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ABSTRACT: In this paper, we develop a Bayesian approach to counterfactual analysis of 
structural change. Contrary to previous analysis based on classical point estimates, this 
approach provides a straightforward measure of estimation uncertainty for the 
counterfactual quantity of interest. We apply the Bayesian counterfactual analysis to 
examine the sources of the volatility reduction in U.S. real GDP growth in the 1980s. 
Using Blanchard and Quah’s (1989) structural VAR model of output growth and the 
unemployment rate, we find strong statistical support for the idea that a counterfactual 
change in the size of structural shocks alone, with no corresponding change in 
propagation, would have produced the same overall volatility reduction that actually 
occurred. Looking deeper, we find evidence that a counterfactual change in the size of 
aggregate supply shocks alone would have generated a larger volatility reduction than a 
counterfactual change in the size of aggregate demand shocks alone. We show that these 
results are consistent with a standard monetary VAR, for which counterfactual analysis 
also suggests the importance of shocks in generating the volatility reduction, but with the 
counterfactual change in monetary shocks alone generating a small reduction in volatility.  
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1. Introduction 

A striking stylized fact of the U.S. macroeconomy is the large reduction in its volatility 

since the early 1980s, a feature that has been called the “Great Moderation” (Bernanke, 2004). 

This volatility reduction, first documented by Niemira and Klein (1994), Kim and Nelson (1999) 

and McConnell and Perez-Quiros (2000), has spawned a large literature attempting to isolate its 

source.1 The literature has focused on three explanations: 1) improved macroeconomic policy, 2) 

changes in the private-sector’s behavior, and 3) good luck. 

One approach to distinguishing between these competing explanations is through the use 

of counterfactual experiments. In counterfactual analysis of structural change, a macroeconomic 

model is estimated over two sub-samples, a pre-volatility reduction sample, denoted Period 1, 

and a post-volatility reduction sample, denoted Period 2. A counterfactual quantity of interest, 

such as the variance, is then calculated based on a model in which the parameter estimates from 

Periods 1 and 2 are intermingled. For example, suppose that a macroeconomic model contains 

parameters representing monetary policy. Counterfactual variances could be calculated in which 

the monetary policy parameter estimates of Period 2 are intermingled with the other parameter 

estimates of Period 1. If the counterfactual variance is considerably lower than the sample 

variance in Period 1, improved monetary policy would be a strong candidate for the source of the 

volatility reduction. Several papers have taken this approach to explaining the volatility 

reduction, including Stock and Watson (2002), Boivin and Giannoni (2003), and Ahmed, Levin, 

and Wilson (2004).2 

                                                 
1 See Simon (2000), Blanchard and Simon (2001), Chauvet and Potter (2001), Kahn, McConnell, and Perez-Quiros 
(2002), Stock and Watson (2002), Boivin and Giannoni (2003), Ahmed, Levin, and Wilson (2004), Kim, Nelson and 
Piger (2004), Sensier and van Dijk (2004), Herrera and Pesavento (2005), Choi and Jung (2006), and Gordon 
(2006). 
2 It is worth noting that counterfactual analysis is subject to the Lucas (1976) critique, in that the experiments 
proceed by changing sets of model parameters while holding others constant. However, a number of papers have 
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In this paper we also conduct counterfactual experiments to isolate sources of the 

volatility reduction in U.S. real GDP. However, unlike the previous literature, we develop a 

Bayesian approach in which posterior densities for the counterfactual variances are constructed. 

This Bayesian approach represents an improvement over the previous analysis based on classical 

point estimates because it provides a sense of statistical precision about the counterfactual 

quantities of interest. In particular, the hierarchical structure of the Gibbs sampler used in 

Bayesian estimation makes it straightforward to capture the implications of parameter 

uncertainty and uncertainty regarding timing of structural change on inferences about 

counterfactual variances. In the classical context, there is no known analytical measure of 

estimation uncertainty for counterfactual variances, as they are complicated nonlinear functions 

of the underlying model parameters. Meanwhile, a measure based on linear approximation (i.e., 

the “delta method”) is likely to be highly inaccurate and it is unclear how to incorporate 

uncertainty about the timing of structural change into such a measure. Bootstrap methods provide 

a potential means of measuring uncertainty about counterfactual quantities, but they are just as 

computationally intensive as Gibbs sampling and it is unclear whether standard bootstrap 

techniques are valid in the presence of a structural break of unknown timing. In any event, the 

classical measures of uncertainty would only be asymptotically justified, while the Bayesian 

approach provides an exact finite sample measure of uncertainty. Furthermore, while classical 

inference is difficult even with just two sources of uncertainty, it would be relatively 

straightforward to incorporate additional sources of uncertainty, such as that about lag length or 

more general model specification assumptions, in Bayesian analysis.3 

                                                                                                                                                             
documented limited empirical relevance of the Lucas critique for small-scale vector autoregressions estimated to 
U.S. post-war data (e.g. Rudebusch, 2005; Sims and Zha, 2006), which is the application considered in this paper. 
3 Another potential benefit of the Bayesian approach is that correlation between model parameters before and after 
the structural break can be introduced through their joint prior distribution.  Consequently, inferences about post-
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We apply the Bayesian counterfactual analysis to Blanchard and Quah’s (1989) structural 

VAR model of output growth and the unemployment rate. The model has three structural 

components: aggregate supply shocks, aggregate demand shocks, and a propagation mechanism 

for the structural shocks. The structural components are identified using a long-run restriction in 

which aggregate demand shocks are assumed to have no long-run effect on the level of real 

GDP. Estimation results suggest a large reduction in output volatility in the 1980s, with clear 

evidence of a reduction in the size of the structural shocks. The counterfactual analysis examines 

how much of the actual reduction in output volatility could have been generated by a change in 

shocks alone or a change in propagation alone. We find strong statistical support for the idea that 

a counterfactual change in the size of structural shocks alone, with no corresponding change in 

propagation, would have produced the same overall volatility reduction that actually occurred. 

