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Non-Markovian Regime Switching with Endogenous States
and Time-Varying State Strengths

Abstract

This article presents a non-Markovian regime switching model in which the regime
states depend on the sign of an autoregressive latent variable. The magnitude of the
latent variable indexes the ‘strength’ of the state or how deeply the system is embedded
in the current regime. In this model, regimes have dynamics, not only persistence, so
that one regime can gradually give way to another. In this framework, it is natural to
allow the autoregressive latent variable to be endogenous so that regimes are determined
jointly with the observed data. We apply the model to GDP growth, as in Hamilton
(1989), Albert and Chib (1993) and Filardo and Gordon (1998) to illustrate the relation
of the regimes to NBER-dated recessions and the time-varying expected durations of
regimes. The article makes use of the Metropolis-Hastings algorithm to make multi-move
draws of the latent regime strength variable, where the extended Kalman filter provides
a valid proposal density for the latent variable.

JEL classifications: F42, C25, C22
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Introduction

Autoregressive models are popular in economics because many economic variables

appear to respond more to their own past values than they do to a distributed lag of any

other variable. The same is likely true of regimes. If conditions gradually become ripe for

a regime change, it might not be possible to find an exogenous covariate whose evolution

matches this ripening process. For example, when modeling the Volcker monetary policy

regime change in 1979, a regime modeler might claim that the occurrence of high inflation

engendered a shift in probability toward a new regime. If this were true, then a regime-

switching model could include past inflation as an explanatory variable in Filardo’s (1994)

time-varying transition probability Markow switching model. However, the history of

monthly or quarterly inflation rates (or almost any other extrinsic variable) does not

suggest a uniquely high monthly inflation rate that served as a trigger for a change of

monetary policy regime in 1979 [see Sims and Zha (2004) for a discussion of monetary

policy regimes]. Instead, it is likely that pressure for a regime change built gradually across

time Similarly, if the regime studied is the recession/expansion state of the business cycle,

then a well-known problem is how to identify a variable or set of variables that heralds a

shift from an expansion phase to a recession phase. In both of these cases, autoregressive

dynamics might prove more useful than a distributed lag of any exogenous covariate in

modeling a gradual shift in regime probabilties.

A related issue is the extent to which regimes are determined separately from the

observable data. A negative shock that moves the business cycle phase toward the expan-

sion state from the recession state is possibly associated with a negative shock to observed

GDP growth. These two shocks do not have to be postively correlated, and they might

even be negatively correlated, but regime modelers should be hesitant to assume that the

regime is exogenous and uncorrelated with the innovations to the data affected by the
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regime. With our latent variable approach, it is quite simple and straightforward to allow

for endogenous regimes that are correlated with the observable data.

This article introduces a new non-Markovian regime switching model in which the

regime states depend on the sign of an autoregressive latent variable. The magnitude of

the latent variable indexes the ‘strength’ of the state or how deeply the system is embed-

ded in the current regime. This non-Markovian regime switching automatically implies

time-varying state transition probabilities. With autoregressive dynamics governing the

transition probabilities, we can readily demonstrate how the expected duration of the

current regime can vary across time. In this way, the regimes themselves have autoregres-

sive dynamics, so that pressure for a regime change can build gradually across time. In

essence, our model of hidden regimes is the counterpart to the dynamic probit approach

to observed regimes, as discussed below. This model is readily contrasted with the typical

two-state Markov switching model if we write the transition probabilities of a two-state

Markov process as a function of a normally-distributed latent variable, S∗, that governs

the binary regime indicator S:

S∗t = λ + θSt−1 + et (1)

et ∼ N(0, 1)

St = 0 ⇐⇒ S∗t < 0

The constant transition probabilities for this Markov process are therefore parameterized

as

P (St = 0 | St−1 = 0) = Φ(−λ)

P (St = 1 | St−1 = 1) = 1− Φ(−λ− θ), (2)
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where Φ(.) is the cumulative standard normal density function. With constant transtition

probabilities, the Markov switching model implies a constant expected duration of the

current regime. Note that, when the regimes are observed, models of the form of eq.

