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Abstract

This paper finds strong evidence of time-variations in the joint distribution of returns on a stock market

portfolio and portfolios tracking size- and value effects. Mean returns, volatilities and correlations between

these equity portfolios are found to be driven by underlying regimes that introduce short-run market timing

opportunities for investors. The magnitude of the premia on the size and value portfolios and their hedging

properties are found to vary across regimes. Regimes are shown to have a large impact on the optimal

asset allocation - especially under rebalancing - and on investors’ utility. Regimes also have a considerable

impact on hedging demands, which are positive when the investor starts from more favorable regimes

and negative when starting from bad states. Recursive out-of-sample forecasting experiments show that

portfolio strategies based on models that account for regimes dominate single-state benchmarks.

 

Keywords: optimal portfolio choice, regimes, hedging demands, size and value portfolios.

1. Introduction

Empirical evidence has linked variations in the cross-section of stock returns to firm characteristics such

as market capitalization (e.g., Banz (1981), Keim (1983) Reinganum (1981), Fama and French (1992)) and

book-to-market values (e.g., Fama and French (1992, 1993), Davis, Fama, and French (2000)). Cross-sectional

return variations associated with these characteristics are non-trivial by conventional measures. Over the

sample 1927-2005 a portfolio comprising small firms paid a return of 2.9 percent per annum in excess of the

return on a portfolio composed of large firms. Similarly, firms with a high book-to-market ratio outperformed

firms with a low ratio by 5.0 percent per annum. In neither case have such differences been attributed to

variations in CAPM betas.

Far less is known about the extent to which the joint distribution of returns on these equity portfolios

varies over time. This is clearly an important question. For a multi-period investor the economic value

of investments in size and value portfolios is determined not only by their mean returns but also by their

volatilities and correlations with the market portfolio and by the extent to which these vary over time. To

∗We thank the editor, Rene Garcia, an associate editor and two anonymous referees for many helpful suggestions. Useful

comments were provided by Fulvio Ortu, a discussant, Phelim Boyle, Christian Haefke, Hashem Pesaran, Lucio Sarno, and by

seminar participants at the European Central Bank/CFS/Deutsch Bundesbank workshop, the European Financial Management

Association meetings in Milan (June 2005), the Federal Reserve Bank of Atlanta, Universitat Pompeu Fabra Barcelona, University

of Cambridge (CERF), University of Copenhagen, University of Waterloo (Eighth Annual Financial Econometrics Conference),

and Warwick Business School. The usual disclaimer applies.



address this question, we propose in this paper a new model for the joint distribution of returns on the

market portfolio and the size (SMB) and book-to-market (HML) portfolios introduced by Fama and French

(1993). We find evidence of four economic regimes that capture important time-variations in mean returns,

volatilities and return correlations. Two states capture periods of high volatility and “large” returns that

accommodate skews and fat tails in stock returns. The other two states are associated with shifts in the

distribution of size and value returns. Regimes continue to be important even if our model is extended to

include the dividend yield or the 1-month T-bill rate as additional state variables.

To quantify the economic significance of regimes in returns on US equity portfolios we consider their

importance from the perspective of a small investor’s optimal asset allocation. Optimal allocation to size

and value portfolios has received some attention in the existing literature. Brennan and Xia (2001) solve the

portfolio allocation problem of a long-term Bayesian investor assuming an asset menu similar to ours. They

study optimal stock holdings obtained under different priors over the size and value effects. Their calculations

suggest a substantial economic value of investments in the Fama-French portfolios, on the order of 5% per

annum, although the certainty equivalent value depends on the investor’s coefficient of risk aversion, prior

beliefs and the extent of pricing errors in the underlying asset pricing model. Pástor (2000) considers the

single-period portfolio problem of a mean-variance investor. His calculations suggest that the HML portfolio

should be in much greater demand than the SMB portfolio and that even investors with strong doubts about

value effects should take substantial positions in the HML portfolio.1

Here we focus instead on the presence of predictability linked to regimes underlying the joint distribution

of returns on the market, SMB and HML portfolios. The economic value of investment strategies in the

anomaly portfolios is of course related to the average size and value premium but further depends on how

much these vary across economic states. As pointed out by Brennan and Xia (2001), an important issue for a

long-horizon investor is whether size and value effects, if genuine, can be expected to persist in the future. By

allowing these effects to vary across regimes we can address this important question. Indeed we find strong

evidence that optimal asset holdings vary significantly across regimes and across short and long investment

horizons as investors anticipate a shift out of the current state.

We solve the asset allocation problem by extending the Monte Carlo methods in Barberis (2000) and

Detemple, Garcia, and Rindisbacher (2003) to the case with regime switching in returns. This allows us

to treat the states as unobservable and to characterize investors’ optimal portfolio weights under imperfect

information about the current state. Uncertainty about the underlying state means that investors exploit

regimes less aggressively. However, most of the time investors have sufficiently precise (filtered) estimates of

the states whose presence continue to affect the portfolio weights, hedging demands and certainty equivalence

returns.

We study several aspects of the portfolio allocation problem, such as the importance of the rebalancing

frequency, the investment horizon, and of investors’ learning about unobservable states. At long horizons we

find that the size and value portfolios have moderate weights in a buy-and-hold investor’s optimal allocation.

This finding differs from previous estimates of a more substantial role for the SMB and HML portfolios in

the optimal long-run asset allocation and is a reflection of the fat-tailed return distribution captured by the

presence of high-volatility states. At short horizons, we find a more significant role for these portfolios linked

1Lynch (2001) analyzes the effect of linear (VAR(1)) predictability from the dividend yield or the term spread on investments

in size- and value-sorted portfolios as a function of the investment horizon and finds that investors with long horizons should

hold less in small stocks and stocks with high book to market ratios.
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to the market timing opportunities implied by the four-state model. By allowing for adjustments to portfolio

weights following changes in the underlying state probabilities, rebalancing enhances the weights on the size

and value portfolios in the optimal asset allocation.

We also study the hedging demand induced by regime switching and compare it to the hedging demand

under predictability from the dividend yield or under learning about the drift of the asset price process.

Consider the hedging demand for the market portfolio. Since shocks to the dividend yield are negatively cor-

related with shocks to asset prices, the market portfolio provides a hedge against shocks to future investment

opportunities and the hedging demand for this portfolio is positive under predictability from the dividend

yield. In contrast, when investors learn about the mean return − as assumed by Brennan and Xia (2001)
− shocks to the investment opportunity set and shocks to returns are positively correlated so the hedging
demand for the market portfolio will be negative. Under regime switching we see both positive and negative

hedging demand depending on which state the market starts from. The hedging demand is positive when

the investor starts from regimes favorable to the market portfolio — since mean-reversion to less favorable

investment opportunities is anticipated — but negative when starting from “bad” states.

Consistent with findings by Barberis (2000) and Xia (2001), we find that parameter estimation uncer-

tainty has a large effect on optimal asset holdings. Nevertheless, regime shifts continue to have a significant

effect on the optimal asset allocation and expected utility even after accounting for parameter uncertainty.

Furthermore, we perform a recursive out-of-sample forecasting experiment that estimates model parameters

and selects portfolio weights in “real time”, i.e. based only on the data available at the point in time where

the forecast is computed. We find that four-state models perform better than single-state alternatives both

in terms of the precision of their out-of-sample forecasts and in terms of sample estimates of mean returns

and average utility.

These conclusions appear to be robust to the particular form of regime specification used in the analysis.

We find that the size of the certainty equivalent return mostly hinges on the existence of regime-dependence

in expected returns and less on the exact number of states. This is consistent with large expected utility

losses in two-state models when expected returns are allowed to depend on the state and of small expected

utility losses in four-state models with constant expected returns. The size of hedging demands depends both

on the choice of the number of regimes and on time-variations in expected returns.

The outline of the paper is as follows. Section 2 presents our multivariate regime switching models for

the joint distribution of returns on the market, size and book-to-market portfolios and extensions to include

additional predictor variables. Section 3 presents empirical results while Section 4 sets up the asset allocation

problem and Section 5 reports empirical asset allocation results. Section 6 provides utility cost calculations,

considers the impact of parameter estimation uncertainty and evaluates the out-of-sample performance of a

range of models. Section 7 concludes.

2. Models for Regimes in the Joint Return Process

A large literature in finance has reported evidence of predictability in stock market returns, mostly in the

context of linear, constant-coefficient models, (Campbell and Shiller (1988), Fama and French (1989), Ferson

and Harvey (1991), Goetzmann and Jorion (1993) and Lettau and Ludvigsson (2001).) More recently, some

papers have found evidence of regimes in the distribution of returns on individual stock portfolios or pairs

of these (e.g., Ang and Bekaert (2002a), Perez-Quiros and Timmermann (2000), Guidolin and Timmermann
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(2006), Turner, Startz and Nelson (1989) and Whitelaw (2001)). Following this literature we model the joint

distribution of a vector of n stock returns, rt = [r1t r2t ... rnt]
0 as a multivariate regime switching process

driven by a common discrete state variable, St, that takes integer values between 1 and k :

rt = μst +

pX
j=1

Aj,strt−j + εt. (1)

Here μst = [μ1st ... μnst ]
0 is a vector of mean returns in state st, Aj,st is an n × n matrix of autoregressive

coefficients at lag j in state st and εt = [ε1t ... εnt]
0 ∼ N(0,Σst) is the vector of return innovations that are

assumed to be joint normally distributed with zero mean and state-specific covariance matrix Σst . Inno-

vations to returns are thus drawn from a Gaussian mixture distribution that is known to provide a flexible

approximation to a wide class of distributions (Timmermann (2000)).2

Each state is the realization of a first-order Markov chain governed by the k × k transition probability

matrix, P, with generic element pji defined as

Pr(st = i|st−1 = j) = pji, i, j = 1, .., k. (2)

Our estimates allow St to be unobserved and treat it as a latent variable.

The model (1) - (2) nests several popular models from the finance literature as special cases. In the

case of a single state, k = 1, we obtain a linear vector autoregression (VAR) with predictable mean returns

provided that there is at least one lag for which Aj 6= 0. Absent significant autoregressive terms, the discrete-
time equivalent of the Gaussian model adopted by Brennan and Xia (2001) is obtained. The model is also

consistent with evidence of instability in US equity portfolio returns (Pástor (2000) and Davis et. al. (2000)).

Our model can be extended to incorporate an l×1 vector of predictor variables, zt−1, comprising variables
such as the dividend yield or interest rates that have been used in recent studies on predictability of stock

returns (e.g. Aı̈t-Sahalia and Brandt (2001) and Campbell, Chan and Viceira (2003)). Define the (l+ n)× 1
vector of state variables yt = (r

0
t z

0
t)
0. Then (1) is readily extended to

yt =

Ã
μst

μzst

!
+

pX
j=1

A∗j,styt−j +

Ã
εt

εzt

!
, (3)

where μzst = [μz1st ... μzlst ]
0 is the intercept vector for zt in state st, {A∗j,st}

p
j=1 are now (n + l) × (n + l)

matrices of autoregressive coefficients in state st and [ε
0
t ε

0
zt]
0 ∼ N(0,Σ∗st), where Σ

∗
st is an (n+ l)× (n+ l)

covariance matrix. This model allows for predictability in returns through the lagged values of zt. It embeds

a variety of single-state VAR models that have been considered in recent studies including Barberis (2000),

Campbell and Viceira (1999) and Kandel and Stambaugh (1996). This model is complicated by the joint

presence of linear and non-linear predictability patterns, the latter arising due to time-variations in the filtered

state probabilities.

Even in the absence of autoregressive terms or predictor variables, (1) - (2) imply time-varying investment

opportunities. For example, the conditional mean of asset returns is an average of the vector of mean returns,

μst , weighted by the filtered state probabilities [Pr(st = 1|Ft) ... Pr(st = k|Ft)]
0, conditional on information

available at time t, Ft. Since these state probabilities vary over time, the expected return will also change.

Similar comments apply to higher order moments of the return distribution.

2Recent papers have emphasized the importance of adopting flexible models capable of capturing time-varying correlations,

skewness and kurtosis in the joint distribution of asset returns, see Manganelli (2004) and Patton (2004).
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Regime switching models can be estimated by maximum likelihood after putting (3) in state-space form.

In particular, estimation and inferences are based on the EM algorithm which allows iterative calculation of

one-step ahead forecasts of the state vector

ξt = [I(st = 1|Ft) I(st = 2|Ft) ... I(st = k|Ft)]0

where I(st = i|Ft) is a standard indicator variable, given the information set Ft. Under standard regularity
conditions, consistency and asymptotic normality of the ML estimator θ̂ can be established (e.g. Hamilton

(1989)): √
T
³
θ̂ − θ

´
d→ N

¡
0, Ia(θ)−1

¢
where Ia(θ) is the asymptotic information matrix. Our empirical results apply a ‘sandwich’ estimator of
Ia(θ) of the form3

V ar(θ̂) = T−1
∙
I2(θ̂)

³
I1(θ̂)

´−1
I2(θ̂)

¸
,

where p(yt|Ft−1; θ̂) is the conditional density of the data and

I1(θ̂) ≡ T−1
TX
t=1

h
ht(θ̂)

i h
ht(θ̂)

i0
, ht(θ̂) ≡

∂ ln p(yt|Ft−1; θ̂)

∂θ
, I2(θ̂) ≡ −T−1

TX
t=1

"
∂2 ln p(yt|Ft−1; θ̂)

∂θ∂θ0

#
.

Under a mean squared forecast error (MSFE) criterion, forecasting is simple in spite of the nonlinearity of

the underlying process. Conditional on the parameter estimates, the conditional expectation minimizes the

MSFE, i.e.

E[yt+1|θ̂,Ft] = XtΨ̂
³
ξ̂t+1|t ⊗ ιl+q

´
, (4)

where Xt = [1 y
0
t...y

0
t−p+1] ⊗ ιl+n, Ψ̂ stacks the estimates of the conditional mean parameters and ξ̂t+1|t is

the one-step ahead forecast of the latent state vector given Ft.

