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Problems in the Numerical Simulation of Models with

Heterogeneous Agents and Economic Distortions

Adrian Peralta-Alva∗

Research Division

Federal Reserve Bank of Saint Louis

Manuel S. Santos†

Department of Economics

University of Miami

Abstract

Our work has been concerned with the numerical simulation of dynamic economies with

heterogeneous agents and economic distortions. Recent research has drawn attention to inher-

ent difficulties in the computation of competitive equilibria for these economies: A continuous

Markovian solution may fail to exist, and some commonly used numerical algorithms may not

deliver accurate approximations. We consider a reliable algorithm set forth in Feng   (2009),

and discuss problems related to the existence and computation of Markovian equilibria, as well

as convergence and accuracy properties. We offer new insights into numerical simulation.

KEYWORDS: Heterogeneous agents, taxes, externalities, financial frictions, competitive

equilibrium, computation, simulation.

JEL Codes: C6, D5,E2.

1 Introduction

In this paper we review some fundamental issues in the computation and numerical simulation of

dynamic economic models with heterogeneous agents and market distortions (e.g., externalities,

distortionary taxation and financial frictions). These models are now an integral part of modern

macroeconomics and finance, and play a central role in the analysis of fiscal and monetary policies,

social security systems and savings over the life cycle, and the determinants of asset price volatility

and interest rates.

∗We are grateful to Chanont Banternghansa for his able research assistance. The views expressed are those of
the individual authors and do not necessarily reflect official positions of the Federal Reserve Bank of St. Louis, the

Federal Reserve System, or the Board of Governors.
†This paper was written while Manuel Santos was visiting Universidad Carlos III de Madrid, and was partially

funded under projects SEJ2005-05831 and ECO2008-04073 of the Spanish Ministry of Education, and Catedra de

Excelencia of Banco Santander.
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A main problem with these models is numerical tractability. Economists use numerical simulations

to get quantitative predictions. But for models with economic distortions or with an infinite

number of overlapping generations their equilibrium solutions cannot be computed by associated

global optimization problems as the welfare theorems do not hold. In the presence of multiple

competitive equilibria, there is a problem of coordinating expectations that may result in the

inability to invoke Bellman’s optimality principle. Indeed, for a good discussion of these issues

see the early seminal papers of Hellwig (1983) and Kydland and Prescott (1980). We then have

that a Markovian representation of equilibria may only be possible when conditioning over an

expanded set of state variables; moreover, this generalized Markovian law of motion may not be

a continuous mapping. Therefore, both numerical dynamic programming algorithms and other

well known numerical procedures have a limited application for the computation of competitive

equilibria of these economies as these algorithms search for a continuous policy function.

These technical issues are mostly ignored in the applied literature, but are crucial to guarantee

that a numerical solution is a sufficiently good approximation of the postulated economic model so

that we can make reasonable inferences form the output of our computations. Of course, reliable

methods are computationally costly and may not always be feasible, but they should be the starting

point for the construction of faster algorithms with good convergence and accuracy properties.

We present our framework of analysis in Section 2. Here competitive equilibria are simply char-

acterized by systems of Euler equations, feasibility, and market equilibrium conditions. Section 3

contains a simple example to illustrate non-existence of continuous Markov equilibria where numer-

ical approximations over continuous policy functions produce biased results. In Section 4 we review

some properties of the numerical algorithm of Feng   (2009) pertaining existence of Markov

equilibria, convergence of the algorithm to a fixed-point solution, and accuracy properties. We also

offer new insights into the simulation of economic models, which improve upon the rather  

simulation method proposed in Feng   (2009). Some further comments and extensions follow

in our final section,

Examples of non-existence of Markov equilibria can be found in Kubler and Schmedders (2002),

Kubler and Polemarchakis (2004) and Santos (2002). Following Duffie   (1994), the existence

of a Markov equilibrium in a generalized space of variables is proved in Kubler and Schmmeders

(2003) for an asset pricing model with collateral constraints. Feng   (2009) extend the existence

result to other economies, and redefine the Markov equilibrium solution over an expanded state

of variables that includes the shadow values of investment. The addition of the shadow values of

investment as state variables was originally proposed by Kydland and Prescott (1980), and later

used in Phelan and Stacchetti (2001) in a competitive economy with a representative agent. The
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main insight of Feng   (2009) is to apply these techniques to competitive equilibrium models

with heterogeneous agents and to show that this redefinition of the state space may be quite

effective in the computation of these models. To guarantee convergence to a fixed-point solution

the equilibrium operator iterates over a decreasing sequence of candidate compact equilibrium

correspondences rather then over functions since no equilibrium function may be continuous. Feng

  (2009) propose a discretized numerical algorithm that is shown to have good convergence and

accuracy properties. This constitutes the first attempt to build numerical foundations for this type

of algorithm in a context in which no equilibrium selection may be continuous.

