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Abstract

Numerous articles have investigated the distribution of share prices, and find
that the yields are leptokurtic. There is still controversy about the amount
of leptokurtosis, and hence about the most appropriate distribution to use in
modeling returns. This controversy has proven hard to resolve, as the alter-
natives are non nested. We propose to employ extreme value theory focusing
exclusively on the larger observations, in order to assess the leptokurtosis
within a unified framework. This enables one to generate robust probabilities
on large changes, which put the recent stock market swings into historical
perspective.
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1. Introduction

The often large and rapidly realized gains on the stock markets
over the past decade were abruptly haltéd by a plunge in October
1987 which only has its equals in pre World War II years. During
the aftermath, the stock market exhibited a wvolatility which
seemed unsurpassed. These events have led to numerous
investigations in order to understand and evaluate the performance
of the financial markets. Several commissions were dedicated to
investigate the intricacies of the crash and to come wup with
recommendations for improving the functioning of the financial
markets. However, from the viewpoint of finance, several
researchers have come to view the dramatic events of October 1987
as a necessary, though sudden, correction to the "overheated"
markets, see e.g. Arbel, Carwell and Postnieks [1988]. With a
wider scope, in macro economics, several theories offer competing
explanations for how the markets became overheated and why, the
plunge notwithstanding, the economy is basically sound. The
explanations range from bursting bubbles to exploding budget

deficits that are finally tamed through legislation.

Given all these competing views and as of yet untested theories,
we propose a somewhat different tack to put the events of October
1988 into perspective. Suppose one possesses an estimate of the
distribution of stock returns that is constructed from a sample
excluding the recent past, The idea is then to compare the tail of
this distribution to the frequency with which the larger changes

in the share prices occured during 1987. Fortunately, several



estimates for the distribution of the yields are available in the
literature. The first widely used hypothesis held that the share
prices followed a Brownian motion. However, starting with
Mandelbrot [1963] and Fama [1965], it was found that the
innovations exhibited a Thigher kurtosis than the normal
distribution could account for. Mandelbrot [ibid.] proposed the
stable distribution for modelling the yield distribution, as it
captures the fatness in the tail of the empirical distribufion aﬁd
preserves the additivity property of the normal distribution
(because yields are additive, it is thought desirable that the
distribution exhibits this as well). Under the maintained
hypothesis of the stable model, parameter estiﬁates may be found
by using the Fama and Roll [1971] procedure or by using the

Fourier transform and numerical integration.

Later, Praetz [1972], and Blattberg and Gonedes [1974] advanced
the ﬂa-class of distributions as an alternative td the stable
model. The motive for advancing the ﬁa-class was the vsometimes
observed tendency towards normality for longer term yields. As is
well known, the ﬁa distribution, with degrees of freedom v above
2, have a finite variance and therefore satisfy the central limit
theorem. (Note, the Student-t distributions , when v 1is an
integer, are a special case of the ﬁa-class). Such is not the case
for the stable model, which have themselves as the limit laws of
normed sums. At the same time with v finite, not all moments do
exist and hence the tails are leptokurtic. A disadvantage of the
ﬂa-class is that the additivity property is 1lost; however, see
below, where we show that the tails remain invariant under
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addition. Another alternative sometimes considered is a discrete
mixture of mnormal distributions, see Kon [1984]. Such a
distribution adequately describes the case when distinct types of
events, i.e. that have different normal distributions, may occur
with certain probability. But the mixtures seem not to accord well
with the observed higher than normal leptokurtosis, see below. Fo;
both, the ﬂa and mixture models, parameter estimates can be

obtained by employing approximate maximum likelihood methods using

non linear optimization techniques.

Hence, estimates for the distribution of the yields are readily
available. However, while most estimated distributions try to
capture the higher than normal leptokurtosis, there appears to be
considerably controversy over the exact amount of the
leptokurtosis. In particular, the schism is about whether or not
the second moment is finite, i.e. about the applicability of the
central limit theorem. The stable hypothesis maintains an‘infinite
variance, while the ﬂa- and mixture hypotheses maintain a finite
variance. As our aim is to put the large changes in the share
prices into perspective, the controversy is not immaterial,
because the amount of leptokurtosis is related one to one with the
frequency with which larger yields occur. Thefefore, it seems

desirable to settle the issue about the leptokurtosis first.

A comparison between the competing hypotheses is hampered by the
fact that the alternative models are non nested. Sometimes, c.f.
Blattberg and Gonedes [ibid.] and Kon [ibid.], a likelihood ratio
is used. However, this procedure is not appropriate as neither of

3



the models is nested. The Cox procedure is not applicable either,
as the second moment may be infinite; see White [1982] for
conditions under which the GCox procedure 1is appropriate. It
appears that comparing different distributions is not a feasible

way for resolving the controversy.