3. Regimes in market, size and book-to-market returns

3.1. The Data

We study continuously compounded monthly returns on US stock portfolios over the sample 1927:12 - 2005:12,

a total of 937 observations. The basis for our analysis is the returns on six equity portfolios formed on the

intersection of two size portfolios and three book-to-market portfolios. All portfolios are value-weighted with

weights that are revised at the end of June every year and held constant for the following twelve months.4

We also use data on the value-weighted CRSP index, the dividend yield, and 1-month T-bill rates.

To simplify the asset allocation problem, we follow Fama and French (1993) and consider two portfolios

tracking size and book-to-market ratio effects. The first portfolio (SMB) is long in small firms and short in

big firms, controlling for the book-to-market ratio:

rSMB
t =

1

3
(Small Value + Small Neutral + Small Growth)− 1

3
(Big Value + Big Neutral + Big Growth).

3Under the null of no misspecification, I1(θ̂) and I2(θ̂) should be identical. Since we do not perform misspecification tests

based on the ‘distance’ between I1(θ̂) and I2(θ̂), we base our inferences on the “sandwich” form.
4The portfolios for July of year t to June of year t + 1 include all NYSE, AMEX and NASDAQ stocks with market equity

data available for December of year t− 1 and June of year t, and book equity data for year t− 1. The book-to-market ratio for
June of year t is the book equity for the last fiscal year ending in t− 1 divided by the market equity in December of year t− 1.
Further details on data construction are available from Ken French’s web site at Dartmouth.
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The second portfolio (HML) is long in firms with a high book-to-market ratio and short in firms with a low

book-to-market ratio, controlling for size:

rHML
t =

1

2
(Small Value + Big Value)− 1

2
(Small Growth + Big Growth).

Both SMB and HML are zero-investment portfolios. It is therefore appropriate to consider their simple

returns as opposed to returns in excess of a T-bill rate. Conversely, we follow common practice and consider

returns on the market portfolio in excess of the T-bill rate.

We first report the usual summary statistics for the two spread portfolios and the market index. The mean

excess return on the market portfolio is 8% per annum. The volatility of this portfolio is 19% per annum and

it also has a thick-tailed, largely symmetric distribution. The HML portfolio earns a mean return of 5% per

annum and, at 13% per annum, is less volatile than the market portfolio but with strongly skewed returns.

The SMB portfolio earns a mean return of 3% per annum and has lower volatility and more right-skew than

the HML portfolio. Correlations between returns on the three equity portfolios vary between 0.08 and 0.33.

These properties are similar to those reported by Davis et al. (2000) for a comparable sample 1929-1997.

3.2. Regimes in the joint return process

No previous work seems to have attempted to identify regimes in the joint process of returns on the market,

size and value portfolios [rMKT
t rSMB

t rHML
t ]0. Economic theory offers little guidance on how to select the

number of regimes and lags for this process. To address these issues and to make sure that there is robust

evidence of regimes in the first place we conducted a thorough specification analysis.5

More specifically, we considered a range of values for the number of regimes (k = 1, 2, 3, 4, and 6). This

covers very parsimonious as well as heavily parameterized models. To select among the regime specifications,

we considered the Akaike (AIC) and Schwartz (SIC) information criteria. These trade off in-sample fit with

a penalty for over-parameterization. Unlike formal hypothesis tests which are subject to nuisance parameter

problems, these criteria do not, however, provide rigorous tests for the presence of regimes. Since the AIC

tends to select overparameterized models (Fenton and Gallant (1996)), we chose the model that was selected

by the SIC. In a second step we then use likelihood ratio tests to impose restrictions on mean returns and

covariance matrices and see whether a more parsimonious model is supported by the data (see Section 3.3).

The preferred specification has four states but no autoregressive terms.6 The absence of autoregressive

terms is perhaps unsurprising given the lack of serial correlation in the individual return series. That four

states are required to capture the dynamics of the joint returns on the market and Fama-French portfolios

is consistent with our finding of three (largely common) states for the HML and SMB portfolios and two

(uncorrelated) states for the market portfolio.

To assist in the economic interpretation of the four-state model, Panel B of Table 1 presents parameter

estimates while Figure 1 plots the associated state probabilities. Regime 1 is a moderately persistent bear state

5Before undertaking the analysis of the joint distribution of returns on the three stock portfolios, we considered the presence

of regimes in returns on the individual portfolios, rMKT
t , rSMB

t and rHML
t . For each portfolio we first tested the null of a single

state against the alternative of multiple states and found that the single state model was soundly rejected at the 1% significance

level. Tests were performed using the statistic proposed by Davies (1977). This accounts for the fact that under the null of a

single state (k = 1) some of the regime switching parameters are not identified. A two-state model was found to be appropriate

for the market portfolio while three-state models were selected for the HML and SMB portfolios.
6Any finite-state model is best viewed as an approximation to a more complex and evolving data generating process with

non-recurrent states (see, e.g., Pesaran, Pettenuzzo and Timmermann (2006)).
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whose average duration is seven months. In this state the mean excess return on the market is significantly

negative at -13% per annum. During bear markets, size and value anomalies are largely absent from the data

and mean returns on the SMB and HML portfolios are not significantly different from zero. Volatility is high

and return correlations closely track their unconditional counterparts listed in panel A. Figure 1 shows that

this regime captures major crashes and periods with sustained declines in stock prices such as the 1929 crash,

the Great Depression, the two oil shocks in the 1970s and the recent bear market of 2000-2002.

Regime 2 is a highly persistent, low-volatility bull state with an average duration of 14 months that

captures long periods with growing stock prices during the 1940s, the 1950s, and the mid-1990s. Mean

returns in this state are significantly positive for the market and HML portfolios (13% in excess of the riskless

rate and 4% per annum, respectively) but slightly negative for the SMB portfolio. Hence the value effect is

strong in this state while the size effect is absent. Returns on the HML portfolio are positively correlated

with returns on the market portfolio while SMB returns are uncorrelated with both the market and HML

returns.

Regime 3 is another highly persistent, low-volatility state where all equity portfolios earn positive mean

returns (9%, 6%, and 4%, respectively). This state captures most of the bull markets since the mid-sixties,

including the late 1990s run-up. A clear difference between regimes 2 and 3 is found in their correlation

structure. In the second state the SMB portfolio provides a hedge for the performance of the market portfolio.

In the third state the HML portfolio plays a similar role.

Finally, regime 4 is a highly volatile, transient state that captures stock prices during parts of the Great

Depression and 1999-2000. Mean returns in this state are high (17, 10, and 12 percent per month) but not

absurdly so since the average duration of this state is less than two months and volatilities in this state are

also very high, i.e. 47, 52, and 49% per annum. Despite its short duration, regime 4 is clearly important for

size and value effects to emerge in the data.

The steady state probabilities implied by the estimates of the transition matrix, P̂, are 22%, 27%, 50%

and 1%, respectively. Furthermore, transition probabilities follow a very particular pattern in our model:

The market either remains in the fourth, high return state (with a probability of about one-third) or exits

to the bear/crash state (with a two-thirds probability) so that states 1 and 4 jointly identify periods with

clustering of high volatility.

The states are identified using an ex-post classification scheme. This is important since it is not reasonable

to expect (and we do not find) states with high ex-ante volatility and negative ex-ante mean returns for the

market portfolio.7 One factor that complicates economic interpretation of the states is that the regimes differ

along several dimensions such as expected returns, volatility and magnitude of the size and value effects. It

is clear, however, that state one is a recession or bear state with high volatility and mostly negative mean

returns, while state four is a recovery state which together with state one captures episodes of high volatility.

Markets are calmer in states 2 and 3 which also see fairly large mean returns on the market portfolio. However,

whereas in state 2 the value effect is significant while the size effect is not, the size effect is somewhat larger

in the third state.

Corroborating our economic interpretation, we found that 39% of the periods classified as state 1 by our

model occur in an NBER recession, while the corresponding numbers are 15% or less for the other states.

7Note that this occurs ex-post in state 1 but, starting from state 1, the likelihood of moving to states with higher expected

returns means that the ex-ante expected return is small but positive (one percent per annum). See also Gu (2006) for a discussion

of this point.
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Regressions of state probabilities on the NBER recession indicator came up with a highly significant positive

coefficient for state 1 and significant but negative coefficients for states 2 and 3. Moreover, when we fitted

a regime switching model to industrial production growth, again we found that state 1 in our model was

associated with a zero growth, high-volatility state for industrial production. In fact, the average annual

growth in industrial production in the four states is zero in state 1, 4-5% in states 2 and 3 and a staggering

40% in state 4. This clearly suggests that our states are associated with underlying economic fundamentals.

3.3. Testing restrictions and ARCH effects

Our very long data set on three relatively weakly correlated return series means that most parameters in

Table 1 are reasonably precisely estimated. Even so, the number of parameters of the four-state model is

quite large and it is worth investigating whether a more parsimonious specification can be obtained. In view

of the imprecise mean return estimates often found for equity portfolios, we follow Ang and Bekaert (2002a,

pp. 1147-1149) and first test a model where mean returns are restricted to be identical across regimes:

rt = μ+ εt εt ∼ N(0,Σst). (5)

We can formally test the restrictions on the mean return parameters through a likelihood-ratio test:

LR = 2(5422.52− 5408.40) = 28.09.

The implied p-value of 0.0009 strongly rejects the state-independence of mean returns.

Next, we test whether the regime switching model can be simplified by imposing covariance restrictions.

Returns in regimes 1 and 4 are highly volatile so it is natural to test the hypothesis that Σ1 = Σ4 which

implies six parameter restrictions:

LR = 2(5422.52− 5397.39) = 47.74.

This yields a p-value very near zero. Once again the restrictions are resoundingly rejected so we maintain

the general four-state model from Table 1.

Finally, we test whether the preferred four-state model is misspecified or needs to be extended to incor-

porate ARCH effects. To address this question, we estimated a bivariate Markov switching ARCH model

similar to that considered by Hamilton and Lin (1996):8

rt = μSt + εt, εt ∼ N(0,ΣSt)

ΣSt = KSt +∆Stε
0
tεt∆

0
St . (6)

Here KSt is restricted to be symmetric and positive definite and ∆St captures regime-dependent effects of

past shocks on current volatility. To formally test for ARCH effects, we imposed the restriction ∆St = ∆,

St = 1, 2, 3, 4 and obtained the likelihood ratio test

LR = 2 [5447.23− 5422.52] = 49.42.

The associated p-value is 0.301 so the null hypothesis of no ARCH effects fails to be rejected. We therefore

maintain the simpler four-state model without ARCH effects. The absence of ARCH effects in our model can

8It is possible that other multivariate regime switching GARCH models may improve the fit, see e.g. Haas, Mittnik, and

Paolella (2004).
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be explained by the fact that, at the monthly frequency, regime switching can capture volatility clustering

through time-variations in the probabilities of (persistent) states with very different levels of volatility, see

Gray (1996) and Timmermann (2000).

3.4. Predictor Variables: The Dividend Yield

Many studies suggest that stock returns are predicted by regressors such as term and default spreads or

the dividend yield, e.g. Campbell and Shiller (1988), Fama and French (1989), Ferson and Harvey (1991),

Goetzmann and Jorion (1993). Most of the literature on optimal asset allocation has focused on predictability

from the dividend yield, see Barberis (2000) and Kandel and Stambaugh (1996). Standard linear predictors fail

to explain much of the variation in the monthly returns of size- and book-to-market sorted equity portfolios.

However, the dividend yield is the predictor variable that generates the strongest variations in hedging

demands. The possibility that the dividend yield might predict returns on the SMB and HML portfolios has

not been considered in the context of regime switching models.

To investigate the effect on our model of adding predictor variables such as the dividend yield, again we

used a battery of tests to determine the best model specification for [rMKT
t rSMB

t rHML
t dyt]

0, where dyt is the

dividend yield in period t. Reflecting the strong persistence in the yield, the SIC suggests a VAR(1) model

irrespective of the number of states, k. Even with a first order autoregressive term included, a four-state

model continues to be selected.

The economic interpretation of the four regimes is aided by studying the smoothed state probabilities

presented in Figure 2 and the parameter estimates reported in Panel B of Table 2. For comparison Panel

A reports estimates for a single-state, VAR(1) benchmark model. The basic interpretation of the regimes

remains unchanged from the simpler model reported in Table 1. The expected returns which allow for the

possibility of regime switches between t and t + 1, evaluated at the mean of the dividend yield within each

state, E[yt+1|st = i, dyt = dyst ], are as follows:

E[yt+1|st = 1] = [0.0002 0.0106 0.0041 0.0217]’ (regime 1)

E[yt+1|st = 2] = [0.0068 -0.0038 0.0038 0.0210]’ (regime 2)

E[yt+1|st = 3] = [0.0047 0.0060 -0.0004 0.0467]’ (regime 3)

E[yt+1|st = 4] = [0.0275 0.0346 -0.0447 0.0448]’ (regime 4)

Regime 1 is a transient state with an average duration less than two months that mostly picks up bear

markets such as the Great Depression, the two oil shocks in the 1970s and the more recent period 2000-2002.

The main difference when compared to the bear state in the simpler model in Table 1 is that this state now

has a shorter expected duration and records a relatively high, positive mean return on the SMB portfolio.

Regimes 2 and 3 continue to be persistent, low volatility states with average durations exceeding 8-10

months. Taken together, these states capture most bull markets between the 1940s and 1990s. State 2 has a

low dividend yield (on average 2.1%) while state 3 has a high yield (on average 4.7%). While state 2 tracks

periods with large value but small size anomalies, state 3 captures periods where only the size anomaly is

present. Three of four of the coefficients of the lagged dividend yield on the SMB and HML returns are

significant in these two states.

Finally, regime 4 remains an outlier state with large positive mean returns on the market and SMB

portfolio although it now has negative returns on the HML portfolio. In this state the mean excess return
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on the market is 33% per annum while growth stocks outperform value stocks to the tune of 54% per annum

and small firms outperform large firms by 42% per annum. Volatility is also high, ranging from 26% to 47%

per annum for the three portfolios.

