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Abstract

Labor hoarding is a widely believed empirical behavior of �rms and a prominent explanation

for procyclical labor productivity. Conventional wisdom attributes labor hoarding to labor ad-

justment costs. This paper argues that the conventional wisdom is inadequate for understanding

labor hoarding because it ignores the role of inventories. Since idle labor can be used to produce

inventories, why do �rms hoard labor when inventory is an option? Using a dynamic rational

expectations model of pro�t-maximizing �rms facing demand uncertainty, this paper studies the

dynamic interactions between labor hoarding and inventory accumulation. Closed-form decision

rules for labor and inventory decisions are derived. The analysis shows that labor adjustment

costs alone are far from su¢ cient for explaining labor hoarding.
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1 Introduction

Labor hoarding (or excess labor) is a widely believed empirical fact about �rms�behavior of coping

with demand uncertainty (see, e.g., Clark 1973, Fay and Medo¤ 1985, and Fair 1969, 1985). It

is also the single most important concept in the business-cycle literature as an explanation for

procyclical labor productivity (e.g., see Bernanke and Parkinson 1991, Dornbusch and Fischer

1981, Miller 1971, Rotemberg and Summers 1990, and Summers 1986, among many others). The

conventional wisdom for labor hoarding is based on labor adjustment costs. Namely, due to various

types of adjustment costs of labor (e.g., search and training costs), �rms opt not to lay o¤ workers

when demand is temporarily low, because �ring workers may be more costly than hoarding them

(in addition to search and training costs, there is also the opportunity cost of losing sales when

demand suddenly picks up). Consequently, �rms opt to incur idle labor during recessions, which

makes labor productivity appear to be procyclical (see, e.g., Okun 1962, Miller 1971, Becker 1975,

and Fay and Medo¤ 1985, among others).

This paper argues that such arguments are incomplete and insu¢ cient for explaining labor

hoarding because they ignore the role of inventories. Holding excess supplies of �nished goods

as inventories is another way to cope with demand shocks, one that also avoids the adjustment

costs of labor. For example, when demand is temporarily low, �rms can accumulate inventories

by producing at full capacity and using inventories to meet with possibly higher future demand,

rather than reducing production by hoarding labor and using the hoarded labor to meet with

possibly higher future demand. Either way can obviate the need for a �rm to adjust its labor

stock. Considering that most manufactured goods are storable at low cost and that inventories are

far more liquid than production factors in serving �nal demand, hoarding labor is perhaps a more

costly way to cope with demand uncertainty than holding inventories.

Despite the intimate relationship between inventories and labor hoarding, the vast bulk of the

labor hoarding literature has neglected inventories; likewise, the vast bulk of the inventory lit-

erature has neglected labor hoarding. As a consequence, the mechanism of labor hoarding has

not been well understood. This unsatisfactory situation has been highlighted recently by Gale-

otti, Maccini and Schiantarelli (2005). They show that estimating �rms�Euler equations without

taking into account the interactions between inventory decisions and labor decisions can lead to

serious misidenti�cations. Their empirical work suggests that the cross-equation restrictions im-

posed by �rms� inventories and labor decisions are extremely important for correctly identifying

key parameters of standard optimization models of �rms.

It is well documented in the empirical literature that the inventories-to-sales ratio is counter-
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cyclical (e.g., see Bils and Kahn, 2000) and that the labor utilization rate is procyclical (e.g., see Fay

and Medo¤ 1985 and Fair 1985), suggesting that times when inventories are high relative to sales

are also times when �rms hoard labor. The question therefore is: When �rms can use inventories

of �nished goods to bu¤er demand shocks, why is it also necessary to keep inventories of labor?

In other words, what are precisely the gains of labor hoarding relative to inventory holding? This

seems to be a fundamental question for understanding labor hoarding, yet it is seldom addressed

by either the labor-hoarding literature or the inventory literature.

Topel (1982) is an important exception. Realizing the close link between inventories and excess

labor, Topel uses a dynamic optimization model to study the interactions between labor decisions

and inventory decisions. His analysis suggests that inventories are substitutable for labor hoarding,

hence �rms with high costs of labor hoarding tend to rely more on inventories to bu¤er demand

shocks. Topel also argues that the prediction is consistent with the data. However, Topel�s analysis

is based on a deterministic model and his empirical analysis relies on the assumption of demand

uncertainty. Furthermore, Topel does not directly address the necessary and su¢ cient conditions

for labor hoarding. Since closed-form decisions rules are not available in Topel�s model, many

empirical implications of his model, such as the impulse responses of inventories and labor hoarding

to demand shocks, cannot be directly tested.