However, there is a more direct way to tackle the problem. Instead
of comparing entire distributions, we may compare the tails only.
The idea is as follows. Because the leptokurtosis is pfimarily a
tail phenomenon, the distribution of the maxima (or minima) is
quite informative in this respect. As it turns out, the tail
behavior of the competing models can be parametrized by the so
called tail index a from the limit law of the distribution of the
maxima. For the stable distribution hypothesis a < 2 equals the
characteristic exponent. In case of the ﬁs-class, a = 2 represents
the degrees of freedom. Finally, for the mixture hypothesis a is
infinite. Hence, the different distributions follow the 'same’
limit law but with different values of the tailvindex. In this way
o represents the amount of leptokurtosis. Below, we present ways
in which the tail index a can be estimated directly, i.e. in such
a way that the different hypotheses appear as nested alternatives.
The advantage is that the estimates do not rely on one éf the
alternatives as a maintained hypothesis. A disadvantage 1is, of
course, that a 1is not a sufficient statistic for the entire
distribution of the yields. But for our purposes, i.e. inferring
the distribution of large yields, a is a sufficient statistic.
Thus, concentrating on the tail of the distribution is an

application of Occam’s razor.



The estimation procedure also implies an asymptotic confidence
interval for the estimate ;. This gives the present procedure a
clear advantage over the traditional methods such as Fama and
Roll’s {[ibid.] method. As the ﬁs—claés with finite wvariance
requires a > 2, and the leptokurtic stable alternmative has a < 2,
the confidence interval may be used to directly discriminate
between these alternatives. Moreover, the current procedure allows
one to test for parameter stability as well. For example, we will

test how the distribution of the extreme yields was affected by

the introduction of the options market in 1973.

Once an estimate of the tail index a is a&ailable, one can
construct probabilites of observing éxtremely large vyields
(positive and negative). All this work would be of little extra
use if one were only interested in the frequency of yield sizes
that are observed within the sample. In the latter case employing
the empirical distribution function is a good procedure due to its
mean squared error consistency, c.f. Mood et al. [1974, p. 507].
However, for constructing probabilities on yields that exceed the
maximum size observed within the sample, this procedure is of no
avail. We employ a new method for constructing such probabilities
which relies on the limit law for extremes and uses the higher
order statistics. In this way we generate tables with 'exceedance
probabilities’ which give an idea about the 1likelihood of the

occurance of yet unseen crashes and put the events of 1987 into

perspective.

Hitherto, exploiting the shape of the tail of the distribution
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function has found few applications in economics. In the area of
labor economics, this device 1is sometimes wused to study
unemployment durations, see Kiefer [1988]. In the area of finance,
Akgiray and Booth [1988] propose to focus explicitly on the tail
shape and use a maximum likelihood procedure for estimation of the
tail index. This study follows the same philesophy, but use;
methods that are based onkorder statistics to estimate a. These
latter methods have the advantage that the extremes do not have to
follow the 1limit law exactly. With respect to the exceedance
probabilitiés, McCulloch {1981] provides an example of how these
may be used for calculating bankruptcy~probabilities under the
maintained hypothesis of a stable distribution. The methods used

below seem more robust, as they only presuppose a particular limit

law, allowing for a larger class of particular distributions.

Before we present the empirical results, we cover some of the
necessary theoretical background, without going into all the
technical details, The mnext section is devoted to this latter

task, and section 3 gives the empirical findings.

2. Theory
Consider a stationary sequence Xl, Xz"" of independent and

identically distributed (i.i.d.) random variables with a

distribution function F. Suppose one 1is interested in the

probability that the maximum



(1) M =max(X , X, ..., X))
n 1

2 n

of the first n variables is below a certain level x. As is well

known, this prohability is given by

(2) P(M_ < s) = FP(x).

Extreme value theory studies the limiting distribution of the

order statistic M  (appropriately scaled). That 1is, one is
n

interested under what conditions there exists suitable normalizing

constants a > 0, b , such that

n n

(3) Pla (M - Db ) =< x) :c;(x),

F"(x/an +b) ; G(x),

where G(x) is one of the three asymptotic distributions, and w
stands for weak convergence. If (3) holds, we shall say that F
belongs to the domain of attraction of G, and write F ¢ D(G).
Define the class of limiting laws which may appear in (3) as
follows:

Definition 1

A nondegenerate distribution function (further d.f.) G is called
max-stable if there exist real constants A.n > 0 and Bn such that

for all real x and n = 1,2,.

G"A X + B = G(x).
n n



One can show that if (3) obtains, then G is max-stable. The main

result is the Extremal Types Theorem:

Theorem 1

The max-stable distributions can be represented by

(&) Type I : G(x) = exp (-e_x) - o < X < @
Type II : G(x) = O x <0,
= exp (—x_a), x > 0;
Type III : G(x) = exp (-(-x)a) x < 0,
=1 x = 0;

with the index ¢ > 0.

The index a is called the tail index, and for convenience we
sometimes use its inverse vy = 1/a. Mood et al. [1974, p. 261]
provide an introductory account to this result. Leadbetter,
Lindgren and Rootzen [1983] give a comprehensive treatment, with
relatively straightforward proofs. The latter reference also
treats the case of dependency, when the scaling parameter a has
to be modified by a constant multiplicative factor §, 0 < 4§ < 1.
Most of the results below do carry over to dependent variates, and
is therefore not treated explicitly for space considersations. The
limit in (3) explicated in (4) 1is most easily interpreted by
analogy with the central limit theorem. The difference is the
focus on order statistics rather than averages, but its usefulness
is the same as no detailed knowledge of F(x) is needed to apply
the asymptotic theory. A complication is the fact that there are
three limit laws. Usually economic theory is not informative about
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the specific distribution F(x) that applies. However, the
qualitative characteristics of the economic process may point to
the relevant 1limit law. Consider the B following two necessary

conditions fr«.. De Haan [1976].

