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and Kurtosis Preferences

Massimo Guidolin
University of Virginia

Allan Timmermann
University of California, San Diego

JEL code: G12

Abstract

This paper proposes a new tractable approach to solving multi-period asset allocation prob-

lems. We assume that investor preferences are deÞned over moments of the terminal wealth

distribution such as its skew and kurtosis. Time-variations in investment opportunities are

driven by a regime switching process that can capture bull and bear states. We develop ana-

lytical methods that only require solving a small set of difference equations and thus are very

convenient to use. These methods are applied to a simple portfolio selection problem involving

choosing between a stock index and a risk-free asset in the presence of bull and bear states in

the return distribution. If the market is in a bear state, investors increase allocations to stocks

the longer their time horizon. Conversely, in bull markets it is optimal for investors to decrease

allocations to stocks the longer their investment horizon.

Key words: Optimal Asset Allocation, Regime Switching, Skew and Kurtosis Preference.

1. Introduction

Optimal asset allocation has generated considerable interest in Þnance since the seminal papers by

Merton (1969) and Samuelson (1969). Examples of recent studies include Ang and Bekaert (2001),

Barberis (2000), Brandt (1999), Brennan, Schwarz and Lagnado (1997), Campbell and Viceira

(1999, 2001), Kandel and Stambaugh (1996) and Lynch (2001). Only in very special cases such as

under mean-variance or power utility with constant investment opportunities or under logarithmic

utility can exact solutions to an investor�s multi-period portfolio choice be derived in closed form.

Unfortunately, the assumption of constant investment opportunities is at odds with considerable

empirical evidence which indicates that asset returns are partially predictable.1

Faced with these limitations, recent papers have used numerical techniques such as quadrature

methods (Ang and Bekaert (2001), Lynch (2001)) or Monte Carlo simulations (Barberis (2000)) to

characterize optimal portfolio holdings. Unfortunately, these methods have their own limitations.

Quadrature methods may not be very precise when the underlying asset return distributions are not

1See, e.g., Campbell (1987), Keim and Stambaugh (1986), Fama and French (1988) and Pesaran and Timmermann

(1995).



Gaussian, as is strongly suggested by empirical research, c.f. Bollerslev et al. (1992) and Gallant

and Tauchen (1989). While Monte Carlo methods do not suffer from this problem, they can be

computationally expensive to use as they rely on discretization of the state space and use grid

methods. This imposes severe constraints on multi-asset problems.2

This paper proposes a new tractable approach to optimal multi-period asset allocation which

is both convenient to use and offers new insights into an investor�s asset allocation problem in the

presence of regime switching. We assume that investor preferences are deÞned over a Þnite number

of moments of terminal wealth and thus incorporate the skew, kurtosis and possibly even higher

order moments of the wealth distribution. Our approach follows recent papers in the asset pricing

literature such as Harvey and Siddique (2000) and Dittmar (2002) that emphasize the need to

consider moments of returns other than just the mean and variance.

Our model of investor preferences is combined with an assumption that the distribution of asset

returns is driven by a regime switching process. There is now a large body of empirical evidence

suggesting that returns on stocks and other Þnancial assets can be captured by this class of models.3

While a single Gaussian distribution generally does not provide an accurate description of stock

returns, the regime switching models that we consider have far better ability to approximate the

return distribution and can capture outliers, fat tails and skew.

Using this setup, we develop analytical methods for deriving the moments of the wealth distri-

bution that only require solving a small set of difference equations corresponding to the number of

regimes in the return distribution. When coupled with a utility speciÞcation that incorporates skew

and kurtosis preferences, the otherwise complicated numerical problem of optimal asset allocation

is reduced to that of solving for the roots of a low-order polynomial. Our solution is closed-form in

the sense that it is computable with a Þnite number of elementary operations.

We apply our methods to a simple portfolio selection problem involving a US stock portfolio and

a risk-free asset. We Þnd evidence of two regimes in US stock returns, namely a bear state with high

volatility and low mean returns and a bull state with high mean returns and low volatility. Both

states are persistent and their presence generates predictability in the stock return distribution.

Unsurprisingly it is optimal for investors to hold more stocks when the perceived probability of

the bull state is high. Since the probability of switching to a bear state grows with the investor�s

horizon, a buy-and-hold investor will hold less in stocks the longer the investment horizon provided

that the market starts from a bull state. In contrast, if the market starts from a bear state, stocks

are unattractive in the short-run but become more attractive in the longer run since a bull state will

almost certainly emerge. This creates an upward-sloping demand schedule for stocks as a function

2In continuous time, closed-form solutions obtain under less severe restrictions. For instance Kim and Omberg

(1996) work with preferences in the HARA class deÞned over Þnal wealth and assume that the single risky asset

return is mean-reverting. Under identical assumptions on preferences and risk premia, Wachter (2002) shows that

a closed-form solution obtains even when interim consumption is possible if markets are complete (predictors are

perfectly negatively correlated with risky returns).
3See, e.g., Ang and Bekaert (2002), David and Veronesi (2001), Gray (1996), Perez-Quiros and Timmermann

(2000), Turner, Startz and Nelson (1989), Whitelaw (2001).
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of the investment horizon.

The plan of the paper is as follows. Section 2 describes investor preferences as deÞned over

moments of the terminal wealth distribution. Section 3 introduces the regime-switching model for

asset returns and documents the presence of regimes in US stock returns. Section 4 solves the asset

allocation problem and derives the moments of the wealth distribution up to an arbitrary order

both for the popular case with two states and the general case with multiple assets and any number

of states. Section 5 provides an empirical application of our methods to US stock returns while

Section 6 studies the effect of portfolio rebalancing and Section 7 concludes. An Appendix provides

details of the main technical results in the paper.

2. Investor Preferences

We are interested in studying the optimal asset allocation problem at time t for an investor with a

T -period investment horizon. Suppose that the investor�s utility function U(Wt+T ;θ) only depends

on wealth at time t+T , Wt+T , and a set of parameters, θ. The investor maximizes expected utility

by choosing among h risky assets which pay continuously compounded returns rst ≡ (r1t r2t ... rht)0.
We collect these portfolio weights in an h× 1 vector ωt ≡ (ω1t ω2t ... ωht)0 and complete the asset
menu by an h+1-th risk-free asset such that 1−ω0tιh is invested in the risk-free security which has
a continuously compounded return of rf . The portfolio selection problem solved by a buy-and-hold

investor with unit wealth is

max
ωt

Et [U(Wt+T ;θ)]

s.t. Wt+T =
n
(1− ω0tιh) exp

³
Trf

´
+ ω0t exp

¡
Rst+T

¢o
(1)

where Rst+T ≡ rst+1 + r
s
t+2 + ... + r

s
t+T is the vector of continuously compounded risky returns

over the T−period investment horizon. Accordingly, exp ¡Rst+T ¢ is a vector of cumulated returns.
Short-selling can be imposed through the constraint ωit ∈ [0, 1] for i = 1, 2, ..., h. Rebalancing is

introduced in Section 6, but we exclude this for the moment to keep the problem simple.

For general preferences there is no closed-form solution to (1). Given the economic importance

of problems such as (1), it is not surprising that numerous approaches have been suggested for its so-

lution. Campbell and Viceira (1999, 2001) develop analytical approximations to the investor�s Euler

equation and intertemporal budget constraint and solve for asset holdings and optimal consumption

when time-variations in investment opportunities are driven by a state variable that follows a Þrst-

order autoregressive process. Assuming power utility and return predictability from the dividend

yield, Barberis (2000) resorts to Monte Carlo simulation methods to solve (1). Under a similar spec-

iÞcation for stochastic investment opportunities, Lynch (2001) uses Gaussian quadrature methods

to approximate the objective function. In the presence of regime switching in asset returns, Ang

and Bekaert (2001) also apply Gaussian quadrature techniques. These methods have yielded im-

portant insights into the solution to (1), but are often computationally expensive or impose speciÞc

conditions on the stochastic process driving asset returns.
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2.1. Preferences over Moments of the Wealth Distribution

Building on the work of Scott and Horvath (1980), Harvey and Siddique (2000) and Dittmar (2002)

we follow a different approach and study preference functionals that improve over classical prefer-

ences such as mean-variance by taking into account a generic number of moments (m) of the wealth

process.

