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Abstract

An unresolved question concerning stochastic depreciation shocks is
whether they have to be unrealistically large to have any useful role in
a dynamic general equilibrium model economy, as Ambler and Paquet
(1994) first suggested. We first consider implied depreciation rates from
sectoral data from the Bureau of Economic Analysis. These deprecia-
tion rates vary across time solely due to compositional changes within
each sector. Hence, they tend to understate the range of fluctuation that
would hold if the economic shelf life of capital varied endogenously as in
Cooley, Greenwood and Yorukoglu (1997). We find, however, that if de-
preciation rates follow a Markov switching process, a low variance of the
depreciation rate can generate the low correlation between hours worked
and productivity in a simple model economy. White noise and autore-
gressive depreciation shocks, in contrast, require a counterfactually large
variance in the depreciation rate to reduce the hours-productivity corre-
lation. We also illustrate the level effects implied by nonlinear decision
rules in simulations of dynamic general equilibrium models that include
Markov switching parameters. Linear decision rules, in contrast, imply
certainty equivalence and ignore the aversion that agents have to the
skewed shock distributions that characterize Markov switching.
 
Keywords: MarkovSwitching, NonlinearDecisionRules, Hours-Productivity
Correlation
JELClassificationNumber: C63, E22, E32



1 Introduction

Numerous dynamic stochastic general equilibrium (DSGE) macroeconomic
models now allow for variation in the depreciation rate of capital. The most
common approach treats the depreciation rate as an endogenous variable such
that the choice to use capital intensively or to spend little on maintenance
and repair results in high depreciation [Greenwood, Hercowitz and Huffman
(1988); Burnside, Eichenbaum and Rebelo (1996); King and Rebelo (2000)
for the former; McGrattan and Schmitz (1999), Collard and Kollintzas (2000)
and Licandro and Puch (2000) for the latter]. Procyclical variation in capital
utilization amplifies the effect of a technology shock on output. When the
depreciation rate is a function of maintenance and repair, the assumption is
that each unit of capital is matched with labor input that is geared toward
either production or capital maintenance and repair.

In both of these scenarios, variation in the depreciation rate is a means and
not an end. Endogenous depreciation equates margins at less than full capital
utilization or introduces a role for large, countercyclical expenditures on main-
tenance and repair. In this way, endogenous depreciation serves to amplify and
augment the persistence of the effects of technology shocks on output. But,
fully endogenous depreciation only amplifies technology shocks and does not
allow for random changes in the depreciation rate as an independent source of
economic fluctuations.

Stochastic depreciation, on the other hand, allows depreciation shocks to
serve as an additional driving force behind macroeconomic fluctuations, along
with technology shocks. The motivation for the stochastic process rests with
the observation that for many types of capital—particularly intangible assets,
such as music, film, or software—the economic lifespan does not necessar-
ily obey a decay function of time and intensity of use. Along these lines,
Cooley, Greenwood and Yorukoglu (1997) present a vintage capital model in
which capital is scrapped because of economic obsolescence rather than phys-
ical breakdown.1 Even tangible assets such as machinery and structures have
uncertain and variable shelf lives after which they are scrapped as a result of
economic obsolescence. Of course, tangible assets are also subject to physical
shocks, such as fire and storm. At the same time, compositional shifts between
sectors can also lead to time variation in the aggregate depreciation rate.

These properties of depreciation suggest that capital is often destroyed or
scrapped for reasons other than intense capital utilization. With this in mind,

1See Chapter 7 in OECD (2001) for a discussion on the complexities of measuring eco-
nomic depreciation for intangible assets.



Ambler and Paquet (1994) introduced stochastic depreciation to a DSGE
model and showed that a white noise shock to the depreciation rate could
account for the low hours-productivity correlation observed in the data.2 The
intuition is that a random increase in the depreciation rate causes hours worked
and labor productivity to respond in opposite directions. When the depreci-
ation rate rises, the capital-output ratio begins to fall, so labor hours are
substituted for capital. Consequently, hours and labor productivity move in
opposite directions. This source of negative correlation between hours and
labor productivity can counteract the positive correlation implied by technol-
ogy shocks to result in a low correlation between hours and productivity that
matches the data. The results for Ambler and Paquet’s linearized model show
that depreciation shocks can bring down the hours-productivity correlation to
levels consistent with the data.3

Our objective in this article is to extend the results of Ambler and Pa-
quet (1994) in two ways. First, we seek to introduce greater realism to the
shock process. To do this, we provide empirical evidence that the deprecia-
tion rates for many types of capital follow a process that is more general than
the white noise assumption in Ambler and Paquet (1994). More specifically,
we find that Markov switching behavior (i.e., nonlinearity and asymmetry)
provides a better description of depreciation rates than a white noise process.
Second, we demonstrate that stochastic fluctuations of the depreciation rate
within a narrow band at low and moderate levels is by itself able to generate a
low hours-productivity correlation in a general equilibrium model. A Markov
switching process is a natural way to impose a narrow range of fluctuation on
the depreciation rate. In this way, we reinforce Ambler and Paquet’s (1994)
point that stochastic depreciation induces a substantial reduction in the co-
movement of hours and labor productivity. The difference is that the Markov
process generates a low hours-productivity correlation at a lower variance of
depreciation than Ambler and Paquet’s (1994) white noise process. Hence,
this approach is less prone to the “Where are the shocks?” critique.