Condition 1

If F e D(Type I G(x)) and F(x) < 1 for all x, then [~ t? ar(e) is
finite for all B.

Condition 2

If F ¢ D(Type II G(x)), then F(x) < 1 for all x and [ t# dF(t)

is finite for B < a and infinite for 8 > a.

The intuition behind these conditions 1is as follows. Loosely
speaking, the tail of the distribution is either declining
exponentially or by a power. In the first case all moments exist,
but in the second case the higher moments do not decay rapidly
enough when "weighted" by the taill probabilities to be integrable,
i.e. the d.f. F(x) is leptokurtic. This explains the appearance of
the double exponential in the Type I limit law and the exponential
format of the Type II law as well. The third limit law 1is
characterized by the fact that it has a finite upper endpoint.
Anticipating on the next section, given that stock returns are
strongly leptokurtic, and unbounded in principle, the type I1I
limit law is the relevant one, 1if the maximum yield distribution

converges at all.

A sufficient condition on F(x) for the type II limit to obtain is:

Condition 3



It is sufficient for F ¢ D(Type II G(x)) that it has no finite

upper endpoint, and for each x > 0 and some v > 0

lim 1-F(tx) _ X~u7
ts 1-F(t) ‘

The latter condition boils down to regular variation at infinity,
see Feller [1971, ch. VIII. 8]. If the density exists, by

1’Hospital

lim 1-F(tx) _ lim xf(tx) _ _-1/v
tyo T-F(E)  ta £(T)  ~

See also Mood et. al. [1974, p. 261, th. 16].

The following discussion shows how the above conditions may be
employed in specific cases. Return to the d.f.’'s F(x) that have
received most of the attention in the literature on stock
returns. First, the normal and mixtures of the normal possess all
moments, and hence Condition 1 applies. Given such a lack of
leptokurtosis, these alternatives seem unfit for modelling stock
returns. Second, the ﬁ3 and the stable d.f. both satisfy Condition
2, because not all moments are finite. To verify that the ﬁ3 class
satisfies Condition 3 is straightforward. See for example Mood et.
al. {1974, p. 262] for a proof in case of the Student-t
distribution. Note that the degrees of freedom v are equal to the
tail index a in (4). The proof that the stable distribution (which
is not to Dbe confused with the max-stéble distribution

G(x)), satisfies Condition 3, takes a little bit more effort, as

10



only in specific cases does a closed form sclution for its density
fa(t) exist (i.e. the normal, the GCauchy, and the inverted
chi-square, for which the so called characteristic exponent o is

respectively 2,1 and 1/2).

However, Ibragimov and Linnik [1971] provide the following

asymptotic formula in the case 0 < a < 2, a # 1:

0 n

> D

nt
n=1

sin(%nwa) I'{(nat+l) £,

(5) £ () =

nt
Again, the o in (5) equals the a in (4). By Condition 3 we have

lim 2 (n!)“l(‘l)nsin(%nwa) T(notl) (tu) ™ Ef
R 4

Esal> (n!)'1(~1)“sin(2inm) T(netl) (£) "% 't

From this discussion it is immediate that the competing F(x)'s are
nested within their 1limit law G(x), and are distinguished by
different wvalues for a. Specifically, the leptokurtic stable
hypothesis requires a < 2 and the ﬂa-class allows for a = 2. The
idea is now to estimate « directl& without a prior commitment to

either hypothesis.

Broadly speaking, the estimation procedures for a fall into two
categories. A traditional approach wuses “yearly maxima" and
assumes that each period’'s maximum exactly follows one of the
three 1limit laws. If the type II 1limit law applies, direct
estimation by maximum likelihood is consistent. A drawback of this

method is that the excesses are assumed to follow the limit law

11



exactly, whereas this is only approximately the case, c.f. Akgiray
and Booth [ibid.]. Recently, some estimators have been proposed
based on the largest order statistics, which require only that the
distribution r2nerating these observations is in a sense well
behaved. This implies that the remaining estimation error can b'e
solely attributed to the use of finite samples. For example,
regular variation at infinity is often a sufficient condition. For

this reason the focus here is on these methods.

Let Xl, Xz' T 4 be a sequence of stationary 1i.i.d.
n

observations from some distribution function F ¢ D(Type II G(x)).
We are interested in obtaining an estimate for vy, given that the

imit ies. i < =
type II 1limit applies. Define X(l) X(Z) , X(n) as the

ascending order statistics from a sample Xz’ Xz’ cv., X of n
n

consecutive exchange rate yields Xi. The proposed estimator reads:

m
A A

(6) vy =1/a =2 % |log X
m
i=1

- log X

(n+l1-41) (n~m)

The statistic v first appears in Hill [1975]. Mason [1982] proves
that if condition 3 is satisfied, v is a consistent estimator for

v. Consistency obtains as well for a nonindependent sequence of

X 's, 1f the dependency is not too strong. By a result in Goldie
i

and Smith ([1987], it follows that (7—7)m1/2 is asymptotically

: s 2
normal with mean zero and variance .