For this purpose, we consider an m-th order Taylor expansion of a generic utility function

U(Wt+T ;θ) around a wealth level vT :

U(Wt+T ;θ) =
mX
n=0

1

n!
U (n)(vT ;θ) (Wt+T − vT )n +Rm, (2)

where Rm = o((Wt+T − vT )m) and U (0)(vT ;θ) = U(vT ;θ). U (n)(.) denotes the n−th derivative of
the utility function with respect to terminal wealth. Suppose the utility function U(Wt+T ;θ) is

continuously differentiable with U 0(Wt+T ;θ) > 0, U
00(Wt+T ;θ) < 0, for all Wt+T , and that, for all

n ≥ 3, the following conditions hold:

U (n)(Wt+T ;θ) > 0,

U (n)(Wt+T ;θ) = 0, or

U (n)(Wt+T ;θ) < 0, (3)

Assumption (3) is what Scott and Horvath (1980) call strict consistency for moment preference. It

simply states that the n-th order derivative is either always negative, always positive, or everywhere

zero for all possible wealth levels. Under these assumptions, Scott and Horvath show that the

following restrictions follow:

U (3)(Wt+T ;θ) > 0 U (4)(Wt+T ;θ) < 0

U (n odd)(Wt+T ;θ) > 0 U (n even)(Wt+T ;θ) < 0 (4)

In particular, U (3)(Wt+T ;θ) < 0 can be proven to violate the assumption of positive marginal utility,

so we must have U (3)(Wt+T ;θ) > 0. Likewise, U
(4)(Wt+T ;θ) > 0 would violate the assumption of

strict risk-aversion. More generally, the strict consistency requirement in (3) therefore implies that

all the odd derivatives of U(Wt+T ;θ) are positive while all the even derivatives are negative.

Provided that the Taylor series (2) converges, that the distribution of wealth is uniquely deter-

mined by its moments, and that the order of sums and integrals can be exchanged, (2) extends to

the expected utility functional:

Et[U(Wt+T ;θ)] =
mX
n=0

1

n!
U (n)(vT ;θ)Et[(Wt+T − vT )n] + �Rm,

where �Rm is another remainder term. We thus have

Et[U(Wt+T ;θ)] ≈ �Et[U
m(Wt+T ;θ)] =

mX
n=0

1

n!
U (n)(vT ;θ)Et[(Wt+T − vT )n], (5)
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where the approximation improves as m → +∞. Many classes of Von-Neumann Morgenstern

expected utility functions can thus be well approximated by a function of the form:

�Et[U
m(Wt+T ;θ)] =

mX
n=0

κnEt[(Wt+T − vT )n], (6)

with κ0 > 0, and κn positive (negative) if n is odd (even). We call these objectives m−moment
preference functionals.

3. The Return Process

A large empirical literature has documented the presence of persistent �regimes� in a variety of

Þnancial time series. Ang and Bekaert (2002), Driffill and Sola (1994), Gray (1996), Hamilton

(1988)) Þnd evidence of multiple states in the dynamics of interest rates, while Ang and Bekaert

(2001), David and Veronesi (2001), Perez-Quiros and Timmermann (2000), Turner, Starz and Nelson

(1989) and Whitelaw (2001) provide evidence for stock market returns. Typically these states

capture periods of high and low volatility in returns.

Following this literature, suppose that the vector of h continuously compounded returns, rt =

(r1t, r2t, ..., rht)
0, follows a Markov switching vector autoregressive process driven by a common state

variable, St, that takes integer values between 1 and k:

rt = µst +

pX
j=1

Aj,strt−j + εt. (7)

Here µst = (µ1st, ..., µhst)
0 is a vector of intercepts in state st,Aj,st is an h×hmatrix of autoregressive

coefficients associated with the j-th lag in state st, and εt = (ε1t, ..., εht)
0 ∼ N(0,Ωst) is a vector of

Gaussian return innovations with zero mean vector and state-dependent covariance matrix Ωst :

Ωst = E

rt − µst − pX
j=1

Aj,strt−j

rt − µst − pX
j=1

Aj,strt−j

0

|st
 .

The state-dependence of the covariance matrix captures the possibility of heteroskedastic shocks to

asset returns, which is supported by strong empirical evidence, c.f. Bollerslev et al. (1992). Each

state is assumed to be the realization of a Þrst-order, homogeneous Markov chain and the transition

probability matrix, P, governing the evolution in the common state variable, St, is given by

Pr(st = j|st−1 = i) = pij , i, j = 1, .., k. (8)

Conditional on knowing the state next period, the return distribution is Gaussian. However,

since future states are never known in advance, the return distribution is a mixture of normals with

the mixture weights reßecting the current state probabilities and the transition probabilities.

There are many advantages to modelling returns as mixtures of Gaussian distributions. As

pointed out by Marron and Wand (1992), mixtures of normal distributions provide a very ßexible
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family that can be used to approximate numerous other distributions.4 They can capture skew and

kurtosis in a way that is easily characterized as a function of the mean, variance and persistence

parameters of the underlying states. They can also accommodate predictability and serial correlation

in returns and volatility clustering since they allow the Þrst and second moments to follow a step

function driven by shifts in the underlying regime process, c.f. Timmermann (2000).

Even in the absence of autoregressive terms, (7) implies time-varying investment opportunities.

For example, the conditional mean of asset returns is an average of the vector of mean returns,

µst , weighted by the current state probabilities (Pr(st = 1|=t), ..,Pr(st = k|=t))0, conditional on
information available at time t, which we denote by =t. Since these state probabilities vary over
time, the expected return will also change. In addition, our approach is very ßexible and can readily

be extended to incorporate a range of predictor variables such as the dividend yield. This is done

simply by expanding the vector rt with additional predictor variables, zt and modeling their joint

process yt = (r
0
t z

0
t)
0.

3.1. Regimes in US Stock Returns

Our empirical application considers one of the most commonly studied portfolio problems in Þnance,

namely the allocation to a broad portfolio of US stocks and a risk-free asset. Before proceeding

further, we thus consider whether the regime switching model (7) applies to US stock returns. We

examine returns on the value-weighted portfolio of NYSE stocks provided by the Center for Research

in Security Prices (CRSP). The risk-free rate is measured by the 30-day T-bill rate. We model excess

returns deÞned as the difference between the stock return and the T-bill rate. Our data are monthly

and cover the sample period 1952:6 - 1999:12. Returns are continuously compounded.

The Þrst question that arises is of course whether multiple regimes are required to model US

stock returns. To answer this we considered the single-state speciÞcation tests suggested by Davies

(1977) and Garcia (1998).5 These rejected the linear speciÞcation very strongly.6

The next issue is to determine the number of regimes. For this purpose we adopted two methods.

We Þrst considered statistical information criteria that trade off Þt against parsimony. The Schwarz

information criterion which consistently selects the true model in large samples chose a two-state

speciÞcation without any lags.7

We also adopted an approach based on speciÞcation tests for the entire return distribution.

Calculation of expected utility in (1) requires integrating over the entire probability distribution of

returns. It is important to use a model for stock returns whose predictive density is not misspec-

4Mixtures of normals can also be viewed as a nonparametric approach if the number of states, k, is allowed to grow

with the sample size.
5These tests account for the problem that arises because the regime switching models have parameters that are

unidentiÞed under the null hypothesis of a single regime. This means that standard critical values cannot be used in

the hypothesis testing.
6A likelihood ratio test of the null of k = 1 vs. the alternative of k = 2 for a model with state-dependent means

and variances yields a test statistic of 53.2 which carries a p-value of 0.000.
7See Bossaerts and Hillion (1999) for a discussion and application of information criteria in models of Þnancial

returns.
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iÞed, so we conducted a set of speciÞcation tests that consider the entire conditional probability

distribution of excess returns. These tests are based on the so-called probability integral transform

examined by Diebold, Gunther and Tay (1998). We follow Berkowitz (2001) in considering four sep-

arate tests for misspeciÞcation related to the Þrst four moments of stock returns in addition to any

evidence of serial correlation in the normalized residuals. Table 1 shows that the single-state model

was strongly rejected, while a two-state model with state-dependent mean and variance passed all

tests at the 10% signiÞcance level. This is the model we use in our subsequent analysis.