By contrast, a counterfactual change in propagation alone, with no change in shocks, would have 

produced little or no reduction in volatility, although the inferences about this counterfactual are 

somewhat less precise. Meanwhile, a change in the size of aggregate supply shocks alone would 

have generated a larger volatility reduction than a change in the size of aggregate demand shocks 

alone. Thus, consistent with the previous literature, these results point towards the role of good 

luck rather than a change in private sector behavior or macroeconomic policy. In particular, the 

relatively small role of aggregate demand shocks and the lack of a role for propagation are 

interesting because they suggest that the volatility reduction cannot easily be related to monetary 

policy, either in terms of unanticipated policy shocks or the propagation of shocks due to more 

systematic policy.  

                                                                                                                                                             
break parameters can depend on information in pre-break data (i.e., inference is not just equivalent to subsample 
analysis). For simplicity, we use noninformative priors in our application. However, we mention this issue as a 
general benefit of Bayesian analysis of structural change. 
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Because of concerns about identifying aggregate demand shocks using a long-run 

restriction, and to explore the role of monetary policy further, we check the robustness of our 

results using a standard monetary VAR similar to that considered in Stock and Watson (2002), 

Boivin and Giannoni (2003), and Ahmed, Levin, and Wilson (2004). We find that the results are 

consistent in that shocks are much more successful than propagation in generating the volatility 

reduction. Further, we find that a change in monetary shocks alone is only able to generate a 

small reduction in volatility. Thus, the primary role for shocks appears to be arising from the 

non-monetary shocks in the system. 

Our analysis is related to, but different from Sims and Zha (2006). They employ Bayesian 

model comparison to test for regime changes in shock and propagation parameters for a 

structural VAR.4 Consistent with our findings, their results support a change in shock variances 

only. However, their model comparison approach has a different emphasis than counterfactual 

analysis, which allows for changes in both shocks and propagation, but asks how much of the 

total change in volatility could have been generated by one or the other. This is important, as 

small changes in propagation might still be capable of generating large changes in the 

unconditional volatility of the system due to the nonlinear impact of propagation on volatility. 

In the next section we discuss the principles underlying counterfactual analysis. Section 3 

describes the Bayesian approach. Section 4 presents the details of our application to the volatility 

reduction in U.S. real GDP growth. Section 5 reports the results of the Bayesian estimation and 

counterfactual experiments for our application. Section 6 examines the robustness of the results 

                                                 
4 It should be noted that Sims and Zha (2006) also conduct some counterfactual experiments as part of their 
Bayesian analysis. In particular, they simulate counterfactual histories of the level of inflation under alternative 
policy regimes.  Likewise, Dueker and Nelson (2003) use Bayesian analysis to simulate counterfactual histories of 
several macroeconomic variables given alternative realizations of a latent business cycle indicator. However, these 
experiments are somewhat different in character and implementation than the experiments about structural change in 
unconditional variances that are considered in this paper and in Stock and Watson (2002), Boivin and Giannoni 
(2003), and Ahmed, Levin, and Wilson (2004). 
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when we consider a standard monetary VAR along the lines of what was considered in Stock and 

Watson (2002), Boivin and Giannoni (2003), and Ahmed, Levin, and Wilson (2004). Section 7 

concludes.  

 

2. Counterfactual Analysis  

 The principles behind counterfactual analysis of structural change are most easily 

illustrated using the example of a stationary AR(1) process: 

 
  ttt exx += −1φ , ),0(~ 2σNet , (1) 

 
where 1<φ . Suppose tx  undergoes a structural break corresponding to a reduction in its 

variance. There are two possible sources of the variance reduction: “shocks” and “propagation”. 

To see this, note that the variance of tx  is  

 

  2

2

0 1
)var(

φ
σγ
−

=≡tx , (2) 

 
where 2σ  corresponds to the variance of the shocks and 2φ  corresponds to the propagation. A 

reduction in either 2σ  or 2φ  will reduce the size of 0γ . In practice, a variance reduction could 

reflect a change in both shocks and propagation. 

 Counterfactual analysis considers the hypothetical changes that would have occurred if 

either only shocks or only propagation had changed. To illustrate, let 2,1, =ji  index the 

structural regime for shocks and propagation, respectively:  
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  2)(

2)(
),(

0 )(1
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j

i
ji

φ
σγ

−
= . (3) 

 
Then ji =  produces the actual variances for the two structural regimes, while ji ≠  produces 

the counterfactual variances based on changes in shocks only or propagation only. 

 It should be noted that counterfactuals do not provide a formal decomposition of what 

caused the variance of tx  to change. In particular, it is easily seen from (3) that shocks and 

propagation interact in a nonlinear fashion to determine the variance. As a result, the changes in 

variance implied by the counterfactuals do not necessarily sum to the actual change in variance. 

Thus, some caution should be employed in interpreting counterfactuals. In essence, they 

represent hypothetical scenarios only. 

 Nevertheless, a hypothetical may be very revealing. For example, suppose the 

counterfactual variance corresponding to a change in shocks but not propagation ( )1,2(
0γ ) is of a 

similar magnitude to the variance after the structural break ( )2,2(
0γ ), while the counterfactual 

variance corresponding to a change in propagation but not shocks ( )2,1(
0γ ) is of a similar 

magnitude to the variance before the structural break ( )1,1(
0γ ). Then, the findings would be highly 

suggestive of a large role for shocks in producing the variance reduction. Of course, in practice, 

one might be concerned about the precision of these counterfactual inferences. The Bayesian 

approach to counterfactual analysis is designed to address this concern. 

 

3. The Bayesian Approach 

 In Bayesian analysis, beliefs about model parameters are described using probability 

distributions. If data provide a lot of information about the values of parameters, posterior 
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densities will be relatively tight. If the data are uninformative, posterior densities will be more 

spread out and largely reflect the specification of prior beliefs, rather than sample information. 