The estimation procedure requires m(n) - «, but for a finite

sample it is not known how to choose m optimally. A heuristic

12



procedure is to compute ; for different m and to select an m in
the region over which ; is more or less constant. The existence of
such a region is plausible by the following argument. In case one
uses too few order statistics, i.e. m small, then a will wvary
heavily with m due to insufficient and imprecise information. In
the opposite case, if one uses too many order statistics, the
curvature of the distribution F generating the data weighs too

heavily, i.e. only the tail probabilities are well approximated by

the limit distribution G.

In the empirical section we follow a somewhat less arbitrary
approaéh by first conducting a Monte Carlo study. Due to the
asymptotic normality of ;, the MSE criterion may be used for
selecting an optimal m for given sample size n and distribution

function. Subsequently, this m is used for computing vy in equation

(6).

The implied asymptotic confidence interval also allows one to test
directly for the two compefing hypothesis about F(x), i.e. the
stable and ﬁ3 distributions. The former requires 0 < o < 2 and the
latter allows for a = 2. As noted, discrimination between the two
hypotheses is hampered by their non nestedness. However, as our
estimate of a is not’conditional upon one of the two hypotheses
being true, the asymptotic confidence interval may be used to test
for HO: a < 2 against H1: a = 2. The asymptotic normality of 1}a

may also be exploited to compare a estimates from different

samples. The following statistic Q:

13



1]
N
R
'Y

(7) Q=

where the o znd m are as in (6) and the subindexes refer to two
independent samples, is asymptotically x2(2) distributed. It can

be used to test for stability over different subsamples.

The data we use consist of daily stock returns. However, in view
of the question concerning the time additivity of the yield
distribution, the yields over extended periods of time are
relevant as well. In case of a sum-stable distribution for daily
returns, it follows immediately that monthly, yearly, etc. returns
follow the same distribution, as this class of distributions is
invariant under addition. However, for other leptokurtic
alternatives like the Student-t this is not the case. What has not
been realized in the economics literature, though, is the fact
that the tail behavior of alternatives like the Student-t is
unaffected by aggregation. That is, Mn generated from a Student-t
or any finite sum of Student-t variates ali tend to follow the
type II limit law, with the same a! A sufficient condition for

this invariance is given in Theorem 2.

Theorem 2
If 1-F(x) varies regularly at infinity, i.e. satisfies Condition
3, then the Mn from F(x) or any finite convolution of F(x) tend to

follow the same limit law.
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A lucid proof may be found in Feller [1974, ch. VIII.8]. Hence
focussing on the limit law has the advantage that the amount of
leptokurtosis is invariant to the chosen period length between
observations for "all" leptokurtic alternatives. It guarantees a
robustness to our methods that is not present in the alternative
procedures. In particular, we can use the estimates for the tail
index from daily returns in order to compute probabilities on
exceedances for both daily and, say, monthly returns, and thereby
exploit the relative efficiency of the daily estimates. Such
probabilities on exceedances can be computed in different ways.
Again, the procedures for deriving tail probabilities can be
classified as to whether or not it is assumed that the extremes
exactly follow one of the limit laws. A straightforward device is
to assume that the exceedances Y over some threshold u exactly
obey (4). Here, one needs in addition to an estimate for a, an
estimate for the norming constant l/an = Fe(l - %), where the

arrow stands for the inverse function, c.f. McCulloch [ibid.].

However, it is more elegant not to assume that the extreme
observations exactly follow an extreme value distribution. This
would be in the same spirit as the estimator given above. The
following procedure only requires regular variation, and uses

order statistics to estimate the exceedance levels x
P
A A kA
(8) PIX =x , ..., X =x)=F(x)=1-p,
1 P k P P
for small p and given k. The following is a consistent estimator

of the exceedance levels:
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> _ (kr/pn) -1 (X

(9 x - X ) + X

P (n-r) (n-2r) (n-r)’
1-277

«

where n is the number of observations, k is the time period

considered, r = m/2, and p is the probability of exceedance. The

proof of consistency of x 1is given in Dekkers and De Haan [1987].
P

A heuristic interpretation of the estimator in (9) is as follows.
The pattern of the empirical d.f. F (x) as signified by the level
n

and step size (X - X ) is extrapolated outside
(n-r) (n-1) (n-2r)

its domain by using the way the limit law extends. The latter is
represented through the multiplication factor in front of the

stepsize. For p > 1/n the empirical d.f. is a good estimator for

x , due to its unbiased mean squared error consistency, see Mood
‘x

et. al. [1974, p. 507]. But for p < 1/n, F (x) is of no avail, and
n

the above is a device to extend F (x) beyond 1/n and use it for
n

estimating x . Alternatively, given an x level, we can invert
P P

equation (9) to estimate the associated probability on exceedance

p. Such is our aim in the empirical analysis.

3, Empirical Analysis

In this section we endeavor to evaluate the amount of
leptokurtosis in stock returns and generate tables with
probabilities on observing excessively high and low returns. The

data consist of daily stock returns for ten stocks from the S&P
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100 list, and two’market indices: the S&P 500 index and the UMI
which is an unweighted market index (i.e. the sum of all the
shares listed on the New York Stock Exchange). The sample starts
February 1962 and ends December 1986. D;tails about the data are

given in the Data Sources section below.

