing finished goods output (mt)
only in period t − 1, hence y2t is a state variable in period t − 1; and finished
goods output y1t is determine in period t−1 but is available for consumption only
in period t, hence {mt, lt, y1t} are state variables in period t. The expectation
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operators and information sets in the first order conditions also reflect this fact.8

3. Deriving Equilibrium Decision Rules

Given output price (λct) and the availability of finished goods (y1t+ s1t−1) as well
as the realized demand shocks (θ) at the beginning of period t, the planner chooses
consumption (ct) and inventory holdings (s1t) to maximize utility. Consider two
possible cases:
Case A1. The demand shock is below “normal”, hence the existing supply

(y1t + s1t−1) is sufficient to meet the utility maximizing level of consumption
demand. In this case, we have s1t ≥ 0 and πct = 0. Equation (2) implies that the
shadow price of finished goods is a constant, λct = λ̄, implying that goods price
is endogenously downward sticky when inventories are allowed.9 The intuition
for this result is straightforward. From the point of view of the representative
agent, a low θ implies a low marginal utility of consumption. Hence it is optimal
not to consume now but to hold the excess supply as inventories so as to be
able to consume more in the future when θ maybe high. Translating this into
the language of a competitive market economy, this implies that when demand is
low, although firms can potentially dump all excess supply (inventory holdings)
in the market to push down equilibrium price, this is not profit maximizing since
inventories would be sold at equilibrium price below marginal cost. Hence it is
optimal not to sell excess supply but to hold them into the future when market

8An alternative way of modeling the multi-stage fabrication process with production/delivery
lags is to assume that the social planner solves

max
{ct,lt,nt,s1t,s2t}

E0

( ∞X
t=0

βt [u(ct, θt)− wlt − ant]
)

subject to
ct + s1t = s1t−1 + y1(mt−1, lt−1)

mt−1 + s2t−1 = s2t−2 + y2(nt−2)

where the production lags are taken into account in the production functions, y1t =
y1(mt−1, lt−1), y2t = y2(nt−1), rather than in the information sets of the objective function
and the decision rules. The solutions are the same nonetheless except with some changes in
notations.

9See Samuelson (1971) and Deaton and Laroque (1996) for a similar result in a slightly
different context. Also see Reagan (1982).
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price or demand becomes high. This results in equilibrium market price being
not responsive to changes in demand when demand lies below certain threshold
level (as inventories effectively render the supply curve perfectly elastic), offering
a plausible explanation for price stickiness (see Blinder, 1982, for more discussions
and references therein on this point).
Equation (1) then implies that the optimal consumption level is given by

ct = θt − λ̄,

and equation (6) implies that the optimal level of inventory holdings is given by

s1t = y1t + s1t−1 − θt + λ̄.

Since s1t ≥ 0, the threshold preference shock determining that the economy is in
case A1 is then given by y1t + s1t−1 − θt + λ̄ ≥ 0 or equivalently, by

θt ≤ y1t + s1t−1 + λ̄.

Case B1. The demand shock is above “normal”, and the existing goods supply
(y1t+ s1t−1) falls short in meeting the consumption demand. In this case we have
s1t = 0 and πct > 0. The optimal consumption policy is then to consume the
entire stock given by the right-hand side of equation (6),

ct = y1t + s1t−1.

Notice that the probability distribution of case A1 and case B1 (i.e., the prob-
ability of stocking out in period t) depends not only on demand shocks but also
on the supply (production) level of finished goods (y1) determined in period t−1.
To choose y1t optimally in period t − 1 without knowing the demand shock in
period t, equation (3) shows that y1t should be chosen such that the marginal cost
of production (labor cost plus the shadow price of intermediate goods, w + λmt )
equals the expected next period value of the output (the shadow price), Et−1λct .
Denoting [α, ᾱ] as the support of the innovation in demand (ε) and denoting

zt ≡ Et−1s1t = y1t + s1t−1 −
¡
Et−1θt − λ̄

¢
as the optimal target level of inventory holdings such that the firm will stock out
only if ε ≥ z, then the expected price for finished goods can be expanded into two
terms,