This paper builds on Topel�s pioneering work by taking demand uncertainty into explicit con-

sideration. Using a version of Topel�s model, I am able to obtain closed-form decision rules for

inventory and labor hoarding. The analysis reveals that inventory dynamics can be altered by

labor hoarding in an important way, and vice versa, when both inventories and labor decisions are

jointly taken into consideration. Such results con�rm the econometric analyses of Topel (1982) and

Galeotti, Maccini and Schiantarelli (2005). Further and more importantly, it is shown that labor

adjustment costs alone are not su¢ cient for inducing labor hoarding behavior. In addition to the

adjustment costs, more conditions are required in order for �rms to hoard labor in equilibrium.

These conditions include:

1) The present value of gains from hoarding labor (e.g., postponing current production costs

and avoiding future hiring costs) must exceed that of holding inventories. Otherwise, �rms will use

only inventories to cope with demand uncertainty.1

(2) There must exist an information technology that allows the �rm to update and revise its

expectations about demand after the labor hiring decision has been made but before the inventory

decision is made. Otherwise, �rms will never hoard labor; instead, they will use inventories alone to

bu¤er demand shocks even if hoarding labor is an option and is less costly than holding inventories.

When production is instantaneous, condition (1), in conjunction with labor adjustment costs,

1This implies that a lower cost of holding inventories relative to hoarding labor is not a necessary condition for
inventories to exist. In other words, it may still be optimal for �rms to hold inventories in addition to hoarding labor
even if hoarding labor is less costly than holding inventories.
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is su¢ cient for inducing labor hoarding. However, if production takes time, then condition (2) is

also a necessary condition for labor hoarding to be optimal. Condition (1) looks trivial from a

theoretical view point: it states the trade o¤ between inventories and labor hoarding in present

value terms. However, this condition may be di¢ cult to justify empirically, since common sense

suggests that hoarding labor may be more expensive than holding inventories. Labor is one of

the most important cost factors in production besides capital, whereas keeping inventories requires

only depreciation and cheap space in a warehouse.2

Condition (2) is subtle and less obvious. In reality, time is always a crucial factor in economic

activities. For example, it takes time to search for and train workers. Due to this, �rms�hiring

decisions must be made before their production decisions are made. Also, it takes time to produce

and deliver goods. So the production decisions have to be made before demand uncertainty is fully

resolved. The existing literature has shown that time lags in production/delivery are the key for

explaining many long-standing puzzles of the inventory behavior (see, e.g., Kahn 1987, 1992, and

Wen 2005) because they give rise to a liquidity advantage of inventories over production factors in

dealing with demand shocks. This makes hoarding labor less attractive than holding inventories.

Thus, planning for zero labor hoarding at the time of labor hiring is always optimal from the point

of view of cost minimization. However, imagine that after the labor hiring decisions but before

the production (capacity utilization) decisions are made, there is new information indicating that

demand is lower than expected. The �rm can either stay the course and continue to produce

at full capacity (anticipating more inventory accumulation), or reduce capacity utilization (labor

hoarding) and incur less inventories. If hoarding labor is cheaper than holding inventories, the

second strategy is clearly optimal since liquidity is no longer a concern. That is, the acquisition of

new information warrants the need to reconsider the planned inventory level, and the readjustment

of the planned inventory level is made possible by utilizing the option of labor hoarding. Hence,

labor hoarding can serve as a technological option to exercise in order to reduce inventory costs

despite the fact that labor is not as liquid as inventories in bu¤ering demand shocks.

The bottom line is that, in an economy with time-to-search and time-to-produce, even high costs

of inventories (in addition to adjustment costs of labor) do not su¢ ciently justify labor hoarding.

An information technology that enables the �rm to update and extract new information about

demand changes is also needed. Without the information technology or the information updating,

labor hoarding is never optimal even if it is less costly than holding inventories. On the other

hand, even if there is information updating about demand after the hiring decisions but before the

production decisions are made, such that readjustment of planned inventory levels is warranted, a

2Labor costs account for about 60% of total production costs for a typical �rm in the U.S. Assuming that the
markup is 20% and that half of this markup is used to cover the inventory holding and depreciation costs, then for
every dollar of revenue, about 60 cents are used to cover the labor costs and 10 cents are used to cover the inventory
holding costs.
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�rm may still �nd it optimal not to hoard labor if holding inventories is less costly than hoarding

labor. Hence both condition (1) and condition (2) are necessary for the coexistence of inventories

and labor hoarding. In the absence of either condition, �rms will hoard �nished goods inventories

but not labor in spite of labor adjustment costs.