2Bernanke, Gertler, and Gilchrist (1999) and Carlstrom and Fuerst (2001) consider shocks
to the relative price of capital goods in terms of foregone consumption.

3It should be noted that stochastic shocks to depreciation represent only one way to
reduce the hour-productivity correlation. Aiyagari (1994) has shown that if an additional
shock (i.e. to preferences, technology, or government spending) is added to the model, then
this correlation also is reduced. Further, two sector models by Hornstein and Krusell (1996)
and Greenwood et al. (2000) and others, where one sector produces investment goods and
the other consumer goods are also able to generate similar effects. When the two sectors
have the same production function, the setup is comparable to a model with shocks to the
depreciation rate.



Our solution method for the general equilibrium model with Markov switch-
ing makes use of Judd’s (1998) projections that yield nonlinear decision rules.
With Markov switching, it is important to have nonlinear decision rules be-
cause linear decision rules do not allow agents to recognize that the errors
in predicting the Markov state have a discrete distribution over just a few
values—two for a two-state Markov process. In addition, we present quan-
titative results on how the departure from certainty equivalence under our
nonlinear decision rules creates a level effect, whereby capital investment is
riskier with stochastic shocks to the depreciation rate and this risk leads to a
lower steady state capital stock and output.

The article is organized as follows. Section 2 motivates our use of a Markov
switching process for a time-varying depreciation rate. We present Markov
switching estimates for various sectoral data series from the Bureau of Eco-
nomic Analysis (BEA), U.S. Department of Commerce. Section 3 presents the
baseline RBC model. The same section discusses calibration strategy. Section
4 presents the main results in the form of sensitivity analysis and impulse
responses. Section 5 concludes.

2 Time-Varying Depreciation and Markov

Switching

In this article, the stochastic shock to the depreciation rate is motivated
by economic obsolescence. Our heuristic description of capital depreciation is
not a machine that wears out physically. Instead, we are viewing depreciation
in terms of the shelf life of the average microprocessor or textbook, which can
vary across time.4

However, evidence from Fraumeni (2001) shows that this effect on the
aggregate capital stock is small. The BEA estimates disaster damage when
damage is at least 0.25% of consumption of fixed capital, i.e., $2.6 billion in
2000. Varying economic shelf lives are perhaps a more important source of
fluctuation in depreciation, due in part to consumer expectations regarding
comfort, safety, or environmental standards. Note that we remove any secu-
lar upward trend from depreciation rates in our empirical work. Hence, we
view our treatment of the depreciation rate as a stochastic process as a short-
hand approach to the Cooley, Greenwood and Yorukoglu (1997) vintage capital
model with an endogenously varying depreciation rate. The prospect of eco-

4Stochastic depreciation rates have been motivated in a multitude of ways. These include
the role of hazards, war, or calamities other than ordinary wear and tear on fixed capital.



nomic obsolescence is especially pronounced for firms making buy versus lease
investment decisions in high-tech equipment.5 Similarly in the service sector,
which is heavily reliant on computers, the rate of technological obsolescence of
microprocessors is closely related to rate of technical improvements—Moore’s
law—and is independent of how intensively the CPU cycles are used.

Technical obsolescence is not sector specific. Even in a localized setting,
stochastic shocks that render capital obsolete can take alternative forms. A
court ruling favoring stricter environmental standards for forest conversation
can render a network of logging roads economically obsolete. Similarly, the
economic life of a Hollywood film is largely determined by the public’s reaction
to the initial screenings. The outcome of a clinical test for a pharmaceutical
company can influence positively or negatively the economic lifespan of a drug.
In this arena, the concept of capital includes the portfolio of intellectual prop-
erty and patents that drug companies possess.

Clearly not all forms of capital are affected by economic obsolescence.
Therefore, when trying to understand the economic implications of time-
varying depreciation on the comovement of hours and productivity, for exam-
ple, in a one sector model economy, the size of the fluctuations to depreciation
becomes the focus. A priori, we want the calibrated variance of the depre-
ciation rate to be small enough to be consistent with the depreciation data
yet still engender a low hours-productivity correlation. One of the few means,
however, to study the time-series properties of depreciation rates is to examine
sectoral data from the BEA. Figure 1 plots the H-P filtered depreciation rates
of four sectors: private fixed nonresidential equipment and software, consumer
durables, private fixed nonresidential structures, and private residential fixed
assets. The annual data from 1947 to 2001 show that the depreciation rates
differ substantially across sectors as do their fluctuations: the sectors with high
depreciation rates (equipment and software and consumer durables) fluctuate
more than the sectors with low depreciation rates (structures and housing).6

The BEA estimates should be seen as a lower bound. Fraumeni (1997) ar-
gues that the BEA approximation of geometric decay of each type of capital
works well as long as one does not condition on discards and survival rates.
This suggests that the role of obsolescence is underestimated. The BEA uses
(infinite) geometric depreciation without applying a mortality function.