Et−1λct =
Z z

α

λ̄f(ε)dε+

Z ᾱ

z

(θt − y1t − s1t−1) f(ε)dε,
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where λc = λ̄ with probability
R z
α
f(ε)dε if there is no stockout (i.e., case A1), and

λc = θ − c with probability R ᾱ

z
f(ε)dε if there is a stockout (i.e., case B1). Note

in the latter case optimal consumption is determined by ct = y1t + s1t−1. Given
the law of motion for the preference shocks, θt = Et−1θt + εt, equation (3) then
becomes

w + λmt = λ̄

Z z

α

f(ε)dε+ (Et−1θt − y1t − s1t−1)| {z }
λ̄−z

Z ᾱ

z

f(ε)dε+

Z ᾱ

z

εtf(ε)dε(8)

= λ̄− z
Z ᾱ

z

f(ε)dε+

Z ᾱ

z

εtf(ε)dε

≡ Γ(zt),

where Γ() is a nonlinear but monotonically decreasing function of z.10 Since z is
proportional to y1 by definition, the higher y1, the less likely there is a stockout in
period t, given expected demand Et−1θt. Thus equation (8) implicitly determines
the optimal level of final goods production, y1t, in period t− 1.
Turning to the left-hand side of equation (8), the price of intermediate goods

(λm) depends on the tightness of the intermediate goods market. Hence zt is time
dependent if λmt is. There are two cases to consider for the possible values of λ

m:
Case A2. The demand for intermediate goods (y1) is below “normal”. In this

case we have s2t ≥ 0 and πmt = 0. Hence equation (4) implies that intermediate
goods price is a constant,

λmt = βa,

where the right side is derived based on equation (5). The rationale for this
endogenously constant (sticky) price when demand is below a threshold level
is similar to that discussed above regarding the finished goods price λc. The

10To see this, differentiating Γ(z) with respect to z gives,

∂Γ

∂z
= −

Z ᾱ

z

f(ε)dε+ zf(z)− zf(z) < 0.

Also note that λ̄ = β(w + βa) (see proposition 3.3 for proof) and λm ≥ βa, hence

Γ(ᾱ) = λ̄ < w + λm < λ̄− α = Γ(α),

where the lower support, α < 0, is an arbitrarily negative number. This implies that the solution
for a cut-off value z exists and is unique.
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interpretation for βa is, in case there is no stockout, the firm gets to save on
the marginal cost of production next period, and the discounted value for this is
precisely βa. In this case, equation (8) implies that the optimal target inventory
level zt based on period t−1 information is also a constant: zt = k, where k solves
Γ(k) = w+βa. This implies that the optimal demand for intermediate goods (y1)
is determined by the equation,

k = y1t + s1t−1 − Et−1θt + λ̄,

or equivalently,
y1t =

¡
Et−1θt − λ̄

¢
+ (k − s1t−1). (9)

Hence, the optimal demand of intermediate goods by a downstream (finished-
goods producing) firm is characterized by a policy that specifies a constant target
level for finished-goods inventory holdings (k = Et−1s1t) or a target level of inven-
tory investment (k − s1t−1), such that orders (purchases) of intermediate goods
move one-for-one with expected consumption demand (Et−1θt− λ̄) given the tar-
get inventory investment level (k − s1t−1), provided that we are in case A2 (i.e.,
provided there is no stockout in the intermediate goods market: s2t ≥ 0). Using
equation (7), the requirement s2t ≥ 0 implies that the threshold level of expected
demand that determines the probability of stockout in the intermediate goods
market is given by,