Equity return correlations continue to vary significantly across states. The correlation between the market

and the SMB portfolio varies from 0.12 to 0.49, while the correlation between the market and HML portfolio

varies from -0.36 to 0.69. Correlations between shocks to the dividend yield and shocks to stock returns

are large and negative for the market portfolio but considerably smaller for the HML and SMB portfolios.

Finally, indicating time-variations in the hedging properties of the Fama-French portfolios, Table 2 shows

significant time-variations in the ability of the dividend yield to predict future stock returns. For instance,

higher dividend yields forecast higher market risk premia in states 2 and 3, but negative ones in state 1 (the

relationship is weak in state 4). In the case of SMB (HML), higher dividend yields forecast higher returns in

states 1 and 2 (state 3 for HML), and lower returns in states 3 and 4.

Once again we considered a more parsimonious model. In particular, we estimated the following model

which lets the predictive power of the dividend yield be state dependent but rules out predictability from

lagged returns,

rjt = μjst + αjstdyt−1 + εjt j = MKT, SMB, HML

dyt = μdy,st + αdy,stdyt−1 + εdy,t. (7)

We continue to let the covariance matrix be unrestricted, i.e. ε∗t ∼ N(0,Σ∗st), where ε
∗
t ≡ [εMKT

t εSMB
t εHML

t

εdy,t]
0 and assume four states. This model has 84 parameters, a reduction of 48 parameters relative to the

unrestricted version of (3). Again, a test of the 48 restrictions on the state-dependent VAR matrices was

strongly rejected.

4. The Asset Allocation Problem

So far we have documented the presence of regimes in the process underlying returns on the market portfolio

and portfolios tracking size and value effects. We next explore the asset allocation implications of such

regimes. Since it is clear that regime shifts generate predictability in future investment opportunities, we

expect to find interesting horizon effects and hedging demands. Under the CAPM, investors should not hold

the size or value portfolios. To see if this continues to be valid here, we consider the asset allocation problem

of an investor with power utility over terminal wealth, Wt+T , coefficient of relative risk aversion, γ, and time

horizon, T :

u(Wt+T ) =
W 1−γ

t+T

1− γ
. (8)

The investor is assumed to maximize expected utility by choosing at time t a portfolio allocation to the market,

SMB and HML portfolios, ωt ≡ [ωMKT
t ωSMB

t ωHML
t ]0, while any residual wealth is invested in riskless,

one-month T-bills. For simplicity, we assume the investor has unit initial wealth and ignores intermediate

consumption. Portfolio weights are adjusted every ϕ = T
B months at B equally spaced points t, t+ T

B , t+2
T
B ,

..., t+ (B − 1)TB . When B = 1, ϕ = T, so the investor simply implements a buy-and-hold strategy.

Let ωb (b = 0, 1, ..., B−1) be the weights on the stock portfolios at the rebalancing points. The investor’s
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optimization problem is:9

max
{ωj}B−1j=0

Et

"
W 1−γ

B

1− γ

#
(9)

s.t. Wb+1 =Wb{(1− ωMKT
b ) exp

³
ϕrf

´
+ωMKT

b exp
³
RMKT
b+1 +ϕrf

´
+ωSMB

b exp(RSMB
b+1 )+ω

HML
b exp(RHML

b+1 )}

Here Et[·] denotes the conditional expectation given the information set at time t, Ft, and Rb denotes

cumulative returns over a period of ϕmonths. The termRMKT
b+1 +ϕrf arises since we specified our model for the

vector of (continuously compounded) excess returns on the market portfolio while (1−ωMKT
b ) exp

¡
ϕrf

¢
arises

since both SMB and HML are zero-investment portfolios that require short-selling stocks and thus depositing

funds in margin accounts. If a proportion ωb is invested in one of these portfolios, ωb must also be invested

at the riskless rate to satisfy the deposit requirement, for a total gross return of ωb exp(Rb+1)+ |ωb| exp(ϕrf ).
Thus, as written in (9)

Wb+1 = Wb{(1− ωMKT
b − |ωSMB

b |− |ωHML
b |) exp

³
ϕrf

´
+ ωMKT

b exp
³
RMKT
b+1 + ϕrf

´
+

+ωSMB
b exp(RSMB

b+1 ) + |ωSMB
b | exp(ϕrf ) + ωHML

b exp(RHML
b+1 ) + |ωHML

b | exp(ϕrf )}
= Wb{(1− ωMKT

b ) exp
³
ϕrf

´
+ωMKT

b exp
³
RMKT
b+1 +ϕrf

´
+ωSMB

b exp(RSMB
b+1 )+ω

HML
b exp(RHML

b+1 )}.

In what follows we report the total weight on T-bills reflecting both the asset allocation decisions and margin

requirements.10

Incorporating the predictor variables, zb, at the decision points, b, the derived utility of wealth is

J(Wb,yb,θb,πb, tb) ≡ max
{ωj}B−1j=b

Etb

"
W 1−γ

B

1− γ

#
. (10)

Here yb ≡ (rb zb)0, θb =
µn

μi,b, {Aj,i,b}pj=1,Σi,b

ok
i=1

,Pb

¶
collects the parameters of the regime switching

model, and πb is the state probabilities at point b. Investors face a large set of state variables, most obviously

the regime probabilities, πb, and the vector of returns and predictor variables, yb. The parameter vector

θb could also be treated as a separate state variable that gets updated at each point in time. Solving the

associated problem implies using a very large set of state variables. We therefore solve a simplified version

of the asset allocation program in which the model parameters are fixed at their estimated values θb = θ̂ for

all b = 0, 1, ..., B − 1.11 Treating states as unobserved is consistent with the estimation problem solved by

the investor in Section 2 where the regime can only be inferred from the available data. Investors’ learning

process is incorporated in this setup by letting them optimally update their beliefs about the underlying state

at each point in time using Bayes’ rule

πt+j+1(θ̂t+j) =
πt+j(θ̂t+j)P̂t+j ¯ η(yt+j+1; θ̂t+j)

(πt+j(θ̂t+j)P̂t+j ¯ η(yt+j+1; θ̂t+j))ιk
. (11)

9As is common in the empirical literature on optimal asset allocation, we assume that the risk-free rate is constant over time

and also do not address market equilibrium issues so our investor is small relative to the total market. We will remove the

assumption of a constant short-term rate in Section 5.4.
10For example, a position of -25% in SMB, and 15% in HML requires an investor to hold 40% in T-bills. Since after putting

(say) 65% in the market, only 35% of the initial wealth is available, the investor will have to borrow 5% of his wealth at the

T-bill rate. Therefore the net investment in T-bills is only 35%, i.e., 1− ωMKT
b , consistent with (9).

11Barberis (2000) considers a simple example with future updating limited to two parameter estimates.
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Here ¯ denotes the element-by-element product, yt ≡ [r0t z0t]0, and η(yt+j+1) is a k × 1 vector that gives the
density of observation yt+j+1 in the k states at time t+ j + 1 conditional on θ̂t+j :

12

η(yt+j+1; θ̂t+j) ≡

⎡⎢⎢⎢⎢⎣
f(yt+j+1|st+j+1 = 1, {yt+j−i}p−1i=0 ; θ̂t+j)

f(yt+j+1|st+j+1 = 2, {yt+j−i}p−1i=0 ; θ̂t+j)
...

f(yt+j+1|st+j+1 = k, {yt+j−i}p−1i=0 ; θ̂t+j)

⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(2π)−
N
2 |Σ̂−11 |

1
2 exp

∙
-12

³
rt+j − μ̂1 −

Pp−1
i=0 Â1jyt+j−i

´0
Σ̂−11

³
rt+j − μ̂1 −

Pp−1
i=0 Â1jyt+j−i

´¸
(2π)−

N
2 |Σ̂−12 |

1
2 exp

∙
-12

³
rt+j − μ̂2 −

Pp−1
i=0 Â2jyt+j−i

´0
Σ̂−12

³
rt+j − μ̂2 −

Pp−1
i=0 Â2jyt+j−i

´¸
...

(2π)−
N
2 |Σ̂−1k |

1
2 exp

∙
-12

³
rt+j − μ̂k −

Pp−1
i=0 Âkjyt+j−i

´0
Σ̂−1k

³
rt+j − μ̂k −

Pp−1
i=0 Âkjyt+j−i

´¸

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

Learning effects are important since portfolio choices depend not only on future values of asset returns

and predictor variables, but also on future perceptions of the probability of being in each of the regimes.

Using that Wb is known at time tb, the scaled value function, Q(·), simplifies to

Q(rb, zb,πb, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1−γ
Q (rb+1, zb+1,πb+1, tb+1)

#
. (13)

Conditional on the current parameter estimates, θ̂t, the optimal portfolio weights reflect not only hedging

demands due to stochastic shifts in investment opportunities but also changes in investors’ beliefs concerning

future state probabilities, πt+j . In the absence of predictor variables, zt, the investor’s perception of the

regime probabilities, πt, is the only state variable and the basic recursions simplify to

Q(πb, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1−γ
Q (πb+1, tb+1)

#
,

πb(θ̂t) =
πtb−1(θ̂t)P̂

ϕb
t ¯ η(rb; θ̂t)³

πtb−1(θ̂t)P̂
ϕb
t ¯ η(rb; θ̂t)

´
ιk
, (14)

where P̂ϕb
t ≡

Qϕb
i=1 P̂t. Backward solution of (14) only requires knowledge of πb(θ̂t), b = 0, 1, ..., B − 1,

although we allow the perceived state probabilities to be updated along each simulated path.

4.1. Numerical Solution

A variety of solution methods have been applied in the literature on portfolio allocation under time-varying

investment opportunities. Barberis (2000) employs simulation methods and studies a pure allocation problem

without interim consumption. Campbell and Viceira (1999) derive approximate analytical solutions for an

infinitely lived investor when interim consumption is allowed and rebalancing is continuous. Campbell et

al. (2003) extend this approach to a multivariate set-up and show that a mixture of approximations and

numerical methods can be applied. Finally, some papers have derived closed-form solutions by working in

continuous-time, e.g. Kim and Omberg (1996).

12This formula is derived in Hamilton (1994, pp. 692-693).
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Ang and Bekaert (2002a) propose a Markov switching model for pairs of international stock market returns.

They consider asset allocation when regimes are observable to investors, so the state variable simplifies to a

set of dummy indicators. Our framework is quite different since we calculate asset allocations under optimal

filtering, allowing for unobservable states. In our model investors therefore have to account for revisions in

future beliefs πtb+j (j ≥ 1) when determining optimal asset allocations. This means that quadrature methods
cannot be applied to our problem.

To solve for the portfolio weights under regime switching we use Monte-Carlo methods for integral (ex-

pected utility) approximation. For example, for a buy-and-hold investor, we approximate the integral in the

expected utility functional as follows:

max
ωt(T )

N−1
NX
n=1

½
1

1− γ

h
(1− ωMKT

t ) exp
³
Trf

´
+ ωMKT

t exp
³
RMKT
T,n + Trf

´
+ωSMB

t exp(RSMB
T,n ) + ωHML

t exp(RHML
T,n )

¤1−γo
.

Here Rj
T,n (j = MKT, SMB, HML) are the cumulative returns in the n-th Monte Carlo simulation. Each

simulated path of portfolio returns is generated using draws from the model (1)-(3) which allows regimes

to shift randomly as governed by the transition matrix, P̂. We use N = 30, 000 simulations and vary the

investment horizon, T , between 1 and 120 months in increments of 6 months.13 The optimal weights ω̂t(T )

are determined over a three-dimensional grid, ωit(T ) = −5, -4.99, -4.98, ..., 4.99, 5.00 for i = MKT, SMB,

and HML. Fortunately, such extreme portfolio choices never appeared in our empirical results.

Since our solution does not rule out short-sales, it is possible that wealth can become negative.14 To rule

out such cases, we impose a no-bankruptcy constraint by rejecting all simulated sample paths that lead to

negative wealth. Effectively our portfolio choice problem is solved by appropriately truncating the tails of the

joint distribution obtained in Section 3 although such rejections account for a very small percentage of our

simulation runs. As a result the general features of the joint process implied by our estimates in Section 3

and the approximate density that is compatible with finite expected utility are very similar.15 An Appendix

provides further details on the numerical techniques.

5. Empirical Asset Allocation Results

5.1. Buy-and-Hold Investor

We first consider the asset allocation strategy of a buy-and-hold investor. Consistent with choices in the

literature the coefficient of relative risk aversion is set at γ = 5. The levels of the risky asset holdings clearly

depend on γ although a more extensive analysis revealed robustness of our qualitative results within a broad

range of values for γ.

13A large number of simulations is needed to account for the occurrence of regimes with low steady-state probabilities. We

varied N between 5,000 and 100,000 (in steps of 5,000) and found that random variation in the optimal portfolio weights due to

sampling error in the Monte Carlo approximations becomes negligible for N = 30, 000.
14This occurs when Rp

b (ωb−1) ≤ 0, so the marginal utility of wealth [Rp
b (ωb−1)]

−γ is either not defined (if Rp
b (ωb−1) = 0) or

becomes negative.
15Using a 120-month horizon we simulated the first four moments of equity returns under two alternative settings: (i) using the

original set of 30,000 random paths draws (before applying rejections), and (ii) using the 30,000 random paths after replacements

due to rejections. The resulting moments are virtually indistinguishable to the fourth digit after the decimal point.
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In the following, we provide intuition for the asset allocation results along two distinct dimensions. First,

the presence of regimes may give an investor short-term market timing incentives since the filtered state

probabilities contain information about the joint predictive density of future asset returns. Optimal portfolio

weights should therefore depend on the characteristics of the underlying regimes including the conditional

moments (means, variances, covariances as well as higher order moments) of asset returns within and across

the four regimes. As the horizon grows, portfolio decisions increasingly reflect properties of the unconditional

distribution of returns and decreasingly depend on the initial state probabilities.