By now, there is 1little disagreement about the qualitative
properties of stock returns. Typically, daily returns are a
stationary series that are strongly Ileptokurtic and possibly
exhibit some low order serial dependence.1 One can formally test
for these properties by means of test statistics 1like the
Dickey-Fuller test against unit roots. However, because the
literature abounds with such tests and as there is 1little
controversy, we prefer to revert to a more intuitive method for
data description previously introduced by Mandelbrot [1963b]. In
Figures 1 and 2 we computed the first four sequeﬁtial moments for
the S&P 500 index and three simulated date series. The simulated
series are the Student-t distribution with 1 degree of freedon,
i.e. the Cauchy distribution, and the Student-t with 2 and 3

degrees of freedom v. With v = 2, the mean is finite, and for v =

3 the mean and variance are finite.

For a distribution with a finite n-th moment, one expects the
sequential plot of the n-th moment to settle down at its
1 . . s s

Thus, the data meet the criteria for application of the theorems
of the previous section, except for the serial dependence.

However, as long as this dependence is not too strong the above
results carry over, see for example Watson [1954].
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theoretical level, as the sample gets large. Vice versa, if the
n-th moment is infinite, it should eventually wander away. The
idea is to compare the moment plots of opserved data to simulated
data, in order to get a rough indication about which moments might
exist and hence infer the amount of leptokurtosis. -From the
Figures 1 and 2 it appears that the first two moments of the S&P
index exist, while the existence of the fourth moment is doubtful.
(The former conclusion is confirmed by Akgiray and Booth {1988,
Fig. 5], but as they only plot the first two moments tﬁe latter
result cannot be compared). The moment plots of the index

correspond best to the pictures of the simulated Student-t with

about 3 degrees of freedom.

Although the above procedure for determining the amount of
leptokurtosis is far from being precise, it clearly conveys the
message that the return data are leptokurtic. In order to provide
a higher precision, we propose to estimate the tail index a by
using the estimator (6). A problem with this estimator is that it
is conditional wupon the portion m/n of the sample used for
calculating the statistic ;. As it is not known how to choose m in
finite samples, we conducted a Monte Carlo experiment in order to
find the m-level, conditional upon a sample size n, for which the
MSE 1is minimal. This criterion seems appropriate given the
asymptotic normality of ;. As our sample return data comprise
about 6000 observations, we set n = 6000. We simulated with four
different distributions: the Student-t distribution with 1, 2 and
3 degrees'of freedom that were used above, and the inverted chi

square distribution. The latter distribution is known as the
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Figure 2

Sequential Moments: Skewness and Leptokurtosis
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a = 1/2 a=1 a =2 a =3

m 1680 470 170 100

*) The Monte Carloc experiment consisted of 100 replications of n =
6000 draws from four distributions with tail index a. From each
replication a was estimated for m = 10, ..., 2000 with stepsizes
of 10 by the estimator in (6). Subsequently the MSE was computed
for each m.

Table 2
MSE*)
m o =1/2 a=1 a =2 a =3
1680 .0028 .0491 .1443 .2079
(.0024)
470 .0081 .0020 .0048 - .0138
(.0021)
170 .0206 .0054 .0014 .0031
(.0015)
100 .0349 .0092 .0019 .0023

(.0011)

*) The table reports MSE’s for different m-levels and
distributions. Theoretical variances are reported between brackets
for the diagonal elements (the diagonal elements, in a sense,
represent the correct estimates).
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stable distribution with characteristic exponent a = 1/2, and is
more leptokurtic than the other distributions. For each

distribution 100 replications were conducted.

In Table 1 the MSE minimizing m-levels are reported.. Clearly,
these m-levels vary inversely with the true tail index «. Th;
reason is that the lower is a, the fatter the tails of the
distribution, and hence the more 'outliers’ are available to
estimate the tail index. The Table 1 also indicates that ﬁsing 10%
of the upper tail data, as suggested in Booth and Akgiray [ibid.
p. 541, may be too much. Especially because Booth and Akgiray
conclude that a is likely above 2. Table 2 gives some of the MSE's
found in the simulation. Along the diagonal one finds the minimal
MSE’'s for given «a. Here we also calculated the theoretical
variances of (1/; - 1/a) as l/maz. These variances come quite
close to the computed MSE’s. Note that Table 2 exhibits an
asymmetry. For high m, increasing a deterioriates the MSE'’s more
than lowering a for low m. This suggests that usiﬂg too many
observations such that some do not belong to the tail, but rather
to the center of the distribution, is more harmful than not using
all the available information, i.e. all the observations from the
tail. Thus the bias part of the MSE, due to inclusion of the
center characteristics, rapidly dominates the variance part, which
is due to the inefficient use of the available information. This

conjecture is confirmed by the evidence from Table 2A.
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Table 2A

)

*
The Bias Squared

m a=1/2 a =1 a=2 a =3
1680 .0005763 .0483681 .143877 .207522
(.21) (.99) (1.00) (1.00)
470 .0000006 .000355 .0042288 .0119498
(.00) (.17) (.88) (.98)
170 .0000754 .0000605 .0004055 .0021182
{.00) (.01) (.29) (.68)
100 .0002305 .0000070 .0002949 .0010157
(.01) (.00) (.15) (.44)

*) The Table reports the bias (squared) part of the MSE of Table
2. The percentage of the MSE explained by the bias is given

between brackets.