y2t + s2t−1 − y1t ≥ 0,
or equivalently, by

Et−1θt − λ̄ ≤ y2t + s2t−1 − (k − s1t−1),
where we have substituted out y1t using the optimal policy (9). That is, if optimal
expected demand for finished goods (which equals consumption demand, Et−1ct =
Et−1θt− λ̄, plus inventory investment demand, k−s1t−1) is less than the potential
supply of finished goods (which equals the total supply of intermediate goods,
y2t + s2t−1), then some intermediate goods should be kept as inventories (i.e.,
s2t ≥ 0) and the optimal volume of orders (usages) for intermediate goods is
characterized by the policy (9). Since demand equals supply in equilibrium, policy
(9) is also the policy for production of finished goods (y1 = f(m, l)) given expected
demand for finished goods.
Case B2. The demand for intermediate goods is above “normal”. In this case,

the supply of intermediate goods cannot meet its demand. Hence, s2t = 0 and
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πmt > 0, implying that there is a stockout in intermediate goods. Hence, the
optimal volume of orders for intermediate goods in equilibrium is simply

y1t = y2t + s2t−1.

In this case, the tightness in the intermediate goods market pushes goods price
upwards, so that λmt = βa+πmt > βa. Clearly, whether the economy is in case A2
or case B2 depends not only on expected demand shock in period t− 1 (Et−1θt),
but also on the availability (production) of intermediate goods (y2t+s2t−1), which
is determined earlier in history (period t− 2).
To determine the optimal supply of intermediate goods (y2) and the optimal

orders for raw materials (n) in period t− 2 based on expected demand for inter-
mediate goods, the planner needs to compute the total demand for intermediate
goods (= input demand as factors of production by upstream firms plus inventory
investment demand for intermediate goods). Equation (5) shows that y2t should be
chosen such that the marginal cost of production, a, equals the expected next pe-
riod value of marginal product (the shadow price of intermediate goods), Et−2λmt .
Since λm depends on the tightness of the intermediate goods market (as discussed
above under case A2 and case B2), there are two possibilities to consider. In the
case A2, λ

m = βa. In the case B2, λ
m = Et−1λc − w = Et−1(θt − ct) − w (by

equations 3 and 1).
Denote

ζt ≡ Et−2s2t
= y2t + s2t−1− Et−2(k − s1t−1)| {z }

0

−(Et−2θt − λ̄)

= y2t + s2t−1 − (Et−2θt − λ̄)

as the optimal target level of inventory holdings for intermediate goods such that
the firm stocks out if and only if εt−1 ≥ ζ.11 In equation (5), the expected price
of intermediate goods based on information available in period t− 2 can then be
expanded into two terms,

a = Et−2λmt =
Z ζ

α

βaf(ε)dε+

Z ᾱ

ζ

(Et−1θt −Et−1ct − w) f(ε)dε, (10)

11Note that in the above expression, the equilibrium concept, Et−2s1t−1 = Et−1s1t = k, is
applied because the optimal supply of intermediate goods (y2) in any period should always be
chosen such that not only does intermediate goods inventory level meet its target but also does
the finished goods inventory level (whose expected target is k in any period as shown previously).
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where the first term represents the probability of case A2 and the second rep-
resents the probability of case B2. Equation (10) implicitly determines ζt and
consequently the optimal production policy for y2. The following proposition
shows that the optimal solution for ζt is a constant.

Proposition 3.1. The optimal target for intermediate goods inventory stock is
a constant, ζt = ek.
Proof. See Appendix 001.¥
Hence by the definition of ζ we have

y2t =
¡
Et−2θt − λ̄

¢
+ (ek − s2t−1). (11)

Equation (11) says that in equilibrium the optimal production plan for interme-
diate goods (y2) is to meet the expected consumption demand (Et−2θt − λ̄) plus

a target level for inventory investment in intermediate goods (ek − s2t−1). Notice
that this is very similar to the policy of choosing finished goods production (y1t)
in equation (9) except in this case the possibility of a stockout in the raw material
market is not considered here in the model (extending the model to include such
a possibility is straightforward).