Figure 3 plots the optimal portfolio weights as a function of the investment horizon. In these plots we

assume that the investor knows the initial state (i.e. πt equals one of the “unit” vectors e1, e2, e3, e4, i.e.

vectors that contain a one in the j-th position and zeros elsewhere), but not the identity or sequence of any

future states. Asset allocations vary significantly across regimes in the four-state model, particularly at short

horizons where market timing effects are strong. Regime 1 is dominated by the negative average return on the

market portfolio and by the positive mean returns on the SMB and HML portfolios. Starting from this state,

the short-run allocation to the market portfolio is therefore small though it rises in T . While the weights on

the SMB and HML portfolios initially rise, they decline as a function of the horizon, T , for T ≥ 6 months.
Turning to regime 2, due to its high expected return, the market portfolio features prominently in the

optimal asset allocation with a weight above 100% at short horizons. Regime 3 produces similar portfolio

choices although the allocation to the market portfolio is far smaller than in regime 2, reflecting its lower mean

return. An investor should also hold a long (short) position in high (low) book-to-market firms in this state.

This is explained by the hedge that the HML portfolio provides with respect to the market portfolio. Finally,

in the short-lived fourth regime the equity portfolios offer high mean returns and are generally held in long

positions at short or medium horizons. Recalling the definition of SMB and HML, this means that short-term

investors hold long positions in small value firms. The holdings in the equity portfolios are financed by some

short-term borrowing in T-bills.16

At the 10-year horizon, almost 65% is held in the market, 15% in the HML portfolio, -25% in the SMB

portfolio and 35% in T-bills. These long-run asset allocation results are broadly consistent with those reported

by Pástor (2000) for a single-period exercise under a tight prior tilted towards the CAPM. Our finding that

the allocation to the HML portfolio is positive in three of four states and only negative in the fourth state

for very short horizons is also consistent with Pastor’s results.

Our long-run allocations are also quite similar to those in Brennan and Xia based on a 50-50 mixed prior

over the CAPM and the empirical distribution of asset returns which gives rise to weights on the HML, SMB

and market portfolios of 14%, -3% and 35%, respectively. Hence, similar long-run allocations can be achieved

either by putting a large prior on the CAPM or by adopting a model such as ours that accounts for fat tails

- and thus higher risk - in the returns on the size and value portfolios.

5.2. Uncertainty about the States

Figure 4 reports results for the case where the investor is highly uncertain about the identity of both the

initial and future states.17 We capture this uncertainty by setting the initial state probabilities equal to their

16Consistent with findings reported by Ang and Bekaert (2002a), the portfolio weights tend to converge to their long-run levels

at horizons of 2-3 years.
17Cases where none of the filtered state probabilities exceeds 0.9 occur in 19.3% of the sample.
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steady state values, πt = [0.21 0.25 0.53 0.01]
0.

The plots illustrate two points. First, even when the investor does not know the initial state, πt, we

continue to find interesting shapes for the investment schedules that map the optimal portfolio weights

against the investment horizon. The schedules are clearly not as steep as those in Figure 3 where the initial

state was assumed to be known. Moreover, they appear to be dominated by the shapes previously observed

when starting either from state 2 or 3. For instance, the optimal investment in the market and HML portfolios

both decline slowly as T grows, while the weight on the SMB portfolio exhibits a positive slope. This is a

reflection of the high steady-state probabilities of these states. As one would expect from the statistical

definition of ergodic distribution, the long-horizon, 10-year weights are virtually identical to those reported

before, i.e. 66% in the market portfolio, -26% in SMB, +13% in HML.

5.3. Predictability from the Dividend Yield

Both the dividend yield and the latent state variable defining regimes are able to capture interesting time-

variations in the investment opportunities but do so at different frequencies. Hence it is important to inves-

tigate portfolio allocations when the dividend yield is allowed to forecast returns within a regime switching

model, as in (3). To this end, Figure 5 shows the optimal asset allocation for a buy-and-hold investor when

predictability from the dividend yield is incorporated in the regime switching model. For simplicity, the

dividend yield and the lagged value of returns used in the VAR computations are set at their unconditional

means within each state. The results are qualitatively quite similar to those shown in Figure 3. For example,

the optimal allocation to the market portfolio is increasing when starting from the bear state (state 1) and

decreasing from the other states. The slope of the investment demand for the SMB and HML portfolios also

varies significantly across states. At short horizons the optimal allocations to the size and value portfolios

remain highly sensitive to the current state probability, but quickly converge to their long-run levels as T

grows. Comparing Figures 3 and 5, holdings in the SMB and HML portfolios become more extreme once the

yield is included as a predictor variable.

The most notable difference with respect to the earlier results in Figure 3 is the large positive holdings in

the HML portfolio and the negative holdings in the market and SMB portfolios in the bear state (regime 1)

at the shortest horizons. The reason for this change is the large negative mean return on the SMB portfolio

and the large positive mean return on the HML portfolio in this state. When combined with the fact that

the bear state is highly transient in the extended model, this explains why the equity positions now become

more extreme at the shortest horizons and why these positions quickly revert to the steady-state weights as

the horizon is expanded and a regime shift is anticipated.

Finally we computed portfolio weights starting from the steady state probabilities, while the value of the

dividend yield varies between plus or minus two standard deviations from its sample mean (3.8%). Figure 6

shows the results. The demand curves for the market portfolio are generally upward sloping, the only exception

occurring for rather extreme values of the dividend yield in excess of 7%. The schedules progressively move

up (e.g., for T = 6 months the optimal weights increase from 10% for almost zero dividend yield, to 50%

when the dividend yield equals the historical average, to 73% for high values) as the initial dividend yield

increases, which — given its remarkable persistence — forecasts future high dividend yields. Similarly, the

HML schedules are upward sloping in T and not affected to a great extent by changes in the initial dividend

yield. In contrast, the SMB schedules are either non-monotonic at high values of the dividend yield or simply
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monotonically decreasing for at or below-average values of the dividend yield.

5.4. Stochastic Short-term Interest rate

A number of papers have found evidence of regime switching dynamics in short-term US interest rates (e.g.,

Gray (1996), Ang and Bekaert (2002b), Bansal, Tauchen and Zhou (2004) and Guidolin and Timmermann

(2007)). Furthermore, some studies have found that short-term rates are useful predictors of stock returns

(e.g., Keim and Stambaugh, (1986)). While we previously followed the majorities of studies on predictability

and portfolio choice (but see Detemple, Garcia, and Rindisbacher, 2003, for a different approach) and as-

sumed that the short-term rate is constant and therefore riskless, we next check the robustness of our earlier

conclusions, using a version of (3) in which the short-term interest rate is subject to regime switching and

also forecasts equity returns:

yt =

Ã
μst

μrst

!
+A∗styt−j +

Ã
εt

εrt

!
, (15)

where now yt ≡ [rMKT
t rSMB

t rHML
t rft ]

0, ε∗t ≡ [εMKT
t εSMB

t εHML
t εfr,t]

0 ∼ N(0,Σ∗st), so the short T-bill rate

has been added to the state vector.

To save space we do not report the parameter estimates and the smoothed state probabilities for this

model.18 However, as one would expect, these are somewhat different from the earlier values defined over

a different vector of state variables. Instead we concentrate on the portfolio weights as a function of the

investment horizon T for a buy-and-hold investor. These are shown in Figure 7, where we have initialized

equity returns and the interest rate at their regime-specific unconditional means. The results show once

again that although the presence of regimes generates market timing opportunities for short-term investors

(especially when the investor has precise information about the current state), for horizons T ≥ 60 months,
the investment schedules quickly converge to their steady state values, which imply allocations of 30% to the

market portfolio, no weight on the SMB portfolio, 42% to the HML portfolio, and the remainder to T-bills.

Introducing regime switching in interest rates thus implies a lower demand for the market portfolio, a higher

demand for the HML portfolio and a large position in T-bills. Portfolio allocations initialized in a situation

of uncertainty tend to display shapes which “average out” the regime-specific schedules.

5.5. Rebalancing and Hedging Demands

So far we have studied the optimal asset allocation for a buy-and-hold investor. Investors may, however, have

access to rebalancing opportunities. Table 3 shows the effects on optimal holdings of rebalancing every 1,

3, 6 or 12 months. If frequent rebalancing is possible, the investor’s horizon matters far less than under the

buy-and-hold scenario. Effectively, only the period between the current time (t) and the next rebalancing

point (t + ϕ) induces curvature in the investment demand.19 The investor also responds more aggressively

to the current state. The reason is simple: an investor who can rebalance frequently will utilize information

about the current state by taking large short positions when the return distribution indicates poor prospective

returns and large long positions in states with more attractive returns. If the perceived state probabilities

change next period, the investor can simply adjust the portfolio weights. Such adjustment opportunities are

18These are available from the authors upon request.
19For ϕ ≥ T the optimal portfolio weights are identical to the buy-and-hold values and thus omitted.
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not available to the buy-and-hold investor who must consider the probability of future states during the entire

holding period.

The rebalancing frequency can clearly have a large effect on asset holdings, most notably when the

rebalancing frequency is varied from ϕ = 3 to ϕ = 1 in state four (e.g., the weight on the market portfolio

increases from 12 to 229 percent while the weight on the HML portfolio declines from 56 to -13 percent).

The fourth state only has a ‘stayer’ probability of one-third and exits to the ‘bear’ state with a two-thirds

probability. Under monthly rebalancing, an investor will increase holdings in the market portfolio (compared

to scenarios with higher values of ϕ) largely by lowering investments in the HML portfolio whose returns

have a lower mean and are strongly correlated with market returns in the fourth state. Conversely, moving

to ϕ = 3 and starting from the fourth state, a switch to the bear state will almost certainly occur prior to

the next rebalancing point. Since the bear state has low mean returns on the market and SMB portfolios but

high mean returns on the HML portfolio, the weights on the former assets are reduced while the weight on

the HML portfolio increases substantially compared to the case with ϕ = 1.

We continue to observe large variations across states in the portfolio weights under rebalancing. For

instance, when ϕ = 1, the long-run allocation to the market goes from a negative value in state 1 (-31%)

to values in excess of 100% in the bull states (from 115% to 228%). Starting from the first (bear) state, as

rebalancing happens more frequently the allocation to the market portfolio declines and becomes negative.

Conversely, in states two and three the demand for the market portfolio rises as ϕ is lowered while the

non-monotonicities found for state four are explained by the high probability of going from state four to the

low return state (state 1). State two (four) is associated with very large negative (positive) holdings in the

SMB portfolio. The SMB weight increases with the rebalancing frequency in regimes one and four while the

opposite happens in regimes two and three. Less variation across states is generally observed in the holdings

of the HML portfolio.

These results allow us to measure the optimal hedging demand defined as the difference ω̂it(T ) − ω̂it(1)

(i = MKT, SMB, HML) for T ≥ 2 and ϕ = 1 month, i.e. when rebalancing occurs at the same frequency as

the data is observed (see Ingersoll (1987, p. 245)). Intertemporal hedging demands arise from an investor’s

desire to protect portfolio performance from adverse shocks, when there is time variation in investment

opportunities and when the asset menu includes assets whose returns are correlated with changes in investment

opportunities. Results are reported in separate rows in Table 3. Hedging demands for the market and SMB

portfolios are substantially larger than hedging demands for the HML portfolio. The sign of the hedging

demand for the market portfolio has an intuitive interpretation. Starting from the bear state, future changes

in regimes will improve investment opportunities and raise future expected returns on the market portfolio so

the hedging demand is negative and quite large (-32 percent); similarly, hedging demands are slightly negative

in regime three. Conversely, shifts away from the high mean return states (two and four) imply a worsening

of the investment opportunities, so hedging demands for the market portfolio are positive when starting from

these states because the risk-return trade-off in the bear regime is better for the market portfolio than for the

SMB and HML portfolios. Because the risk premium on the market portfolio tends to positively correlate

with future regime shifts in a switching model, the result under steady-state probabilities is that hedging

demand is negative and of magnitude (between -14% and -16%) comparable to typical results in the linear

predictability literature: when regime shifts are taken into account the market portfolio gets riskier as the

horizon grows.

To compare hedging demands under multiple regimes with those derived under a VAR benchmark, Table
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3 also reports buy-and-hold allocations and hedging demands under linear predictability. For simplicity,

calculations are performed when all the variables in y (i.e. portfolio returns and the dividend yield) are set

at their unconditional means. For the market portfolio, the hedging demand is positive but moderate (15%).

This is consistent with findings in Barberis (2000) and Campbell and Viceira (1999). The reason for the

positive hedging demand is the negative covariance between shocks to the dividend yield and stock market

returns which leads investors with a long horizon to hold more in stocks.

In the case of the SMB and HML portfolios, it is interesting to note the contrast between the rather

sizeable (46% and -40%, respectively) hedging demand under the VAR(1) model and the more modest ones

under regime switching. Though small, systematic patterns remain in these hedging demands which are

positive in state 1 and negative in state 4. The signs of these hedging demands are sensible: Both the SMB

and HML portfolios have small but positive expected returns in the bear state (regime 1) and thus provide

some hedging against negative shocks to market-wide returns. Starting from steady-state probabilities, the

hedging demand is small but positive (11%) for the SMB portfolio and essentially zero (-3%) for the HML

portfolio.

To further explore what induces the hedging demands in the regime switching model, we considered three

restricted models, namely (i) a four-state model whose expected returns are constrained to be identical across

all states; (ii) a four-state model whose covariance matrices are constrained to be identical across all states;

and (iii) a two-state model. The hedging demands in the first model, at -0.5%, 3.5% and -0.5% for the market,

SMB and HML portfolios are quite low, showing that the greater variation across regimes captured by the

four-state model is important for hedging demands. Hedging demands were also very small (always below

2%) in the four-state model whose mean returns are restricted, while they remained large in the four-state

model with constrained covariance matrices, although this model is clearly misspecified. Large variations in

expected returns across states are thus key to the hedging demands for the three stock portfolios.20

The difference between the hedging demands generated in the presence of regimes and under a VAR(1)

model can be interpreted in the context of the differences between single- and multi-state models. A linear

VAR model employing the highly persistent dividend yield as a predictor explains the dynamics in returns by

exploiting the correlation between equity returns and the slowly changing yields. As such, the time-variation

in expected returns is predicted to be highly persistent and implies sizeable hedging demands. Conversely, a

regime switching model exploits regimes to capture time variations in expected returns, and so the resulting

patterns of predictability in expected stock returns may be less persistent because they are controlled by the

evolution in the latent state variable that — although persistent — can quickly switch values. This explains

the weaker hedging demand figures that we find.