2 The Analytical Framework

Time is discrete,  = 0 1 2 · · ·  The state of the economy includes a state vector of endogenous
variables  and vector of exogenous shocks  Vector  belongs to a compact domain  and

contains all predetermined variables, such as agents’ holdings of physical capital, human capital,

and financial assets. The exogenous state vector follows a Markov chain ()≥0 over a finite set .

This Markovian process is described by positive transition probabilities  (0|) for all  0 ∈ 

The initial state, 0 ∈ , is known to all agents in the economy. Then  = (1 2  ) ∈  is a

history of shocks, often called a date-event or node. Let  denote the vector of all other endogenous

variables. These variables could be equilibrium prices or choice variables such as consumption and

investment.

In various economic models the dynamics of the state vector  is conformed by a system of non-

linear equations:

 (+1   ) = 0 (2.1)

Function  may incorporate technological constraints and individual budget constraints Let 

denote a vector of shadow values of the marginal return to investment for all assets and all agents.

This vector is supposed to lie in a compact space  , and it will be a function of existing variables

such as prices, rates of interest, and marginal utilities and productivities:

 =  (  )  (2.2)

Let us assume that a sequential competitive equilibrium exists and can be represented by a sequence¡
(

) (
)
¢∞
=0

satisfying equations (2.1)-(2.2), and the additional system of equations

Φ (    [+1]) = 0 (2.3)
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where  [] is the expectations operator. Function Φmay describe individual optimality conditions

(such as Euler equations), market-clearing conditions, and various types of restrictions such as

short-sales and liquidity requirements. We consider that equations (2.1)-(2.3) fully characterize a

sequential competitive equilibrium, and that   and Φ are continuous functions.

To compute the set of sequential competitive equilibria we define the Markovian equilibrium corre-

spondence  ∗ ( ) containing all the equilibrium vectors  for any given state ( )  From this

correspondence  ∗ we can generate recursively the set equilibria as  ∗ is the fixed point of an

operator  :  7−→ ( ) that links state variables to future equilibrium states. Operator  em-

bodies all equilibrium conditions such as agents’ optimization and market-clearing conditions from

any initial node  to all immediate successor states +. More precisely, let  ( ) ( ) be the set of

all values  =  (  ) with the property: For given   there exist  and + (+) ∈  (+ +)

with + ∈  such that

Φ(  
X
+∈

 (+|)+ (+)) = 0

and

 (+   ) = 0

Therefore, we are certain that for each  ∈  ( ) ( ) there are continuation values that satisfy

the temporary equilibrium conditions. The following result is proved in Feng  

Theorem 2.1 (convergence) Let 0 be a compact-valued correspondence such that 0 ⊃  ∗ Let

 =  (−1)   ≥ 1 Then, V →  ∗ as  → ∞ Moreover,  ∗ is the largest fixed point of the

operator , that is, if  = ( ), then  ⊂  ∗

Theorem 2.1 provides the theoretical foundations of our algorithm since we can apply operator 

to any large compact set 0 ( ) ⊃  ∗ ( ) and then iterate until a desirable level of convergence

is attained. An important advantage of our approach is that if multiple equilibria exist, we can

find all of them. Note that if he equilibrium shadow value correspondence  ∗ is not single-valued,

there could be multiple equilibrium selections — albeit none of them may be continuous. Moreover,

there may not be an equilibrium function  =  ( )  and hence a simple recursive equilibrium

may not exist.

Finally, after some technical considerations from correspondence  ∗ we can select a measurable

policy function  = ( ), and a transition function + (+) = ( ; +), for all + ∈ .

These functions give a Markovian characterization of a dynamic equilibrium in the enlarged state
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space.