To interpret the two states from an economic perspective, we present parameter estimates in

Table 2 and plot the smoothed state probabilities in Figure 1. First consider the parameter es-

timates. In the linear benchmark model, the mean excess return is 0.67% per month while the

volatility is 4.2% per month. This, however, conceals two very different states. In the Þrst state the

mean return is -0.93% and the volatility is 6.3% per month. In the second state the mean return is

1.11% and, at 3.3%, the volatility is around half its level in the Þrst state. The Þrst state is thus

a high-volatility bear state while the second state is a low-volatility bull state. Interestingly, mean

returns in both states are signiÞcantly different from zero at the 5% critical level. The persistence

of the bear state (0.81) is considerably lower than that of the bull state (0.95). As a consequence,

the average duration of a bear state is 5 months, while it is 20 months for the bull state.

Figure 1 shows that the bear state probability is high around most official recession periods,

but also rises on many other occasions characterized by high volatility in returns. There does not

appear to be a stable lead-lag pattern between the bear state probabilities and official recession

periods. Most of the time it is clear what state the market is in and the state probabilities are far

away from 0.5.

4. The Portfolio Allocation Problem

This section characterizes the solution to the investor�s optimal asset allocation problem when

preferences are deÞned over moments of terminal wealth (6) while returns follow the regime switching

process (7). We Þrst study the problem under the simplifying assumption of a single risky asset

(n = 1), a regime switching process with two states (k = 2) and no autoregressive terms (p = 0).

For this case, the return process is simply

rt = µst + σstεt, st = 1, 2,

Pr(st = i|st−1 = i) = pii, i = 1, 2 (9)

Concentrating on this case allows us to convey intuition for the more general results. It also provides

an accurate model in many empirical applications, c.f. Section 3.1. With a single risky asset, the

wealth process is simply

Wt+T =
n
(1− ωt) exp

³
Trf

´
+ ωt exp (Rt+T )

o
(10)

where Rt+T ≡ rt+1+rt+2+ ...+rt+T is the continuously compounded return on the risky asset over
the T periods and ωt is the stock holding. Without loss of generality, initial wealth is normalized

7



at one.

For a given value of ωt, the only unknown component in (10) is the cumulated return, exp(Rt+T ).

To be able to use the results from Section 2, our Þrst task is to characterize the moments of this

term.

4.1. Moments of the Cumulated Return Distribution with two States

We are interested in deriving the n-th central moment of the cumulated return distribution:

�M
(n)
t+T = E [(exp(rt+1 + ...+ rt+T )−E[exp(rt+1 + ...+ rt+T )])n] .

It turns out that it is easier to derive recursive expressions for the non-central moments.8 Under

the assumption of two states, k = 2, the nth non-central moment of the cumulated returns is given

by

M
(n)
t+T = E [(exp(rt+1 + ...+ rt+T ))

n |=t]

=
2X

st+T=1

E [(exp(rt+1 + ...+ rt+T ))
n |st+T ,=t] Pr(st+T |=t) (11)

≡ M
(n)
1t+T +M

(n)
2t+T ,

where we used the total probability theorem. The nth conditional moment M
(n)
it+1 satisÞes the

recursions

M
(n)
it+T = E [exp(n(rt+1 + ...+ rt+T−1))|st+T ]E [exp(nrt+T )|st+T ,=t] Pr(st+T |=t)

=
³
M
(n)
it+T−1pii +M

(n)
−i,t+T−1(1− p−i−i)

´
exp

µ
nµi +

n2

2
σ2i

¶
, (i = 1, 2)

where we used the notation −i for the converse of state i, i.e. −i = 2 when i = 1 and vice versa. In
more compact notation we have

M
(n)
1t+1 = α

(n)
1 M

(n)
1t + β

(n)
1 M

(n)
2t

M
(n)
2t+1 = α

(n)
2 M

(n)
1t + β

(n)
2 M

(n)
2t , (12)

where

α
(n)
1 = p11 exp

µ
nµ1 +

n2

2
σ21

¶
β
(n)
1 = (1− p22) exp

µ
nµ1 +

n2

2
σ21

¶
α
(n)
2 = (1− p11) exp

µ
nµ2 +

n2

2
σ22

¶
β
(n)
2 = p22 exp

µ
nµ2 +

n2

2
σ22

¶
.

8The centered moments, �M
(n)
t+T can be derived from the Þrst n non-central moments simply by expanding

E [(exp(rt+1 + ...+ rt+T )−E[exp(rt+1 + ...+ rt+T )|=t])n |=t].

8



Equation (12) can be reduced to a set of second order difference equations:

M
(n)
it+2 = (α

(n)
1 + β

(n)
2 )M

(n)
it+1 + (α

(n)
2 β

(n)
1 − β(n)2 α

(n)
1 )M

(n)
it , (i = 1, 2) (13)

Collecting the two regime-dependent moments into a 2 × 1 vector ϑ(n)it+T ≡ (M
(n)
it+T M

(n)
it+T−1)

0,
equation (13) can be written in companion form

ϑ
(n)
it+T =

"
α
(n)
1 + β

(n)
2 α

(n)
2 β

(n)
1 − β(n)2 α

(n)
1

1 0

#
ϑ
(n)
it+T−1 ≡ A(n)ϑ(n)it+T−1.

Substituting backwards we get the following equation for the ith conditional moment:

ϑ
(n)
it+T =

³
A(n)

´T
ϑ
(n)
it .

The elements ofA(n) only depend on the mean and variance parameters of the two states (µ1,σ
2
1, µ2,σ

2
2)

and the state transition parameters, (p11, p22).

Applying similar principles at T = 1, 2 and letting π1t = Pr(st = 1|=t), the initial conditions
used in determining the nth moment are as follows:

M
(n)
1t+1 = (π1tp11 + (1− π1t)(1− p22)) exp

µ
nµ1 +

n2

2
σ21

¶
,

M
(n)
1t+2 = p11 (π1tp11 + (1− π1t)(1− p22)) exp

¡
2nµ1 + n

2σ21
¢
+

+(1− p22) (π1t(1− p11) + (1− π1)p22) exp
µ
n(µ1 + µ2) +

n2

2
(σ21 + σ

2
2)

¶
,

M
(n)
2t+1 = (π1t(1− p11) + (1− π1)p22) exp

µ
nµ2 +

n2

2
σ22

¶
,

M
(n)
2t+2 = p22 (π1t(1− p11) + (1− π1)p22) exp

¡
2nµ2 + n

2σ22
¢
+

+(1− p11) (π1tp11 + (1− π1t)(1− p22)) exp
µ
n(µ1 + µ2) +

n2

2
(σ21 + σ

2
2)

¶
. (14)

Finally, using (11) we get an equation for the nth moment of the cumulated return.

M
(n)
t+T =M

(n)
1t+T +M

(n)
2t+T = e

0
1ϑ

(n)
1t+T + e

0
2ϑ

(n)
2t+T = e

0
1

³
A(n)

´T
ϑ
(n)
1t + e

0
2

³
A(n)

´T
ϑ
(n)
2t , (15)

where ei is a 2× 1 vector of zeros except for unity in the ith place.
Having obtained the moments of the cumulated return process, it is simple to compute the

expected utility by using (6) and (10):

�Et[U
m(Wt+T ;θ)] =

mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶
Et[W

j
t+T ]

=
mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶ jX
i=0

µ
j

i

¶
ωitM

i
t+T

³
(1− ωt) exp

³
Trf

´´j−i
.

(16)
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The Þrst order condition is obtained by differentiating with respect to ωt :

∂ �Et[.]

∂ωt
=

mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶ jX
i=1

i

µ
j

i

¶
ωi−1t M i

t+T

³
(1− ωt) exp

³
Trf

´´j−i
= 0.

Second order conditions are satisÞed by our earlier assumptions about the derivatives of U(.). Notice

that the Þrst order condition takes the form of the roots of an n−1th order polynomial in ωt, which
are easily obtained. The optimal solution for ωt corresponds to the root for which (16) has the

highest value.