Proposition 3.2. The optimal target for intermediate goods inventories is higher
than that for finished goods inventories,ek > k.
Proof. See Appendix 002.¥
The intuition behind proposition 2 can be understood as follows. The proba-

bility of a stockout in period t in the final consumption goods market is affected
by the supply of finished goods (y1t = f(m, l)) determined in period t− 1, which
in turn is affected by the demand and supply of intermediate goods as well as
by the demand and supply of raw materials (y2t = g(n)) in the primary goods
market determined in period t− 2. Hence, in a multi-stage production economy
equilibrium consumption depends ultimately on the production decisions made
by the most remote upstream firms at the start of the production chain which
supplies intermediate goods to downstream firms. However, because stocking out
and holding inventories are both costly, in order to determine optimally how much
to produce at the upstream, firms must form correct expectations on final demand
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facing the most remote downstream. The longer the chain of production (i.e., the
larger the number of production stages), the harder it is to forecast final demand
at downstream, hence the more precautionary inventory investment it is needed
in order to avoid possible stockouts.

Proposition 3.3. The equilibrium decision rules for consumption (c), finished
goods inventory holding (s1), finished goods production (y1) - which also equals
equilibrium usage of intermediate goods (m), intermediate goods production (y2)
— which also equals equilibrium demand of raw materials (n), and intermediate
goods inventory holding (s2) are given respectively by:

s1t =

 k − εt ; if εt ≤ k & εt−1 ≤ ekek − εt − ρεt−1 ; if εt ≤ k & εt−1 > ek
0 ; if εt > k

ct =


Et−1θt − λ̄+ εt ; if εt ≤ k
Et−1θt − λ̄+ k ; if εt > k & εt−1 ≤ ek
Et−2θt − λ̄+ ek ; if εt > k & εt−1 > ek

y1t =


Et−1θt − λ̄+ εt−1 ; if εt−1 ≤ k & εt−2 ≤ ek
Et−1θt − λ̄+ k − ek + εt−1 + ρεt−2 ; if εt−1 ≤ k & εt−2 > ek
Et−1θt − λ̄+ k ; if k < εt−1 ≤ ek
Et−2θt − λ̄+ ek ; if εt−1 > ek

s2t =


ek − εt−1 − ρεt−2 ; if εt−1 ≤ k & εt−2 ≤ ek
2ek − k − (1 + ρ)εt−1 − ρεt−2 ; if εt−1 ≤ k & εt−2 > ekek − k − ρεt−1 ; if k < εt−1 ≤ ek
0 ; if εt−1 > k

y2t =


Et−2θt − λ̄+ εt−2 + ρεt−3 ; if εt−2 ≤ k & εt−3 ≤ ek
Et−2θt − λ̄+ k − ek + (1 + ρ)εt−2 + ρεt−3 ; if εt−2 ≤ k & εt−3 > ek
Et−2θt − λ̄+ k + ρεt−2 ; if k < εt−2 ≤ ek
Et−2θt − λ̄+ ek ; if εt−2 > ek

where λ̄ = β(w + βa).

Proof. See Appendix 003.¥

17



The interpretation for λ̄ = β(w + βa) is reasonably straightforward. Given
that the slackness constraint for finished goods does not bind in the current period
(hence the slackness constraint for intermediate goods will not bind in the next
period according to proposition 3.2), the expected value of carrying one extra unit
of finished goods inventory into the next period is determined by two terms: first,
it can save on the labor cost of production next period (w); second, it can save
on the intermediate goods used in production whose expected value next period
equals the discounted marginal cost of raw materials (βa) given that the slackness
constraint on intermediate goods does not bind next period. The present value
of this compounded marginal cost is then β(w + βa). Hence λ̄ is simply the
competitive price of finished goods when the economy has inventories.