3 A Growth Model with Taxes

The economy is made up of a representative household and a single firm. For a given sequence of

interest rates  and taxes   the representative household solves the following optimization problem

max

∞X
=0

 log()



 + +1 ≤  + (1−  )  + 

0 given, 0    1

 ≥ 0, +1 ≥ 0 for all  ≥ 0

Here,  denotes consumption,  is the individual capital holdings. Taxes on capital income { }
are functions of the aggregate capital stock  All tax revenues are rebated back to the consumer

as lump-sum transfers 

The representative firm seeks to maximize one-period profits by employing the optimal amount of

capital

 = max


 ()− 

Let

() = 13,  = 095

We then consider the following piecewise linear tax schedule on capital rents

() =

⎧⎪⎨⎪⎩
010 if  ≤ 0160002
005− 10( − 0165002) if 0160002 ≤  ≤ 0170002
0 if  ≥ 0170002

This example is particularly attractive since it can be easily computed by our algorithm. Santos

(2002, Prop. 3.4) shows that a continuous Markov equilibrium fails to exist for this specification

of the model. There are three steady states, the middle one is unstable and has two complex

eigenvalues, while the other two steady stares are saddle-path stable.

Standard algorithms for optimization problems approximating the Euler equation would solve for

a continuous policy function of the form
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+1 = ( )

where  belongs to a finite dimensional space of continuous functions as defined by a vector of

parameters  We obtain an estimate for  by forming a discrete system of Euler equations,

0( ( )) = 0(( ) (( ) )) · £ 0(( ))(1− (( )))
¤


over as many grid points  as the dimensionality of the parameter space. Here, we assume that

( ) belongs to the class of piecewise linear functions and employed a uniform grid of 5000 points

over the domain  ∈ [014019] The resulting approximation, together with the highly accurate
solution obtained under algorithm, are illustrated in Figure 3.1.

Figure 3.1: Accurate solution vs Continuous Policy Approximation.

This piecewise linear approximation of the Euler equation over piecewise continuous functions

converged up to computer precision in only 3 iterations (Figure 3.2 presents the distance between

consecutive function iterations). This fast convergence of the numerical method is actually deceptive

because as pointed out above no continuous policy function does exist.
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Figure 3.2: Distance Between Consecutive Continuous Function Iterations.

A further test of the fixed point solution of this algorithm, based on Euler equation residuals,

produced mixed results. First, the average Euler equation residual (a standard accuracy measure)

over the domain of feasible capitals is fairly small, as illustrated in Figure 3.3 below. Second, the

maximum Euler equation residual is slightly more pronounced in a small area near the unstable

steady state. But even in that area, the magnitude of the error is not extremely large: In three

tiny intervals the Euler equation residuals are just around 0.02.

Figure 3.3: Euler Equation Residual of Continuous Approximation.

Of course, the dynamic behavior implied by the continuous function approximation is quite different
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from the true one as it displays four more steady states and substantially changes the basins of

attraction of the original steady states (see Figure 3.1). Therefore, from these computational tests

a researcher may be led to conclude that the purported continuous policy function should mimic

well the true equilibrium dynamics.

4 Numerical Implementation

Numerical implementation of our theoretical results requires first the construction of a computable

algorithm. In this section, we develop and study properties of such an algorithm. The computable

algorithm uses a new operator based on discrete approximations for both the domain and the

range of . Once an equilibrium solution has been computed, we then proceed to the numerical

simulation.

4.1 A Computable Algorithm

We first partition the state space into a finite set of simplices
©

ª
with non-empty interior and

maximum diameter . Over this partition we define a family of step correspondences that take

constant values over each  . To obtain a computer representation of a step correspondence we

resort to an outer approximation in which each set-value is defined by  elements. Using these

two discretizations we obtain a computable approximation of operator , which we denote by

 . By a suitable selection of an initial condition 0, the sequence { 
+1 } defined recursively

as 

+1 = 


 converges to a limit point  ∗  Note that by our judicious choice of these

outer approximations and of the initial condition 0 every limit point of the sequence { 
+1 } must

contain the equilibrium correspondence  ∗ The following result is proved in Feng   (2009) and

it extends the convergence arguments of Beer (1980) to a dynamic setting.