On the basis of these results we decided to be conservative and
not wusetoo many observations in the actual estimation. The
estimates for the tail index in Table 3 are conditioned on m =
100. All estimates hoover between 3 and 4 and are significantly
above 2 according to the 95% asymptotic confidence intervals. This
resolves the long standing issue about the appropriateness of the
ﬂB—class vis a vis the stable class. The latter hypothesis is
clearly rejected against the former. Thus, our results confirm the
findings of Praetz [ibid.] and Blattberg and Gonedes [ibid.]. The
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Table 3

*)

Tail Index Estimates

Y A

Stock Uppexr Tail « Maximum Lower Tail o Minimum
1 3.72 .10 4,65 -.09
(2.99-4.45) (3.74-5.54)
2 - 3.64 A1 3.68 -.09
(2.93-4.35) (2.96-4.40)
3 4,36 .09 5.22 -.10
(3.51-5.21) (4.20-6.24)
4 3.76 .12 3.60 -.20
{3.02-4.50) (2.89-4.31)
5 4,28 .11 4.41 -.15
(3.44-5.12) (3.54-5.28)
6 3.34 .13 3.53 -.16
(2.69-3.99) (2.84-4,22)
7 4,45 .12 4.53 ' -.13
' (3.58-5.32) (3.64-5.42)
8 4.62 .21 4,11 -.11
(3.71-5.53) (3.31-4.91)
9 3.7% .15 4.17 -.10
(3.05-4.53) (3.35-4,82)
10 4,56 .26 3.71 -.19
(3.66-5.46) (2.98-4.43)
Index
UMI 3.27 .07 3.37 -.05
(2.63-3.91) (2.71-4.03)
S&P 3.96 .05 4,30 -.05
(3.18-4.74) {(3.46-5.14)

*) Reported are the o estimates and their 95% confidence intervals
for both the upper and lower tail; the maximum and minimum sample
returns are given as well. The estimates were based on the
estimator in (6) with m = 100, c.f. Table 1.
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hypothesis that the returns follow a discrete mixture of normal
distributions, as in Kon [ibid.], is not tenable either, as the
tail index is too small (significantly below 30, say). We conclude
that stock returns are leptokurtic in comparison with the normal
distribution, but still possess a finite wvariance such. that the

'

central limit theorem for addenda is applicable.

Given the estimates of the tail index for the individual stocks,
the value of ; for the UMI is not too surprising. Recall Theorem
2, which says that the distribution of the maximum of i.i.d.
variates or i.i.d. sums of these variates has the same tail index,
conditional upon the distribution being leptokurtic. Because the
UMI is just a sum of individual stock returns, and all individual
stocks (approximately) have the same tail index, one expects the
UMI to have the same «. There is one caveat, and that is the
independence assumption, which does not apply as individual stock
returns are wusually assumed to be partially correlated. The
appropriateness of extreme value theory for the S&P index is éven
more questionable, as this index is not just the sum of individual
stocks, but a weighted sum. It is unclear what the weighing does

to the distubional properties of the constituent parts, as the

weights do vary over time.

A question is how robust our estimates for the tail index are. Oﬁe
might argue for example that institutional changes on financial
markets affect the a’'s, c.f. Akgiray and Booth [ibid., P. 52]. In
order to investigate this issue we split the sample into two
parts, using April 26 of 1973 as the dividing day. At this day the
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)

*
Stability of the Tail Index

Upper Tail Index ; Lower Tail Index ;
Stock
pre 73 post 73 Interval pre 73 post 73 Interval
1 3.52 3.04 2.69-3.85 3.22 3.82 2.84-4.10
2 3.12 3.33 2.58-3.85 3.52 2.79 2.57-3.58
3 3.79 3.38 2.88-4.25 3.37 4.06 3.00-4.30
4 '3.21 3.26 2.59-3.88 3.18 3.19 2.55-3.82
5 3.85 3.10 2.82-3.97 3.21 3.21 2.57-3.85
6 3.28 2.90 2.48-3.65 3.31 3.03 2.54-3.77
7 3.07 4.09* 2.95-3.93 3.28 3.75 2.83-4.14
8 3.26 2.91 2.48-3.65 3.62 3.36 2.80-4.16
9 3.32 3.09 2.57-3.83 3.10 3.39 2.60-3.86
10 3.82* 2.85 2.75-3.65 3.06 3.25 2.53-3.77
Index
UMI 2.84 3.32 2.48-3.61 3.73* 2.90 2.71-3.72
S&P 2.52 3.33* 2.40-3.23 3.71 3.65 2.95-4.14

*) The subsample o estimates are conditoned upon m = 75. This
number is also used in computing the Q-level in formula (7), i.e.
mo=m = 75. The 'Interval’ columns provide the interval for
which HO: pre a = post a is not rejected at the 5% significance
level. Whenever equality is rejected for a particular «, this is

indicated by a superindex *.
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Chicago Board Option Exchange was organized. Moreover, it was the
year of the final demise of the Bretton Woodskagreement and the
economy was hit by the aggregate shock of the jump in the price of
oil. Table 4 investigates the stabilit& of a by means of the
Q-test in eguation (7). For almost all the cases the stability of
a cannot be rejected, at the 5% significance level. Hence, tﬂe

tail properties of the stock returns probably have mnot been

affected by the above mentioned changes.