(1) are sometimes inappropriately called dynamic probits [DeJong and Woutersen (2004);

Horowitz (1992)], because the same nomenclature is also used to describe the dynamic

probit model of Eichengreen, Watson and Grossman (1985), where the lagged latent

variable is on the right-hand side. Putting the lagged state on the right-hand side adds

persistence, not dynamics, to the regimes. To see this, note that eq. (1) is equivalent to:

S∗t = λ + et (3)

St = 0 if S∗t < 0, St−1 = 0

or S∗t < −θ, St−1 = 1

The form of equation (3) makes clear that the regime strength, S∗, has no dynamics. For

this reason, the transition probabilities in Markov switching models are called persistence

parameters because they do not connote regime dynamics.

The model we propose with autoregressive state strengths takes the form

S∗t = λ + θS∗t−1 + et (4)

et ∼ N(0, 1)

St = 0 ⇐⇒ S∗t < 0

This model is the hidden regime counterpart to the dynamic probit model of Eichengreen,

Watson and Grossman (1985) because the latent variable is autoregressive, implying true

regime dynamics. This autoregressive latent variable generates a non-Markovian regime

process because the probability of the state this period depends not only on the state
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last period but a continuous measure of the strength of the state last period. For these

non-Markovian regimes, the time-varying state transition probabilities are

P (St = 0 | S∗t−1) = Φ(−λ− θS∗t−1)

P (St = 1 | S∗t−1) = 1− Φ(−λ− θS∗t−1). (5)

In the model with autoregressive state strengths, the probability of a regime change would

rise if the latent index of regime strength, S∗, approached zero.

The Markov switching model time-varying transition probabilities introduced by Fi-

lardo (1994) would add lagged covariates, Z, such that

S∗t = λ + θSt−1 + κZt−1 + et (6)

et ∼ N(0, 1)

St = 0 ⇐⇒ S∗t < 0.

Our model with autoregressive state strengths suggests that one strong candidate to be

included in Zt−1 is S∗t−1, whereupon St−1 becomes unnecessary.

As mentioned above, one useful feature of the non-Markovian reqime switching model

of equation (4), unlike the Markov switching model of equation (1), is that the expected

duration of a regime is time-varying. Filardo and Gordon (1998) add time-varying ex-

pected regime durations by way of time-varying transition probabilities. In general, this

covariate approach to time-varying expected durations requires an auxiliary model to pre-

dict the future evolution of the Z covariates. Lam (2004) uses the regime durations as

Zt−1 in eq. (6) to make the transition probabilities vary across time, where the unob-

served regimes are counted relative to a probability threshold. Our autoregressive model

of regime strengths, in contrast, implies time-varying expected regime durations even in

the absence of covariates in the regime equation.
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II. MCMC estimation of non-Markovian regime switching

We estimate the model with a latent autoregressive variable via Markov Chain Monte

Carlo methods. MCMC methods for estimating the hidden Markov switching model of

Hamilton (1989) were put forth in Albert and Chib (1993), who showed that once one

augments the data with draws of the latent regime states, then the conditional distribu-

tions of the other model parameters are straightforward regression coefficient priors and

posteriors.

The specific model that we apply to GDP growth, denoted y, is

yt = α1 + (α0 − α1)I(S∗t < 0) + φyt−1 + ut (7)

S∗t = λ + θ1S
∗
t−1 + θ2yt−1 + et

where I(.) is the indicator function. Note that in this specification only the nonlinearity of

the indicator function (and, more specifically, the cumulative density function, which is the

forecast of the indicator function) allows one to separately identify φ and θ2, for example.

This identification is potentially sensitive to the distributional assumption one uses for the

cumulative density function, as discussed by Heckman and Macurdy (1986). Therefore,

we compare results where the identification relies on a distributional assumption, as in eq.

(7) above, and a specification where a variable other than yt−1 appears on the right side

of the latent state equation. In the latter case, an independent source of variation in the

latent variable S∗ is ensured and nonlinearlity is no longer the sole source of identification.