4.1.1. Expected Returns

As an illustration of the moment equations, we set n = 1 and consider the expected value of the

cumulated return on the risky asset. The characteristic equation associated with (13) reduces to9

r2 − (α1 + β2)r − (α2β1 − β2α1) = 0

with solution

r1, r2 =
1

2

n
α1 + β2 ±

p
(α1 + β2)

2 + 4(α2β1 − β2α1)
o

=
1

2

n
α1 + β2 ±

p
(α1 − β2)2 + 4α2β1

o
. (17)

Both roots are real since the term inside the square root is positive. The solution thus takes the

form

M1t+T = C1r
T
1 + C2r

T
2

M2t+T = C3r
T
1 + C4r

T
2 . (18)

The constants C1, C2, C3 and C4 can be derived by evaluating (18) at T = 1, 2 :

C1 =
M
(1)
1t+2 −M (1)

1t+1r2

r21 − r1r2
,

C2 =
M
(1)
1t+1 − C1r1

r2

C3 =
M
(1)
2t+2 −M (1)

2t+1r2

r21 − r1r2
, (19)

C4 =
M
(1)
2t+1 − C3r1

r2
.

The expected value of the cumulated return on the risky asset is thus given by

M
(1)
t+T =M

(1)
1t+T +M

(1)
2t+T = (C1 + C3)r

T
1 + (C2 + C4)r

T
2 . (20)

This is readily evaluated for arbitrary horizons, T . Higher order moments give rise to very similar

solutions.
9For simplicity, we suppress the superscripts on the α,β values.
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4.2. General Results

So far we have ignored that in many applications rt is a vector of returns on a multi-asset portfolio.

The number of states, k, may also exceed two. For the general case with h risky assets and k states,

the wealth process is

Wt+T = ω
0
t exp

Ã
TX
i=1

rt+i

!
+ (1− ω0tιh) exp(rfT ).

The moments of the wealth process are complicated to derive and involve lots of cross-product

terms. For example, in the case with only two risky assets, the third moment is

Et[W
3
t+T ] = Et

"
ω31t exp

Ã
3
TX
i=1

r1,t+i

!
+ 3ω21tω2t exp

Ã
2

TX
i=1

r1,t+i +
TX
i=1

r2,t+i

!

+3ω1tω
2
2t exp

Ã
TX
i=1

r1,t+i + 2
TX
i=1

r2,t+i

!
+ ω32t exp

Ã
3
TX
i=1

r2,t+i

!#

+3Et

"
ω21t exp

Ã
2

TX
i=1

r1,t+i

!
+ 2ω1tω2t exp

Ã
TX
i=1

r1,t+i +
TX
i=1

r2,t+i

!
+

+ω22t exp

Ã
2

TX
i=1

r2,t+i

!#
(1− ω1t − ω2t) exp(rfT )

+3Et

"
ω1t exp

Ã
TX
i=1

r1,t+i

!
+ ω2t exp

Ã
TX
i=1

r2,t+i

!#
×(1− ω1t − ω2t)2 exp(2rfT ) + (1− ω1t − ω2t)3 exp(3rfT ).

The complexity of the moment expressions grows by an order of magnitude for larger values of k

and h. It is therefore necessary to have a simple, recursive procedure for evaluating the moments

of the cumulated returns. This is provided in Proposition 1:

Proposition 1. Under the regime-switching process (7) and m−moment preferences (6), the
expected utility is given by

�Et[U
m(Wt+T ;θ)] =

mX
n=0

κn

nX
j=0

(-1)n−jvn−jT nCjEt[W
j
t+T ]

=
mX
n=0

κn

nX
j=0

(-1)n−jvn−jT

µ
n

j

¶ jX
i=0

µ
j

i

¶
Et[
¡
ω0t exp

¡
Rst+T

¢¢i
]((1-ω0tιh) exp

³
Trf

´
)j−i

The nth moment of the cumulated return on the risky asset portfolio is

Et[
¡
ω0t exp

¡
Rst+T

¢¢n
] =

nX
n1=0

· · ·
nX

nh=0

(ωn11 × ...× ωnhh )M (n)
t+T (n1, ..., nh),

and M
(n)
t+T (n1, ..., nh) can be evaluated recursively, using (A4) in the Appendix.
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The appendix derives this result. Proposition 1 is very convenient to use to derive the expected

utility. The solution is closed-form in the sense that it reduces the expected utility calculation to a

Þnite number of steps each of which can be solved by elementary operations.

5. Empirical Application to US Stock Returns

This section considers the effect of regime switching on optimal stock holdings in the context of a

simple model with a single risky asset (US stocks) and a risk-free asset. Initially we focus on the

decisions of a buy-and-hold investor. Section 6 introduces portfolio rebalancing.

To apply the methods in Section 4, we need to determine how many moments, m, to include

in the preference speciÞcation. We follow Dittmar (2002) and use m = 4. The utility function

thus accounts for preferences speciÞed over the skew and kurtosis of terminal wealth. As shown by

Kimball (1993), this choice can also be justiÞed on the basis that non-satiation, decreasing absolute

risk aversion, and decreasing absolute prudence determine the signs of the Þrst four derivatives of

U(Wt+T ;θ).
10

The weights on the Þrst four moments of the wealth distribution are determined to ensure that

our results can be compared to those in the existing literature. Most studies on optimal asset

allocation use power utility so our benchmark is

U(Wt+T ; θ) =
W 1−θ
t+T

1− θ , θ > 0. (21)

For a given coefficient of relative risk aversion, θ, the functional form (21) serves as a guide in

setting values of {κn}mn=0 in (6).11 Expanding the powers of (Wt+T − vT ) and taking expectations,
we obtain the following expression for the four-moment preference function:

�Et[U
4(Wt+T ; θ)] = κ0(θ) + κ1(θ)Et[Wt+T ] + κ2(θ)Et[W

2
t+T ] + κ3(θ)Et[W

3
t+T ] + κ4(θ)Et[W

4
t+T ]

(22)

where

κ0(θ) ≡ v1−θT

·
(1− θ)−1 − 1− 1

2
θ − 1

6
θ(θ + 1)− 1

24
θ(θ + 1)(θ + 2)

¸
κ1(θ) ≡ 1

6
v−θT [6 + 6θ + 3θ(θ + 1) + θ(θ + 1)(θ + 2)] > 0

κ2(θ) ≡ −1
4
θv
−(1+θ)
T [2 + 2(θ + 1) + (θ + 1)(θ + 2)] < 0

κ3(θ) ≡ 1

6
θ(θ + 1)(θ + 3)v

−(2+θ)
T > 0

κ4(θ) ≡ − 1

24
θ(θ + 1)(θ + 2)v

−(3+θ)
T < 0.

10These assumptions seem reasonable. Since Arrow (1971) it has been common to assume positive and decreasing

marginal utility of wealth or, equivalently, non-satiation and strict risk aversion.
11The power utility function is simply used as a device for calibrating the weights on the Þrst four moments since

Taylor series expansions of this function do not converge, c.f. Loistl (1976).
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This expression is consistent with our earlier comments regarding the signs of the coefficients

{κn}4n=0: the expected utility from Þnal wealth increases in Et[Wt+T ] and Et[W
3
t+T ], so that higher

expected returns and more right-skewed distributions lead to higher expected utility. Conversely,

expected utility is a decreasing function of the second and fourth moments of the terminal wealth

distribution.

A solution to the optimal asset allocation problem can now easily be found from (22) by solving

a system of cubic equations in �ωt derived from the Þrst and second order conditions

∇ωt �Et[U4(Wt+T ; θ)]
¯̄̄
�ωt
= 00, Hωt �Et[U

4(Wt+T ; θ)]
¯̄̄
�ωt
is negative deÞnite.

Thus �ωt sets the gradient, ∇ωt �Et[U4(Wt+T ; θ)], to a vector of zeros and produces a negative deÞnite

Hessian matrix, Hωt �Et[U
4(Wt+T ; θ)].

12

5.1. Empirical Results

Since the return distribution is very different in the bull and bear state, the state probability

perceived by investors is a key determinant of their asset holdings. Similarly, the investment horizon

is important since the two regimes capture a mean reverting component in stock returns. Investors

can be fairly sure that the current state will apply in the short-run, particularly in case of the

more persistent bull state. Regime switching is, however, more likely to occur at longer investment

horizons.