Table 1 offers summary statistics for the detrended depreciation rates. We
pay closest attention to the standard deviations, which range from 0.0075 for

5One advantage of lease contracts is that they are seen as an insurance against techno-
logical obsolescence. In 2002, the nominal value of leased equipment was four times larger
than equipment purchased through loans.

6The sample for housing has been shortened because of two outliers in the early 1990s.



Figure 1: Depreciation Rates for Four Sectors

A: Structures HP-Filtered Annual Depreciation Rates 1947-2001
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B: Equipment and Software HP-Filtered Annual Depreciation Rates 1947-2001
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C: Consumer Durables HP-Filtered Annual Depreciation Rates 1947-2001
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D: Housing HP-Filtered Annual Depreciation Rates 1947 to 1991
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time-detrended equipment and software to 0.0005 for time-detrended housing.
The same table also provides information on the first-order autocorrelation
coefficient and deviations from normality using the Jarque-Bera test. The
former finds weak evidence of autocorrelation in the case of equipment and
software and housing, whereas the latter test presents strong evidence of non
normality.7 The rejection of normality is also confirmed by the BDS test for
nonlinearity, see Brock, Dechert, and Scheinkman (1996). The results, given in
Table 2, suggest that a mixing distribution may be responsible for the observed
fluctuations in the depreciation rates.

Table 1: Statistics for Annual U.S. Depreciation Rates 1947-2001

Equipment and Structures Consumption Housing
Software Durables

Deviations from HP Trend

std(δt) 0.0040 0.0010 0.0033 0.0009
ρδt

(1) 0.3220∗ −0.1450 0.1430 −0.5660∗

JB(δt) 0.0030 0.0000 0.5560 0.0020
max(δt) 0.0078 0.0028 0.0069 0.0016
min(δt) −0.0098 −0.0015 −0.0066 −0.0008

Deviations from Time Trend

std(δt) 0.0075 0.0010 0.0035 0.0005
ρδt(1) 0.9213 0.6829 0.6030 0.4190
JB(δt) 0.4399 0.0334 0.2929 0.0000
max(δt) 0.0178 0.0029 0.0069 0.0016
min(δt) −0.0128 −0.0017 −0.0068 −0.0008

Note: JB gives the p-value of the Jacque-Bera test.

To understand whether the properties of nonlinearity or persistence can
be captured in a more general model than the white noise assumption of
Ambler and Paquet (1994), a two-state Markov model is fitted to the detrended
depreciation rates. The mean parameters are denoted µ1 and µ2 and the
respective persistence parameters for the states are denoted pδ and qδ. Note
that the means can be negative because the data are expressed as deviations
from either a time trend or HP trend. The parameter estimates, given in Tables
3 and 4, show that a Markov switching model works well for most depreciation

7One of the few observable measures for technical obsolescence is discussed in Lee (1978).
His study shows that the technical efficiency of Japanese fishing boats exhibits evidence of
autocorrelation.



Table 2: Nonlinearity (BDS) Test Results for Sectoral Depreciation Rates

ε m Equipment and Structures Consumption Housing
Software Durables

0.5 2 13.2000∗∗ 10.9000∗∗ 10.5000∗∗ 5.1274∗∗

0.5 3 19.5000∗∗ 14.4000∗∗ 15.6000∗∗ 7.5942∗∗

0.5 4 29.8000∗∗ 20.7000∗∗ 24.7000∗∗ 10.9358∗∗

1.0 2 7.3755∗ 6.5780∗ 8.8055∗ 2.9603∗

1.0 3 9.3428∗ 7.5819∗ 11.0239∗ 3.2979∗

1.0 4 11.7455∗ 8.8329∗ 12.7682∗ 3.6226∗

1.5 2 5.4015∗ 4.7249∗ 2.7023 3.4221∗

1.5 3 5.7163∗ 4.7562∗ 3.9193∗ 3.7779∗

1.5 4 6.2008∗ 5.0888∗∗ 3.5364∗ 3.8260∗

2.0 2 5.8903∗ 2.1738 0.6764 3.3057∗

2.0 3 5.8237∗ 2.2470 1.5896 3.8593∗

2.0 4 5.5628∗ 2.6164 1.3564 3.9686∗

Notes: The results of the BDS tests of the pre-whitened sectoral
depreciation rates are marked by * and ** to denote significance
at the 5% and 10% levels. The BDS test is described in
Brock, Dechert, and Scheinkman (1996), ε is the sup norm on
the m-histories and m is the embedding dimension.

series in that the sum of the transition probabilities is greater than 1.0, which
indicates that the high/low depreciation states are serially correlated.