The covariance matrix of the error terms is allowed to be general such that

Cov

(
ut

et

)
= Σ =

(
σ2

u ρ
ρ 1

)
. (8)

The parameter groupings for MCMC estimation of the model are

%1 = (α0, α1, φ)
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%2 = (λ, θ1, θ2)

%3 = Σ

%4 = {S∗t }, t = 1, ..., T (9)

Because the model of equation (6) is easily cast in state-space form as

yt = α1 + (α0 − α1)I(S∗t < 0) + ρet + vt(
et+1

S∗t

)
=

(
0 0
1 θ1

) (
et

S∗t−1

)
+

(
0 0
λ θ2

) (
1

yt−1

)
+

(
et+1

0

)
, (10)

a natural estimation approach to consider is to use the Kalman filter to integrate out the

unobserved latent state strength variable S∗. Instead of integrating out S∗, however, we

choose to sample it for two reasons: First, this state-space model is nonlinear and the

extended Kalman filter applied to nonlinear state-space models is inexact and, therefore,

we subject the draw of the latent variable to a Metropolis-Hastings step; second, the

conditional distributions of the model parameters in %1 and %2 are easily derived from

simple regressions conditional on value of S∗. Thus, we find it convenient to make use of

the data augmentation capabilities of Markov Chain Monte Carlo methods.

To use regression techniques to derive a conditional mean and variance for %1, it is

necessary to control for the endogeneity of S∗. Fortunately, the data augmentation makes

this relatively simple. 1 Conditional on (%2, %3, %4), we can write

ut = ρet + vt, (11)

where vt is uncorrelated with et, and re-write equation (7) as

yt − ρet = α0I(S∗t < 0) + α1I(S∗t ≥ 0) + φyt−1 + vt (12)

1Kim, Piger and Startz (2004) discuss maximum-likelihood estimation of a Markov switching model
with endogenous regimes that does not involve data augmentation.
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In this form, we have a regression equation in which the error term is uncorrelated with

the regressor I(S∗t < 0). The conditional distribution of the coefficients in %1 is Normal

with the mean and variance implied by the Bayesian regression, given a prior. The priors

used for the Bayesian regressions are discussed in section III.

Similarly, the regime strength equation must take account of the non-zero E(et | ut)

by writing

et = ρ/σ2
uut + νt.

The regression equation thus becomes

S∗t − ρ/σ2
uut = λ + θ1S

∗
t−1 + θ2yt−1 + νt (13)

Conditional on %1, %2, %4, the residual series {ut} and {et} are calculated and the

approach from Chib, Greenberg and Jeliazkov (2003) is used to sample the covariance

matrix Σ using inverted Wishart distributions, subject to the restriction that Σ2,2 = 1. A

detailed discussion of sampling the autoregressive latent variable follows.

Sampling the latent variable

To reduce the degree of autocorrelation of the sampled values across MCMC iterations

and to speed convergence of the sampler to the posterior distribution, multi-state sampling

is preferable to single-state sampling of the latent variable. In single-state sampling, the

conditional distribution of the latent variable this iteration would depend on values drawn

for the previous iteration (with iteration number denoted as a superscript):

f(S
∗(i+1)
t | {S∗(i+1)

j }j<t, {S∗(i)k }k>t, {yt}). (14)

In our application, single-move sampling appeared not to converge, even after we dis-

carded more than 100,000 burn-in iterations. The single-move posterior means differed
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substantially across estimation runs, whereas the multi-move sampler reproduces nearly

identical results across numerous estimation runs of 40,000 iterations, each with 10,000

discarded. As suggested by Carter and Kohn (1994), Fruhwirth-Schnatter (1994) and De

Jong and Shephard (1995), multi-state sampling can be carried out based on the identity

f({S∗t } | {yt}) = f(S∗T | {yt})
T−1∏

t=1

f(S∗t | S∗t+1, {yj}j=1,..,t), (15)

using the Kalman filter to calculate the conditional distributions on the right side of eq.

(14). One key feature of our approach, however, is that we use the extended Kalman filter

only to produce a proposal density for the latent state strength index, S∗, and not to claim

that the filter gives an exact conditional distribution [see Welch and Bishop (2002) for a

useful summmary of the extended Kalman filter].