 Given posterior distributions for model parameters, it is possible to simulate from 

posterior distributions for functions of those parameters, including counterfactual variances. 

Continuing with the simple example of a structural break in the variance of the AR(1) process in 

(1), we can repeatedly draw realizations of ( ))2()1()2()1( ,,, σσφφ  from their joint posterior 

distribution and use the unconditional variance formula in (3) to construct implied realizations 

and, therefore, distributions for ),(
0

jiγ  for 2,1, =ji . For ji = , we would have posterior 

distributions for the subsample variances of tx . For ji ≠ , we would have posterior distributions 

for the counterfactual variances.5 

 Bayesian analysis also allows us to make inferences about the relative sizes of different 

variances. In particular, we can calculate ratios of functions of the variances and evaluate the 

probabilities that they are less than a fixed value. A simple example would be the comparison of 

an actual and counterfactual variance: 

 

  ⎥
⎦

⎤
⎢
⎣

⎡
< kii

ji

),(
0

),(
0Pr

γ
γ

. 

 

                                                 
5 Note that the counterfactual variances will reflect the weaker dependence between shock and propagation 
parameters across subsamples than within subsamples. For example, suppose that shock and propagation parameters 
are negatively related within subsamples such that the posteriors for the actual unconditional variances are much 
tighter than would be implied by independent draws from the marginal distributions for the parameters. Then, given 
weak dependence or independence (as would be the case under a noninformative prior) between parameters across 
subsamples, the posteriors for the counterfactual variances will be much less precise than for the actual variances. 
However, if the dependence between shock and propagation parameters reflects the relative size of the shock 
variance, then it is possible to use this dependence when constructing counterfactual variances in order to get more 
precise inferences. To capture this dependence, we consider sorting the realized propagation parameters by the 
realized shock variances and assigning them a rank, which can be matched to the quantile of the realized shock 
variance in the other subsample. In practice, we find that sorting makes counterfactual posteriors only slightly more 
precise. Thus, for simplicity of presentation, we report the basic results without sorting. 



8 

That is, we can evaluate the probability that the counterfactual variance when ji ≠  is less than 

some percentage, denoted by the fraction k, of the actual variance in sample period i. The 

important benchmark is a probability of 0.5, which, given 1=k , suggests “even odds” that the 

one variance is bigger than the other. Meanwhile, as we vary k from one towards zero, 

probabilities much higher or lower than 50% provide strong statistical support for one variance 

being significantly (in an economic sense) larger than the other. 

 A particularly attractive feature of the Bayesian framework is that it allows us to account 

for uncertainty about the exact timing of structural change in a relatively straightforward manner. 

In particular, estimation of a breakdate can be added to estimation of the parameters and the 

actual and counterfactual variances. Accounting for uncertainty about the timing of structural 

change represents an improvement over the existing literature, which has conducted 

counterfactual analysis conditional on a given breakdate. 

 

4. Application 

 In this section we describe an application of Bayesian counterfactual analysis to examine 

the possible sources of the recent volatility reduction in U.S. real GDP growth. For our 

application, we consider Blanchard and Quah’s (1989) long-run structural VAR model of output 

growth and the unemployment rate. Beyond the basic distinction between shocks and 

propagation, the model allows us to consider aggregate supply and aggregate demand shocks as 

separate possible sources of the volatility reduction. In terms of propagation, the model also 

allows us to identify contemporaneous structural propagation of shocks across series, in addition 

to the dynamic propagation considered in counterfactual experiments based on reduced-form 

VARs (e.g., Stock and Watson, 2002).  
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4.1 A Long-Run Structural VAR Model of Output and Unemployment 

 We start with a reduced-form VAR model for output growth and the unemployment rate: 

 
  tt ecYL +=Φ )( , ),0(~ ΩNet , (4)  

 

where ( )′Δ≡ ttt uyY , , ∑
=

Φ−≡Φ
p

k

k
k LIL

1
)( , ( )′≡ 21 ,ccc , ( )′≡ ttt eee 21 , , and ⎥

⎦

⎤
⎢
⎣

⎡
=Ω 2

212

12
2
1

σσ
σσ

. We 

assume that the lag order, p, is finite and that tY  is stationary, meaning that we can invert )(LΦ  

to solve for the vector Wold form: 

 
  tt eLY )(Ψ+= μ , (5) 

 
where c1)1( −Φ=μ , and 1)()( −Φ=Ψ LL . 

 The key structural assumption is that the reduced-form representation in (5) corresponds 

to the following linear structural model: 

 
  tt LY εβμ )(+= , ),0(~ DNtε , (6) 

 

where ( )′≡ AD
t

AS
tt εεε , , ⎥

⎦

⎤
⎢
⎣

⎡
≡ 2

2

0
0

AD

ASD
σ

σ
, ∑

∞

=

≡
0

)(
k

k
k LL ββ , and ⎥

⎦

⎤
⎢
⎣

⎡
=

22,021,0
0

11
ββ

β . That is, 

output growth and the unemployment rate depend on current and lagged values of aggregate 

supply shocks (εt
AS ) and aggregate demand shocks (εt

AD ). For the purpose of separating out 

changes in the size of shocks from changes in the contemporaneous propagation of shocks across 

series, we normalize the size of both structural shocks in terms of their initial impact on output 
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growth.6 In terms of this model, D  reflects the size of shocks and )(Lβ  reflects the propagation 

of the shocks. The matrix 0β  captures the proportional impact of the shocks on each series, 

rather than the size of shocks. In particular, regardless of the size of shocks or how the shocks are 

normalized, 0β  only changes given a change in the contemporaneous propagation of shocks 

across series. 