Based on the estimates in the Tables 3 and 4 and the desire to heed the
standard deviations of the depreciation rates from Table 1, we will calibrate
a Markov switching process in the model economy that implies a standard
deviation (when converted from quarterly to annual data) of 0.0041, which is
not counterfactually large.

The quarterly Markov process that will achieve this has µ1 = 0.017, µ2 =
0.023, pδ = 0.90, qδ = 0.75, where pδ = Prob(µt = µ1|µt−1 = µ1) and qδ =
Prob(µt = µ2|µt−1 = µ2). These persistence parameters are broadly consistent
with the estimates from Tables 3 and 4.

The evidence of nonlinearity and persistence in Tables 3 and 4 is a strong
departure from the white noise assumption in Ambler and Paquet (1994). The
strategy for the remainder of the paper is to model time-varying depreciation
as a Markov process that puts strict bounds on the lower and upper ranges of
the depreciation rate. A natural question to ask is what does Markov switching



Table 3: Estimates Fit to Sectoral Depreciation Rates (x 100)
Expressed as Deviation from Time Trend

Equipment and Structures Consumption Housing
Software Durables

µ1 −0.5790 −0.0356 −0.2492 −0.0232
(0.0747) (0.0104) (0.0395) (0.0048)

µ2 0.7112 0.1624 0.3219 0.0785
(0.0823) (0.0247) (0.0527) (0.0108)

pδ 0.9550 0.9575 0.8136 0.9189
(0.0355) (0.0306) (0.0735) (0.0407)

qδ 0.9730 0.8548 0.7400 0.7392
(0.0295) (0.1662) (0.0983) (0.1467)

σ2 0.1453 0.0043 0.0366 0.0009
(0.0286) (0.0009) (0.0090) (0.0002)

Note: Standard errors are in parentheses.

Table 4: Estimates Fit to Sectoral Depreciation Rates (x 100)
Expressed as Deviation from HP Trend

Equipment and Structures Consumption Housing
Software Durables

µ1 −0.1295 −0.0203 −0.1180 −0.0099
(0.0377) (0.0078) (0.0936) (0.0039)

µ2 0.1940 0.1045 0.3432 0.0367
(0.0461) (0.0183) (0.1333) (0.0093)

pδ 0.7463 0.8717 0.8316 0.9003
(0.0923) (0.0730) (0.1443) (0.0621)

qδ 0.6591 0.4068 0.6772 0.5527
(0.1277) (0.2776) (0.1395) (0.2347)

σ2 0.0210 0.0016 0.0505 0.0004
(0.0055) (0.0005) (0.0143) (0.0001)

Note: Standard errors are in parentheses.



deliver beyond a simpler AR(1) process. It will be shown in section 4 that the
linear AR(1) process that matches the hours-productivity correlation implies
a much higher standard deviation of the depreciation rate than is observed in
the data, whereas the Markov switching process does not.

3 Model Structure and Calibration

The model is a standard DSGE model with indivisible labor. The model
economy is populated by a large number of infinitely lived agents whose ex-
pected utility is defined by

E0[
∞∑
t=0

βt(ln(ct) + θ
Nt

N̂
[ln(1− N̂)])], (1)

where β is the time discount factor; ct is private consumption; θ is a positive
scalar that determines the relative disutility of non-leisure activities; Nt is
expected work time under a Rogerson (1988) employment lottery; N̂ is the
indivisible time spent at work for those working [Hansen (1985)].8

Aggregate output, Yt, is assumed to depend on the total amount of capi-
tal, Kt, and on total hours of work, Nt, with labor-augmenting technological
progress at the gross rate λ

Yt = eztKα
t (λtNt)

1−α. (2)

A time constraint restricts leisure and work to sum to one:

lt + nt = 1. (3)

The technology shock, zt, is assumed to follow an AR(1) process with the
following law of motion:

zt = ρzt−1 + εt, εt ∼ N(0, σ2
ε ). (4)

The technology shock, εt, is drawn from a normal distribution with mean zero
and standard deviation σε.

The capital stock evolves according to

kt+1 = (1− δSt)kt + it, (5)

8We follow the general practice, where lower case letters are used to denote individual
choices and upper case letters denote economy-wide per-capita quantities.



where it is the chosen level of investment and δSt is the rate of depreciation
of capital, which is assumed to follow a two-state Markov process that is
independent of zt.