4. Understanding Inventory Fluctuations

The following propositions characterize some important implications of the model
for inventory fluctuations. To fix concepts, note that for finished goods sector,
the production is y1t and the sales are ct; for intermediate goods sector, the usage
is mt(= y1t), and the orders are y2t (note that the one period production time for
transforming n into y2 can also be interpreted as a delivery time during which
n units of goods are delivered from an upstream firm to an intermediate-goods
producing firm which can produce finished goods instantaneously). Since we do
not consider inventories of raw materials (n) in this model, the usage in n equals
the orders of n. Extending the model to a 3-stage-fabrication economy to allow
for raw material inventories is straightforward. To facilitate the proofs, we denote
P ≡ Pr [εt ≤ k] and eP ≡ Pr[εt ≤ ek]. Clearly, eP > P since ek > k.
Proposition 4.1. The variance of output exceeds the variance of sales for fin-
ished goods, and the variance of input ordering exceeds the variance of input
usage for intermediate goods, provided that demand shocks are positively auto-
correlated.

Proof. See Appendix 004.¥
The intuition for this proposition is reasonably straightforward. If we can

understand why production (y1) is more variable than sales (c), then we can also
understand why orders (y2) are more variable than usages (y1), because usages
are like demand (sales) and orders are equivalent to supply (production).
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Since optimal production under demand uncertainty is to meet expected sales
plus the target inventory investment, output will respond to an innovation in
sales by more than one-for-one. This is because a positive demand shock has
two effects: it reduces inventories one-for-one, and it increases expected demand.
The first effect alone would make production exactly as volatile as sales in order
to replenish the inventory stock; the second effect further increases production if
demand shocks are serially correlated (ρ > 0) so that the expected next period
shock is strictly positive. This important insight has already been provided by
Kahn (1987) using a single-stage production partial equilibrium model of output
inventories. Here it is shown that it continues to hold in a general equilibrium
multi-stage production model.
Since production of finished goods (y1) requires intermediate goods (m) as

input (y1 = f(m, l)), the volatility in sales at the very bottom of the production
chain is translated into volatility in production (σ2y1), which in turn is translated
into volatility in sales (σ2m) from the upstream firms which supply intermediate
goods to downstream as inputs. The transmission and amplification of uncertainty
continues until the most remote upstream firms are reached. Hence the variance of
production/orders exceeds the variance of sales/usages at all stages of production
and the variances keep increasing along the chain of production towards upstream
firms.
This chain-multiplier effect thus explains why in the US production of raw ma-

terials at upstream firms is usually about 50 percent more volatile than production
of finished goods at downstream firms.

Proposition 4.2. Productions are positively correlated across all stages of fab-
rication.

Proof. See Appendix 005.¥
This proposition simply explains a well known phenomenon of sectorial co-

movements observed in the US economy. In the existing RBC literature, such
comovements are explained by aggregate technology shocks (see Hornstein, 2000,
for detailed discussions on why sectorial technology shocks cannot explain such
comovements). Here is it is shown that such comovements may be explained also
by demand shocks to the downstream production sector.

Proposition 4.3. Input inventories are more volatile than output inventories.
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Proof. See Appendix 006.¥
The puzzle that inventories of materials and good-in-progress are significantly

more volatile than inventories of finished goods was first documented by Feldstein
and Auerbach (1976), but it has never been explained in the literature. The multi-
stage production model offers a clear-cut explanation for this puzzle. The reason
for the volatility difference between the two types of inventories is that uncertainty
in final demand gets transmitted and amplified along the chain of production
towards upstream. Hence inventories held by upstream firms (i.e., intermediate-
goods inventories) are more volatile than inventories held by downstream firms
(i.e., finished-goods inventories) due to the chain-multiplier effect.