In economies with time-to-produce, when both conditions (1) and (2) can be met (in addition

to labor adjustment costs), pro�t-seeking �rms do have incentive to enhance supply �exibility

by holding not only goods inventories but also excess supplies of labor in reserve, so as to fully

guard against demand uncertainty. This recon�rms Blinder�s (1982) conjecture and Topel�s (1982)

analysis regarding �rms�strategic behavior under demand uncertainty. That is, inventories of labor

are partial substitutes for inventories of goods as a means of coping with demand shocks.3

The availability of closed-form decision rules makes the model attractive in serving as a con-

venient and simple framework for further econometric and empirical analysis in related empirical

issues. The model also o¤ers a micro-foundation for understanding aggregate employment and la-

bor productivity movements. It is shown that as a consequence of labor hoarding, measured labor

productivity is procyclical despite non-increasing returns to scale. Interestingly, the model does

not require the assumption of unobservable labor e¤ort as an additional production factor in order

to explain procyclical labor productivity. Unobservable e¤ort is a necessary condition for other

types of labor hoarding models to explain the procyclical output-labor ratio (e.g., see Rotemberg

and Summers 1990, and Burnside, Eichenbaum and Rebelo 1993).4

Hopefully, the theoretical analyses in this paper can promote and stimulate further empirical

work on inventories and labor hoarding. For example, how to correctly measure and compare labor

hoarding costs and inventory holding costs of a particular �rm? Is it true that hoarding labor is

necessarily cheaper than holding inventories? Can we use the observed extent of labor hoarding

and inventory level of a �rm to infer the �rm�s hidden costs of labor hoarding and inventory holding,

as well as the �rm�s information-processing structure about expected demand? Do �rms that have

larger inventory �uctuations tend to have smaller labor productivity �uctuations? In other words,

how to measure the elasticity of substitution between inventories and hoarded labor?

The rest of the paper is organized as follows. Section 2 studies a simple two-period model with

i:i:d demand shocks and �xed output prices to gain intuition. Section 3 extends the two-period

model to an in�nite horizon with serially correlated demand shocks and endogenous output prices.

Section 4 concludes the paper.

3This understanding of �rms�strategic behavior has also long been held by other economists. See, for example,
Miller (1971) and Becker (1975), among others.

4Fay and Medo¤ (1985) argue that the e¤ort margin is a less important contributor to labor hoarding.
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2 A Two-Period Model

Assume that the �rm�s demand is given by �t =  + "t; where  is a positive constant and " is an

i:i:d: random variable with zero mean and support [�; ], so that the realized demand is always
non-negative. Let F (") be the c:d:f of "; F (�") = Pr [" � �"]. The maximum amount the �rm can

sell in period t is its inventory as of the end of the previous period, denoted by st�1, plus whatever

it produces during period t (yt). Assuming that the goods price p is su¢ ciently high, we have

� t = min f�t; yt + st�1g ; where � t denotes actual sales in period t. To allow for the possibility of

inventories, assume that the production decision must be made before demand uncertainty is fully

resolved. In particular, the production decision is based on an imperfect signal about demand,

xt = "t + vt, where the noise term vt is othorgonal to "t with zero mean and variance �2v.

For simplicity, assume that labor is the only factor of production and the production technology

has constant returns to scale, so

yt = Lt: (2.1)

It is useful to distinguish between workers on line (L) and workers on reserve (R). Workers on line

are those who are engaged in production. Workers on reserve are those who are on the payroll but

do not produce output. The wage rate paid to workers on line each period is w per worker (w < p

is a known constant), and the wage rate paid to workers on reserve each period is a fraction (� < 1)

of w.5 The total stock of workers on payroll is denoted Wt � Lt + Rt. Since in each period the

�rm can either hire or �re workers to adjust the �rm�s labor stock, the law of motion for the stock

of workers is given by Wt =Wt�1 +Nt; or

Lt +Rt = Lt�1 +Rt�1 +Nt; (2.2)

whereN is a �ow variable denoting new hiring (or �ring). The right hand side, (Lt�1 +Rt�1 +Nt) ;

is hence the total stock of workers available for work at the beginning of period t.