Now that we have a fair idea about the leptokurtosis of the stock
returns in terms of the tail index, it is insightful to translate
this into probabilities on large changes. TableyS was generatz2d by
formula (9), using the ; from Table 3. It gives probabilities
on observing daily yields above (or below) certain extremely high
(or low) returns, over the time span of one year. For example,the
probability that within a given year stock 6 experiences a drop in
its share price of more than 20% is 0.02475 from Table 5B. Stated
differently, about once in every 1/.025 = 40 years, the share
price of stock 6 will fall by more than 20%. From Table 3 we know
that the largest daily drop observed within the sample of 24 years
was 16%. Hence, Table 5 uses our knowledge about the tails of the
distribution to extend our knowledge of stock returns over longer
time spans and lower probabilities than empirically observed. By
comparing the probabilities for different stocks, the table
provides an alternative indicator for the amount of leptokurtosis.
In this respect it can be used as a device for portfolio
selection. Suppose an investor is interested in selecting the
stock which minimizes the probability of extreme losses (i.e. the
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Upnexr Tail Probabilities on Daily Returns

Returns Probabilities

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6

.1 .08183 .15470 .07085 .20125 .18893 .38445
.14 .02447 .04516 .01766 .05940 .04602 .13267
.18 .00985 .01802 .00617 .02368 .01594 .05927
.20 ¢ .00671 .01227 .00395 .01607 .01021 .04218
.25 .00297 .00543 .00153 .00706 .00397 .02045
.30 .00152 .00279 .00070 .00359 .00183 .01128
Stock 7 Stock 8 Stock 9 Stock 10 UMI S&P
.1 L14772 40489 .12767 .94938 .01604 .00718
.14 .03126 .08157 .03582  .22617 .00538 .00191
.18 .00990 .02488 .01385 .07609 .00237 .00071
.20 .00613 .01515 .00930 .04801 .00168 .00047
.25 .00222 .00532 .00399 .01799 .00081 .00019
.30 .00097 .00226 .00200 .00803 .00045 .00009
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Lower Tail Probabilities on Daily Returmns
Returns Probalities

Stock 1 Stock 2 Stock 3 Stock 4 Stock 5 Stock 6

1 .01952  .14225 .01092 .16479 .10972 .25174
.14 .00433  .04508 .00192 .05129 .02599 .08250
.18 .00139 .01880 .00052 .02127 .00879 .03539
.20 .00086 .01299 .00030 .01469 .00557 .02475
.25 .00031 .00590 .00009 .00668 .00211 .01156
.30 .00013 .00308 .00003 .00350 .00095 .00618

Stock 7 Stock 8 Stock 9 Stock 10 UMI S&P
.1 .12805 .10826 .07519 .51892 .02165 .00361
.14 .02910 .02529 .01948 .16111 .00720 .00087
.18 .00955 .00865 .00703 .06629 .00314 .00029
.20 .00597 .00553 .00458 .04555 .00222 .00019
.25 .00220 .00216 .00184 .02047 .00105 .00007
.30 .000%97 .00100 .00087 .01061 .00057 .00003

*) The table is constructed by using formula (9), with k = 260,
i.e. approximately covering one year, r = 50, n is given in the

data sources and the a's are from Table 2.
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minimax strategy). Fixing the extreme losses at 30% or higher, the
investor should select stock 3. Note that this stock also has the
A

highest tail index estimate, o = 5.22, i.e. is the least

leptokurtic.

The table also gives some perspective to the events of October
1987. On October the 19th many stocks and the market indices fell
by more than 20%. From the Table 5 we see this was not an unlikely
event for most of the individual stocks, and is corroborated by
the minima reported in Table 3. However, what made this into a
rare event, was that all stocks dropped simultaneously by such a
large amount. This market crash should be and was also indicated
by the market indices. However, according to our Table 5, this was
a highly unlikely event: Probability (UMI falls by more than 0.2
in any given year) = .0022. This suggests that the crash of
October 19 occurs once in about every 450 years. Therefore, one

might conclude that the crash was quite accidental.

However, this analysis is not wholly convincing for the following
reason. Since 1899 until 1987 there have been two days with drops
(in the Dow Jones industrial average) in excess of 20% and four
days with drops exceeding the 10%, generating tail probability
estimates of the empirical distribution function of about .023 and
.045. Hence, the probabilities in Table 5 may underestimate the
true probabilities on market crashes. A problem with our sample is
that the largest observed changes in the indices was about 5%,
c.f. Table 3. These maxima and minima are well below the ones for

the individual stocks. This makes economic sense as returns on
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particular stocks are only partially correlated with the other
assets, and hence a portfolio should diversify the risk on
individual stock specific shocks. Hence, one expects the indices
to exhibit 1lszrge changes less frequently than the individual
stocks. Moreover, during the sample period aggregate shocks, like
the oil shock, were observed. But, apparently, these did not lead
to an instantaneous market plunge. Therefore, the evidence in
Table 5 is understandable, but in view of a longer time span may
be too optimistic. It would be an useful exercise to e%tend the

sample and repeat the above. For the moment we like to take a

somewhat different route.