9 The installation of capital takes one period, making the
time t + 1 capital stock predetermined at time t, but there are otherwise no
installation or adjustment costs. Lastly, the aggregate resource constraint of
the economy is given by

yt = ct + it. (6)

Calibration for the Baseline Model

The model is calibrated to the parameter values listed in Table 5. The
rate of time preference and the Cobb-Douglas production function coefficients
are standard. The values for indivisible labor are taken from Li (1999). The
autoregressive coefficient for the technology process, z, is set to 0.95. The
standard deviation of the technology shocks is set at σρ = 0.0045 to match
the variance of output in the data when depreciation switches as follows. The
quarterly depreciation rate switches between 0.017 in the low state and 0.023
in the high state. These values imply an annual depreciation rate between
roughly 6.8 and 9.2 percent. The low state value is consistent with Stokey and
Rebelo (1995) and the high state value with King and Rebelo (2000). Much
of our analysis that works with a constant depreciation rate sets the quarterly
depreciation rate set to 0.020, which is consistent with values used by Gilchrist
and Williams (2000). The persistence for the two states is defined by

pδ = P (δt = δ0 | δt−1 = δ0) = 0.90

qδ = P (δt = δ1 | δt−1 = δ1) = 0.75.

With this setup, we assume that there is low persistence in the high depreci-
ation state.

4 Quantitative Analysis of the Model

We present results on the comovement of hours and productivity in the form
of sensitivity analysis and impulse responses. The sensitivity analysis high-

9Without imposing a positive correlation between technology and the depreciation rate,
this model does not significantly reduce the probability of technical regress, as time-varying
capital utilization can, according to Burnside, Eichenbaum, and Rebelo (1996) and King
and Rebelo (2000).



Table 5: Calibration of Markov Switching Economy

Rate of Time Preference β 0.9917
Production Function Coefficient α 0.33
Leisure Coefficient θ 2.9474
Labor Productivity Growth λ 1.00373
Indivisible Labor L̂ 0.25
Depreciation Rates δ 0.017, 0.023
Depreciation Transition Probability pδ, qδ 0.90, 0.75
AR Technology ρ 0.95
Standard Deviation of Technology Error σρ 0.0045

lights several findings concerning the influence of depreciation on the hours-
productivity correlation. Impulse responses illustrate why the model attains a
low correlation between hours and productivity. We begin the discussion with
some baseline results. Details on the solution procedure are presented in the
appendix.

Main Results

Table 6 presents correlations and standard deviations of model-implied
data compared with actual data taken from Li (1999). For models with a
fixed depreciation rate, the rate is set to 0.020—two percent per quarter. The
first column gives information of the model of section 3 with only the tech-
nology shock (i.e., the Markov switching has been shut down). A principal
weakness of this version of the model is that it has difficulty matching the
hours-productivity correlation. The model’s simulated correlation is 0.86 op-
posed the actual data correlation of 0.25.

The next column presents statistics from a log linearized model of section
3 with time-varying depreciation from the class of AR(1) autoregressive pro-
cesses. We find that, within the AR(1) class of models, the value of the AR
coefficient that can match the hours-productivity correlation with the lowest
implied variance of the depreciation rate is a white noise process, as Ambler
and Paquet (1994) studied. Nevertheless, the second column of Table 6 shows
that the variance of depreciation must be at least three times as large as
in the data to match the hours-productivity correlation. Persistent AR pro-
cesses can also match the hours-productivity correlation but only with an even
larger (and unrealistic) unconditional variance of the depreciation rate, rela-
tive to white noise depreciation shocks. Nevertheless, the white noise process
with shocks that are large enough to reduce the hours-productivity correla-



Table 6: Business Cycle Statistics for the Markov-Switching Model

Technology δt Defined by δt Defined by Actual Data
Shock Only White Noise Process Markov Process

σy 1.01 1.21 1.08 1.24
σc/σy 0.40 0.35 0.45 0.52
σi/σy 3.03 3.88 3.37 2.50
σn/σy 0.61 0.86 0.79 0.77
σy/n/σy 0.39 0.34 0.46 0.46
σn/σy/n 1.67 2.54 1.72 1.64
annualized σδ 0.00 0.013 0.0046 0.003-0.004
corr(c, y) 0.96 0.39 0.68 0.84
corr(i, y) 0.99 0.96 0.95 0.92
corr(n, y) 0.98 0.94 0.89 0.88
corr(y/n, y) 0.96 0.56 0.63 0.66
corr(y/n, n) 0.89 0.25 0.22 0.25

Notes: Actual data for σδ based on Equipment and Software and Durables.
All series were run through the Hodrick-Prescott filter.
Actual data, except for depreciation, are taken from Li (1999).

tion also detracts in other dimensions, such as making output too volatile
relative to consumption. The results from AR(1) depreciation processes sug-
gest that a persistent but bounded AR process would be able to match the
hours-productivity correlation without inducing such an unrealistically large
variance in depreciation. Implementing decision rules for agents that would
be consistent with a bounded AR process would be difficult, however. For this
reason, we turn to a Markov switching process, which allows for persistence
yet puts bounds on the depreciation rate. This model will require nonlinear
decision rules, but it is more straightforward to implement than a bounded
AR process with a reflecting barrier.