 We identify aggregate demand shocks, aggregate supply shocks, and the propagation of 

the shocks using a long-run restriction, as in Blanchard and Quah (1989). Briefly, long-run 

identification proceeds by assuming no long-run effect of the aggregate demand shock on the 

level of output ( ty ), that is, )1(β  is a lower triangular matrix. This restriction is then used to 

solve for )(Lβ  and D . The details of this solution are provided in the appendix. 

 

4.2 Counterfactual Experiments 

 Given the structural model in (6), the variance of tY  is a function of the shock variances 

D  and the propagation )(Lβ : 

 

  ∑
∞

=

′=Γ
0

0
k

kk Dββ . (7) 

 
As with the simple AR(1) example, we can consider a structural break in the variance of tY  and 

perform counterfactual analysis based on the structural break. Letting i, j =1,2 index the 

structural regime for propagation and shocks, respectively: 

 

                                                 
6 Given the normalization, there is an implicit assumption that both structural shocks have a non-zero initial impact 
on output growth. 
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  Γ0
(i, j ) = βk

( j )D( i) ′ β k
( j )

k= 0

∞

∑ . (8) 

 
Then, i = j  produces the actual variance estimates for the two structural regimes and i ≠ j  

produces counterfactual variances.  

 

4.3 Bayesian Estimation 

 The reduced-form VAR in (4) is equivalently written as: 

 
  ttt eXY +Π= ' , (9) 

 

where [ ]′ΦΦ=Π pc ..1  and [ ]′= −−
''

1 ..1 pttt YYX . We allow for a one-time 

structural break in the parameters of (9) at the breakdate τ . That is, we have: 

 

  
( )
( ) ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

≥Ω+
′

Π

<Ω+
′

Π
=

τ

τ

tNeeX

tNeeX
Y

ttt

ttt
t

  ;,0~  ,

  ;,0~  ,
)2()2(

)1()1(

. (10) 

 
The breakdate τ  is assumed to be unknown, and is thus a parameter to be estimated.  

 We estimate the parameters of the model in (10) using Bayesian methods. We assume a 

Normal prior for the intercept/slope parameters, ),(~)( )( ΣΠΠ Nvec i , 2,1=i , an Inverted 

Wishart distribution for variance-covariance parameters, ),(~1)( SWi ν
−

Ω , and a Uniform prior 

for the breakdate, τ ~ U(κT,(1−κ)T) , where κ  determines the fraction of the sample period over 

which a structural break is allowed to occur. While the joint posterior density of ( ,,, )1()2()1( ΩΠΠ  

)τ,)2(Ω  is not available analytically, it can be simulated via the Gibbs Sampler (Gelfand and 

Smith, 1990).  In particular, we obtain 10,000 draws from the Gibbs Sampler for each parameter, 
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after discarding an initial 5,000 draws to ensure convergence.  The details of the Gibbs Sampling 

procedure are provided in the appendix. 

 Given draws from the joint posterior density for the reduced-form parameters, we can 

solve for the structural propagation parameters and the structural variance parameters using the 

long-run identification procedure. Then, we can form the actual and counterfactual variances 

Γ0
(i, j ) by mixing the variance parameters from structural regime i with the propagation parameters 

in structural regime j, where i, j =1,2. Doing this for each draw from the Gibbs sampler provides 

us with posterior densities for the counterfactual variances that are neither conditional on model 

parameters nor conditional on the timing of the unknown breakdate, but take uncertainty about 

these parameters and the breakdate into account. 

 

5. Empirical Results 

 In this section we present the empirical results for our investigation of the sources of the 

volatility reduction in U.S. real GDP growth based on the long-run structural VAR model 

presented in the previous section. First, we describe the details of the data, model specification, 

and priors used for estimation. Second, we report the estimation results for the structural break 

and model parameters. Third, we report the findings for the counterfactual experiments based on 

the Bayesian inferences about the model parameters.  

 

5.1 Data, Model Specification, and Priors 

 The data series are 100 times the log first differences of U.S. real GDP and the level of 

the U.S. civilian unemployment rate. We sample seasonally-adjusted measures at a quarterly 
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frequency for the period of 1960:Q1 to 2005:Q4. The raw data were obtained from the St. Louis 

Fed website (http://www.stls.frb.org/fred/). 

 Beyond which variables to include in the VAR model, the main specification issue is how 

many lags to include in estimation. We report results for a model with four lags of quarterly data, 

although we note that the results are qualitatively very similar for models with two lags and eight 

lags. 

 We consider noninformative priors for simplicity, although the results are robust to more 

informative priors based on training sample information. The priors are “noninformative” in the 

sense that the priors for the VAR parameters would have resulted in posterior means and 

standard deviations that are the same as OLS estimates and standard errors if the breakdate were 

known, although because we also assume a noninformative (i.e., Uniform) prior for the 

breakdate, the results are not identical to OLS. For the intercept/slope parameters, the 

hyperparameters for the Normal prior are 0=Π  and ( ) I××=Σ 6100.1 , with rejection sampling 

based on the largest modulus of the eigenvalues for the companion form representation of the 

VAR to ensure stationarity. For the variance-covariance parameters, the hyperparameters for the 

Wishart prior are ν = 0 and ( ) IS ××= 6100.1 , which is a flat, but improper prior (i.e., it does not 

integrate to one) for the precision matrix 1)( −
Ω i . For the unknown breakdate, the hyperparameter 

for the Uniform prior is κ = 0.15, which corresponds equal weights for a breakdate sometime 

between 1966:Q3 and 1998:Q4.  