It is assumed that decisions for Nt (hiring) need to be made one period in advance. Hence

adjusting the labor stock later in response to better information about demand changes is impos-

sible. This feature of labor as a quasi-�xed factor (Oi 1962) gives rise to an incentive for labor

hoarding in this model. But this feature alone, as will be shown shortly, is not su¢ cient for in-

ducing labor hoarding behavior. Assume that the costs involved in hiring a worker are given by

c (e.g., search and job training costs).6 The pro�ts in period t are simply revenue minus costs,

p� t � w(Lt + �Rt)� cNt:
5Costs are usually higher when producing than when not producing. For example, producing goods requires both

labor and materials, hence not producing can save both labor costs and the material costs. Since no production factor
other than labor is assumed in the production function, the assumption � < 1 captures the idea that production
costs are higher when producing than when not producing.

6For simplicity, the costs of �ring workers are not modeled. However, adding such a feature does not change the
implications of the model, since this merely reinforces the adjustment costs of labor.
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The sequence of decision making in the model is as follows. The �rm decides �rst how many

workers to hire based on information available at the beginning of period t � 1. A new signal

about demand, xt = "t + vt; is then observed towards the end of period t � 1, based on which
the �rm decides how much output to produce by choosing the utilization rate of labor (i.e., the

number of workers on line as well as the number of workers on reserve). The true demand shock,

"t, is revealed at the beginning of period t, based on which the �rm makes decisions on sales and

inventory accumulations.

De�ne information sets as follows: 
0 � 
1 � 
2, where 
0 is the initial information set in the
beginning of period t� 1 when decisions for Nt are made, 
1 = 
0 [ xt is the updated information
set for production decisions at the end of period t � 1, and 
2 = 
1 [ "t is the further updated
information set for sales and inventory decisions in period t. The timing of events is illustrated

below:

tN },,{ ttt RLx

1−t t

},{ tt sθ

Since there are only two periods and the shocks are i:i:d, we can set the initial values fLt�1; Rt�1; st�1g
= 0. In this case, both inventories and labor stock lose their potential future values due to the lack

of durability. To ensure that inventories may have positive values, we assume that inventories can

be sold at a price lower than the regular output price p. The �rm�s problem is to solve

maxE fp� t + �pst � w [Lt + �Rt]� cNtg

subject to

� t + st = Lt (2.3)

Lt +Rt = Nt (2.4)

and two non-negativity constraints on inventory stock and hoarded labor, st � 0 and Rt � 0: Note
that � 2 (0; 1) in the pro�t function indicates that end-of-period inventories sell at the equivalent
of a low price.

Denoting
�
�st ; �

R
t ; �

s
t ; �

R
t

	
as the Lagrangian multipliers for constraints (2.3), (2.4) and the two

non-negativity constraints, respectively, the �rst order conditions for fN;L;R; s; �g are given by

c = E
�
�Rt j
0

�
(2.5)
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w + �Rt = E [�
s
t j
1] (2.6)

�w + �Rt = �
R
t (2.7)

�st = �p+ �
s
t (2.8)

�st = p; if �t > yt (2.9)

plus two complementary slackness conditions, st�st = 0 and Rt�
R
t = 0.

2.1 Analysis

The key of the analysis is obtaining the expected values of goods (�s) and labor (�R), so that (2.5)

and (2.6) can be used to solve for the decision rules of hiring and labor utilization. By the linear

projection theory (signal extraction), we have

E[�tj
1] = E[�tjxt] =  + �xt; (2.10)

where � = �2"
�2"+�

2
v
: Denoting the forecast error for demand at the end of period t � 1 as �t �

�t � E [�tjxt], we have
�t = "t � �xt: (2.11)

Namely, the forecast error for "t based on information after xt is observed is simply the di¤erence

between the realized demand innovation " and the projection of "t on xt (signal extraction). If there

is no noise (�2v = 0), then � = 1 and the forecast error is zero. On the other hand, if x contains no

information about " (�2v =1), then � = 0 and the forecast error is the same as �t�E [�tj
0] = "t:
Denote the cumulative probability density function (c:d:f) of � as G(�):

The equilibrium of the model is characterized by threshold strategies. Namely, the �rm uses

optimal cut-o¤ values for the forecast errors and the signal to determine whether to stockout or

not in the goods and the labor markets. To proceed, consider period t0s decision after observing

"t. Given that the forecast error is �t = "t � �xt, there are two possible cases to consider:

Case A: �t < �
�
t :
7 The forecast error for demand turns out to be low due to a low realization

of "t. In this case, the realized demand is low (�t < yt), the actual sales are thus determined by

� t = �t and the �rm opts to incur inventories, st > 0. Hence, �st = 0 and �
s
t = �p:

8 The condition

st > 0; implies yt � �t = yt � (E [�tj
1] + �t) > 0, or equivalently,

�t < yt � E [�tj
1] � ��t : (2.12)

7�� is an optimal cut-o¤ value to be determined endogenously later.
8The marginal case with equality, �t = �

�
t , is included under case B to be considered later.
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In other words, the cut-o¤ value of �t is determined by �
�
t � yt � E [�tj
1] :

Case B: �t � ��t : In this case, supply falls short of demand (�t � yt). Hence, � t = yt; st =

0; �st > 0; and the marginal value of goods �
s
t = p.