The statistics from the nonlinear Markov switching model, shown in the
third column, demonstrate that Markov switching in the depreciation rate is
able to replicate the low hours-productivity correlation and resolve some of the
deficiencies of the AR(1) class of models. The Markov switching parameters
are δ0 = 0.017 and δ1 = 0.023 and the transition probabilities are pδ = 0.90
and qδ = 0.75. Depreciation shocks of this magnitude raise the standard
deviation of output by about seven percent, so the addition of depreciation
shocks leave the volatility of output at a level that is still consistent with the
data. The introduction of switching in the depreciation rate still generates
an investment-output ratio that is somewhat too high, but offers a way to
reduce the hours-productivity correlation with a much lower variance in the



depreciation rate that does not exceed the variances found in the sectoral BEA
data. The nonlinear model also matches the data in terms of the correlation
between productivity and output.

Nonlinear Decision Rules and Non− Certainty Equivalence

The reduction in the hours-productivity correlation brought by Markov
switching in the depreciation rate also holds in a linearized version of the
model that is simulated with linear decision rules. In the linearized model
with Markov switching depreciation, agents treat the depreciation rate as an
AR(1) process:

δt − δ0 = (1− pδ)(δ1 − δ0) + (pδ + qδ − 1)(δt−1 − δ0) + et, (7)

where agents using linear decision rules do not take account of either the
variance of depreciation or the fact that the mean-zero error term, et, only
takes on only two possible values when δt−1 = δ0 and two possible values when
δt−1 = δ1. In other words, linear decision rules connote certainty equivalence so
that agents ignore both the variance and skewness in the depreciation shocks.

With nonlinear decision rules, in contrast, agents take account of the true
two-point nature of the error process and consider the fact that the depreci-
ation rate has a positively skewed distribution when pδ + qδ > 1. Nonlinear
decision rules allow agents to act on their risk averse preferences so that they
invest less than they would under certainty equivalence because they dislike the
variance and positive skewness in depreciation. Thus, while many simulated
correlations and second moments from models with Markov switching param-
eters will be virtually identical whether linear or nonlinear decision rules are
used to simulate the model, nonlinear decision rules capture important level
effects due to non-certainty equivalence.

To illustrate the level effect that nonlinear decision rules permit, we inves-
tigate the effect of a mean-preserving spread of the depreciation rate. For this
illustration, the baseline case has δ0 = 0.017, δ1 = 0.023, pδ = 0.90, qδ = 0.75.

One mean-preserving spread that increases both the variance and the pos-
itive skewness of depreciation is to set δ0 = 0.01625, δ1 = 0.022, pδ = 0.85, qδ =
0.80.With linear decision rules and certainty equivalence, this mean-preserving
spread would have no effect on the average level of investment and output.
Since higher moments matter in the nonlinear decision rules, it is interest-
ing to note what effect risk terms related to depreciation switching have on
the level of the path of output. We simulate the model 400 times with and
without the mean-preserving spread and find that the level effect on output



lowers output by 0.25 percent (or about 25 billion dollars in the U.S. economy).
Given that the model has time-separable log utility, this level effect is perhaps
surprisingly large. This level effect would be even larger if the preferences
included habit persistence, for example.

Sensitivity Analysis

We begin our analysis by investigating the influence of switching between
states with a low and a high depreciation rate. The correlation results are
given in Figure 2 for three different processes defined by δ + /− µ, where δ =
(0.017, 0.020, and 0.022) and µ = (0, 0.0005, ..., 0.005). The transition matrix
for the two state process is set to pδ = 0.9 and qδ = 0.75. The results find
that independent of δ relatively small deviations from the conditional mean
between +/− 0.003 and +/− 0.0035 generate hours-productivity correlations
that are consistent with the empirical data of 0.25 (see Table 6). Our estimated
Markov switching models from Tables 3 and 4 suggest that the fluctuations of
δ + /− 0.003 are not counterfactually large.

As an alternative to the Hodrick-Prescott filter that is applied here and
elsewhere in the literature prior to calculating correlations, Cogley (1997) uses
a consumption-based measure of the business cycle from Cochrane (1994). The
idea of this nonstructural measure of the trend is that consumption provides a
good estimate of the trend level of output, since consumers try to distinguish
between permanent and transitory movements in income. With this measure
of the cyclical components, Cogley (1997) finds that hours and productivity
are negatively correlated. Figure 2 shows that, even with the HP filter applied
to the model-generated data, negative correlations readily attained from our
model with depreciation switching, with switching, for example, with δ =
0.017 + /− .005.

Impulse Responses

The precise meaning of impulse responses to a switch in a Markov pro-
cess requires explanation. In particular, we have to define the ‘shock’ behind
an impulse response. We run parallel simulations of the DSGE model for the
‘switch’ and ‘no switch’ scenarios. Both simulations share the same technology
shocks and a depreciation rate that randomly follows the Markov switching
process until 20 periods before the end of the sample of length T . At that
point, the first simulated series puts depreciation into the low state for the
next six periods; the second series puts depreciation into the low state for
the next period, the high state for the next four periods, and then the low



Figure 2: Hours-productivity Correlation and Depreciation Switching
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state again in the sixth period. A switch in the depreciation rate becomes
known in the same period and the endogenous variables reflect this new in-
formation, such that the variables should respond in the impulse before the
capital stock is affected. After the specified return to the low state in the
sixth period, the two series again share a common set of realizations of the
Markov switching process for depreciation. The four-period duration of the
high-depreciation state roughly reflects the half life of a spell in that state ac-
cording to its transition probability, qδ = 0.85 (0.854 = 0.51). The difference
between the paths of variables with and without the four period sojourn to
the high-depreciation state serves as a measure of the impulse response to a
switch to the high-depreciation state. The reported impulse response is the
average response from 400 simulations of the model.