5. Conclusion

Due to lack of models that can feature both output- and input-inventories si-
multaneously, several well known puzzles pertaining to inventory fluctuations and
the business cycle have not been well explained by dynamic optimization theory.
By presenting a general equilibrium, multi-stage production model of inventories
with separate decisions to order, use, and stock input materials and to produce,
sell, and store finished output, this paper offers not only a model of input-output
inventories but also a neoclassical perspective on the theory of aggregate demand.
It shows that due to production/delivery lags, firms opt to hold both output-
and input-inventories so as to guard against demand uncertainty at all stages of
production. As a result, not only is production more volatile than sales but also
input-ordering more volatile than input-usage, giving rise to a chain-multiplier
mechanism that propagates and amplifies demand shocks at downstream towards
upstream via input-output linkages. This multiplier effect induced by precaution-
ary inventory investment at each production stage is shown to be able to explain
several long-standing puzzles of the business cycle documented in the inventory
literature.
Since the chain-multiplier reflects nothing more than optimal responses of

a perfectly functioning market economy towards demand uncertainty, interven-
tionary policies attempting to reduce aggregate output and employment volatil-
ities via demand management may prove counter-productive, unless the policies
can be targeted specifically at reducing demand uncertainty or shortening the
time lags involved in firms’ production/delivery.
The model may be extended to explain durable goods inventories and sea-
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sonal cycles in production and inventories. It is well know that the durable goods
sector is far more volatile than the nondurable goods sector and that seasonal
movements in production and inventories are much larger than business-cycle fre-
quency movements. These stylized facts have not been well explained by theories.
Clearly, durability of consumption goods and seasonal demand at Christmas can
only be modeled through preferences by making demand endogenous. The general
equilibrium inventory model with preference shifts outlined in this paper provides
a suitable framework for addressing these issues in the future.
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Appendix 001 (proof for proposition 3.1):
Note that

Et−1(θt − ct) =
Z k

α

λ̄f(ε)dε+

Z ᾱ

k

(θt − y1t − s1t−1)f(ε)dε.

We can rewrite (10) as

a =

Z ζ

α

βaf(ε)dε+

Z ᾱ

ζ

Z k

α

λ̄f(ε)dε+

Z ᾱ

k

(θt− y1t|{z}
y2t+s2t−1

−s1t−1)f(ε)dε− w
 f(ε)dε

=

Z ζ

α

βaf(ε)dε+

Z ᾱ

ζ

λ̄f(ε)dε

+

Z ᾱ

ζ

µZ ᾱ

k

(θt − y2t − s2t−1 − s1t−1 − λ̄)f(ε)dε

¶
f(ε)dε− w

Z ᾱ

ζ

f(ε)dε

where y1t = y2t + s2t−1 since s2t = 0 if εt−1 > ζ. Assuming that ζ > k (see
proposition 3.2 for a confirmation of this assumption), hence εt−1 > ζ implies
εt−1 > k, which in turn implies s1t−1 = 0̇. Then conditioned on εt−1 > ζ, the
third term in the above equation becomes,Z ᾱ

ζ

Z ᾱ

k

( θt|{z}
Et−2θt+εt+ρεt−1

−y2t − s2t−1− s1t−1|{z}
0

−λ̄)f(ε)dε
 f(ε)dε

=

Z ᾱ

ζ

¡Et−2θt − y2t − s2t−1 − λ̄
¢| {z }

−ζ

Z ᾱ

k

f(ε)dε

 f(ε)dε+ Z ᾱ

ζ

·Z ᾱ

k

(εt + ρεt−1) f(ε)dε
¸
f(ε)dε

= −ζ
Z ᾱ

ζ

µZ ᾱ

k

f(ε)dε

¶
f(ε)dε+

Z ᾱ

ζ

µZ ᾱ

k

(εt + ρεt−1) f(ε)dε
¶
f(ε)dε

≡ G(ζt,Ω1),

where Ω1 is a set of fixed parameters. Hence we have

a = βa

Z ζ

α

f(ε)dε+ λ̄

µZ k

α

f(ε)dε

¶µZ ᾱ

ζ

f(ε)dε

¶
+G(ζt,Ω1)− w

Z ᾱ

ζ

f(ε)dε

≡ eΓ(ζt,Ω2),
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where Ω2 is a set of fixed parameters. This equation implies that the optimal
inventory target (ζt) for intermediate goods is a constant that solves the identityeΓ(ζt,Ω2) = a.¥
Appendix 002 (proof for proposition 3.2):
Finished goods inventory stock satisfies

s1t =

½
y1t + s1t−1 − (θt − λ̄) ; if εt ≤ k
0 ; if εt > k

.