If we start with a canonical linear state-space model with observation variables y and

state variables X,

y = HXt + vt

Xt+1 = FXt + DZt + wt+1, (16)

then the well-known Kalman filtering equations are

Xt+1|t = FXt|t + DZt

Xt+1|t+1 = Xt+1|t + Kt+1[yt+1 −HXt+1|t]

Pt+1|t = FPt|tF
′ + Q

Pt+1|t+1 = Pt+1|t −Kt+1HPt+1|t

Kt+1 = Pt+1|tH
′(HPt+1|tH

′ + R)−1 (17)

As shown above, the non-Markovian regime switching model has the nonlinear state-

space form of eq. (10). The extended Kalman filter is based on approximating the
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nonlinear functions in the state-space model. In the case of eq. (10), the nonlinear

function is the indicator function which we approximate as

I(S∗ < 0) ≈ P (S∗ < 0 | It−1) + Ht(et, S
∗
t−1 − S∗t−1|t−1)

′, (18)

which is superior to the Taylor series approximation

I(S∗ < 0) ≈ I(S∗t|t−1 < 0) + Ht(et, S
∗
t−1 − S∗t−1|t−1)

′. (19)

In most applications of the extended Kalman filter, the Taylor series approximation is used

because typically the nonlinear function is one where we know how to take expectations

of its arguments, but we do not now how to take expectations of the function itself. With

the indicator function, however, we can take the expectation of the function directly as

the cumulative density function, as in eq. (18), and avoid the Jensen’s inequality problem

that plagues the Taylor series approximation. It also puts the P (S∗t < 0 | It−1), which is

the most natural forecast of I(S∗t < 0), into the Kalman gain equation.

The extended Kalman filter calls for replacement of the indicator in eq. (7) with the

approximating eq. (18) and replaces the vector H from eq. (17) with the the Jacobian, Ht,

of the approximating eq. (18). In this case, the 1×2 Jacobian vector, Ht, includes a finite-

difference approximation to differentiating the indicator function, where Xt = (εt, S
∗
t−1)

′:

Ht =
E∆I(S∗(Xt) < 0)

E[ξt | S∗t >
<0, S∗t−1

<
>0]

∂ξt

∂Xt

− ∂P (S∗(Xt) < 0 | It−1)

∂ξt

∂ξt

∂Xt

< 0, (20)

where

ξt =
S∗t − λ− θ1S

∗
t−1|t−1 − θ2yt−1

(P
(1,1)
t|t−1 − 2θ1P

(1,2)
t|t−1 + θ2

1P
(2,2)
t|t−1)

0.5
(21)

and superscript (2,2) indicates the element of the matrix. The negative sign on Ht reflects

the expected decrease in the indicator function from a shock to the unobserved components

of the latent variable S∗. Because ξt is a standard normal,

E[ξt | S∗t > 0] = φ(ξt | S∗t = 0)/[1− Φ(ξt | S∗t = 0)]
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E[ξt | S∗t < 0] = −φ(ξt | S∗t = 0)/Φ(ξt | S∗t = 0)

E∆I(S∗(Xt) < 0)

E[ξt | S∗t >
<0, S∗t−1

<
>0]

= −1[1− Φ(ξt | S∗t = 0)]I(S∗t−1|t−1 < 0)/E[ξt | S∗t > 0]

+Φ(ξt | S∗t = 0)I(S∗t−1|t−1 > 0)/E[ξt | S∗t < 0]

∂ξt

∂Xt

=

(
1
θ1

)′
/(P

(1,1)
t|t−1 − 2θ1P

(1,2)
t|t−1 + θ2

1P
(2,2)
t|t−1)

0.5 (22)

where φ(.) is the standard normal density function and Φ(.) is the cumulative standard

normal density. The ratio of finite differences in Ht represents the probability that a shock

to the latent variable will cause a change in the indicator function times the sign of the

change in the indicator function divided by the expected value of the shock conditional

on it being large enough to induce a regime change.