Figure 3 plots the impulse responses of output, capital, hours and produc-
tivity to a switch to the high-depreciation state that lasts four periods. In the
low state the depreciation rate δ is set to 0.018 with transition probability 0.9,
whereas in the high state δ = 0.022 with transition probability 0.85.



Figure 3: Impulse Responses to a High-depreciation Episode
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The shock to capital generates the typical non-humped shaped dynamics
common among RBC models (see Gilchrist and Williams, 2000). More impor-
tant for us is the observation that depreciation switching tends to push the
hours-productivity correlation downward or even makes it negative, depend-
ing on the degree of switching. With enough variation in the depreciation
rate, the negative effect on the hours-productivity correlation can overcome
the tendency of technology shocks to induce a positive correlation.

The depreciation shock causes a negative level shift in output. Hours fall
initially because the capital stock is relatively high at first in relation to the
lower level of output. As the capital stock falls, however, labor hours must
be substituted for capital to maintain steady output. When the depreciation
rate switches back to the low state, output returns immediately to its initial
level. To achieve this level of output, hours must jump above their initial level
because the capital-output ratio is lower than it was initially. Gradually hours
decline as the rebuilding of the capital stock allows for substitution of capital
for labor. Throughout this process, the capital-output ratio moves in the
opposite direction from hours. Thus, labor productivity moves in the opposite



direction from hours. If depreciation switching is of sufficient magnitude and
frequency, the negative correlation it imparts between hours and productivity
can overcome the positive correlation implied by technology shocks, as shown
in Figure 2.

5 Summary and Conclusions

A big question mark concerning stochastic depreciation shocks is whether
they have to be unrealistically large to have any useful role in a dynamic gen-
eral equilibrium model economy. We first consider implied depreciation rates
from sectoral data from the Bureau of Economic Analysis. These depreciation
rates vary across time solely due to compositional changes within each sector.
Hence, they tend to understate the range of fluctuation that would hold if
the economic shelf life of capital varied endogenously as in Cooley, Greenwood
and Yorukoglu (1997). Even with this understated variance from the data,
however, we find that if depreciation rates follow a Markov switching process,
the variance does not have to exceed the variance found in the data to have
economically significant effects on the behavior of a model economy.

In this way, we re-investigate the question posed by Ambler and Paquet
(1994): can a stochastic depreciation rate for capital account for a low correla-
tion between hours worked and labor productivity? We find that the answer is
yes, given a Markov switching process for depreciation that is similar to what
we estimate from the data. Several results emerge from a simple RBC model
augmented with Markov-switching depreciation. First, the model is able to
replicate the low hours-productivity correlation found in the data using shocks
that have a lower variance than the white-noise shocks from Ambler and Pa-
quet (1994) would require. Second, although the data on depreciation rates
exhibit large differences across sectors, the aggregate depreciation rate can
be held within a relatively narrow range and still engender a low correlation
between hours and productivity. Third, linear decision rules imply certainty
equivalence and ignore the aversion that agents have to skewed parameter dis-
tributions. We illustrate the level effect implied by nonlinear decision rules
in simulations of dynamic general equilibrium models that include Markov
switching parameters.



Appendix: Numerical Implementation

A feature of the dynamic general equilibrium for the model described in
Section 3 makes the use of traditional solution techniques problematic. Since
Markov switching is present in the model’s parameters, there is no model
steady state to serve as a center of approximation. In addition, the values
of these switching parameters in different states are of crucial importance in
determining the decisions of agents. Thus, the switching cannot simply be
“turned-off” to provide a deterministic steady state.

In light of these problems, we use a solution technique first discussed by
Judd (1998), called the projection method (see Gong (1995) and Andolfatto
and Gomme (2003) for alternative solution procedures). The idea is to ap-
proximate the agent’s decision rules by polynomials that “nearly” solve the
agent’s optimization problem in a way made formal below. Using polynomials
allows us to represent the approximate rules in a compact form.

To apply the projection method, we express the agent’s optimization prob-
lem in the following form:

Max
ut

E0

[ ∞∑
t=0

βtr(xt, ut, Dt)

]
subject to the constraints

xt+1 = g(xt, ut, Dt, εt+1)

with x0 a given. In this formulation, xt is an n × 1 vector of state variables,
known by the agent at time t; ut is an m × 1 vector of the agent’s decision
variables. The d× 1 vector Dt is a vector of variables referred to as economy-
wide variables (The transition function, Dt is not needed for our analysis, but
it is included to keep the discussion general). These are variables that the
agent assumes are unaffected by his decisions and which lack fixed transition
equations. They will be determined by a set of equilibrium conditions. Finally,
εt+1 is an e× 1 vector of random shocks and r(xt, ut, Dt) is the agent’s utility
U(ct, lt).