The above analysis suggests that the probability of case A and case B depends endogenously

on the choice of the output level before the realization of demand, since the optimal cut-o¤ value

(��t ) is determined by yt: In other words, the probability of a stockout in inventories in period t is

determined by production decisions made at the end of period t� 1.
The value of output is given by �st . The expected value of output based on signal x is given by

E [�st j
1] = �p
Z
�t<�

�
t

dG(�) + p

Z
�t���t

dG(�) 2 (�; p): (2.13)

Therefore, the �rst-order condition with respect to Lt (2.6) becomes:

w + �Rt = �p

Z
�t<�

�
t�yt�E[�tj
1]

dG(�) + p

Z
�t���t�yt�E[�tj
1]

dG(�); (2.14)

which determines the optimal production level (yt) based on information set 
1. The left-hand side

(LHS) of equation (2.14) is the marginal cost of output known by the end of t� 1, which has two
components: the wage cost for putting a worker on line (w), and the opportunity cost for losing

slackness in the labor resource constraint (�Rt ), which re�ects the tightness of labor resources for

the �rm. Hence, the optimal output level depends on the shadow value of labor input (�Rt ) at time

t� 1.
To determine the value of �R, we again have two cases to consider:

Case C: xt < x�t :
9 The received signal at the end of period t� 1 is low, indicating a low demand

in period t. In this case, optimal demand for workers on line should be low because expected future

demand is low. Hence it is optimal to hoard labor (Rt > 0). Therefore, �Rt = 0 and �
R
t = ��w,

which indicates that the marginal value of labor is given by its hoarding costs, ��w. Equation
(2.14) implies

w(1� �) = �p

Z
�t<�

�
t

dG(�) + p

Z
�t���t

dG(�) (2.15)

= �pG(��t ) + p [1�G(��t )] :

This equation suggests that, conditioned on low signals for demand (xt < x�t ), the optimal cut-o¤

9x� is an optimal cut-o¤ value of the signal to be determined endogenously.
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value for �t is a constant, �
�
t = ��; which solves the equation,

G(��) =
p� (1� �)w
p(1� �) : (2.16)

Given that ��t � yt � E [�tj
1], the optimal output level (or the optimal number of workers on
line) is thus determined by

yt = ��+ E [�tj
1] (2.17)

= ��+  + �xt:

That is, when the signal for demand is low, the optimal output level is determined by a constant

inventory target (��) plus the expected demand (+ �xt) based on the most up-to-date information

available at the end of period t� 1.
Since G(��) � 1; we must require that the value of hoarding labor be greater than the value of

holding inventories,

(1� �)w � �p; (2.18)

where (1� �)w is the value gained (or the opportunity cost saved) by putting a worker on reserve
instead of on line. The requirement (2.18) amounts to ensuring that the cost of labor hoarding

be su¢ ciently below the cost of holding inventories in order for case C (Rt > 0) to be optimal.

To see this more clearly, suppose (1� �)w < �p (hoarding labor is less bene�cial relative to

holding inventories). Then the RHS of equation (2.15) always exceeds the LHS, hence we must

require �Rt > ��w; or equivalently �Rt > 0, to hold. This implies that Rt = 0 must hold (by the
complementary slackness condition), suggesting that it is optimal not to hoard labor if the cost

of hoarding labor exceeds the cost of holding inventories. Hence labor hoarding and inventories

do not coexist if hoarding costs are too high relative to inventory costs. In the special case where

� = 0 (i.e., inventories have no market value), a much less restrictive condition, � < 1; is required

in order for labor hoarding to be optimal (i.e., it requires the cost of production to be higher than

the cost of no production or inaction).10

Case D: xt � x�t : In this case, demand for workers on line is high because the observed signal x
suggests a high future demand for goods. Hence, hoarding labor is not optimal, suggesting Rt = 0

and yt = Nt (producing at full capacity).