5.6. Summary of Findings

To compare asset allocations under a broader set of models and to isolate the effect of regime switching,

Figure 8 shows optimal portfolio weights as a function of the investment horizon under three alternative

specifications, namely regime switching without the dividend yield (MS), regime switching with the dividend

20We also computed hedging demands under the regime switching model with stochastic interest rates. Starting from steady-

state probabilities, at the ten-year horizons they are 9.8% for the market portfolio, 3.5% for the SMB portfolio, and 5.3% for the

HML portfolio.
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yield included (MS-VAR(1)) and a VAR(1) model:

yt =

Ã
μ

μdy

!
+A∗yt−1 +

Ã
εt

εdyt

!
, (ε0t εdyt)

0 ∼ N(0,Σ∗). (16)

Estimates of this model can be found in panel A of Table 3.

Under the VAR(1) model the allocation to the market portfolio rises as a function of the investment

horizon. For this model we also find that the allocations to the HML and SMB portfolios grow as a function

of the investment horizon.

The portfolio weights under the single state model (16) are quite different from those obtained under

the four-state model irrespective of whether this includes the dividend yield. Most notably, the four regimes

introduce short-run market timing effects while the single-state model is driven by slower, long-run movements

in the dividend yield. Asset demand curves are therefore steeper at horizons shorter than six months under

the four-state model.

The large positive demands for the SMB portfolio and T-bills and the zero or negative demand for the

market and HML portfolios at short horizons under the MS-VAR(1) model are explained by the large negative

mean returns of the market and HML portfolios in the short-lived states 1 and 4 which — due to the high

marginal utility in this state — dominates results for this model. Increasing the investment horizon from one

to six months leads to an increased demand for the market and HML portfolios and a lower demand for the

SMB portfolio under the four state MS-VAR(1) model.

6. Economic Importance of Regimes

So far we have shown that regimes can have a large effect on the optimal asset allocation. This continues to

hold even when investors do not know the identity of the current state. However, it does not necessarily follow

that ignoring regimes leads to a loss in expected utility that is sufficiently large to encourage investors to use

the more complicated model that we propose. To assess whether the differences between single- and multi-

state portfolio weights is dominated by the larger parameter estimation errors associated with the four-state

model, this section investigates the effect of parameter estimation errors on the optimal portfolio weights

(Section 6.1). We then undertake utility cost calculations to quantify the economic significance of regimes,

first, by computing the reduction in expected utility resulting from ignoring regimes (Section 6.2); second,

by evaluating the out-of-sample performance of a variety of model specifications including regime-switching,

single-state, and VAR models (Section 6.3).

6.1. Parameter Estimation Error

Large standard errors surrounding parameter estimates tend to result in imprecisely determined portfolio

weights. Äıt-Sahalia and Brandt (2001) refer to this as the “Achille’s heel” of models of conditional asset

allocation. Although the portfolio weights reported so far are determined by solving a complicated dynamic

programming problem, these weights condition on the parameter estimates, bθ, and are therefore themselves
random variables. We quantify the effect of estimation uncertainty by forming confidence intervals for the

optimal portfolio weights as follows. From asymptotic analysis (e.g., Hamilton, 1994)

√
T
³bθ − θ0´ A∼ N(0, Vθ), (17)
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where θ0 denotes the true but unknown vector of parameters. We utilize this result in the following algorithm:

1. For a particular trial, j, draw a vector
b̂
θ
j

from the distribution N(bθ, T−1V̂θ), where V̂θ is the estimated
covariance matrix of bθ.

2. Conditional on
b̂
θ
j

, solve (9) to obtain a new vector of portfolio weights b̂ωj
.

3. Repeat steps 1-2 a large number of times, j = 1, 2, ..., J .

4. Form (1−α) percent confidence intervals for the optimal asset allocation ω̂t from the simulated distri-

bution for b̂ωj
, j = 1, 2, ..., J. For example, the fifth quantile, b̂ω0.05, and the 95th quantile, b̂ω0.95, form

the lower and upper bounds of a 90% confidence interval for the optimal weights.

Table 4 presents 90% confidence intervals for the portfolio weights based on J = 1, 000 simulations. We

consider scenarios starting from each of the four states and the steady-state probabilities and study investment

horizons of 1, 6, 60 and 120 months. For comparison, we also report confidence bands under the assumption

of an IID process for returns.21

At the short horizon there is less uncertainty about the market weight under regime shifts than under the

IID model, while the uncertainty about the weights on the SMB and HML portfolios is comparable under the

two models. The degree of uncertainty about ωt varies significantly across states, however, with the fourth

regime associated with the greatest uncertainty. This reflects the short duration of this state and the fact

that a small change in the transition probabilities changes the likelihood of a transition to the low-return

bear state (state 1).

Wide confidence intervals at short horizons are unsurprising: Äıt-Sahalia and Brandt (2001) also report

large standard errors for portfolio weights, especially when investment in cash is allowed as in our paper.

Furthermore, as pointed out by Campbell, Chan and Viceira (2003) the parameters governing the dynamics

of asset returns can have large effects on the optimal asset holdings so that any uncertainty about their values

tends to have a large effect on portfolio weights.

At the longest horizons the confidence bands for the portfolio weights derived under the IID model continue

to be very wide, while they narrow distinctly under the four-state model. Under the latter model the typical

width of the 90% confidence intervals at the longest horizon is 0.30 for the market, 0.40 for the SMB portfolio

and 0.50 for the HML portfolio compared to widths of 1.64, 0.92 and 1.12, respectively, under the IID model.

Despite this uncertainty, ignoring regimes would clearly lead to a suboptimal portfolio allocation: most of

the four-state intervals for the weights on the market and SMB portfolios do not overlap with the confidence

intervals obtained from the IID model. Ignoring regimes would lead an investor to invest too little in the

market portfolio and too much in the SMB portfolio. These conclusions remain valid when the intervals are

calculated from the steady-state probabilities and are thus not sensitive to the initial state and the fact that

regimes are best thought of as unobservable.

6.2. Utility Cost Calculations

Disregarding regimes or predictability from the dividend yield is equivalent to constraining investors to choose

optimal portfolio weights, ω̂IID
t , under the assumption that asset returns are drawn from a single-state model.

21More precisely, we apply a simulation methodology adjusted to the single-state case, employing θ from panel A in Table 1.
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To quantify the costs of this constraint, we compute the increase in initial wealth ηIIDt − or compensatory
variation − an investor requires to derive the same level of expected utility from the IID and unconstrained

asset allocation problems:

(1 + ηIIDt )1−γ
(

BX
b=0

Et

£
(Wb)

1−γ¤) = Q(yb, Sb),

where Q(yb, Sb) is the scaled value function defined in equation (13). Solving for η
IID
t ,

η̃IIDt =

(
Q(yb, Sb)PB

b=0Et [(Wb)1−γ ]

) 1
1−γ

− 1. (18)

To avoid overstating the economic importance of regimes, once again we assume that the investor does not

know the identity of the states whose probabilities are set at their steady state values. The compensatory

variation − plotted in Figure 9 as an annualized percentage rate − ranges from about eleven percent at the

one-month horizon to about two percent at the ten-year horizon. Figure 9 also shows 90% confidence intervals

obtained by simulation. Although the confidence bands are quite wide there is no question that regimes in

the return process for the market, size and value portfolios are economically important. The lower band goes

from 10 percent at the 1-month to a minimum of about 25 basis points at the ten-year horizon. The upper

band suggests much higher values.

Our estimates of the utility costs of ignoring regimes are higher than those reported by Ang and Bekaert

(2002a) for a study of international equity portfolios. This is easy to explain due to our finding of larger and

more significant mean return effects and the coincidence of the low mean return state with the high volatility

state (state 1). Reducing the allocation to equity portfolios during this state will be highly beneficial to the

investor, particularly if a risk-free asset is present as we assume here. Furthermore, although relatively high,

our estimate of the annualized utility loss is well within the range of values reported in the literature. For

instance, Brennan and Xia (2001) report a certainty equivalence value of investing in the HML and SMB

portfolio that exceeds 8% per annum even in the presence of parameter estimation uncertainty. Our estimates

suggest that the utility costs arising from ignoring time-variations in the joint distribution of portfolio returns

due to regime switching is roughly of a similar magnitude.

Figure 10 provides a comparison of the utility costs of ignoring predictability across different models,

including a VAR(1) model and a model that includes regimes and predictability from the dividend yield.

Linear predictability from the dividend yield gives rise to a 10-year compensatory variation of 140 basis

points per annum. The corresponding figure exceeds 200 basis points for an investor who accounts for

predictability induced by regime switching but disregards predictability from the dividend yield. Regime

shifts thus appear to have a slightly larger effect on utility costs than predictability from the dividend yield.

Interestingly, including both types of predictability appears to have a compounding effect, indicating that

regime switching mostly identifies short- or medium-term predictability while variations in the dividend yield

identify longer-term predictability. Taken together, a 10-year investor would require a compensatory return

of 6% per annum to ignore both the evidence of regimes and predictability from the dividend yield. Though

relatively high, this estimate of the annualized utility loss is within the range of values recently reported in

the literature and well below those reported by Campbell and Viceira (1999) and Lynch (2001).

We also performed utility cost calculations under monthly rebalancing. Consistent with the existence of

substantial market timing opportunities, at short horizons the utility loss from ignoring regimes was found
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to be very large (e.g., 25, 10, 6, and 112 percent per year in regimes 1 through 4 for T = 6 months). For a

10-year long-horizon investor these losses remain quite considerable, 7, 8, 6, and 11 percent if starting from

each of the four states and 6 percent when starting from the steady-state probabilities.

6.3. Out-of-sample performance

Although our models suggest sizeable utility losses from ignoring regime shifts, they may be difficult to use

in ‘real time’ due to parameter estimation errors which could translate into implausible time-variations in the

portfolio weights. This concern is related to the prediction model’s out-of-sample asset allocation performance,

see Brennan, Schwartz, and Lagnado (1997), Campbell, Chan, and Viceira (2003) and Detemple, Garcia, and

Rindisbacher (2003).

To address this point, we perform a “real time” asset allocation experiment for the period 1980:01-

2005:12, a total of 312 months. To make the experiment computationally feasible, we focus on the buy-

and-hold portfolio problem at horizons T = 1, 12, and 120 months. We compare the performance of the

four-state regime switching model, the VAR(1) model, a four-state regime switching model that includes

predictability from the dividend yield, a two-state regime-switching model and a simple IID model. The

investor is precluded from having any benefit of hindsight. For instance, to predict the return distribution

for 1980:01, the parameter estimates are based only on information up to 1979:12. These estimates are then

updated recursively as the point of the forecast progresses through time.

To measure investment performance we consider realized portfolio returns as well as realized utility under

the different models, each of which is associated with a particular portfolio weight ω̂T
t and hence a different

realized utility:

V (ω̂T
t ) ≡

£
WT (ω̂

T
t )
¤1−γ

1− γ
=

1

1− γ

h
(1− ω̂MKT

t ) exp
³
Trf

´
+ ω̂MKT

t exp
³
RMKT
T + Trf

´
+

+ω̂SMB
t exp(RSMB

T ) + ω̂HML
t exp(RHML

T )
¤1−γ

. (19)

Here RMKT
T , RSMB

T , and RHML
T are realized (cumulated) returns between t+1 and t+T . The period-t weights,

ω̂T
t , are computed by maximizing the objective Et[W

1−γ
T /1− γ] so that for each investment horizon, T , and

each portfolio selection model we obtain time series {WT (ω̂
T
τ ), V (ω̂

T
τ )}, τ =1980:01,...,2005:12-T of realized

wealth levels and utilities. Figure 11 shows the sequence of portfolio weights for an investment horizon of

T = 12 months. The weights seem quite sensible with some short-term variability due to parameter estimation

error and in some cases also long, persistent swings reflecting changes in the investment opportunity set.

Table 5 reports summary statistics for the distribution of net returns {WT (ω̂
T
t )−1} (Panel A) and ‘realized

utility’ {V T (ω̂T
t )} (Panel B) with smaller absolute values indicating higher utility. Following Guidolin and

Timmermann (2007), we use a block bootstrap (with 50,000 simulation trials) for the empirical distribution

of the objects of interest to account for the fact that realized utility levels are likely to be serially dependent

since time-variations in the conditional distribution of asset returns may translate into dependencies in the

portfolio weights and hence in realized utilities.

First consider the results for the return distribution. The four-state models generate high mean returns

ranging from 15% to 31% per year. However, the returns produced by the regime switching models also tend

to be volatile, especially when the dividend yield is part of the model. At short horizons, single-state models

are clearly dominated and there is even evidence that their 10% bootstrapped confidence bands fail to overlap
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with those of the best regime switching model. Consistent with the need to work with a four-state model,

mean returns decline when we move to a two-state model.

The realized power utility results reported in Panel B offer a better way to compare the different models

since the portfolio weights have been chosen ex ante to maximize expected utility. Once again the results

support the simple four-state regime switching specification which dominates the other models in terms of

average out-of-sample utility. At 11.0, 10.3 and 14.5 percent per annum for investment horizons of one,

12, and 120 months, this model also generates the highest certainty equivalent returns. Based on certainty

equivalence returns, the single-state models continue to perform relatively poorly.

7. Conclusion

This paper documented the presence of four regimes in the joint distribution of equity returns on market, size

and value portfolios. A single-state model appears to be misspecified as means, correlations and volatilities

of returns on these portfolios vary significantly across states. This finding is perhaps not so surprising given

the very different episodes and market conditions — such as the Great Depression, World War II and the oil

shocks of the 1970s — that occurred during the sample (1927-2005). It is difficult to imagine that the same

single-state model is able to capture episodes of such diversity.