 

5.2 Bayesian Estimation Results  

We first look at the timing of the structural break. Figure 1 displays the posterior density 

and cumulative distribution for the breakdate parameter τ . It is clear from the sharpness of the 
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posterior density and the steepness of the corresponding cumulative distribution that the data are 

highly informative about the presence of a structural break in the VAR parameters sometime 

between 1982-1988. In particular, if there were no structural break, the posterior would be 

relatively flat, like the Uniform prior. Also, it is clear from the precision of the posterior density 

that it would be robust to a wide range of truncations of possible breakdates implied by the 

hyperparameter κ  for the Uniform prior.7 The posterior includes 1984, which is often cited as the 

most likely date of a volatility reduction in output growth. Meanwhile, it should be noted that the 

dates for the possible timing of the structural break reflect that the model allows for a change in 

mean and variance parameters for both output growth and the unemployment rate, rather than 

simply a change in output growth volatility. 

Given the results for the structural break, we next look at the estimates for structural 

shocks and propagation before and after the break. First, in terms of structural shocks, Table 1 

presents quartiles for the posterior distributions of the aggregate supply (AS) and aggregate 

demand (AD) shock standard deviations, ASσ  and ADσ . The results suggest that the structural 

break corresponds to a reduction in the size of structural shocks, at least in terms of their impact 

on output growth. The quartile values for the posterior distributions of ASσ  and ADσ  both fall by 

half, although the reduction in aggregate demand shocks is smaller in absolute magnitude. 

Second, in terms of propagation, Figure 2 displays the median and quartiles of the posterior 

distribution of the impulse response functions, 
∂yt +q

∂εt
AS ,

∂yt +q

∂εt
AD , for q = 1 to 40.8 The impulse 

                                                 
7 However, as with classical estimation of unknown breakdates, it is important to have a sufficient number of 
observations on either side of a breakdate to avoid irregularities in the likelihood function when a small number of 
observations can be overfit by a heavily parameterized model. 
8 To conserve space and because our primary focus is on output growth volatility, we do not report the impulse 
response functions for the unemployment rate. 
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response functions have the same general shape as reported in Blanchard and Quah (1989). 

Aggregate supply shocks generate persistent long-run effects, while aggregate demand shocks 

generate a hump-shaped response that decays to zero over a business cycle horizon. Notably, the 

impulse response functions look reasonably similar before and after the structural break. 

However, the relatively wide quartile bands imply a fair degree of uncertainty about whether 

there was a change in propagation.  

 

5.3 Results for Counterfactual Experiments 

Given the estimation results for the structural VAR, it is useful to consider counterfactual 

experiments to determine whether the change in the size of structural shocks could have 

generated the entire reduction in output growth volatility or, alternatively, whether even small 

changes in propagation could have generated large changes in output growth volatility due to the 

nonlinear impact of propagation on variance. Meanwhile, given uncertainty about the extent of a 

change in propagation, it is particularly important to consider the Bayesian approach to 

counterfactual analysis because it captures the extent to which an imprecisely estimated change 

in propagation could have generated a large volatility reduction even if posterior means suggest 

little reduction. 

 As discussed above, the counterfactual experiments involve mixing shock variance and 

propagation parameters from before and after the structural break and solving for the resulting 

unconditional variances. For ease of interpretation of units, we report our inferences in terms of 

the standard deviations rather than variances. Also, while the structural VAR model includes the 

unemployment rate, we focus on the results for output growth. Specifically, we consider σ Δy
(i, j ) , 

which is the square root of the  (1,1) element of Γ0
(i, j ) in (8), where i, j =1,2, with Periods 1 and 2 
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denoting the pre-break and post-break periods, respectively. Table 2 presents quartiles for the 

posterior distributions of the actual and counterfactual standard deviations of output growth.  

The first and second rows of Table 2 report results for the actual standard deviations, 

σ Δy
(1,1)  and σ Δy

(2,2) , in the pre-break and post-break periods, respectively. The results confirm the 

large reduction in output growth volatility after the structural break. Specifically, the median 

estimate fell by roughly 50%, while the upper quartile for σ Δy
(2,2)  is well below the lower quartile 

for σ Δy
(1,1) . These results are evident in Figure 3, which displays the posterior densities for the 

actual and counterfactual standard deviations of output growth. Almost all of the posterior 

density for the post-break standard deviation lies below the density for the pre-break standard 

deviation. 

The third and fourth rows of Table 2 report results for the counterfactual standard 

deviations, σ Δy
(1,2) and σ Δy

(2,1), corresponding to a change in propagation alone and a change in 

shocks alone, respectively. A change in propagation alone is entirely unsuccessful at generating 

the actual reduction in variance. Indeed, the median of σ Δy
(1,2) is actually above that of the actual 

standard deviation, σ Δy
(1,1) , in the pre-break period. A change in shocks alone is able to generate a 

volatility reduction, with the median value is close to that of the actual standard deviation,σ Δy
(2,2) , 

in the post-break period. Again, these results are evident in Figure 3, which shows that the 

counterfactual standard deviation given a change in shocks alone is almost as precisely estimated 

as the actual post-break standard deviation, but the counterfactual standard deviation given a 

change in propagation alone is less precisely estimated than the pre-break standard deviation.  

While the results in Table 2 and Figure 3 clearly suggest that it is a change in shocks, not 

propagation, that could have generated the entire reduction in output growth volatility, the 
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Bayesian approach also allows for more precise inferences along these lines. In particular, as 

discussed in Section 3, we can calculate ratios of functions of the actual and counterfactual 

variances and evaluate the probabilities that these ratios are less than a fixed value. Based on this 

idea, Figure 4 displays probabilities that counterfactual reductions in the standard deviation of 

output growth are larger than fixed percentages of the actual reduction in the standard deviation 

of output growth. At one extreme, consider 0% of the actual change (i.e., no change). The 

probability that a change in shocks alone would have reduced volatility is high at about 0.9, 

while the probability that a change in propagation alone would have reduced volatility is low at 

about 0.3. At the other extreme, consider 100% of the actual change. The probability that a 

change in shocks alone would have reduced volatility by more than the actual change is just 

below 0.5, which would correspond to “even odds” that one reduction is larger than the other. 