This observation is key to understanding Figure 2 which plots the optimal allocation to stocks

as a function of the investment horizon and the bull state probability. This Þgure imposes the short-

sales constraint, ωt ∈ [0, 1]. The Þgure reveals a very interesting interaction between the underlying
state probabilities and the investment horizon. To interpret the Þgure, suppose that the initial bull

state probability equals one. Starting from the bull state, investors are 95% certain that the bull

state will continue next month and this makes stocks an attractive investment. At the shortest

investment horizon, the allocation to stocks is therefore 100%. However, as the investment horizon

grows there is a higher chance of switching to the unattractive bear state, so investors allocate less

to stocks. In contrast, starting from the bear state, stocks are not very attractive to short-term

investors. However, as the investment horizon grows, there is a high chance that the market will

switch to the bull state and stocks become increasingly attractive.13

To isolate the effects of state beliefs on the optimal stock holdings, Figure 3 shows optimal

investments for different values of the bull state probability. It is particularly clear from this Þgure

that, starting from the bull state, the stock demand schedules are downward sloping as a function

of the investment horizon. Conversely, starting from the bear state, the stock demand schedules are

upward sloping.

12In practice, choosing the point around which the Taylor series expansion is computed, vT , can be cumbersome

since this depends itself on ωt which is unknown. To resolve this issue, we set vT = Et[Wt+T−1], which is the expected

value of the investor�s wealth for a T − 1 period investment horizon.
13The ßat segments in Figure 2 reßect the short-sales constraint.

13



The second plot in Figure 3 shows results under power utility based on Monte Carlo simulations

and grid methods. Simulation techniques in asset allocation problems are notoriously slow even in

simple setups such as ours, where h = 1. As a matter of fact, in our example maximization of (22)

based on the closed-form results derived in Section 4 lowers the computation time by a factor of

50 when compared to using simulation methods. These gains are likely to be larger by an order

of magnitude in multivariate asset allocation problems. Interestingly, the optimal stock holdings

under power utility are very similar to those based on our four-moment speciÞcation, suggesting

that our approach can be used as an alternative to the traditional techniques based on power utility.

Using the optimal asset allocation weights, we can compute the Þrst four moments of the wealth

distribution as a function of the bull state probability and the investment horizon. Figure 4 shows

the outcome of this exercise. The mean return proÞle is largely proportional to Figure 1 since, for

given values of the bull state probability and the investment horizon, mean returns are proportional

to the stock holdings. Two effects contribute to the volatility of the optimal portfolio. For a given

portfolio allocation the volatility declines as a function of the bull state probability since stock

returns are much more volatile in the bear state. However, the optimal stock holdings also rise as

a function of the bull state probability and this effect generally dominates the Þrst effect.14

Despite the fact that the underlying log-normal distributions for stock returns are individually

right-skewed, the two-state model can generate negative skews. This situation arises at short in-

vestment horizons for a high bull state probability and reßects the low probability of a bad event

in the form of an unexpected shift to the bear state. As the investment horizon grows, the return

distribution of the optimal portfolio gets a large and positive skew. Once again, the ßat segments

in these curves reßect points where it is optimal not to hold stocks. Kurtosis appears not to be

heavily inßuenced by the investment horizon or the bull state probability except, of course, around

the small region with zero stock holdings where the kurtosis shifts to zero.

To study the signiÞcance of going beyond a mean-variance analysis and also considering the

skew and kurtosis of the terminal wealth distribution, Figure 5 plots the optimal stock holding as

a function of the bull state probability for m = 2, 3 and 4. The Þgure assumes a medium-term

investment horizon of six months. Extending preferences to consider skew and kurtosis clearly leads

to very different stock holdings, particularly when the bull state probability exceeds 0.5. The four-

moment investor tends to hold less in stocks than the two or three-moment investor, a result of the

realization that the wealth distribution has fat tails. An investor with a three-moment preference

speciÞcation is, however, willing to hold more in stocks than the mean-variance investor. This is a

result of the generally positive skew in the wealth distribution, which makes stocks more attractive.

14The only point where the second effect does not dominate is when the short sales constraint is binding, i.e. in

the top corner of the volatility plot where the bull state probability exceeds 0.85 and the investment horizon is very

short. For Þxed stock holdings, the volatility will decrease the higher the probability of the (low volatility) bull state.
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5.2. Predictability from the Dividend Yield

Many studies have considered optimal stock holdings in the presence of predictability from the

dividend yield. We compare our results to this literature by extending our model to include the

dividend yield as an additional state variable:

yt = µst +

pX
j=1

Aj,styt−j + εt (23)

where yt = (rt zt)
0 and εt ∼ N(0,Ωst). Table 3 presents results from estimating a linear vector

autoregression with a single lag, similar to speciÞcations in Barberis (2000) and Campbell and

Viceira (1999). In the VAR(1) model reported in Panel A the coefficient estimates on the lagged

dividend yield are signiÞcant in both the return and yield equations. In contrast, the autoregressive

coefficient estimates on the lagged return are insigniÞcant.

Turning to the two-state model reported in Panel B, the coefficient estimates on the lagged

excess return continue to be statistically insigniÞcant in both states. The mean excess return is

6.24% and 6.48% per annum, while the volatility is 15.5% and 13.9% per annum in states 1 and

2, respectively. Hence the marginal return distribution does not vary much across the two states.

In contrast, the marginal distribution of the dividend yield is very different in the two states.

The volatility of the dividend yield is almost twice as large in state 1 (0.73% versus 0.40% per

annum) and its unconditional mean is much higher in state 1 (4.54%) than in state 2 (2.50%). The

different properties of the dividend yield across the two states does, of course, affect the conditional

distribution of stock returns, particularly since the coefficient on the dividend yield in the excess

return equation, at 0.4, is insigniÞcant in the Þrst state but, at 1.9, is signiÞcant in the second state.

At 0.99 and 0.97 both states are extremely persistent and their interpretation clearly very

different from the earlier univariate return model. This point comes out very clearly in Figure 6

which plots the smoothed probabilities of state 2. This state now captures episodes in the early and

mid-Þfties, a long period from 1974 to 1982 and a short episode in 1984. Overall, the states appear

to be driven by long-range ßuctuations in the dividend yield.

Figure 7 plots the optimal stock holdings based on the bivariate two-state model. Since the

model has been expanded to include the dividend yield as an additional state variable, we show

stock holdings as a function of the probability of state 2 and the value of the dividend yield, keeping

the investment horizon constant. To track the effect of the investment horizon, we present results

for both a short (T = 1) and a long (T = 36) horizon.

First consider the short horizon. For low values of the dividend yield and a low probability

of state 2, the investor does not hold any stocks and the short-sales constraint is binding. For

higher values of the dividend yield and higher probabilities of state 2, the optimal stock holding

increases and at values of the dividend yield above 4.5%, the investor puts all money in stocks.

While it is clear why the optimal stock holding is an increasing function of the current dividend

yield, the monotonicity in the probability of state 2 is explained by the relatively fast mean reversion

characterizing the dividend yield in this state in which the dividend yield ßuctuates well below its
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unconditional mean. If the dividend yield starts below its unconditional mean of 4.5%, it is expected

to increase. When coupled with the high sensitivity of excess returns to the dividend yield in state

2, the effect is to make the optimal stock holding an increasing function of the probability of this

state.

At the long horizon (T = 36), the sensitivity of the stock holdings with respect to the dividend

yield is much larger. This makes sense since the dividend yield captures more of the return variation,

the longer the investment horizon, which makes the sensitivity of stock holdings with respect to

this variable greater for large T . At lower levels of the dividend yield, the probability of state

2 continues to be important to the optimal stock holdings. However, the dividend yield clearly

matters relatively more than the state probabilities at the long investment horizon.

6. Rebalancing

To keep the analysis simple, so far we have ignored the possibility of portfolio rebalancing. In this

section we relax this assumption and allow the investor to rebalance every ϕ = T
B months at B

equally spaced points t, t + T
B , t + 2

T
B , ..., t + (B − 1)TB . This requires determining the portfolio

weights at the rebalancing times ωb (b = 0, 1, ..., B − 1). When B = 1, ϕ = T and the investor

simply implements a buy-and-hold strategy.