We quantified the economic value of investing in the three equity portfolios under regime switching by

considering the optimal asset allocations of an investor with power utility. Economically large variations

were found in the optimal portfolio weights as a function of the economic state and the investment horizon.

Rebalancing opportunities make the investor respond more aggressively to the current state probabilities

since portfolio weights can be adjusted rapidly should the state probabilities change. This option is not open

to a buy-and-hold investor. The loss in expected utility from ignoring regimes turns out to be substantial

across a range of regime switching models. Overall, our estimates suggest that it is important to account

for regimes when analyzing investments in returns on the market, size and value portfolios. Furthermore,

regimes and the dividend yield appear to identify quite different predictable components in stock returns.

Finally, our out-of-sample recursive analysis suggests that models that account for the presence of regimes

lead to higher average realized utility even after accounting for parameter estimation error.
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Appendix - Solution of the Dynamic Asset Allocation Problem
by Monte Carlo Methods

A.1. No Predictor Variables

Suppose the optimization problem has been solved backwards at the rebalancing points tB−1, ..., tb+1 so that

Q(πi
b+1, tb+1) is known for all values i = 1, 2, ..., G

k−1 on the discretization grid. At each point, πb = πi
b, it

is possible to find Q(πi
b, tb) at time tb. Monte Carlo approximation of the expectation

Etb [{(1− ωMKT
b ) exp

³
ϕrf

´
+ ωMKT

b exp
³
RMKT
b+1,n + ϕrf

´
+ ωSMB

b exp(RSMB
b+1,n)+

+ ωHML
b exp(RHML

b+1,n)}1−γQ(πi
b+1, tb+1)]

requires drawing N random samples of asset returns {Rb+1,n(π
i
b)}Nn=1 from the (b + 1)ϕ-step joint density

conditional on the period-t parameter estimates, bθt = ³{μ̂s, Σ̂s}ks=1, P̂
´
assuming that, at each point, πi

b is

updated to πb+1(π
i
b). The algorithm consists of the following steps:

1. For each possible value of the current regime, Sb, simulate N ϕ−period returns {Rb+1,n(Sb)}Nn=1 in
calendar time from the regime switching model

rtb+j,n(Sb) = μstb+j
+ εtb+j,n,

whereRb+1,n(Sb) ≡
Pϕ

j=1 rtb+j,n(Sb) and εtb+j,n ∼ N(0,Σstb+j
).22 At all rebalancing points this simula-

tion allows for regime switching as governed by the transition matrix P̂t. For example, starting in state

1, the probability of switching to state 2 between tb and tb+1 is p̂12 ≡ e01P̂te2, while the probability of

remaining in state 1 is p̂11 ≡ e01P̂te1. At each point in time P̂t governs possible state transitions.

2. Combine the simulated ϕ−period returns {Rb+1,n}Nn=1 into a random sample of size N, using the

probability weights contained in the row vector πj
b

Rb+1,n(π
i
b) =

kX
j=1

(πi
bej)Rb+1,n(Sb = j).

22The notation Rb+1,n(Sb) does not imply that future asset returns are directly a function of the current state Sb. In fact, the

parameters μstb+j
and Σstb+j

are a function of future states, Stb+j , j = 1, 2, ..., ϕ. However, the expression Rb+1,n(Sb) indicates

that the transition probabilities to future states are a function of the current state.
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3. Update the future regime probabilities perceived by the investor using the formula

πb+1,n(π
i
b) =

(πi
b)
0P̂ϕ ¯ η(Rb+1,n(π

i
b); θ̂t)³

(πi
b)
0P̂ϕ ¯ η(Rb+1,n(π

i
b); θ̂t)

´
ιk
.

This gives an N × k matrix {πb+1,n(π
i
b)}Nn=1, whose rows correspond to simulated vectors of perceived

regime probabilities at time tb+1.

4. For all n = 1, 2, ..., N, calculate the value π̃i
b+1,n on the discretization grid (i = 1, 2, ..., G

k−1) closest

to πb+1,n(π
i
b) using the distance measure

Pk−1
j=1 |πi

b+1ej − πb+1,nej |, i.e.

π̃i
b+1,n(π

i
b) ≡ argmin

x∈×k−1j=1 [0,1]

k−1X
j=1

|xej − πb+1,nej |.

Knowledge of the vector {π̃i
b+1,n(π

i
b)}Nn=1 allows us to build {Q(π

(i,n)
b+1 , tb+1)}Nn=1, where π

(i,n)
b+1 ≡ π̃i

b+1,n(π
i
b)

is a function of the assumed, initial vector of regime probabilities πi
b.
23

5. Solve the program

max
ωb(π

i
b)
N−1

NX
n=1

nh
(1− ωMKT

b ) exp
³
ϕrf

´
+ ωMKT

b exp
³
RMKT
b+1,n + ϕrf

´
+ ωSMB

b exp(RSMB
b+1,n)+

+ωHML
b exp(RHML

b+1,n)
¤1−γ

Q(π
(i,n)
b+1 , tb+1)

o
.

For large values of N this provides an arbitrarily precise Monte-Carlo approximation to E[{(1 −
ωMKT
b ) exp

¡
ϕrf

¢
+ ωMKT

b exp
³
RMKT
b+1,n + ϕrf

´
+ ωSMB

b exp(RSMB
b+1,n)+ω

HML
b exp(RHML

b+1,n)}1−γ Q(πi
b+1, tb+1)].

The value function evaluated at the optimal portfolio weights ω̂b(π
i
b) gives Q(π

i
b, tb) for the i-th point on

the initial grid. We also check if (1−ωMKT
b ) exp

¡
ϕrf

¢
+ωMKT

b exp
³
RMKT
b+1,n + ϕrf

´
+ωSMB

b exp(RSMB
b+1,n)

+ωHML
b exp(RHML

b+1,n) is negative and reject the corresponding sample paths.

The algorithm is applied to all possible values πi
b on the discretization grid until all values of Q(π

i
b, tb)

are obtained for i = 1, 2, ..., Gk−1. It is then iterated backwards until tb+1 = t + ϕ. At that stage the

algorithm is applied one last time, taking Q(πi
t+1, t+ϕ) as given and using the actual row vector of smoothed

regime probabilities, πt. The resulting vector ω̂t gives the desired optimal portfolio allocation at time t, while

Q(πt, t) is the optimal value function.

Under the buy-and-hold strategy, step 1 is replaced with a simulation routine that for each possible current

regime, St, simulates N asset returns of length T , {RT,n(St)}Nn=1 from the model

rt+j,n(St) = μst+j + εt+j,n, εt+j,n ∼ N(0,Σst+j ),

where RT,s(St) ≡
PT

j=1 rt+j,n(St). State transitions can again occur in accordance with the probability

matrix P̂. Hence we draw a matrix of monthly returns
©
{rt+j,n(St)}Nn=1

ªT
i=1

and sum these into N long-term

23This step may be avoided when Q(πib+1, tb+1) is constant for all values on the discretization grid. This happens when tb+1 = T

and implies that the portfolio weights determined at step b+ 1 {ω̂b+1(π
i
b+1)} are invariant to changes in πib+1.
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asset returns {RT,n(πt)}Nn=1 using RT,n(πt) =
Pk

j=1(π
i
tej)RT,n(St = j). Steps 3-5 are irrelevant under

buy-and-hold since the objective simplifies to:

max
ωt(T )

N−1
NX
n=1

½
1

1− γ

h
(1− ωMKT

t ) exp
³
Trf

´
+ ωMKT

t exp
³
RMKT
T,n + Trf

´
+

+ωSMB
t exp(RSMB

T,n ) + ωHML
t exp(RHML

T,n )
¤1−γo

.

(after rejecting simulation paths that lead to zero or negative wealth). This makes computations much faster

under the buy-and-hold scheme.

A.2. Predictor Variables

Only minor modifications are required to extend our approach to allow for linear predictability − yt =
μ∗st + A

∗
styt−1 + ε∗t , yt ≡ [rt zt]

0. Suppose the optimization problem has been solved backwards at the

rebalancing points tB−1, ..., tb+1 so that Q(πi
b+1,y

i
b+1, tb+1) is known for all values i = 1, 2, ..., G

m
z ×Gk−1

π

on the discretization grid. Notice that in this case Q is also a function of the state variables (lagged portfolio

returns and predictor variables) entering the model so the total number of grid points must be adjusted

by multiplying the original number of grid points by the additional points used to span the values of the

prediction variables, Gm
z . At each point [π

i
b y

i
b], it is then possible to evaluate Q(πi

b,y
i
b+1, tb) at time tb.

Monte Carlo approximation of the expectation

Etb [{(1− ωMKT
b ) exp

³
ϕrf

´
+ ωMKT

b exp
³
RMKT
b+1,n + ϕrf

´
+ ωSMB

b exp(RSMB
b+1,n)+

+ ωHML
b exp(RHML

b+1,n)}1−γQ(πib+1,yib+1, tb+1)]

now requires drawing N random samples of the state variables {yb+1,n(πi
b)}Nn=1 from the (b+1)ϕ-step-ahead

joint density conditional on period-t parameter estimates, bθt = ³{μ̂s, Âs, Σ̂s}ks=1, P̂
´
assuming that, at each

point, πi
b is optimally updated to πb+1(π

i
b,y

i
b). The algorithm consists of steps very similar to those described

earlier. The main differences are that in step 1, N ϕ−period returns {Rb+1,n(Sb,y
i
b)}Nn=1 need to be simulated

from the regime switching model

ytb+j,n(Sb) = μ∗stb+j
+A∗stb+j

ytb+j−1,n + ε∗tb+j,n, ε∗tb+j,n ∼ N(0, Σ̂∗stb+j
).

Updates in the perceived state probabilities now make use of the formula

πb+1,n(π
i
b,y

i
b) =

(πi
b)
0P̂ϕ ¯ η(yb+1,n(π

i
b,y

i
b); θ̂t)³

(πi
b)
0P̂ϕ ¯ η(yb+1,n(π

i
b,y

i
b); θ̂t)

´
ιk
.

This incorporates the realized values of the prediction variables zb+1,n. Step 4 proceeds similarly with the

only difference that the measure of ‘closeness’ to a grid point now refers to the entire vector [π0b+1,n(π
i
b,y

i
b)

yb+1,n(π
i
b,y

i
b)]
0.
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Table 1 

Parameter Estimates of Regime Switching Model for Market, SMB and HML Returns  
This table reports parameter estimates for the multivariate regime switching model: 

tst t
εμr +=  

where 
ts

μ  is the intercept vector in state St and ),( ~ε
tst N Σ0  is the vector of unpredictable return innovations. The 

unobserved state variable St is governed by a first-order Markov chain that can assume k=4 values. The three series are 
net returns on Fama and French’s (1993) SMB and HML portfolios and excess returns on the value-weighted market 
portfolio. The sample period is 1927:12 – 2005:12. Panel A (k = 1) represents the single-state benchmark, while panel B 
refers to the four-state model. Values reported on the diagonals of the correlation matrices are annualized volatilities. All 
other estimates are monthly. Standard errors are shown in parentheses for mean coefficients and transition probabilities. 

 Panel A – Single State Model 
 Market Portfolio SMB Portfolio HML Portfolio 
1. Mean excess return 0.0062 (0.0018) 0.0024 (0.0011) 0.0042 (0.0012) 
2. Correlations/Volatilities    
Market Portfolio 0.1899***   
SMB Portfolio 0.2028* 0.1167***  
HML Portfolio 0.3300** 0.0851 0.1244*** 
 Panel B – Four State Model 
 Market Portfolio SMB Portfolio HML Portfolio 
1. Mean excess return    
Regime 1 -0.0108 (0.0063) -0.0009 (0.0033) 0.0018 (0.0039) 
Regime 2 0.0105 (0.0023) -0.0025 (0.0012) 0.0024 (0.0012) 
Regime 3 0.0075 (0.0022) 0.0048 (0.0016) 0.0034 (0.0014) 
Regime 4 0.1735 (0.0505) 0.0982 (0.0495) 0.1204 (0.0521) 
2. Correlations/Volatilities    
Regime 1:    
Market Portfolio 0.2793***   
SMB Portfolio 0.3013** 0.1420***  
HML Portfolio 0.1196* 0.0933 0.1770*** 
Regime 2:    
Market Portfolio 0.1104***   
SMB Portfolio -0.0986 0.0534***  
HML Portfolio 0.3452*** 0.1607** 0.0579*** 
Regime 3:    
Market Portfolio 0.1339***   
SMB Portfolio 0.3702*** 0.0930***  
HML Portfolio -0.3249*** -0.1739** 0.0820*** 
Regime 4:    
Market Portfolio 0.4655***   
SMB Portfolio 0.1005 0.5170***  
HML Portfolio 0.7741*** -0.0775 0.4847*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 0.8468 (0.0168) 0.0289 (0.0111) 0.0612 (0.0133) 0.0531 
Regime 2 0.0370 (0.0119) 0.9384 (0.0423) 0.0246 (0.0114) 0.0000 
Regime 3 0.0362 (0.0124) 0.0234 (0.0084) 0.9404 (0.0047) 0.0000 
Regime 4 0.6452 (0.1659) 0.0002 (0.0239) 0.0031 (0.0269) 0.3515 

* significance at 10% level, ** significance at 5%, *** significance at 1%. 
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Table 2 

Estimates of Regime Switching Model for Stock Returns and the Dividend Yield 
This table shows parameter estimates for the regime switching VAR(1) model 

ttsst yAy
tt

εμ 1 ++= −  

where yt is a 4×1 vector collecting the market, SMB and HML portfolio returns in the first three positions and the 
dividend yield in the fourth. 

ts
μ  is the intercept vector in state st, 

tjsA  is the matrix of autoregressive coefficients in 

state st and ),( ~ε
tst N Σ0 . The unobservable state St is governed by a first-order Markov chain that can assume one of 

four distinct values. The sample period is 1927:12 – 2005:12. Panel A refers to the single-state case while panel B covers 
the four-state model. Values reported on the diagonals of the correlation matrices are annualized volatilities. All other 
estimates are monthly. Standard errors are shown in parentheses. 