Theorem 4.1 For given ,  and initial condition 0 ⊇  ∗, consider the recursive sequence

{ 
+1 } defined as 


+1 = 


  Then, (i) 


 ⊇  ∗ for all ; (ii) 


 →  ∗

uniformly as →∞; and (iii) V ∗ →  ∗ as → 0 and  →∞

In conclusion, the output of our numerical algorithm is summarized by the equilibrium corre-

spondence 

 from operator  . By Theorem 4.1, we have that [

³
[ (


 )]

´
]

can be made arbitrarily close to [( ∗)] for appropriate choices of , , and  . We can

then choose an approximate equilibrium selection  = 

 ( ), and a transition function

+ (+) = 

 ( ; +) From these approximate equilibrium functions we can generate sim-

ulated paths
¡
(

) (
)
¢∞
=0


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4.2 Accuracy of the Simulated Moments

To assess model’s predictions, analysts usually calculate moments of the simulated paths
¡
(

) (
)
¢∞
=0

from a numerical approximation. The idea is that the simulated moments should approach those

obtained from the original model. Assuming that the optimal policy is a continuous function, San-

tos and Peralta-Alva (2005) establish various convergence properties of the simulated moments.

They also provide examples of non-existence of stochastic steady-state solutions for non-continuous

functions, and lack of convergence of empirical distributions to some invariant distribution of the

model.

We now briefly outline a reliable simulation procedure that circumvents the lack of continuity of

the equilibrium law of motion. We are just advancing arguments from our new paper [Santos and

Peralta-Alva (2009)]. We summarize these arguments as follows:

()          = 

 ( ),  + (+) =



 ( ; +) From these approximate equilibrium functions we can generate simulated paths¡
(

) (
)
¢∞
=0

We prove that there are tight upper  and lower  bounds such that with

probability one the corresponding moments from simulated paths
¡
(

) (
)
¢∞
=0

stay within the

prescribed bounds. More precisely, let  = () and  : × → + be a function of interest. Let

1


P
=0 ( ) represents a simulated moment or some other statistic. Then, with probability one,

every limit point of 1


P
=0 ( ) must be within the corresponding bounds  and  .

()          : An invariant distribution may

actually not exist. One way to guarantee existence is to convexify the equilibrium correspondence.

Thus, following Blume (1982) and Duffie   (1994) we randomize over continuation values of

operator . We construct a new operator  that is a convex-valued correspondence in the space

of probability measures. This correspondence has an invariant distribution ∗ ∈ (∗).

()     : For every   0 we can consider a sufficiently good

discretized operator  and equilibrium correspondence 

 such that for every simulated path

( )
∞
=0 there are invariant distributions 

∗ 0∗ of such that
R
( )∗− ≤ 1



P
=0 ( ) ≤R

( )0∗ +  almost surely. Therefore, for a sufficiently fine approximation the moments from

simulated paths are close to the set of moments of the invariant distributions of the model. Of

course, if  has a unique invariant distribution ∗ then 0∗ = ∗ and the above expression reads

as
R
( )∗ −  ≤ 1



P
=0 ( ) ≤

R
( )∗ + 

Duffie et  (1994) argue that operator  allows for some form of sunspot equilibria since the

randomization proceeds over equilibrium distributions rather than over an external parameter or

extraneous sunspot variable. This is not, however, the interpretation that we want to give to our

simulations. For us, the primitive elements in our analysis are the Markovian equilibrium functions
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which are obtained from the original equilibrium correspondences without performing arbitrary

randomizations. We are therefore simulating the true model. At a later stage, to bound the range

of variation of the simulated moments for both the approximate and true solutions we consider the

invariant distributions of the convexified operator . Of course, these bounds may not be tight

when this regularization changes substantially the stochastic dynamics.

5 Final Remarks

In this paper we offer a general overview of the current challenges involved in the study of dy-

namic models with heterogeneous agents and economic distortions. Competitive equilibria for

these economies can be characterized in a recursive fashion in an enlarged state space, and can

be numerically approximated by reliable methods. Competitive equilibria, however, may not be

unique and present some discontinuities which may preclude the application of regular laws of large

numbers in the simulation of these economies. We nevertheless outlined a simulation procedure in

which we established bounds for the range of variation of the simulated moments.

What it is more important for applied work, we have provided an example in which a regular

computational method may actually converge to a wrong fixed-point solution. In Feng  

(2009) we consider another example of an overlapping generation economy with chaotic dynamics

[Benhabib and Day (1982)] where our algorithm would work well, but more common algorithms

may deliver misleading results. For more complex models with a large number of state variables

[e.g., Krusell and Smith (1998)] our algorithm may not be computationally feasible, but it is

our experience that some other heuristic extensions of standard algorithms may display sizable

computational errors. Hence, a primary message of the present paper is a “word of caution” for the

computation of economies with heterogeneous agents and economic distortions. This should lead

to a rethinking of existing computational methods.
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