Cumulated wealth can be factored out as a product of interim wealth at the rebalancing points:

Wt+T =
BY
b=1

Wt+ϕb(ωb−1)
Wt+ϕ(b−1)(ωb−2)

, (24)

where

Wt+ϕb(ωb−1)
Wt+ϕ(b−1)(ωb−2)

=
n
(1− ω0b−1ιh) exp

³
ϕrf

´
+ ω0b−1 exp

³
Rsϕ(b−1)+1→ϕb

´o
,

and Rsϕ(b−1)+1→ϕb ≡ rst+ϕ(b−1)+1+ rst+ϕ(b−1)+2+ ...+ rst+ϕb. By the law of iterated expectations, the
following decomposition holds:

M
(n)
t+T = Et[W

n
t+T ] = Et

"
BY
b=1

µ
Wt+ϕb(ωb−1)

Wt+ϕ(b−1)(ωb−2)

¶n#

= Et

½
(Wt+ϕ(ωt))

nEt+ϕ

·µ
Wt+2ϕ(ωt+ϕ)

Wt+ϕ(ωt)

¶n
Et+2ϕ

µµ
Wt+3ϕ(ωt+2ϕ)

Wt+2ϕ(ωt+ϕ)

¶n
...

¶¸¾
= M

(n)
0→ϕ(ω0)Et

n
M
(n)
ϕ→2ϕ(ω1)Et+ϕ

h
M
(n)
2ϕ→3ϕ(ω2)Et+2ϕ

³
M
(n)
3ϕ→4ϕ(ω3)...

´io
(25)

where Et+ϕ(b−1) [·] is shorthand notation for E
£·|=t+ϕ(b−1)¤ andM (n)

ϕ(b−1)→ϕb(ωb−1) is the n-th (non-
central) moment of the cumulated portfolio returns between t+ϕ(b− 1) + 1 and t+ϕb, calculated
on the basis of time t+ ϕ(b− 1) information:

M
(n)
ϕ(b−1)→ϕb(ωb−1) ≡ Et+ϕ(b−1)

·µ
Wt+ϕb(ωb−1)

Wt+ϕ(b−1)(ωb−2)

¶n¸
= Et+ϕ(b−1)

h³
(1− ω0b−1ιh) exp

³
ϕrf

´
+ ω0b−1 exp

³
Rsϕ(b−1)+1→ϕb

´´ni
.
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The decomposition in (25) shows that future moments of wealth depend on future portfolio choices,

ωb.

We use the following recursive strategy to solve the asset allocation problem under m-moment

preference functionals and rebalancing:

1. Start solving the time T − ϕ problem

�ωB−1 ≡ arg max
ωB−1

mX
n=0

κn(θ) �Et

h
M
(n)
T−ϕ→T (ωB−1)

i
.

2. Solve the time T − 2ϕ problem

�ωB−2 ≡ arg max
ωB−2

mX
n=0

λB−1n (θ) �Et

h
M
(n)
T−2ϕ→T−ϕ(ωB−2)

i
,

where λB−1n (θ) ≡κn(θ) �Et[M (n)
T−ϕ→T (�ωB−1)] and �Et[M

(n)
T−ϕ→T (�ωB−1)] is the n-th noncentral

moment of the optimal wealth process calculated under the solution found in 1.

3. Solve the problem backward by iterating on 1. and 2. up to time t+ϕ, to generate a sequence

of optimal portfolio choices {�ωi}B−1i=1 . The optimal time t asset allocation, �ω0 ≡ �ωt, is then

found by solving

�ω0 ≡ argmax
ω0

mX
n=0

λ1n(θ)M
(n)
t→t+ϕ(ω0),

where

λ1n(θ) ≡κn(θ)
B−1Y
b=1

�Et[M
(n)
t+ϕb→t+ϕ(b+1)(�ωb)]. (26)

�ω0 is the vector of optimal portfolio weights under rebalancing every ϕ periods.

In practice, the algorithm 1. - 3. replaces a complex multiperiod program with a sequence of

simpler, buy-and-hold portfolio choice problems (each with horizon ϕ) in which the original mo-

ment coefficients {κn(θ)}mn=0 are recursively replaced with products of estimates of the conditional
noncentral moments of future wealth.

6.1. Empirical Results

Table 4 shows empirical results for a range of rebalancing frequencies and for three scenarios con-

cerning the initial state probability. Changes to the earlier results due to introducing rebalancing

are easy to follow. In the bear state, rebalancing leads the investor to scale down stock holdings.

For ϕ ≤ 3 months, the effect is so strong that �ωt = 0 for all investment horizons and the short-sales
constraint becomes binding. The intuition is that investors who can frequently adjust their portfo-

lios prefer to delay investing in stocks in the bear state since stock returns in this state are low on

average and highly volatile.
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In contrast, starting from the bull state, investors aggressively buy stocks to the extent that

for ϕ less than or equal to six months an investor only holds stocks and the short sales constraint

is binding. The fact that future portfolio holdings can be adjusted in case a bear state emerges

means that investors choose their current stock holdings more aggressively if they are certain that

the current market is in the bull state.

Finally, we also investigated the effects of changing ϕ when there is substantial uncertainty about

the current states which are equally likely, �πt = (0.5 0, 5)
0. Rebalancing leads to far less aggressive

portfolio choices under this scenario. Since the initial beliefs put more weight on the bear state

than the steady-state probabilities, the position in stocks is reduced as ϕ increases, although there

is no value of ϕ such that either �ωt = 0 or �ωt = 1. Furthermore, optimal rebalancing can produce

interesting non-monotonicities in the optimal stock holdings as a function of T . For example, when

ϕ is six months, the stock demand schedule slopes upward for short horizons but slopes downward

at longer investment horizons.

7. Conclusion

This paper proposed a method for optimal asset allocation under regime switching in the asset

return process when investor preferences depend on a Þnite number of moments of the terminal

wealth distribution. We show how to characterize the mean, variance, skew and kurtosis (as well

as other moments of arbitrarily high order) of the wealth distribution in the form of solutions to

simple difference equations. When coupled with a utility speciÞcation that incorporates skew and

kurtosis preferences, our method greatly reduces the otherwise numerically complicated problem of

solving for the optimal asset allocation. We apply the method to a portfolio problem considered in

much of the existing literature, namely the choice between a US stock index and a risk-free asset.

Our empirical Þndings show that the optimal portfolio weights crucially depend on the underlying

state probabilities.

A number of extensions to these results would be interesting to further pursue. For instance,

the portfolio choice between stocks and T-bills clearly over-simpliÞes portfolio decision problems

solved by portfolio managers in practice. Recent work has stressed the importance of allowing

for regimes in the joint return distribution of two or more assets. Ang and Bekaert (2001) show

that regime switching captures comovements in international Þnancial markets, while Guidolin and

Timmermann (2002) Þnd evidence of regimes in the joint distribution of returns on bonds and

stock portfolios of small and large Þrms. Addressing multi-asset decision problems does not pose a

particular problem to our method since we presented general results for multiple assets and multiple

regimes. In fact, from a computational perspective, the main advantage of our approach is likely to

be in cases where the number of assets is quite large.

Appendix

This appendix derives Proposition 1 and shows how to extend the results to include autoregres-

sive terms in the return process.
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To derive the n-th moment of the cumulated return on the risky asset holdings in the general

case with multiple assets (h) and states (k), notice that

Et[
¡
ω0t exp

¡
Rst+T

¢¢n
] = Et

 nX
n1=1

...
nX

nh=1

(ωn11 × ..× ωnhh ) exp(
TX
i=1

r1t+i)× ....× exp(
TX
i=1

rht+i)

 .
(A1)

where the powers 0 ≤ ni ≤ n (i = 1, ..., h) satisfy the summing-up constraint

n1 + n2 + ...+ nh = n.

To evaluate (A1) requires solving for moments of the form

M
(n)
t+T (n1, n2, ..., nh) = Et

"
exp

Ã
TX
i=1

r1t+i

!n1
× ....× exp

Ã
TX
i=1

rht+i

!nh#

= Et

"
exp

Ã
hX
l=1

nl

TX
i=1

rl,t+i

!#
. (A2)

(A2) can be decomposed as follows

M
(n)
t+T (n1, n2, ..., nh) =

kX
i=1

M
(n)
i,t+T (n1, n2, ..., nh), (A3)

where

M
(n)
i,t+T (n1, n2, ..., nh) = Et

"
exp

Ã
hX
l=1

nl

TX
i=1

rlt+i

!
|st+T = i

#
Pr(st+T = i).

Each of these terms satisÞes the recursions

M
(n)
i,t+T (n1, n2, ..., nh) =

kX
g=1

M
(n)
g,t+T−1(n1, n2, ..., nh)Et

"
exp

Ã
hX
l=1

nlrlt+T

!
|st+T = i,=t

#
pgi

=
kX
g=1

pgiM
(n)
g,t+T−1(n1, n2, ..., nh) exp

Ã
hX
l=1

nlµil +
hX
l=1

hX
u=1

nlnu
σi,lu
2

!
.(A4)

where µil is the mean return of asset l in state i and σi,lu = e
0
lΩieu is the covariance between rlt+T

and rut+T in state i = 1, 2, ..., k. This is an obvious generalization of our earlier result (12).