Thus, the extended Kalman filtering equations are altered from the canonical form of

eq. (17) to

Xt+1|t = FXt|t

Xt+1|t+1 = Xt+1|t + Kt+1[yt+1 − φyt − α1 − (α0 − α1)P (S∗(Xt+1) < 0 | It)]

Pt+1|t = FPt|tF
′ + Q

Pt+1|t+1 = Pt+1|t −Kt+1Ht+1Pt+1|t

Kt+1 = Pt+1|tH
′
t+1(Ht+1Pt+1|tH

′
t+1 + R)−1 (23)

where

P (S∗(Xt+1) < 0 | It) = Φ(ξt+1 | S∗t+1 = 0). (24)

We also need to apply one smoothing step following the sampling of Xt+1:

Xt|t+1 = Xt|t + Pt|tF
′P−1

t+1|t(Xt+1 −Xt+1|t)

Pt|t+1 = Pt|t + Pt|tF
′P−1

t+1|t(Pt+1|t+1 − Pt+1|t)(Pt|tF
′P−1

t+1|t)
′ (25)

10



In this way, the latent variable is sampled in reverse order, starting with XT = (εT , S∗t−1)
′.

It is important to note that this distribution for the latent variable is only considered

a proposal density and these draws of the latent variable are a draw from the proposal

density. In a Metropolis-Hastings step, the proposal density does not have to represent the

exact conditional distribution of the parameters, which the extended Kalman filter does

not provide. Instead, the proposal density simply needs to provide a useful approximation

to the posterior density of the parameters in question. The posterior density of S∗ can be

evaluated directly via Bayes’ Law and does not involve Kalman filter recursions at all.

The latent variable vector, {S∗t }, t = 1, ..., T, is updated according to the following

AR-MH algorithm:

1. Draw a proposed value of the vector {S∗t }, using as a proposal density the distri-

bution implied by the extended Kalman filtering algorithm outlined above. Denote

this proposal density as q(.).

2. Given an uninformative prior for the latent variable, the posterior density of {S∗t }
depends only on the density of the data conditional on the value of {S∗}. We need

to calculate the densities of the data conditional on the proposed value of {S∗} and

conditional on last iteration’s value of {S∗}, denoted h(S∗p) and h(S∗c), respectively.

3. The acceptance probability for S∗p, as opposed to staying at S∗c, is

min{h(S∗p)q(S∗c)
h(S∗c)q(S∗p)

, 1}.

The efficiency of the Metropolis-Hastings sampler depends greatly on the acceptance

rate of the proposed draws. Our method of drawing the latent variable vector {St}
resulted in an acceptance rate of approximately 75 percent (54 percent in the model

specification that uses the leading indicators as an explanatory variable in the latent
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regime strength equation) in our application to GDP growth. This high rate is a sign

that our modification to the extended Kalman filter is leading to highly useful inferences

of the latent state strength measure. We discuss the ability of our algorithm to track the

latent variable in Mote Carlo simulations below.

III. A Monte Carlo investigation of the sampling procedure

To investigate how well the extended Kalman filter uncovers the parameters of the

data-generating process for the latent variable, we performed a Monte Carlo simulation.

We generated 1000 samples of artificial data, each with 200 observations, based on eq.

(7). In this form, with yt−1 as a covariate in the latent state strength equation, the

system is self-contained and can be simulated without additional assumptions. The true

parameter values and priors were set close to those reported below for the application

to GDP growth. The regression priors are discussed in the next section with the GDP

results.

For each sample, we ran the MCMC estimation procedure for 25000 iterations and

we saved the posterior means of the parameter draws from the last 20000 iterations. For

each estimation, we saved the 5, 50 and 95 percent quantiles for each parameter and then

calculated the average of these quantiles across the 1000 estimations. Table 1 shows the

results from this Monte Carlo investigation. In all cases, the true parameter value lies

comfortably within the estimated 90 percent interval. In addition, the 50 percent quantile

can serve as a useful point estimate of the parameter value. From this monte carlo exercise,

we also saved quantiles of approximately every 15th value of the latent variable, S∗. More

specifically, we saved the 5, 50 and 95 percent quantiles of the difference between the

MCMC inferred values and true values of the latent variable. Figure 1 depicts the 90
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percent intervals, which are fairly wide for a given observation, but it also shows that

there is no significant bias in the sampling algorithm.