The optimal decision rule for production is thus given by

yt =

8<:
��+  + �xt if xt � x�t

Nt if xt > x�t

: (2.19)

10See footnote 5.
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To determine the optimal cut-o¤ point x�t ; note that under case C, yt = �� +  + �xt, hence the

condition Rt > 0 implies 0 < Nt � yt = Nt � ���  � �xt; or

xt <
1

�
[Nt � ��� ] � x�t ; (2.20)

which de�nes the cut-o¤ point for xt.

Clearly, the probability of case C and case D is determined endogenously by the cut-o¤ value,

x�t � 1
� [Nt � ��� ], which in turn is determined by the quality of information (�), the average

demand (), the target inventory-production level (��), and most importantly, the level of labor

stock (N) that is determined by the �rm�s hiring choices made in the past (at the beginning of

period t� 1).
De�ne the c:d:f of x as Z(x): To determine the optimal level of hiring (Nt) based on information

set 
0, equation (2.5) implies

c = E
�
�Rt j
0

�
(2.21)

= ��w
Z
xt<x�t

dZ(x) +

Z
xt�x�t

(E [�st j
1]� w) dZ(x)

where

E [�st j
1] = �p
Z
�t<yt�E[�tj
1]

dG(") + p

Z
�t�yt�E[�tj
1]

dG("); (2:130)

according to equation (2.13) presented before. Recall that under case D, �R = ��w + �R > ��w
and yt = Nt. Hence, conditioned on xt � x�t ; we have

yt � E [�tj
1] = Nt � E [�tj
1] (2.22)

= ��+ �(x�t � xt);

where the second equality is obtained by using the de�nition of the cut-o¤point, x�t � 1
� [Nt � ��� ],
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which implies Nt � �x�t + ��+ : Therefore, we haveZ
xt�x�t

E [�st j
1] dZ(x) (2.23)

= �p

Z
xt�x�t

 Z
�t<��+�(x

�
t�xt)

dG(�)

!
dZ(x) + p

Z
xt�x�t

 Z
�t���+�(x�t�xt)

dG(�)

!
dZ(x)

= �p

Z
xt�x�t

G (��+ �(x�t � xt)) dZ(x) + p
Z
xt�x�t

[1�G (��+ �(x�t � xt))] dZ(x)

� �(x�t ) :

Thus the condition (2.21) that solves for the optimal level of Nt is reduced to

c = ��wZ(x�t )� w [1� Z(x�t )] + �(x�t ); (2.24)

where the RHS of (2.24) depends on x� only. This suggests that the target for excess labor is a

constant, x�t = �x; so Nt = ��x+ ��+  is the optimal decision rule for hiring.

2.2 Results

The decision rules of the model are summarized by:

Nt = ��x+ ��+  (2.25)

yt =

8<:
��+  + �xt if xt < �x

��+  + ��x if xt � �x
(2.26)

Rt =

8<:
� (�x� xt) if xt < �x

0 if xt � �x
(2.27)

st =

8>>>><>>>>:
��+ �xt � "t if "t < ��+ �xt and xt < �x

��+ ��x� "t if "t < ��+ �xt and xt � �x

0 if "t � ��+ �xt

(2.28)
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where the identity �t = "t��xt has been utilized throughout the derivations. Finally, the measured
productivity is given by the ratio of output to total labor stock:

yt
Lt +Rt

=

8<:
��++�xt
��++��x if xt < �x

1 if xt � �x
: (2.29)

Proposition 1 The optimal volume of labor hoarding is zero if the �rm does not have the informa-

tion technology to update information about future demand after the decision for hiring but before

the decision for production is made.

Proof. No information updating is equivalent to the case that the signal x contains no useful

information about demand, xt = vt. Hence � = 0: The decision rule for labor hoarding (2.27)

implies that the planned level of labor hoarding is zero. The intuition is that there is no need to

revise production plans (which are made at the time of hiring) if the signal x is not informative.

Hence, Nt always determines the optimal output level yt.

Proposition 2 The optimal volume of inventories is zero if the signal provides perfect information

about demand.

Proof. Perfect information about demand implies that xt = "t; namely, the information about

future demand is fully revealed by the end of period t� 1; so that �t = 0 and � = 1. In this case,
G(�) is a degenerate step function and the support of �t is a single point at �t = 0. Since the

optimal cut-o¤ point ��t must be contained in the support of the distribution G(�), case A (st > 0)

is ruled out and the only possible solution is the marginal case with ��t = �� = 0 and st = 0. The

intuition of this proposition is that inventories no longer provide insurance against the possibility

of stockout when the �rm has perfect information about demand at the time of capacity utilization

choice.