 Panel A – VAR(1) (single state) Model 
 Market SMB HML Dividend Yield 
1. Intercept term -0.0043 (0.0045) -0.0029 (0.0027) -0.0022 (0.0029) 0.0008(0.0003) 
2. VAR(1) Matrix     
Market Portfolio 0.1067 (0.0351) -0.0267 (0.0558) 0.1075(0.0506) 0.2463(0.1075) 
SMB Portfolio 0.1649 (0.0210) -0.0272 (0.0333) 0.0709 (0.0302) 0.1049 (0.0641) 
HML Portfolio 0.0299 (0.0227) -0.0938 (0.0361) 0.1831 (0.0327) 0.1484 (0.0695) 
Dividend Yield -0.0059 (0.0020) 0.0036 (0.0032) -0.0110(0.0029) 0.9812 (0.0062) 
3. Correlations/Volatilities     
Market Portfolio 0.1877***    
SMB Portfolio 0.3076*** 0.1120**   
HML Portfolio 0.1853** 0.0573 0.1214**  
Dividend Yield -0.8494*** -0.1984*** -0.3190** 0.0108*** 
 Panel B – Four State Model 
 Market SMB HML Dividend Yield 
1. Intercept term     
Regime 1 -0.0342 (0.0026) 0.0002 (0.0019) 0.0403 (0.0035) 0.0005 (0.0001) 
Regime 2 -0.0003 (0.0005) -0.0139 (0.0014) 0.0029 (0.0015) 0.0006 (1.8e-05) 
Regime 3 -0.0061 (0.0015) 0.0101 (0.0015) -0.0041 (0.0012) 0.0014 (0.0001) 
Regime 4 0.0497 (0.0085) 0.0721 (0.0094) -0.0657 (0.0084) 0.0014 (0.0004) 
2. VAR(1) Matrix     
Regime 1     
Market Portfolio 0.0912 (0.0367) 0.0817 (0.0394) -0.0079 (0.0105) -0.1502 (0.0560) 
SMB Portfolio 0.0548 (0.0258) -0.1871 (0.0611) 0.1009 (0.0400) 0.4454 (0.0874) 
HML Portfolio -0.0816 (0.0533) 0.0010 (0.0174) -0.0121 (0.0352) -1.1928 (0.836) 
Dividend Yield -0.0049 (0.0014) -0.0022 (0.0024) -0.0028 (0.0013) 1.0023 (0.0024) 
Regime 2     
Market Portfolio -0.0056 (0.0123) -0.0293 (0.0251) -0.0955 (0.0275) 0.3899 (0.0193) 
SMB Portfolio 0.2013 (0.0270) 0.1574 (0.0450) -0.0223 (0.0504) 0.3795 (0.0847) 
HML Portfolio 0.0562 (0.0288) -0.0043 (0.4637) 0.2595 (0.0420) -0.0158 (0.0231) 
Dividend Yield 0.0005 (0.0006) 0.0010 (0.0006) 0.0031 (0.0013) 0.9760 (0.0007) 
Regime 3     
Market Portfolio 0.0596 (0.0205) -0.2320 (0.0334) 0.0536 (0.0311) 0.3770 (0.0190) 
SMB Portfolio 0.1040 (0.0305) 0.1354 (0.0499) 0.0395 (0.0505) -0.1614 (0.0342) 
HML Portfolio 0.0462 (0.0234) -0.1185 (0.0540) 0.22263 (0.0467) 0.1059 (0.0268) 
Dividend Yield -0.0035 (0.0014) 0.0077 (0.0015) -0.0026 (0.0018) 0.9885 (0.0008) 

   * significance at 10% level, ** significance at 5%, *** significance at 1%. 
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Table 2 (continued) 

 

 Panel B (continued)   
 Market SMB HML Dividend Yield 
2. VAR(1) Matrix (cont’d)     
Regime 4     
Market Portfolio -0.1773 (0.0435) -0.0191 (0.0652) 0.8122 (0.0550) -0.0522 (0.1184) 
SMB Portfolio 0.0343 (0.0612) -0.0511 (0.1136) 0.4729 (0.0943) -0.7399 (0.1003) 
HML Portfolio 0.1694 (0.0606) -0.1910 (0.1073) 0.2225 (0.0880) 0.1625 (0.1057) 
Dividend Yield -0.0089 (0.0037) 0.0061 (0.0068) -0.0625 (0.0053) 0.9552 (0.0049) 
3. Correlations/Volatilities     
Regime 1     
Market Portfolio 0.2440***    
SMB Portfolio 0.4940*** 0.1236***   
HML Portfolio -0.0327 0.1928* 0.1519***  
Dividend Yield -0.7871*** -0.4058*** -0.1002 0.0126*** 
Regime 2     
Market Portfolio 0.1301***    
SMB Portfolio 0.2773** 0.0868***   
HML Portfolio -0.3556*** -0.2648*** 0.0786***  
Dividend Yield -0.9431*** -0.2746** 0.3011*** 0.0041*** 
Regime 3     
Market Portfolio 0.1211***    
SMB Portfolio 0.2522** 0.0673***   
HML Portfolio 0.3016*** 0.2018** 0.0762***  
Dividend Yield -0.9403*** -0.2583*** -0.3414*** 0.0060*** 
Regime 4     
Market Portfolio 0.4562***    
SMB Portfolio 0.1169** 0.2558***   
HML Portfolio 0.6929*** -0.1589** 0.3126***  
Dividend Yield -0.9260*** -0.1184*** -0.5820*** 0.0358*** 
3. Transition probabilities Regime 1 Regime 2 Regime 3 Regime 4 
Regime 1 0.6503 (0.1640) 0.0471(0.1049) 0.2489 (0.0904) 0.0537 
Regime 2 0.0176 (0.0450) 0.9762 (0.0703) 0.0001 (0.0434) 0.0060 
Regime 3 0.1268(0.0649) 0.0046 (0.0124) 0.8686 (0.0658) 3.40 e-08 
Regime 4 0.2282(0.1749) 8.16 e-05 (0.0394) 0.0412 (0.0859) 0.7306 

* significance at 10% level, ** significance at 5%, *** significance at 1%. 
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Table 3 

Optimal Portfolio Weights under Rebalancing 
This table reports optimal weights on the market (Panel A), size (Panel B) and value (Panel C) portfolios as a function of 
the rebalancing frequency ϕ for an investor with a coefficient of relative risk aversion of 5. Returns are assumed to be 
generated by a four-state regime switching model. Allocations marked as ‘NA’ have ϕ ≤ T and imply portfolio weights 
identical to the buy-and-hold case. For comparison, portfolio weights under a Gaussian VAR(1) model (where the 
dividend yield and portfolio returns are set at their unconditional sample mean) are also shown. 
 

Panel A: Market Portfolio 
Rebalancing Frequency ϕ Investment Horizon T (months) 

 T=1 T=6 T=12 T=24 T=60 T=120 
 Gaussian VAR(1) (Linear Predictability) 

ϕ = T (buy-and-hold) 0.54 0.59 0.61 0.68 0.78 1.15 
Hedging demand NA 0.15 0.15 0.15 0.15 0.16 

 Regime 1 
ϕ = T (buy-and-hold) 0.01 0.29 0.40 0.51 0.61 0.63 

ϕ = 12 months NA NA NA 0.18 0.18 0.18 
ϕ = 6 months NA NA 0.06 0.06 0.06 0.06 
ϕ = 3 months NA -0.04 -0.02 -0.02 -0.02 -0.02 
ϕ = 1 month NA -0.31 -0.31 -0.31 -0.31 -0.31 

Hedging demand NA -0.32 -0.32 -0.32 -0.32 -0.32 
 Regime 2 

ϕ = T (buy-and-hold) 2.15 1.39 1.16 0.95 0.75 0.64 
ϕ = 12 months NA NA NA 0.80 0.78 0.78 
ϕ = 6 months NA NA 1.10 1.06 1.06 1.06 
ϕ = 3 months NA 1.46 1.40 1.32 1.30 1.30 
ϕ = 1 month NA 2.21 2.21 2.21 2.20 2.20 

Hedging demand NA 0.06 0.06 0.06 0.05 0.05 
 Regime 3 

ϕ = T (buy-and-hold) 1.18 0.87 0.78 0.73 0.69 0.68 
ϕ = 12 months NA NA NA 0.54 0.54 0.54 
ϕ = 6 months NA NA 0.62 0.62 0.62 0.62 
ϕ = 3 months NA 0.76 0.76 0.76 0.76 0.76 
ϕ = 1 month NA 1.15 1.15 1.15 1.15 1.15 

Hedging demand NA -0.03 -0.03 -0.03 -0.03 -0.03 
 Regime 4 

ϕ = T (buy-and-hold) 2.12 0.32 0.37 0.47 0.57 0.62 
ϕ = 12 months NA NA NA 0.22 0.22 0.22 
ϕ = 6 months NA NA 0.14 0.14 0.14 0.14 
ϕ = 3 months NA 0.12 0.12 0.12 0.12 0.12 
ϕ = 1 month NA 2.29 2.29 2.29 2.29 2.28 

Hedging demand NA 0.17 0.17 0.17 0.17 0.16 
 Steady-state probabilities 

ϕ = T (buy-and-hold) 0.92 0.84 0.79 0.74 0.70 0.68 
ϕ = 12 months NA NA NA 0.22 0.22 0.22 
ϕ = 6 months NA NA 0.14 0.14 0.14 0.14 
ϕ = 3 months NA 0.12 0.12 0.12 0.12 0.12 
ϕ = 1 month NA 0.78 0.78 0.78 0.77 0.76 

Hedging demand NA -0.14 -0.14 -0.14 -0.15 -0.16 
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Panel B – SMB (size) Portfolio 
 

Rebalancing Frequency ϕ Investment Horizon T (months) 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Gaussian VAR(1) (Linear Predictability) 

ϕ = T (buy-and-hold) -0.59 -0.63 -0.58 -0.50 -0.37 -0.29 
Hedging demand NA 0.46 0.46 0.46 0.46 0.46 

 Regime 1 
ϕ = T (buy-and-hold) -0.10 0.03 -0.03 -0.12 -0.19 -0.22 

ϕ = 12 months NA NA NA 0.02 0.02 0.02 
ϕ = 6 months NA NA 0.12 0.12 0.12 0.12 
ϕ = 3 months NA 0.18 0.18 0.18 0.18 0.18 
ϕ = 1 month NA 0.14 0.14 0.14 0.14 0.14 

Hedging demand NA 0.24 0.24 0.24 0.24 0.24 
 Regime 2 

ϕ = T (buy-and-hold) -2.27 -1.01 -0.72 -0.54 -0.35 -0.33 
ϕ = 12 months NA NA NA -0.32 -0.32 -0.32 
ϕ = 6 months NA NA -0.77 -0.76 -0.76 -0.76 
ϕ = 3 months NA -1.44 -1.40 -1.32 -1.30 -1.30 
ϕ = 1 month NA -2.15 -2.15 -2.15 -2.15 -2.14 

Hedging demand NA 0.12 0.12 0.12 0.12 0.11 
 Regime 3 

ϕ = T (buy-and-hold) -0.90 -0.58 -0.49 -0.37 -0.32 -0.30 
ϕ = 12 months NA NA NA -0.22 -0.22 -0.22 
ϕ = 6 months NA NA -0.40 -0.40 -0.40 -0.40 
ϕ = 3 months NA -0.64 -0.64 -0.64 -0.64 -0.64 
ϕ = 1 month NA -0.93 -0.93 -0.94 -0.94 -0.94 

Hedging demand NA -0.03 -0.03 -0.04 -0.04 -0.04 
 Regime 4 

ϕ = T (buy-and-hold) 0.75 0.33 0.19 0.04 -0.08 -0.26 
ϕ = 12 months NA NA NA 0.20 0.20 0.20 
ϕ = 6 months NA NA 0.34 0.34 0.34 0.34 
ϕ = 3 months NA 0.52 0.52 0.52 0.52 0.52 
ϕ = 1 month NA 0.70 0.70 0.70 0.70 0.70 

Hedging demand NA -0.05 -0.05 -0.05 -0.05 -0.05 
 Steady-state probabilities 

ϕ = T (buy-and-hold) -0.59 -0.48 -0.43 -0.32 -0.27 -0.26 
ϕ = 12 months NA NA NA -0.21 -0.21 -0.21 
ϕ = 6 months NA NA -0.28 -0.28 -0.28 -0.28 
ϕ = 3 months NA -0.40 -0.35 -0.33 -0.33 -0.33 
ϕ = 1 month NA -0.48 -0.48 -0.48 -0.48 -0.48 

Hedging demand NA 0.11 0.11 0.11 0.11 0.11 
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Panel C – HML (Book-to-market) Portfolio  
 

Rebalancing Frequency ϕ Investment Horizon T (months) 
 T=1 T=6 T=12 T=24 T=60 T=120 
 Gaussian VAR(1) (Linear Predictability) 

ϕ = T (buy-and-hold) -0.00 0.01 0.04 0.13 0.25 0.37 
Hedging demand NA -0.40 -0.40 -0.40 -0.40 -0.40 

 Regime 1 
ϕ = T (buy-and-hold) -0.03 0.17 0.15 0.12 0.07 0.07 

ϕ = 12 months NA NA NA 0.20 0.20 0.20 
ϕ = 6 months NA NA 0.26 0.26 0.26 0.26 
ϕ = 3 months NA 0.26 0.26 0.26 0.26 0.26 
ϕ = 1 month NA 0.03 0.03 0.03 0.03 0.03 

Hedging demand NA 0.06 0.06 0.06 0.06 0.06 
 Regime 2 

ϕ = T (buy-and-hold) -0.42 -0.17 -0.02 0.07 0.10 0.12 
ϕ = 12 months NA NA NA 0.00 0.00 0.00 
ϕ = 6 months NA NA -0.01 -0.01 -0.01 -0.01 
ϕ = 3 months NA -0.10 -0.08 -0.10 -0.10 -0.10 
ϕ = 1 month NA -0.47 -0.47 -0.47 -0.47 -0.47 