Table 1: Monte Carlo Simulation of MCMC Sampling Algorithm
Inferred Quantiles True value Prior

Observation equation
α0 0.131 0.10 0.10

(0.036,0.226)
α1 0.873 0.90 0.90

(0.780,0.966)
φ 0.329 0.30 None

(0.237,0.420)
Latent regime equation

λ 0.341 0.30 None
(0.040,0.752)

θ1 0.549 0.60 0.70
(0.400,0.698)

θ2 -0.002 0.05 None
(-0.178,0.183)

Covariance matrix
σ2

1 0.888 0.80 None
(0.706,1.11)

ρ 0.225 0.30 None
(0.043,0.467)

Estimated 50 percent quantiles with 5 and 95 percent quantiles in parentheses

IV. Application to business cycle phases

In applying this regime switching model to GDP growth, we found that an informative

prior is necessary to slow down the fluctuations in the latent variable. With an uninfor-

mative prior, the inferred latent S∗ series closely mimics the data y with a different mean

and variance. The estimated values of growth states, α0 and α1, are also closer together

than one would associate with two distinct business cycle regimes in the absence of an
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informative prior. In a Bayesian regression, as shown in Chib and Greenberg (1996), the

coefficients are normally distributed such that:

β ∼ N(β̂, B−1
n ) (26)

Bn = B0 + X ′X/σ2

β̂ = B−1
n (B0β0 + X ′y/σ2),

where X is set of regressors, y is the regressand, σ2 is the variance and, most importantly,

B0 is a diagonal matrix that determines the strength of the prior placed on the set of

coefficient values β0. For the GDP growth regression of eq. (7), where the coefficients

are (α0, α1, φ), the diagonal elements of B0 were set to (300,300,0) and β0 was set to

(0.10,0,90,0.30), so that no prior was placed on the lagged dependent variable. For the

latent state from eq. (7), where the coefficients are (λ, θ1, θ2), the diagonal elements

of B0 were set to (0,100,0) and β0 was set to (0.30,0.80,0.10), so that the prior only

served to lift the autoregressive coefficient, θ1. Experimentation showed that these priors

were strong enough to prevent the regime from changing in more than one-third of the

observations; when the regime changes more often than this, the model is trying to fit

high-frequency fluctuations between two expansionary growth states, as opposed to lower-

frequency business cycle fluctuations.

One obvious question is why the Markov switching regimes of Hamilton (1989) do not

require any prior restrictions in order to match business cycle fluctuations, whereas the

present non-Markovian regime switching model does. Consider first the Markov switching

model. Suppose that it tried to fit high-frequency fluctuations between two expansionary

growth states of 2.5 and 4 percent annualized growth. With fixed transition probabilities

the model would need to have states that were not very persistent to have relatively fre-

quent transitions. As a consequence though, the one-step-ahead forecast of output growth
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would not vary much across time, so little would be gained in terms of the likelihood func-

tion value. Consider, in contrast, the non-Markovian regime switching from eq. (7), in

which transition probabilities automatically are time-varying. In this model one can have

both frequent regime transitions and one-step-ahead forecasts of output growth that vary

considerably across time. All it takes in eq. (7) is for the unconditional mean of the latent

variable, S∗, to be near zero and for the autoregressive coefficient, θ1, to be greater than

zero. Then, the conditional mean of S∗ can differ from zero, causing the one-step-ahead

forecasts of output growth to differ from the unconditional mean.

For the model with the informative priors discussed above, the MCMC sampler was run

through 40,000 iterations with the first 10,000 iterations discarded to allow the sampler

to converge on the posterior distribution. The multi-move Metropolis-Hastings sampler

of the latent regime strength variable is efficient enough that this number of iterations

ensures that the posterior mean of the latent variable vector is replicated across numerous

estimation runs. Quarterly GDP growth data from 1960Q1 to 2003Q4 were used to

estimate the non-Markovian regime switching model. Table 2 shows the posterior means

and 90 percent probability intervals for the coefficients corresponding to the self-contained

model of equation (7), where a lagged dependent variable is the only covariate in the latent

state strength equation. In this case, the identification of the model parameters in the

latent state equation is tied to the distributional assumption of normality.
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Table 2: Coefficient posterior distributions
for self-contained model

Posterior dist. Prior
Observation equation

α0 0.140 0.10
(0.044,0.236)

α1 0.868 0.80
(0.778,0.956)

φ 0.186 Flat
(0.080,0.289)

Latent regime equation
λ 0.265 Flat

(-0.007,0.565)
θ1 0.611 0.80

(0.473,0.745)
θ2 0.042 Flat

(-0.190,0.285)
Covariance matrix

σ2
1 0.617 Flat

(0.494,0.777)
ρ 0.160 Flat

(-0.052,0.348)
90% prob. interval in parentheses

The posterior means of the α intercepts in the observation equation move less from

the prior values than does the autoregressive coefficient, θ1, in the latent regime equation.