Finally, using (A1) and (A2), we get the following expression for the n−th moment of the
cumulated return:

Et[
¡
ω0t exp

¡
Rst+T

¢¢n
] =

nX
n1=0

· · ·
nX

nh=0

(ωn11 × ...× ωnhn )M (n)
t+T (n1, ..., nh). (A5)
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Expected utility can now readily be evaluated in a straightforward generalization of (16):

�Et[U
m(Wt+T ;θ)] =

mX
n=0

κn

nX
j=0

(−1)n−jvn−jT nCjEt[W
j
t+T ]

=
mX
n=0

κn

nX
j=0

(−1)n−jvn−jT

µ
n

j

¶ jX
i=0

µ
j

i

¶
Et[
¡
ω0t exp

¡
Rst+T

¢¢i
]
³
(1−ω0tιh) exp

³
Trf

´´j−i
.

Inserting (A5) into this expression gives rise to a Þrst order condition that takes the for of an n−1th
order polynomial in the portfolio weights.

Autoregressive Terms in the Return Process
The generalization of the results to include autoregressive terms is straightforward. To keep the

notation simple, suppose k = 2. Using (7) the n-th noncentral moment satisÞes the recursions

M
(n)
i,t+T = M

(n)
i,t+T−1(n)pii exp

nµi + n pX
j=1

aj,iEt[rt+T−j ] +
n2

2
σ2i

+
+M

(n)
−i,t+T−1(n)(1− p−i−i) exp

nµi + n pX
j=1

aj,iEt[rt+T−j ] +
n2

2
σ2i


or

M
(n)
1,t+1 = �α

(n)
1 M

(n)
1,t +

�β
(n)
1 M

(n)
2,t

M
(n)
2,t+1 = �α

(n)
2 M1,t + �β

(n)
2 M

(n)
2,t ,

where now

�α
(n)
1 = p11 exp

nµ1 + n pX
j=1

aj,1Et[rt+T−j ] +
n2

2
σ21


�β
(n)
1 = (1− p22) exp

nµ1 + n pX
j=1

aj,1Et[rt+T−j ] +
n2

2
σ21


�α
(n)
2 = (1− p11) exp

nµ2 + n pX
j=1

aj,2Et[rt+T−j ] +
n2

2
σ22


�β
(n)
2 = p22 exp

nµ2 + n pX
j=1

aj,2Et[rt+T−j ] +
n2

2
σ22

 .
Subject to these changes, the methods in Section 4 can be used with the only difference that terms

such as exp
³
nµi +

n2

2 σ
2
i

´
have to be replaced by

exp

nµ1 + n pX
j=1

aj,iEt[rt+T−j ] +
n2

2
σ21

 .
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The term
Pp
j=1 aj,iEt[rt+T−j ] may be decomposed in the following way:

pX
j=1

aj,iEt[rt+T−j ] = I{j>T}
pX
j=1

¡
I{j≥T}aj,irt+T−j + I{j<T}aj,iEt[rt+T−j ]

¢
,

where Et[rt+1], ..., Et[rt+T−1] can be evaluated recursively, c.f. Doan et al. (1984):

Et[rt+1] = π1t

µ1 + pX
j=1

aj,1rt−j

+ (1− π1t)
µ2 + pX

j=1

aj,2rt−j


Et[rt+2] = π0tPe1
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j=1
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+ (1− π0tPe1)
µ2 + pX

j=1

aj,2Et[rt+1]


...

Et[rt+T−1] = π0tP
T−1e1

µ1 + pX
j=1

aj,1Et[rt+T−2]

+ (1− π0tPT−1e1)
µ2 + pX

j=1

aj,2Et[rt+T−2]

 .
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Table 1 

Density Specification Tests for Regime Switching Models 
This table reports tests for the transformed z-scores generated by univariate regime-switching models 

=tR µst ∑
=

− ++
p

j
sjtjs tt

ya
1

σ εt 

where Rt is the excess return on the value-weighted CRSP stock index, εt )1,(IN ~ 0I  and st is governed by an 
unobservable, first-order Markov chain that can assume k distinct values (states). The sample period is 1952:06 � 
1999:12. The tests are based on the principle that under the null of correct specification of the model, the probability 
integral transform of the one-step-ahead standardized forecast errors should follow an IID uniform distribution over 
the interval (0,1). A further Gaussian transform described in Berkowitz (2001) is applied to perform Likelihood ratio 
tests of the null that (under correct specification) the transformed z-scores, *

1+tz , are IIN(0,1) distributed. In 
particular, given the transformed z-score model 

∑∑
= =

+−++ ++=
p

j

l

i
t

j
itijt ezz
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1
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1

*
1 )( σρµ , 

LR2 tests the hypothesis of zero mean and unit variance under the restriction p = l = 0; LR3 tests the joint hypothesis 
of zero mean, unit variance, and ρ11= 0 under p = l = 1; LR6 tests the joint null of zero mean, unit variance, and ρ11= 
ρ12= ρ21= ρ22= 0 with p = l = 2. 
 

Model 
Number of 
parameters 

Jarque-
Bera test 

LR2 LR3 LR6 

Linear 2 153.438 
(0.000) 

0.000 
(1.000) 

5.005 
(0.171) 

11.985 
(0.062) 

Two-state 8 1.304 
(0.521) 

0.145 
(0.930) 

2.808 
(0.422) 

9.876 
(0.130) 
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Table 2 

Estimates of the Two-State Switching Model  
This table reports maximum likelihood estimates for a single state model and a two-state regime switching model 
fitted to monthly, value weighted CRSP excess returns. The regime switching model takes the form: 

tsst tt
r εσµ +=  

where µst is the intercept in state st and εt )1,( ~ 0N  is an unpredictable return innovation. The sample period is 
1952:06 � 1999:12.  

 

Panel A � Single State Model 
Mean excess return 0.668** 
Volatility 4.203 

Panel B � Two State Model 
Mean excess return  
Regime 1 (bear) -0.933* 
Regime 2 (bull) 1.107** 
Volatility  
Regime 1 (bear) 6.250 
Regime 2 (bull) 3.303 
Transition probabilities Regime 1 Regime 2 
Regime 1 (bear) 0.814 0.186 
Regime 2 (bull) 0.051 0.949 

 * = significant at 5% level; ** = significant at 1% level 
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Table 3 

Estimates for a Bivariate Regime Switching Model: Stock Returns and Dividend Yields 
This table reports maximum likelihood estimates for a bivariate VAR and a two-state regime switching model fitted to 
monthly excess returns and the dividend yield on the value weighted CRSP stock index. The regime switching model 
takes the form 

=ty ∑
=

− ++
p

j
sjtjss ttt

yA
1

σµ εt , 

where yt is a vector collecting the excess return and the dividend yield, 
ts

µ  is an intercept vector in state st, 
ts

A1  is a 

matrix of first-order autoregressive coefficients in state st and εt ),(  I.I.D. ~]' [ 21 tstt N Ω= 0εε . st is governed by an 
unobservable, first-order Markov chain that can assume 2 distinct values. The data is monthly and covers the period 
1952:06 � 1999:12. Panel A refers to the single state benchmark (k = 1) while panel B refers to the two-state model (k 
= 2). The values on the diagonals of the correlation matrices are volatilities, while off-diagonal terms are correlations. 
 