Although the aggregate shocks covered by our sample period did not
imply excessive daily plunges, they did leed to sustained
declines. Hence, instead of focussing on(daily returns, we use
returns over longer time spans in order to capture the
probabilities on market crashes. Table 6 provides probabilities on

observing monthly yields in excess of a given return over the time

span of one year. Note that the table was generated by using the

daily a's. Such is permissible in view of Theorem 2.

Table 6 goes some way towards resolving the probable downward bias
present in Table 5. From the Table 6 we see that the probability
that within any year a monthly market drop exceeds 20% or 30% is
only .16 or .06 respectively, i.e. occurs once in about every 6 or
15 years respectively. On the other hand, in the 42 years
following World War II, there were eight periods in which the Dow
fell by more than 20% and only 2 periods in which the Dow fell by
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Probabilities on Monthly Returns for the UMI

-

Table

6

Returns

14 .18 .20

.25

.30

.50

*)

1.00 2.00

Probabilities in Upper Tail

.7740 .3493 1842 .1395 .0760 .0456 .0102 .0012 .0001

Probabilities in Lower Tail

.5653 .3209 .1977 .1589 .0972 .0633 .0170 .0023 .0003

*) The: table was constructed by forming monthly yields from the
daily yields through addition and then applying formula (9) with k
= 12, i.e. covering a year, r = 30, n = 294 and the a's from Table

2.

Following are the 10 biggest percent corrections of

Table

7z

*
LARGEST CORRECTIONS OF POSTWAR PERIOD

industrial average since the end of World War II.

Date Beginning
Price
Dec. 3,1968 - May 26,1970 985.20
March 13 - Oct. 4,1974 891.57
Dec. 13,1961 - June 26,1962 734.90
Sept. 21,1976 - Feb. 28,1978 1014.78
Feb. 9 - Oct. 7,1966 995.14
April 27,1981 - Aug. 12,1982 1024.04
May 29 - Oct. 9,1946 212.50
Oct. 26 - Dec. 5,1973 987.05
July 12 - Oct. 22,1957 520.76
Jan. 11 - Aug. 22,1973 1051.69

*
Includes corrections in which the average dropped

percent and then rose as much or more.

End

Price

630.
584.
.75
742.
744,
776.
163.
788.
.78
851.

535

419

15
65

11
31
91
12
30

89

Source: New York Times, Friday October 16, 1987.
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the Dow Jones

Percent
Change

-35.94%
~34 .44
-27.10
-26.87
-25.21
-24.13
-23.24
-20.14
-19.39
-19.00

more than 10



more than 30%, c.f. Table 7. This corresponds to empirical
exceedance probabilities of .19 and .05 respectively. These appear
to be reasonably close to the ones reported in Table 6, although
one hasto bear in mind that the periods éovered in Table 7 are in
excess of one month. (which makes the bias go in the oppositite

direction).

4, Conclusion

The literature on the distribution of stock returns unanimously
agrees that the returns are leptokurtic. There is, however,
disagreement about the amount of leptokurtosis. Three types of
alternative distributions for stock returns have been widely
considered, varying in their amount of leptokurtosis. As these
different models are non nested, the controversy lingers on. In
this paper we take another route to investigate this
leptokurtosis, by investigating only the tail behavior of the
returns, instead of looking at the entire distribution. This gives
the following trade off. One loses the possibility to say
something about the center of the distribution, but one gains the
ability to nest the different models via the limit law for maxima.
Empirical estimates of this encompassing model point towards the
existence of a finite mean and variance but infinite higher
moments, lending support to the ﬂs—class distributions vis a vis

the stable class and discrete mixtures of normal distributions.

The tail estimates were in turn used to generate probabilities on
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exceedances. Such tables may be useful to investors who want to
select a conservative portfolio. The tables also indicate the
difference between investing in a specific stock or in a market
portfolio. Not surprisingly, the risk én an extremely large or
small yield is much higher for the former strategy than the
latter. In this light, the events of October 1987 seem more a rare

event than a drama that occurs repeatedly during a person's life.

While we do not claim to have resolved all problems with respect
to the distribution of share prices, it is hoped that these new
views and techniques may prove useful for further research in this
area. For example, one might employ the above method to generate
trading limits for the much discussed circuit breakers. More
generally, as many economic problems can be phrased in terms of
dealing with maxima or minima, extreme value theory seems a useful

but as of yet insufficiently exploited device for empirical

analysis.
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Data Sources

Data were obtained from the CRSP Tape compiled by the Graduate
School of Business of the University of Chicago. We used 6000
daily dividend compensated returns starting February 14, 1962.
Specifically, for stocks 2, 3, 4, 6, 7, 8, 9 and the S&P 500 index
the sample size was 6156, stocks 5 and 10 comprised 6155 returns,
1 consisted of 6153 and the UMI index of 6000 observations. For
the individual stocks every tenth stock from the S&P 100 list was
chosen, provided data was available over the entire sample period.
The stocks are listed with the following ticker symbol: (1) IBM,
(2) MOB, (3) MBK, (4) KM, (5) AMP, (6) HON, (7) NCR, (8) GW, (9)
0I, and (10) BC. Furthermore two market indexes were used: the S&P
500 and the Unweighted Market Index, abbreviated to UMI. Further
details about the data are available from the first author upon

request.
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