The fact that the model finds that the autoregressive coefficient, θ1, is centered far from

zero in the latent regime equation supports the idea that the index of regime strength,

S∗, responds more closely to its own past value than to other variables, such as yt−1. For

the self-contained model, the probability interval for the covariance parameter, ρ is not

decisively positive, so the evidence in favor of regime endogeneity is not overwhelming.

We re-examine the probability interval for this parameter of regime endogeneity below

for a specification that is not self-contained and not identified solely through a cboice of

nonlinear distribution function.
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As an alternative specification, we replaced yt−1 as a covariate in the latent regime

equation (7) with the lagged change in the index of leading indicators. In this case, a

unique source of movement in the latent regime strength index, S∗, from the leading

indicators helps identify the latent variable, apart from the nonlinear identification from

the distribution function. The coefficient on the leading indicators is denoted θ2, as the

leading indicators simply take the place of yt−1 in the latent regime equation. Table 3

presents the posterior means of the coefficients for the specification that uses the lagged

change in the log of the leading indicators as a predetermined covariate.

Table 3: Coefficient posterior distributions
for specification with leading indicator covariate

Posterior dist. Prior
Observation equation

α0 0.130 0.10
(0.034,0.222)

α1 0.885 0.80
(0.794,0.978)

φ 0.193 Flat
(0.088,0.298)

Latent regime equation
λ 0.216 Flat

(-0.027,0.469)
θ1 0.547 0.80

(0.412,0.679)
θ2 0.116 Flat

(0.013,0.225)
Covariance matrix

σ2
1 0.586 Flat

(0.478,0.731)
ρ 0.135 Flat

(-0.063,0.321)
90% prob. interval in parentheses

On the whole, the parameter estimates are quite similar across the two specifications,

and this suggests that the identification that hinges on the normality assumption is not
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terribly off base. Nevertheless, one difference between the two specifications is that the

leading indicators covariate has a 90 percent probability interval that lies only in the

positive region. In this case, the leading indicators add some regime forecasting power

beyond that brought by the autoregressive term, whereas lagged GDP growth did not.

Like the specification without an instrument, the estimated covariance parameter ρ is

positive, although its 90 percent probability interval includes zero. This result stands

in contrast to the typical Markov switching model which assumes that the unobserved

regimes are determined exogenously from the observed data.

Next we compare the posterior means of the latent variable from these two non-

Markovian regime switching models with business cycle turning points defined by the

National Bureau of Economic Research (NBER).

Matching NBER business cycle turning points

The most interesting output from the non-Markovian regime switching model of GDP

growth is the posterior mean of the latent, strength-of-regime indicator, S∗. The results

from the self-contained model reported in Table 2 are presented first. Figure 2 shows

the posterior mean of the latent regime strength index and how well its crossings of zero

match the NBER business cycle turning points. The biggest discrepancies between the

sign of the posterior mean of the latent variable and the NBER recession dates occur in

the relatively mild 1970 and 2001 recessions. In both cases, the latent regime index dip

below zero a bit earlier than the onset of the NBER recession and they also move back

above zero a bit before the NBER-dated trough. at the March 1991 NBER trough date.

Overall, however, the regime switching model implies switching dates that are very close

to NBER turning points throughout the sample. The posterior mean of the latent variable
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can also serve as a business cycle index, given that it measures the strength of growth

rate regimes. For example, 1965, 1972, 1978 and 1984 are periods of pronounced cyclical

strength. Similarly, the milder recessions are reflected in the posterior mean of the latent

variable as recessions where the the latent variable did not dip as far below zero, such as

in 1960, 1970 and 2001. We also calculate posterior means of the regime probabilities,

calculated as the percentage of the draws that the latent variable, S∗t , was above zero.