The probability that a change in propagation alone would have reduced volatility by more than 

the actual change is 0. In between the extremes, these probabilities are useful for illustrating the 

economic significance of a change in volatility. In particular, there is a reasonably high 

probability (above 0.8) that the counterfactual change in volatility given a change in shocks 

alone would have lowered volatility by more than 75% of the actual reduction. Conversely, there 

is only a small probability (less than 0.05) that the counterfactual change in volatility given a 

change in propagation alone would have lowered volatility by even 25% of the actual reduction. 

Given the primary role played by shocks in the overall volatility reduction, we examine 

the relative importance of AS and AD shocks separately. The fifth and sixth rows of Table 2 

report results for the counterfactual standard deviations, σ Δy
(1,AS1/ AD 2) and σ Δy

(1,AD1/ AS 2), corresponding 

to a change in AS shocks alone and a change in AD shocks alone, respectively. The results 

suggest that AS shocks are more successful than AD shocks at generating a large reduction in 
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volatility. The median for σ Δy
(1,AS1/ AD 2), which corresponds to a change in AD shocks alone, is only 

a bit lower than that of the actual standard deviation, σ Δy
(1,1) , in the pre-break period. By contrast, 

the median for σ Δy
(1,AD1/ AS 2), which corresponds to a change in AS shocks alone, is closer to that of 

the actual standard deviation, σ Δy
(2,2) , in the post-break period, although the lower quartile for 

σ Δy
(1,AD1/ AS 2) is still above the upper quartiles for σ Δy

(2,2)  and σ Δy
(2,1), suggesting that AS shocks could 

not have generated the entire volatility reduction on their own. These results are evident in 

Figure 5, which displays the posterior densities for the actual and individual shock counterfactual 

standard deviations of output growth. Much of the posterior density for the counterfactual 

standard deviation given a change in AS shocks alone lies below the density for the 

counterfactual standard deviation given a change in AD shocks alone, although these 

counterfactuals are clearly less precisely estimated than the actual standard deviations. 

Figure 6 displays the probabilities that the counterfactual reductions in volatility implied 

by changes in one type of shock alone are larger than fixed percentages of the actual reduction in 

the standard deviation of output growth. For both AS and AD shocks, there is a high probability 

that the corresponding counterfactual change would have reduced volatility, with the probability 

above 0.9 for AS shocks and above 0.8 for AD shocks. At the same time, there is a low 

probability that either AS shocks alone or AD shocks alone would have generated the entire 

reduction, with the probability about 0.1 for AS shocks and about 0.05 for AD shocks. There is a 

higher probability of a large volatility reduction for AS shocks alone than for AD shocks alone, 

with “even odds” that a change given AS shocks alone is about 60% of the actual reduction and a 

change given AD shocks alone is about 25% of the actual reduction. 
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6. Robustness 

 There are some issues with Blanchard and Quah’s (1989) structural VAR based on a 

long-run restriction that potentially argue for consideration of a short-run structural VAR instead. 

First, the long-run identification presented above is predicated on the assumption that there is 

only one type of AS shock and one type of AD shock, where “type” is defined in terms of the 

impact of the shock on the dynamic relationship between output and unemployment. If there are 

multiple types of AS and AD shocks, then it would be important to include additional variables 

and allow for additional shocks in the structural VAR. However, it is, arguably, much more 

practical to include a larger number of variables in a short-run structural VAR and still identify 

key structural shocks. Second, from an econometric perspective, identification based on the 

spectral density at frequency zero, as is done with long-run restrictions, is much weaker than 

identification based on the short-run variance-covariance matrix of forecast errors (see Faust and 

Leeper, 1997, on this point). In particular, estimates of the spectral density at frequency zero can 

be highly sensitive to the number of lags included in estimation, while estimates of the short-run 

variance-covariance matrix are somewhat more stable. 

 With these concerns in mind, we conduct a robustness check on our main model by also 

considering a short-run monetary VAR along the lines of what was considered in Boivin and 

Giannoni (2003) and Ahmed, Levin, and Wilson (2004). The short-run monetary VAR model 

includes output growth, consumer-price inflation, commodity-price inflation, and the monetary 

policy instrument and identifies monetary shocks on the basis of the short-run restriction of 

delayed responses for output and prices to monetary shocks. Specifically, in terms of the notation 

in Section 4, the impact matrix β0 for the structural model is assumed to be lower triangular, 

with the policy instrument variable being the last element of tY . Identification is based on the 
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Choleski factorization of the variance-covariance matrix Ω, with normalization of the size of 

shocks being in terms of their initial impact on their associated variable (e.g., the monetary shock 

in terms of the monetary policy variable). 

 The data series for output growth is the same as before. The series for the inflation 

variables are 100 times the log first differences of the U.S. CPI and the Commodity Research 

Bureau Spot Price Index for all Commodities, respectively. The series for the monetary policy 

instrument is the level of the federal funds rate. As before, we sample seasonally-adjusted (when 

applicable) measures at a quarterly frequency for the period of 1960:Q1 to 2005:Q4 and the raw 

data were obtained from the St. Louis Fed website (http://www.stls.frb.org/fred/). The number of 

lags and the priors are the same as before, with only a change in the number of variables in the 

VAR model. 

 Table 3 presents quartiles for the posterior distributions of the actual and counterfactual 

standard deviations of output growth given estimation based on the short-run monetary VAR. 

The results are qualitatively very similar to those in Table 2. A change in propagation alone 

generates a standard deviation that is close to the standard deviation in the pre-break period, 

while a change in shocks alone generates a standard deviation that is close to the standard 

deviation in the post-break period. Also, consistent with the findings for AD shocks, monetary 

shocks appear to generate only a small reduction in volatility. Meanwhile, these results are 

qualitatively very similar to the findings in Stock and Watson (2002), Boivin and Giannoni 

(2003), and Ahmed, Levin, and Wilson (2004), but our results provide statistical credibility for 

the idea that shocks, not propagation, could have generated the volatility reduction in U.S. output 

growth. 
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6. Conclusions 

 We develop a Bayesian approach to making inferences about counterfactual quantities. 