Thus, two crucial conditions must be met in order to observe the coexistence of labor hoarding

and inventories. They are: (1) There cannot be perfect information about demand at the time

when the production decision is made; otherwise the �rm does not hold inventories; (2) there is

an information technology that enables the �rm to update and revise expectations about future

demand after the hiring decision but before the capacity utilization decision for labor is made;

otherwise the �rm holds inventories but does not hoard labor. In addition to the two conditions,

there is a third condition (stated previously) for the coexistence of inventories and labor hoarding,

which is that the potential gains from labor hoarding must be greater than those from inventory

holding, (1� �)w > �p; otherwise the �rm holds inventories but does not hoard labor, everything

else equal.

13



Proposition 3 The measured productivity of labor is procyclical as long as there is labor hoarding.

Proof. The covariance between labor productivity and output is given by cov
�
y; y
L+R

�
= �

��++��x�
2
y

> 0, where � is the probability that demand is low (i.e., � � Pr [xt < �x]).

Since the major goal of this section is to gain intuition, the discussion of the more important

and interesting implications of the model is postponed until the more general model is presented

below.

3 In�nite Horizon

The above analysis may su¤er from several shortcomings due to its simplicity. First, the expected

future values of labor and inventories are not taken into consideration in the two-period model. This

may lead to biased decision rules in favor of labor hoarding or inventories. Second, the assumption

of i:i:d demand shocks implies that the optimal labor stock is a constant, and this may be driving

the procyclical productivity in the two-period model. When demand shocks are serially correlated,

optimal hiring should depend on past demand shocks. This may alter the procyclical productivity

result obtained above. Third, output price is �xed exogenously. This assumption may lead to

biased decision rules in favor of holding inventories since if the output price is endogenous, �rms

may opt not to hold inventories when price can be adjusted downward to equate demand and

supply. This section relaxes these assumptions and shows that the main insights obtained in the

two-period model are robust.

Assume that the �rm�s inverse demand function is given by pt = p(� t; �t); where � denotes sales

and � denotes demand shocks. Denote the �rm�s revenue function as r(� t; �t) = � tp(� t; �t) with

r0� (�) > 0 and r00� (�) < 0. Assume that demand shocks follow the process �t =  + ��t�1 + "t;

where � 2 (0; 1) measures the degree of serial correlation and " is an i:i:d: random variable with

zero mean and support [�; ]. Continue to denote F (") as the c:d:f of ". Since inventories and
labor are durable, the law of motion for the goods market is modi�ed to � t + st = (1� �)st�1 + yt;
and the law of motion for the labor market is modi�ed to Lt +Rt = Lt�1 +Rt�1 +Nt: Other than

these changes, the structure of the model is the same as before.

De�ne information sets as follows: 
t�1 � 
xt � 
t, where 
t�1 is the information set in the
beginning of period t�1 when decisions for Nt are made, 
xt = 
t�1[xt is the updated information
set for production (labor utilization) decisions at the end of period t� 1, and 
t = 
xt [ "t is the
further updated information set for sales and inventory decisions in period t. The timing of events

is the same as illustrated in the �gure in section 2.

The �rm�s problem is to solve
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maxE
1X
t=0

�t fr(� t)� w [Lt + �Rt]� cNtg

subject to

� t + st = (1� �)st�1 + Lt (3.1)

Lt +Rt = Lt�1 +Rt�1 +Nt (3.2)

and st � 0; Rt � 0; where � 2 (0; 1) is the discount factor (the inverse of the interest rate) and
� 2 (0; 1) is the depreciation rate of inventories.

Denoting
�
�st ; �

R
t ; �

s
t ; �

R
t

	
as the Lagrangian multipliers for constraints (3.1), (3.2) and the two

non-negativity constraints respectively, the �rst order conditions for fN;L;R; s; �g are given by

c = E
�
�Rt j
t�1

�
(3.3)

w + �Rt = �E
�
�Rt+1j
xt

�
+ E [�st j
xt] (3.4)

�w + �Rt = �E
�
�Rt+1j
xt

�
+ �Rt (3.5)

�st = (1� �)�E
�
�st+1j
t

�
+ �st (3.6)

�st = r
0(� t; �t); (3.7)

plus two complementary slackness conditions:

st�
s
t = 0 (3.8)

Rt�
R
t = 0: (3.9)

Compared with the two-period model, note here that E
�
�Rt+1j
xt

�
in equations (3.4) and (3.5) is

the expected future value of labor that must be taken into account due to labor�s durability, and

(1 � �)E
�
�st+1j
t

�
in equation (3.6) is the expected future value of inventory that must be taken

into account due to inventory�s durability.