 Panel A � Single State Model 
 Excess stock returns Dividend yield 
Mean excess return -0.2755 0.0421 
VAR(1) coefficients   
Excess stock returns 0.0734 0.2580* 
Dividend yield -0.0028 0.9862** 
Correlations/Volatilities   
Excess stock returns 4.1878  
Dividend yield -0.9335 0.1600 
 Panel B � Two State Model 
 Excess stock returns Dividend Yield 
Intercepts   
Regime 1 -0.4882 0.0586* 
Regime 2 -8.0818** 0.4267** 
VAR(1) coefficients   
Regime 1:   
Excess stock returns 0.0855 0.3936 
Dividend yield -0.0030 0.9772** 
Regime 2:   
Excess stock returns 0.0723 1.8836** 
Dividend Yield -0.0035 0.9065** 
Correlations/Volatilities   
Regime 1:   
Excess stock returns 3.9960  
Dividend yield -0.9409 0.1245 
Regime 2:   
Excess stock returns 4.4658  
Dividend yield -0.9713 0.2149 
Transition probabilities Regime 1 Regime 2 
Regime 1 0.9909 0.0091 
Regime 2 0.0269 0.9731 

  * = significant at 5% level; ** = significant at 1% level 
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Table 4 

Optimal Asset Allocation � Effects of Rebalancing 
This table reports the optimal weight to be invested in equities as a function of the rebalancing frequency ϕ assuming 
the investor has a four-moment (mean, variance, third, and fourth central moments of t+T wealth) utility function. 
The coefficients of the objective function are evaluated by interpreting the objective as a Taylor approximation to 
power utility with constant relative risk aversion equal to 5. Excess returns are assumed to be generated by the regime 
switching model 

tsst tt
r εσµ += , 

where 
ts

µ  is the intercept in state st and εt )1,( ~ 0N  is an unpredictable return innovation. The sample period is 

1952:06 � 1999:12. The three panels in the table refer to alternative values of the current perception 2� =ts
π of the 

probability of being in state 2 (bull market) 

 

Rebalancing Frequency ϕ Investment Horizon T (in months) 
 T=1 T=3 T=9 T=12 T=20 T=30 
 Bull state ( 2� =ts

π = 1) 

ϕ = T (buy-and-hold) 1.000 1.000 0.940 0.868 0.734 0.638 
ϕ = 12 months 1.000 1.000 0.940 0.868 1.000 1.000 
ϕ = 6 months 1.000 1.000 1.000 1.000 1.000 1.000 
ϕ = 3 months 1.000 1.000 1.000 1.000 1.000 1.000 
ϕ = 2 months 1.000 1.000 1.000 1.000 1.000 1.000 
ϕ = 1 month 1.000 1.000 1.000 1.000 1.000 1.000 

 High uncertainty  ( 2� =ts
π = 0.5) 

ϕ = T (buy-and-hold) 0.286 0.364 0.482 0.510 0.538 0.539 
ϕ = 12 months 0.286 0.364 0.482 0.510 0.496 0.886 
ϕ = 6 months 0.286 0.364 0.448 0.424 0.372 0.156 
ϕ = 3 months 0.286 0.364 0.428 0.364 0.262 0.192 
ϕ = 2 months 0.286 0.330 0.320 0.290 0.192 0.066 
ϕ = 1 month 0.286 0.286 0.270 0.246 0.154 0.048 

 Bear state ( 2� =ts
π = 0) 

ϕ = T (buy-and-hold) 0.000 0.000 0.204 0.284 0.398 0.438 
ϕ = 12 months 0.000 0.000 0.204 0.284 0.234 0.182 
ϕ = 6 months 0.000 0.000 0.084 0.084 0.052 0.028 
ϕ = 3 months 0.000 0.000 0.000 0.000 0.000 0.000 
ϕ = 2 months 0.000 0.000 0.000 0.000 0.000 0.000 
ϕ = 1 month 0.000 0.000 0.000 0.000 0.000 0.000 
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Figure 1 

Smoothed Probabilities of a Bear State in a Two-Regime Model 
This figure plots smoothed probabilities for the two-state MSIH (2,0) model  

tsst tt
r εσµ +=  

to monthly, value weighted CRSP stock index excess returns. 
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Figure 2 

Optimal Portfolio Allocation under Four Moment Preferences � Effects of State Beliefs 
The figure shows the optimal allocation to the value-weighted CRSP stock index as a function of the investment 
horizon and the current perception of the probability of being in state 2 (bull stock markets) assuming the investor 
has a four-moment (mean, variance third, and fourth central moments of t+T wealth) utility function. The coefficients 
of the objective function are evaluated by interpreting the objective as a Taylor approximation to power utility with 
constant relative risk aversion equal to 5. Excess stock returns are assumed to be generated by the regime switching 
model 

tsst tt
r εσµ += , 

where 
ts

µ  is the intercept in state st and εt )1,( ~ 0N  is an unpredictable return innovation. The sample period is 
1952:06 � 1999:12. Parameters are fixed at their full-sample ML estimates. 
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Figure 3 

Optimal Portfolio Allocation under Four Moment Preferences � Effects of State Beliefs 
The figures plot the change in equity investment schedules as a function of the investment horizon and the current 
perception of the probability of being in state 2 (bull stock markets). The upper panel assumes the investor has a four-
moment (mean, variance third, and fourth central moments of t+T wealth) utility function. The coefficients of the 
objective function are evaluated by interpreting the objective as a Taylor approximation to power utility with constant 
relative risk aversion equal to 5. The bottom panel reports optimal weights calculated under power utility with 
coefficient of relative risk aversion equal to 5. Expectations are calculated applying Monte Carlo methods. In both 
cases, excess stock returns are assumed to be generated by the regime switching model 

tsst tt
r εσµ += , 

where 
ts

µ  is the intercept in state st and εt )1,( ~ 0N  is an unpredictable return innovation. The sample period is 
1952:06 � 1999:12. Parameters are fixed at their full-sample ML estimates. 
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Figure 4 

Implied Moments of T-month ahead Wealth - � Effects of State Beliefs 
These figures plot the implied moments of wealth as a function of the investment horizon and the current perception 
of the probability of being in state 1 (bull stock markets) assuming the investor is optimally selecting portfolio weights 
of the value-weighted CRSP stock index and of one-month T-bills under a four-moment objective. Excess stock 
returns are assumed to be generated by the regime switching model 

tsst tt
r εσµ += , 

where 
ts

µ  is the intercept in state st and εt )1,( ~ 0N  is an unpredictable return innovation. The sample period is 
1952:06 � 1999:12. Parameters are fixed at their full-sample ML estimates. 
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Figure 5 

Effects of the order m on Optimal Portfolio Choices 
The figures plot the optimal allocation to stocks as a function of perceived probability of a bull regime (regime 2) for 
three alternative choices of m: m=2 (mean-variance preferences), m=3 (a three-moment preference functional), and 
m=4 (four-moment functional). In the three cases, the coefficients of the objective function are evaluated by 
interpreting the objective as a Taylor approximation (around vT) to power utility with constant relative risk aversion 
equal to θ: 
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The investment horizon (T) is six months. We assume that excess stock returns are generated by the regime switching 
model 

tsst tt
r εσµ += , 

where 
ts

µ  is the intercept in state st and εt )1,( ~ 0N  is an unpredictable return innovation. 
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Figure 6 

Smoothed Probabilities of State 2 in a Multivariate Two-Regime Model Fitted to  
Stock Returns and the Dividend Yield 

This figure plots smoothed probabilities for the two-state MMSIAH (2,1) model =ty ∑
=

− ++
p

j
sjtjss ttt

ya
1

σµ εt , 

where yt is a vector collecting the excess return and the dividend yield, 
ts

µ  is an intercept vector in state st, 
ts

A1  is a 

matrix of first-order autoregressive coefficients in state st and εt ),(  I.I.D. ~]' [ 21 tstt N Ω= 0εε . 
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Figure 7 

Effects on Optimal Asset Allocation of Changes in the Dividend Yield or State Beliefs 
These figures show the optimal allocation to the value-weighted CRSP stock index as a function of the current 
perception of the probability of being in state 2, and of the dividend yield at the time the portfolio is chosen assuming 
the investor has a four-moment utility function. Excess stock returns are assumed to be generated by the regime 
switching model 

=ty µst ∑
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j
sjtjs tt

yA
1

σ εt, 

where yt is a vector collecting the excess return and the dividend yield, µst is an intercept vector in state st, 
ts

A1  is a 

matrix of first-order autoregressive coefficients in state st and εt ),(  I.I.D. ~]' [ 21 tstt N Ω= 0εε . st is governed by an 
unobservable, first-order Markov chain that can assume 2 distinct values. The sample period is 1952:06 � 1999:12. 
Parameters are fixed at their full-sample ML estimates. 
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