Since the optimal production for y1t satisfies

y1t =

(
(Et−1θt − λ̄) + (k − s1t−1) ; if εt−1 ≤ ek
y2t + s2t−1 ; if εt−1 > ek

and the optimal production for y2t satisfies

y2t = (Et−2θt − λ̄) + (ek − s2t−1),
we have

s1t =

 (Et−1θt − λ̄) + k − (θt − λ̄) ; if εt ≤ k & εt−1 ≤ ek
(Et−2θt − λ̄) + ek + s1t−1 − (θt − λ̄) ; if εt ≤ k & εt−1 > ek
0 ; if εt > k

=

 k − εt ; if εt ≤ k & εt−1 ≤ ek
s1t−1 + ek − εt − ρεt−1 ; if εt ≤ k & εt−1 > ek
0 ; if εt > k

Notice that the lagged variable (s1t−1) can be further iterated backwards using
the above dynamic equation:

s1t−1 =

 k − εt−1 ; if εt−1 ≤ k & εt−2 ≤ ek
s1t−2 + ek − εt−1 − ρεt−2 ; if εt−1 ≤ k & εt−2 > ek
0 ; if εt−1 > k

,

which can lead to infinite regression, resulting in the series {s1t} being nonsta-
tionary. This cannot be an equilibrium unless

s1t−1 = 0
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always holds. But this requires that the condition, εt−1 > k, always hold so that
s1t−1 = 0 with probability one (the third line in the above equation for s1t−1).
However, given the second line in the equation for s1t,

s1t = s1t−1 + ek − εt − ρεt−1 ; if εt ≤ k & εt−1 > ek ,
if the condition, ek > k, holds, then εt−1 > ek automatically implies εt−1 > k, which
in turn implies (by the third line in the equation for s1t−1)

s1t−1 = 0 ; if εt−1 > ek,
hence we have

s1t =

 k − εt ; if εt ≤ k & εt−1 ≤ ekek − εt − ρεt−1 ; if εt ≤ k & εt−1 > ek
0 ; if εt > k

,

which is stationary and is therefore an equilibrium. Hence, ek > k must be true.¥
Appendix 003 (proof for proposition 3.3):
The decision rule for s1t is proved in the proof for proposition 3.2. The rest can

be obtained by following the discussions in section 3 above using straightforward
substitutions. To show that λ̄ = β(w+ βa), note λct = λ̄ if εt ≤ k (i.e., if πct = 0).
On the other hand, since the current period shadow price of intermediate goods
is known based on last period information set, as all variables in the resource
constraint (7) are known in period t−1, we then have Et−1λmt = λmt and Etλ

m
t+1 =

λmt+1. Since λmt = βa if εt−1 ≤ ek according equation (4) and equation (5),12 we
have λmt+1 = βa if εt ≤ ek. According to proposition 3.2, k < ek, hence λct = λ̄

implies λmt+1 = βa (since εt ≤ k implies εt ≤ ek). According to equation (3),
Etλ

c
t+1 = w + λmt+1, substituting this into equation (2) gives

λct = β(w + λmt+1) = β(w + βa), if εt ≤ k.
¥
Appendix 004 (proof for proposition 4.1):
We need to show σy2 > σy1 > σc. Using the law of motion for preference

shocks, the variance of c is given by

σ2c = P (ρ
2σ2θ + σ2ε) + (1− P ) ePρ2σ2θ + (1− P )(1− eP )ρ4σ2θ .