For this measure, a posterior mean probability of 0.5 corresponds closely with NBER

turning points, as shown in Figure 3. The priors needed to induce the latent variable to

change signs at the business cycle frequency included a prior to keep the two growth rate

parameters, α0 and α1, sufficiently far apart so as not to reflect fast and moderate growth

within economic expansions; the other prior was to ensure a degree of persistence on the

latent variable by way of the autoregressive coefficient, θ1.

The corresponding figures for the specification that used the growth in the index of

leading indicators as an instrument in the latent regime strength equation are Figures 4

and 5. The results for the posterior mean of the latent variable and the posterior mean of

the regime probabiilities are largely the same as they were in Figures 2 and 3 without an

instrument, although the 1980 regime shift starts earlier with the instrument. In addition,

the specification that uses the leading indicators also finds a near-recession in 1995, when

a recession scare, emanating from a false alarm from the leading indicators among other

sources, led the Federal Reserve to cut the federal funds rate three times between July

1995 and January 1996.

Time-varying expected regime durations

With positive serial dependence, the farther the autoregressive latent variable is from
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zero (the greater the strength of the current regime), the higher is the expected time

before a sign (regime) change. Here we illustrate this feature of the self-contained non-

Markovian regime switching model with calculations of time-varying expected durations.

Starting with the posterior mean value of the latent variable, S∗t , and posterior mean

values of the parameters, we simulated shock processes for eq. (7) until the sign changed

at S∗t+k, where k is the duration of the regime from time t. Note that if we started from

the value of S
∗(i)
t from each iteration i of the MCMC sampler, we would be mixing cases

where S
∗(i)
t was positive and negative. For this reason, we use the posterior mean values as

a common starting point. The mean value of k from the simulations was calculated as the

expected duration. Figure 6 plots these expected durations. Given the positive intercept,

λ, the expected durations are longer on average when S∗t is above zero (for expansions)

than when it is below zero (for recessions). On average, the expected duration in the

expansion regime is about three times as long as in the recession regime. This ratio

suggests that about 25 percent of the observations will pertain to the recession regime

and this figure is not much different from the 21 percent of quarters that the NBER

has declared to be recessions. Of course, the expected durations presented here are only

in-sample estimates for the purpose of illustrating this feature of the model.

Conclusions

In this article, we present a non-Markovian regime switching model in which the

magnitude of the latent variable indexes the time-varying strength of the regime. In our

application to regime switching at the business cycle frequency in the growth rate of GDP,

we find that the posterior mean of the latent variable looks much like a business cycle

index that indicates the degree of cyclical strength or weakness in the economy. Another
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useful feature of the non-Markovian model is the time-varying nature of its transition

probabilities. For the self-contained model, it is straightforward to calculate the expected

duration of the current regime at each observation.

We also demonstrate the straightforward adjustment one can make within the MCMC

estimation procedure to allow for the regime process to be correlated with the observable

data. Our estimates of GDP growth indicate that the regimes are likely not independent

from the observed data. This feature helps regime-switching models confront regime

switches where the pressure for a change in regime builds gradually across time.

In terms of methodology, we exploit the fact that it is simple to take expectations

of nonlinear regime indicator functions when performing the Kalman filtering as part of

a multi-move sampling procedure for the latent regime strength variable. This leads to

more natural updates in the Kalman filter equation and better inferences of the latent

variable.
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Performance of Sampling the Latent Variable in Monte Carlo 
(Deviation from True Value; Every 15th Observation)
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Figure 2: Posterior Mean of Latent Regime Strength 
from Self-Contained Model (no instrument)
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Figure 3: Posterior Mean of the Probablility of the High-Growth Regime 
from Self-Contained Model (no instrument)



Expected Regime Duration Implied by Self-Contained Model
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Figure 5: Posterior Mean of the Latent Regime Strength 
Using Leading Indicators as an Instrument
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Figure 6: Posterior Mean of the Probablility of the High-Growth 
Regime Using Leading Indicators as an Instrument
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