Importantly, the Bayesian approach provides posterior densities that give a sense of statistical 

precision about counterfactual quantities and allow us to evaluate the probability of economically 

significant changes in those quantities.  

 We apply this approach to study the sources of the “Great Moderation” of U.S. output 

growth volatility in the 1980s.  The results support the notion that this reduction in volatility was 

largely driven by good luck in the form of smaller shocks hitting the economy rather than 

changes in the propagation of those shocks. Furthermore, we find that a change in the size of 

aggregate demand shocks and monetary shocks would not have generated much of a volatility 

reduction on their own. 
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Appendix 

 

A.1 Identification of Structural VAR via Long-Run Restrictions 

 The structural VAR in (6) is identified using a long-run restriction, as in Blanchard and 

Quah (1989). Long-run identification proceeds by assuming that there is no long-run effect of the 

aggregate demand shock on the level of output ( ty ). Technically, the spectral density of the 

aggregate demand component of output growth is equal to zero at frequency zero. Given (5) and 

(6), the spectral density for tX  at frequency zero is proportional to the long-run variance-

covariance matrix, denoted Λ, 

 

  Λ = Ψ(1)ΩΨ(1 ′ ) = β(1)Dβ(1 ′ ) .  (A1) 

 

In order for the aggregate demand component of output growth to have a spectral density of zero 

at frequency zero, )1(β must be lower triangular. That is, the aggregate demand shock does not 

contribute to the permanent movements in output. In practice, identification proceeds by 

constructing Λ using )1(Ψ  and Ω  from the reduced-form model. Then, the Choleski 

factorization of Λ provides a unique lower triangular matrix that is equivalent to β(1)D1/ 2 . 

 Given β(1)D1/ 2 , full identification of the structural model follows from the relationship 

between the reduced-form forecast errors and the structural shocks implied by the assumption 

that forecast errors and structural shocks are both uncorrelated across time: 

 

  et = β0εt . (A2) 
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Then, substituting (A2) into (6) implies: 

 

  Ψ(L)β0 = β(L) . (A3) 

 

The condition (A3) is general and holds for the following case: 

 

  Ψ(1)β0 = β(1) . (A4) 

 

Rearranging and multiplying both sides by D1/ 2, we can determine the un-normalized impact 

matrix θ0 = β0D
1/ 2:  

 

  θ0 = Ψ(1)−1β(1)D1/ 2 . (A5) 

 

Then, given (A5) and the normalization of shocks in terms of their initial impact on output 

growth, we can solve for β0 and D as follows: 

 

  β0 =
1 1

θ0,21 θ0,11 θ0,22 θ0,12

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , D =

θ0,11
2 0
0 θ0,12

2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ . (A6) 

 

A.2 Bayesian Estimation of the Reduced Form VAR via the Gibbs Sampler 

 We begin by writing the reduced-form VAR model in (9) in matrix notation. Define the 

vectors ( )′ΔΔ=Δ Tyyy ,...,~
1 , ( )′= Tuuu ,...,~

1 , and ( )′= iTii eee ,...,~
1  and form the matrices 
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[ ]uy ~~Δ=Υ , [ ]pYY −−=Χ ..1~ 1 , and [ ]21
~~ eee = , where k−Υ  holds the thk  lag of y~Δ  and 

u~ . The model in (9) is then equivalently written as: 

 
  e+ΧΠ=Υ .  (A7) 

Again, we are interested in the case where the parameters of the reduced-from VAR undergo a 

one-time structural break at the breakdate τ . Thus, the model in (A7) can be partitioned into the 

two subsamples: 

 

  
)2()2()2()2(

)1()1()1()1(

e
e

+ΠΧ=Υ

+ΠΧ=Υ , (A8) 

 

where )1(Υ , )1(Χ , )1(Π  and )1(e  hold the first 1−τ  rows of Υ , Χ , Π  and e  respectively, while 

)2(Υ , )2(Χ , )2(Π  and )2(e  hold last the )1( −− τT  rows of Υ , Χ , Π  and e  respectively.  

 The model in (A8) can be estimated in a Bayesian framework using the Gibbs Sampler. 

In particular, starting with arbitrary initial values for )1(Ω , )2(Ω  and τ , the Gibbs sampler 

proceeds by iterating the following three steps: 

1. Generate )( )1(Πvec  and )( )2(Πvec  from their conditional posterior density given 

previous values for )1(Ω , )2(Ω  and τ . This density is given by: 

 

 ),(~,,,|)( )()()()()()( iiiiii NXYvec ΣΠΩΠ τ ,  

 

where 
1

)()(1)(1)(
−

−−
⎟
⎠
⎞

⎜
⎝
⎛ ′

⊗Ω+Σ=Σ iiii
XX , ))()(( )()(1)(1)()( iiiii YvecX ′

⊗Ω+ΠΣ×Σ=Π
−− . 

A generated value for )(iΠ  is then formed from the generated value of )( )(ivec Π . 
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2. Generate )1(Ω  and )2(Ω  from their conditional posterior distribution given previous 

values for )1(Π , )2(Π  and τ .  This density is given by: 

 
 ),(~,,,|

)()()()()(1)( iiiiii SWXY ντΠΩ
− , 

 
where 1

)1(
−+= τνν , )1(

)2(
−−+= τνν T  and S = (S−1 + e'e) . 