12Equation (5) implies Et−1λmt+1 = a.
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The variance of y1 is given by

σ2y1 = P eP (ρ2σ2θ + σ2ε + 2ρσ
2
ε)

+P (1− eP )(ρ2σ2θ + σ2ε + ρ2σ2ε + 2ρσ
2
ε + 2ρ

3σ2ε)

+(1− P ) ePρ2σ2θ
+(1− eP )ρ4σ2θ .

And the variance of y2 is given by

σ2y2 = P eP (ρ4σ2θ + σ2ε + ρ2σ2ε + 2ρ
2σ2ε + 2ρ

4σ2ε)

+P (1− eP )(ρ4σ2θ + (1 + ρ)2σ2ε + ρ2σ2ε + 2(1 + ρ)ρ2σ2ε + 2ρ
4σ2ε)

+(1− P ) eP (ρ4σ2ε + ρ2σ2ε + 2ρ
3σ2ε)

+(1− eP )ρ4σ2θ .
All terms in these expressions are strictly positive. Notice that the last two terms
in σ2y exceed the last two terms in σ2c . Hence, σy1 > σc if and only if the first two
terms in σ2y exceed the first term in σ2c , namely,

P eP (ρ2σ2θ+σ2ε+2ρσ
2
ε)+P (1− eP )(ρ2σ2θ+σ2ε+ρ2σ2ε+2ρσ

2
ε+2ρ

3σ2ε) > P (ρ
2σ2θ+σ2ε).

Since the left-hand side of this inequality can be expressed as

P (ρ2σ2θ + σ2ε) + P eP (2ρσ2ε) + P (1− eP )(ρ2σ2ε + 2ρσ2ε + 2ρ3σ2ε),
where the first term is the same as the right-hand side of the inequality, hence
σ2y > σ2c as long as ρ > 0. In order to show σy2 > σy1, first notice that both
σ2y2 and σ2y1 are increasing functions of ρ. Secondly, notice that if ρ = 0, then

σ2y2 = σ2y1 = P
ePσ2ε + P (1− eP )σ2ε . And thirdly, notice that if ρ = 1, then

σ2y1 = P eP (σ2θ + σ2ε + 2σ
2
ε)

+P (1− eP )(σ2θ + σ2ε + σ2ε + 2σ
2
ε + 2σ

2
ε)

+(1− P ) ePσ2θ
+(1− eP )σ2θ ,
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and

σ2y2 = P eP (σ2θ + σ2ε + σ2ε + 2σ
2
ε + 2σ

2
ε)

+P (1− eP )(σ2θ + 4σ2ε + σ2ε + 4σ
2
ε + 2σ

2
ε)

+(1− P ) eP (σ2θ + σ2ε + 2σ
2
ε)

+(1− eP )σ2θ ,
and clearly each term in σ2y2 exceeds the corresponding term in σ2y1 . Hence, as
long as ρ > 0, we have σy2 > σy1 > σc.¥
Appendix 005 (proof for proposition 4.2):
Eye-ball inspection on the decision rules indicates that every possible case for

c in the decision rule (sales of finished goods) is strictly positively correlated with
every possible case for m(= y1, sales of intermediate goods), and every possible
case for y1 in the decision rule (production of finished goods) is strictly positively
correlated with every possible case for y2 (production of intermediate goods).
Hence productions as well as sales are unambiguously positively correlated across
all stages of fabrication. Furthermore, these correlations increase with ρ since
Et−jθt = ρjθt−j.¥
Appendix 006 (proof for proposition 4.3):
The variances of the two types of inventories are given respectively by

σ2s1 = P
ePσ2ε + P (1− eP )(σ2ε + ρ2σ2ε)

σ2s2 = P
eP (σ2ε + ρ2σ2ε) + P (1− eP ) ¡(1 + ρ)2σ2ε + ρ2σ2ε

¢
+ (1− P ) eP (ρ2σ2ε).

Term-by-term comparison shows that σs2 > σs1 as long as ρ > 0 (the variances
are equal if ρ = 0).¥
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Fig. 1. Stage-of-Fabrication Model Diagram.

29