Hedging demand NA -0.05 -0.05 -0.05 -0.05 -0.05 
 Regime 3 

ϕ = T (buy-and-hold) 0.27 0.14 0.13 0.14 0.17 0.18 
ϕ = 12 months NA NA NA 0.06 0.06 0.06 
ϕ = 6 months NA NA 0.05 0.05 0.05 0.05 
ϕ = 3 months NA 0.00 0.00 0.00 0.00 0.00 
ϕ = 1 month NA 0.26 0.26 0.26 0.26 0.26 

Hedging demand NA -0.01 -0.01 -0.01 -0.01 -0.01 
 Regime 4 

ϕ = T (buy-and-hold) -0.09 0.44 0.34 0.27 0.20 0.15 
ϕ = 12 months NA NA NA 0.36 0.36 0.36 
ϕ = 6 months NA NA 0.45 0.45 0.45 0.45 
ϕ = 3 months NA 0.56 0.56 0.56 0.56 0.56 
ϕ = 1 month NA -0.13 -0.13 -0.13 -0.13 -0.13 

Hedging demand NA -0.04 -0.04 -0.04 -0.04 -0.04 
 Steady-state probabilities 

ϕ = T (buy-and-hold) 0.30 0.25 0.21 0.15 0.12 0.13 
ϕ = 12 months NA NA NA NA 0.14 0.14 
ϕ = 6 months NA NA 0.18 0.18 0.18 0.18 
ϕ = 3 months NA 0.21 0.21 0.21 0.21 0.21 
ϕ = 1 month NA 0.27 0.27 0.27 0.27 0.27 

Hedging demand NA -0.03 -0.03 -0.03 -0.03 -0.03 
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Table 4 

Effects of Parameter Estimation Uncertainty 
 

This table reports 90% confidence intervals for a buy-and-hold investor’s optimal portfolio weights at different 
investment horizons, T, assuming a constant relative risk aversion coefficient of 5. Intervals are calculated by simulation. 
Under regime switching, portfolio returns are assumed to be generated by the model 

tst t
εμr +=  

where 
ts

μ  are the intercepts in state st and ),( ~
tst N Σ0ε  is the vector of return innovations.  

 
 

  Investment Horizon T Investment Horizon T 
  T=1 T=6 T=60 T=120 T=1 T=6 T=60 T=120
  A: Allocation to the Market 

Portfolio 
B: Allocation to the SMB 

(Size) Portfolio 
Upper 90% band 0.68 0.68 0.68 0.68 1.18 1.18 1.18 1.18 
Mean 0.01 0.01 0.01 0.01 0.61 0.61 0.61 0.61 I.I.D. 
Lower 90% band -0.96 -0.96 -0.96 -0.96 0.26 0.26 0.26 0.26 
Upper 90% band 0.26 0.48 0.76 0.78 0.44 0.34 0.04 0.01 
Mean 0.01 0.29 0.61 0.63 -0.10 0.03 -0.19 -0.22 Regime 1 
Lower 90% band -0.25 0.11 0.48 0.50 -0.62 -0.26 -0.43 -0.44 
Upper 90% band 2.19 1.78 0.93 0.83 -1.62 -0.25 -0.05 -0.11 
Mean 2.15 1.39 0.75 0.64 -2.27 -1.01 -0.35 -0.33 Regime 2 
Lower 90% band 2.03 1.09 0.56 0.49 -2.63 -1.82 -0.70 -0.57 
Upper 90% band 1.58 1.04 0.84 0.83 -0.41 -0.20 -0.06 -0.07 
Mean 1.18 0.87 0.69 0.68 -0.90 -0.58 -0.32 -0.30 Regime 3 
Lower 90% band 0.78 0.70 0.53 0.53 -1.44 -0.96 -0.57 -0.52 
Upper 90% band 2.61 0.54 0.73 0.77 1.87 0.63 0.15 -0.04 
Mean 2.12 0.32 0.57 0.62 0.75 0.33 -0.08 -0.26 Regime 4 
Lower 90% band 1.06 0.10 0.42 0.49 -0.07 0.01 -0.29 -0.47 
Upper 90% band 1.12 1.03 0.87 0.84 -0.25 -0.12 0.01 -0.03 
Mean 0.92 0.84 0.70 0.68 -0.59 -0.48 -0.27 -0.26 Steady-state 

probabilities Lower 90% band 0.72 0.66 0.53 0.50 -0.97 -0.83 -0.55 -0.50 
  C: Allocation to the HML 

(Book-to-Market) Portfolio
D: Allocation to T-bills 

Upper 90% band 0.94 0.94 0.94 0.94 1.73 1.73 1.73 1.73 
Mean 0.45 0.45 0.45 0.45 0.99 0.99 0.99 0.99 I.I.D. 
Lower 90% band -0.18 -0.18 -0.18 -0.18 0.39 0.39 0.39 0.39 
Upper 90% band 0.35 0.48 0.35 0.33 1.49 1.10 0.73 0.69 
Mean -0.03 0.17 0.07 0.07 0.99 0.71 0.39 0.37 Regime 1 
Lower 90% band -0.37 -0.09 -0.19 -0.16 0.46 0.33 0.04 0.03 
Upper 90% band 0.30 0.20 0.35 0.36 -0.38 0.36 0.65 0.69 
Mean -0.42 -0.17 0.10 0.12 -1.15 -0.39 0.25 0.36 Regime 2 
Lower 90% band -1.31 -0.54 -0.17 -0.11 -1.99 -1.16 -0.08 0.03 
Upper 90% band 0.93 0.45 0.44 0.45 0.73 0.69 0.70 0.66 
Mean 0.27 0.14 0.17 0.18 -0.18 0.13 0.31 0.32 Regime 3 
Lower 90% band -0.30 -0.15 -0.06 -0.04 -1.19 -0.48 -0.07 0.00 
Upper 90% band 1.06 0.76 0.47 0.39 -0.08 1.13 0.77 0.71 
Mean -0.09 0.44 0.20 0.15 -1.12 0.68 0.43 0.38 Regime 4 
Lower 90% band -0.93 0.14 -0.03 -0.09 -2.29 0.26 0.09 0.06 
Upper 90% band 0.68 0.56 0.41 0.41 0.49 0.68 0.69 0.65 
Mean 0.30 0.25 0.12 0.13 0.08 0.16 0.30 0.32 Steady-state 

probabilities Lower 90% band -0.06 -0.04 -0.13 -0.10 -0.37 -0.35 -0.09 -0.03 
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Table 5 
 

Real-time Out-of-Sample Performance of Predictability Models 
This table reports out-of-sample performance measures for three investment horizons, T = 1, 12, and 120 months. The performance measures are computed under 
alternative models for the joint process of portfolio returns and the predictor variable (the dividend yield). The realized power utility results assume a coefficient of 
relative risk aversion, γ = 5 for a buy-and-hold investor. 
 

T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12 T=120 T=1 T=12

Mean (annualized) 0.056 0.048 0.110 0.102 0.107 0.282 0.181 0.178 0.290 0.310 0.147 0.261 0.120 0.083
10% conf. interval -- lower bound 0.019 -0.001 0.072 0.064 0.068 0.244 0.114 0.126 0.259 0.170 0.088 0.126 0.089 0.071
10% conf. interval -- upper bound 0.141 0.094 0.157 0.148 0.143 0.321 0.247 0.233 0.321 0.435 0.209 0.228 0.138 0.094
St. Dev. (annualized) 0.102 0.100 0.150 0.117 0.112 0.363 0.179 0.179 0.338 0.363 0.184 0.350 0.104 0.058
Sharpe ratio (per month) 0.053 0.033 0.167 0.160 0.182 0.219 0.225 0.229 0.243 0.207 0.181 0.208 0.224 0.221

Mean -0.253 -0.294 -0.034 -0.249 -0.196 -0.002 -0.246 -0.174 -0.001 -0.265 -0.203 -0.009 -0.265 -0.195
10% conf. interval -- lower bound -0.256 -0.338 -0.056 -0.254 -0.244 -0.003 -0.248 -0.212 -0.002 -0.285 -0.265 -0.014 -0.270 -0.205
10% conf. interval -- upper bound -0.258 -0.256 -0.019 -0.235 -0.161 -0.001 -0.242 -0.131 -0.001 -0.237 -0.147 -0.003 -0.263 -0.185
St. Dev. 0.030 0.134 0.013 0.044 0.213 0.002 0.050 0.136 0.001 0.270 0.244 0.010 0.026 0.023
Certainty Equivalent (annual) -3.09 -3.73 -4.25 6.50 6.33 13.5 11.0 10.3 14.5 1.17 5.89 8.77 9.44 7.19

Panel B -- Realized Utility

Four-state VAR(1) w/DY Two-state

Panel A -- Portfolio Returns

Gaussian IID VAR(1) Four-state
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Figure 1 
Smoothed State Probabilities: Four-State Model for Returns on SMB, HML and  

Market Portfolios 
The graphs plot the smoothed state probabilities for the multivariate four-state Markov Switching model comprising 
monthly return series on Fama and French’s (1993) SMB and HML portfolios and excess returns on the value-weighted 
market portfolio. The sample period is 1927:12 – 2005:12. Parameter estimates underlying these plots are reported in 
Table 1. 
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Figure 2 
Smoothed State Probabilities: Four-State Model for Stock Returns and the Dividend Yield 

The graphs plot the smoothed state probabilities for the multivariate four-state regime switching VAR(1) model 
comprising monthly returns on the SMB and HML portfolios, the value-weighted market portfolio and the dividend 
yield. The sample period is 1927:12 – 2005:12. Parameter estimates underlying these plots are reported in Table 2. 
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Figure 3 

Optimal Asset Allocation as a Function of the Investment Horizon 
The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and risk-free T-bills under a four-
state regime switching model as a function of the investment horizon for an investor with constant coefficient of relative 
risk aversion γ = 5. Each schedule corresponds to a different value of the initial state probabilities, while future states 
remain unknown and unobservable to investors. 
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Figure 4 

Optimal Asset Allocation under Uncertainty about the Initial State 
The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and T-bills under a four-state 
regime switching model in which the initial state probabilities are set at their steady-state values of [0.21 0.25 0.53 0.01]’. 
The graphs plot optimal portfolio shares as a function of the investment horizon for an investor with constant 
coefficient of relative risk aversion γ = 5.  

 

Allocation to the value-weighted market portfolio

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120
Investment Horizon

 

Allocation to the SMB (Size) portfolio

-0.7

-0.4

-0.1

0.2

0.5

0.8

0 20 40 60 80 100 120
Investment Horizon

 

Allocation to the HML (Value) portfolio

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120
Investment Horizon

 

Allocation to 1-month T-Bill

0

0.2

0.4

0.6

0.8

1

0 20 40 60 80 100 120
Investment Horizon

 
 

 



 41

Figure 5 

Optimal Allocations under Predictability from the Dividend Yield: Effects of the Regimes 
The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and T-bills under a four-state 
regime switching model in which the dividend yield predicts portfolio returns as a function of the investment horizon 
for an investor with constant coefficient of relative risk aversion γ = 5. Lagged values of returns and the dividend yield 
are set at their regime-specific unconditional means. Each schedule corresponds to a different value of the initial state, 
while future states remain unknown and unobservable to investors. 
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Figure 6 

Optimal Allocations under Predictability from the Dividend Yield:  
Effects of the Initial Value of the Dividend Yield 

The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and T-bills as a function of the 
investment horizon for an investor with constant coefficient of relative risk aversion γ = 5. The calculations assume a 
four-state regime switching model in which the dividend yield predicts portfolio returns. Lagged values of returns are set 
at their regime-specific unconditional means while initial beliefs match the ergodic state probabilities. Each schedule 
corresponds to a different initial value of the dividend yield, i.e. 0.50% (Very Low, two standard deviations below the 
sample mean), 2.16% (Low, one standard deviation below the sample mean), 3.83% (Average), 5.49% (High, one 
standard deviation above the sample mean), and 7.15% (Very High, two standard deviations below the sample mean). 
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Figure 7 

Optimal Asset Allocation under Predictability from the 1-month T-Bill Rate 
The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and T-bills as a function of the 
investment horizon for an investor with constant coefficient of relative risk aversion γ = 5. The calculations assume a 
four-state regime switching model in which the T-bill rate predicts portfolio returns. Lagged values of returns and the 
short-term rate are set at their regime-specific unconditional means. Each of the schedules labeled Regime 1 through 
Regime 4 corresponds to a different value of the initial state, while future states remain unknown and unobservable. 
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Figure 8 

Comparison of Optimal Asset Allocation Across Models 
The graphs show the optimal allocation to equity portfolios (market, SMB and HML) and T-bills as a function of the 
investment horizon for an investor with constant coefficient of relative risk aversion γ = 5. The VAR(1) model assumes 
predictability from the dividend yield. The MS model assumes the presence of four states while the MS-VAR(1) model 
allows for four regimes and predictability from the dividend yield. In VAR-type models, lagged values of returns and the 
dividend yield are set at their regime-specific unconditional means. 
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Figure 9 

Utility Costs of Ignoring Regimes 
This graph shows the compensation required for a buy-and-hold investor with power utility (γ = 5) to be willing to 
ignore regimes in asset returns starting from steady-state values of [0.21 0.25 0.53 0.01]’. 
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Figure 10 

Comparison of Utility Costs across Models 
This graph compares the utility costs from ignoring predictability arising from the dividend yield and the presence of 
regimes. The VAR(1) model assumes predictability from the dividend yield. The MS model assumes the presence of four 
states while the MS-VAR(1) model allows for four regimes and predictability from the dividend yield. 
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Figure 11 

Recursive Portfolio Weights under Alternative Models 
The graphs show the evolution in the allocation to stock portfolios (market, SMB and HML) for an investor with 
constant coefficient of relative risk aversion γ = 5 and a 12-month horizon. Models and weights are updated recursively 
over the period 1980:01 – 2005:12. The three models are a single-state Gaussian VAR(1), a four-state regime switching 
model, and a four-state VAR(1) regime switching model in which the dividend yield serves as a predictor variable. 
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