3. Generate τ from its conditional posterior distribution given previous values of )1(Π , 

)2(Π , )1(Ω , and )2(Ω .  This density is given by: 

 
 ),,,,,|(),,,,,|( )2()1()2()1()2()1()2()1( XYLXYp ΩΩΠΠ∝ΩΩΠΠ ττ ,  

 
where the likelihood is evaluated for all possible breakdates between κT  and (1−κ)T , with 

),,,,,|( )2()1()2()1( XYL ΩΩΠΠτ  equal to the joint Normal density of the data Y  given 

)2()1()2()1( ,,, ΩΩΠΠ  and τ . 

 

 After a sufficient number of initial draws, the subsequent draws from the Gibbs sampler 

will no longer reflect the arbitrary starting values, but will behave like draws from the joint 

posterior density, ),|,,,,( )2()1()2()1( XYp τΩΩΠΠ . 
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Table 1 
Quartiles of Posterior Distributions for Standard Deviations of Aggregate Supply and Aggregate 
Demand Shocks  

 Period 25th Percentile Median 75th Percentile 

1 2.79 3.38 3.77  
Aggregate 

Supply 2 1.47 1.68 1.84 

1 1.08 1.92 2.71  
Aggregate 
Demand 2 0.37 0.71 1.08 

Notes: The structural shocks are normalized in terms of their initial impact on output growth. The 
standard deviations are expressed in terms of quarterly percentage points. Period 1 refers to the pre-break 
period and Period 2 refers to the post-break period. 
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Table 2 
Quartiles of Posterior Distributions for Standard Deviations of Real GDP Growth  

 Propagation  Shocks 25th Percentile Median 75th Percentile 

1 1 4.37 4.66 5.00 
Actual 

2 2 2.08 2.25 2.46 

2 1 4.57 5.02 5.86 
Counterfactuals 

1 2 2.11 2.32 2.68 

1 AS 1 
AD 2 3.46 4.02 4.60 

Individual Shock 
Counterfactuals 

1 AD 1 
AS 2 2.69 3.20 3.87 

Notes: The standard deviations are expressed in terms of quarterly percentage points. Period 1 refers to the pre-break period and Period 2 refers to 
the post-break period. AS refers to aggregate supply. AD refers to aggregate demand. 
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Table 3 
Quartiles of Posterior Distributions for Standard Deviations of Real GDP Growth Based on a Short-Run Monetary VAR 

 Propagation  Shocks 25th Percentile Median 75th Percentile 

1 1 4.72 5.06 5.52 
Actual 

2 2 2.26 2.46 2.71 

2 1 4.60 5.00 5.52 
Counterfactuals 

1 2 2.46 2.67 2.94 

1 Monetary 1 
Other Shocks 2 3.05 3.33 3.73 

Individual Shock 
Counterfactuals 

1 Other Shocks 1 
Monetary 2 4.34 4.65 5.05 

Notes: The standard deviations are expressed in terms of quarterly percentage points. Period 1 refers to the pre-break period and Period 2 refers to 
the post-break period. The results for this table are based on a short-run monetary VAR model of output growth, consumer price inflation, 
commodity price inflation, and the federal funds rate, with four lags and monetary shocks identified from the restriction that they impact output 
growth, consumer price inflation, and commodity price inflation only with a lag.  
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Fig. 1 – Posterior Density for the Timing of the Structural Break 
Notes: The x-axis units are quarters in the sample period. The y-axis units refer to frequency as a fraction of the total number of simulations. The 
solid line is the simulated posterior density for the unknown breakdate. The dashed line is the corresponding cumulative distribution (right axis). 
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Output Response to Aggregate Supply Shock: Pre-Break
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Output Response to Aggregate Demand Shock: Pre-Break
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Fig. 2 – Impulse Response Functions 
Note: The x-axis units are quarters after a shock. The y-axis units refer to impact of the shock on output. The results are based on simulated 
posterior distributions. The solid lines represent median responses. The dashed lines represent upper and lower quartile responses. 
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Fig. 3 – Posterior Densities for Actual and Counterfactual Standard Deviations of Output Growth 
Notes: The x-axis units are values for the standard deviations expressed in terms of quarterly percentage points. The y-axis units refer to frequency 
as a fraction of the total number of simulations. The solid lines denote the simulated posterior densities for the pre-break and post-break periods. 
The dashed lines denote the simulated posterior densities for the counterfactuals, where “Shocks” refers to post-break shocks and pre-break 
propagation and “Propagation” refers to post-break propagation and pre-break shocks.  
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Fig. 4 – Probabilities of Counterfactual Changes in Volatility  
Notes: The x-axis units are percentages of the actual change in the standard deviation of output growth. The y-axis units are probabilities. The solid 
lines denote the probabilities that the counterfactual reductions in volatility are larger than fixed percentages of the actual reduction in volatility, 
where “Shocks” refers to post-break shocks and pre-break propagation and “Propagation” refers to post-break propagation and pre-break shocks. 
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Fig. 5 – Posterior Densities for Actual and Individual Shock Counterfactual Standard Deviations of Output Growth 
Notes: The x-axis units are values for the standard deviations expressed in terms of quarterly percentage points. The y-axis units refer to frequency 
as a fraction of the total number of simulations. The solid lines denote the simulated posterior densities for the pre-break and post-break periods.  
The dashed lines denote the simulated posterior densities for the counterfactuals, where “AS Shocks” refers to post-break aggregate supply shocks 
and pre-break aggregate demand shocks and propagation and “AD Shocks” refers to post-break aggregate demand shocks and pre-break aggregate 
supply shocks and propagation.  
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Fig. 6 – Probabilities of Individual Shock Counterfactual Changes in Volatility  
Notes: The x-axis units are percentages of the actual change in the standard deviation of output growth. The y-axis units are probabilities. The solid 
lines denote the probabilities that the counterfactual reductions in volatility are larger than fixed percentages of the actual reduction in volatility, 
where “AS Shocks” refers to post-break aggregate supply shocks and pre-break aggregate demand shocks and propagation and “AD Shocks” 
refers to post-break aggregate demand shocks and pre-break aggregate supply shocks and propagation.  
 