State variables can be further sub-divided into two groups. One group
consists of variables that are purely exogenous to the agent. Their transitions
will depend only on factors outside of the agent’s control, namely themselves
and economy-wide variables. These variables represent things like the tech-
nology level. State variables that are under the control of the agent do not
have transitions dependent on their current values. For such a variable, xit,
controlled by the agent, xit+1 depends only on ut, Dt, and possibly εt+1. These



variables are things specific to the agent. Our assumption as to transitions for
these variables are not really restrictive in that we have yet to come across a
dynamic general equilibrium model that cannot be put in a form that satisfies
this assumption. The primary reason for this restriction is to enable us to
write the agent’s first-order conditions as described below without having to
deal with a value function as well.

In what follows, we denote differentiation with respect to a decision variable
with a Greek subscript, ψ. Differentiation with respect to a state variable is
denoted with a Roman subscript. The first-order conditions of the agent’s
optimization problem then are:

rψ(xt, ut, Dt) + βEt

[∑
i∈C

ri(xt+1, ut+1, Dt+1)g
i
ψ(xt, ut, Dt, εt+1) |xt

]
= 0,

for ψ = 1, . . . ,m. The sum of products of derivatives of the return function
and the transitions functions is taken over those variables that are under the
agent’s direct control, hence the shorthand notation, i ∈ C. The equilibrium
can be characterized as a set of functions, ut ≡ u(xt) and Dt ≡ D(xt), that
determine the agent’s decisions and the values of the economy-wide variables as
functions of today’s states. The agent’s first-order conditions are m functional
equations in these unknown functions. To complete the determination of these
unknown functions, we need d additional functional equations. These will be
equilibrium conditions for the economy and can take a wide range of forms.
The usual case is for them to take a simple form such as e(xt, u(xt), D(xt)) ≡ 0.

In the concrete case discussed above, we can express the vectors above as
follows:

xt = (zt, δt, kt).

Note that agent takes the level of technology, beliefs about the current state
of the Markov switching parameters as given. The decision vector is:

ut = (kt+1, lt).

Since it is impossible to derive an analytic expression for these unknown
functions, they are approximated by sums of polynomials of the following form:

u(xt) ≈
∑

w1+w2+···+wn≤W
c(w1,w2,...,wn)ϕ(w1,w2,...,wn)(xt),



where W is the upper bound on the degree of the polynomial and c(w1,w2,...,wn)

are scalar weights for the basis polynominals ϕ. The ϕ functions are polyno-
mials that take the form:

ϕ(w1,w2,...,wn)(xt) = Tw1(x1
t )T

w2(x2
t ) · · ·Twn(xnt ),

where Twi(x) is a polynomial in x with degree wi. T
wi(x) could, technically,

be simply xwi , but these polynomials are notorious for their extremely poor
approximation properties. Consequently, we use suitably scaled and translated
Tchebychev polynomials for the Twi(x) functions. These not only have excel-
lent approximation properties, but are also easy to evaluate with the intrinsic
functions that come with most standard software packages. Usually defined on
the interval [−1,+1] as T n(x) = cos(n arccos(x)), they can be easily evaluated
by any package that has an intrinsic cosine and arccosine function.

In general, m+ d functional equations implicitly determine both u(xt) and
D(xt). Let us denote them as

Rψ(xt, u(xt), D(xt)) = 0,

for ψ = 1, . . . , (m + d). We need to find coefficients for the polynomial ap-
proximations so that the approximations “nearly” solve the set of functional
equations above. There are numerous ways to do this, as described in detail
in Judd(1998). The most natural choice is a set of coefficients that sets∫

Rα(x, u(x), D(x))ϕ(w1,...,wn)(x)dx = 0,

where these integrals are taken over some pre-determined region of space
thought to capture most of the dynamic behavior of the economy and the
ϕ(x) functions have been translated to center on this region. This approach
is appealing since it transparently gives one equation for each unknown coeffi-
cient in each functional approximation. It is also eminently reasonable in that,
if for some reason, the equations Rα(x, u(x), D(x)) = 0 were satisfied exactly
by polynomials u and D, these conditions would determine their coefficients
exactly.

As long as the Rα functions are set to zero in some average sense over
a region, we should have reasonable approximations to the agent’s decision
rules over this region. Consequently, we use a pseudo-random Monte Carlo
method to calculate the integrals above. Thus, derivation of the coefficients
in our polynomial approximations has been reduced to the solution of a set
of nonlinear equations in these coefficients. While evaluation of the equations



themselves can be slow, Broyden’s method for solving nonlinear equations
works well.
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