3.1 Analysis

The procedure to obtain the decision rules of the model is similar to that in the two-period model

by �rst �nding the expected shadow values of goods (�s) and labor (�R). By signal extraction, we

have E[�tj
xt] = E[�tj�t�1; xt] =  + ��t�1 + �xt; where � =
�2"

�2"+�
2
v
: Denoting the forecast error
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for demand at the end of period t � 1 as �t � �t � E [�tj
xt], we have �t = "t � �xt: Denote the
cumulative probability density function of � as G(�):

Since c = E
�
�Rt j
t�1

�
according to (3.3), by the law of iterated expectations, we have E

�
�Rt+1j
xt

�
= E

�
E
�
�Rt+1j
t

�
j
xt

�
= c: Hence equations (3.4) and (3.5) can be simpli�ed to

w + �Rt = �c+ E [�
s
t j
xt] (3:40)

�w + �Rt = �c+ �
R
t (3:50)

Taking expectations on both sides of (3:40) with respect to 
t�1; we have w + E
�
�Rt j
t�1

�
=

�c+ E [�st j
t�1] ; which implies

E [�st j
t�1] = w + (1� �)c: (3.10)

Hence, equation (3.6) can be simpli�ed to

�st = (1� �)� [w + (1� �)c] + �st : (3:60)

The interpretation of (3.10) is straightforward. In equilibrium, the expected value of producing

one unit of inventory based on information available at the time of hiring, E [�st j
t�1], equals its
marginal cost, which has two components: the cost of putting a worker on line for production (w)

and the shared average cost of hiring a worker ((1� �) c). The hiring cost must be divided by the
number of periods (with discounting) for which the worker is included in the labor stock (since

(1� �) c = c
1+�+�2+:::

). Alternatively, in order to produce one unit of inventory, the �rm needs

to incur the hiring cost (c) in addition to the wage cost of putting the worker on line (w). Due

to durability, the �rm also gets to save future hiring cost with discounted value of ��c. Thus,
(1� �)� [w + (1� �)c] in equation (3:60) is simply the value of inventory after depreciation. Since
the shadow value of goods could be higher than its inventory value when demand is high, equation

(3:60) is adjusted by the slackness multiplier �s � 0. Hence, (3:60) implies that in case the current
demand is low (�st = 0), the value of a good is its inventory value; and in case the current demand

is high (�st > 0), the value of a good is its inventory value plus a markup. The average value of a

good is given by (3.10) based on information 
t�1, which has to exceed its inventory value.11

Now consider period t0s decision after observing "t. Given that the ex post forecast error is

�t = "t � �xt, there are two possible cases to consider:
Case A: �t < �

�
t : In this case, the realized demand is low and the �rm opts to incur inventories,

st > 0. Hence, �st = 0 and �
s
t = (1� �)� [w + (1� �)c] according to (3:60).

11The expected value of goods will be di¤erent when the information set changes from 
t�1 to 
xt; as (3:40) shows.
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In order to obtain closed-form solutions, assume a linear inverse demand function of the form

p = �� 1
2� , so that r(� ; �) = �� �

1
2�
2: Thus, marginal revenue is �� � . Equation (3.7) then implies

that the optimal quantity of sales is given by

� t = �t � �; (3.11)

where � � (1� �)� [w + (1� �)c] denotes the value of inventory. Namely, in the case that demand
is low, the marginal revenue of output is simply its inventory value. The condition st > 0 implies

that 0 < yt + (1� �)st�1 � � t = yt + (1� �)st�1 + � � (E [�tj
xt] + �t), or equivalently,

�t < yt + (1� �)st�1 + � � E [�tj
xt] (3.12)

� ��t :

In other words, the cut-o¤ value of �t is determined by �
�
t � yt + (1� �)st�1 + � � E [�tj
xt] :

Case B: �t � ��t : In this case, supply falls short of actual demand due to a large forecast error.
Hence, the �rm opts to stockout (st = 0; �st � 0) and the optimal sales are given by the maximum
supply, � t = yt+(1��)st�1: The shadow value of goods increases in this case since �st = �+�st � �:
Equation (3.7) then becomes

�st = �t � yt � (1� �)st�1 (3.13)

= �t � ��t + �;

where the second equality is obtained by using the de�nition of ��t . Hence, the markup for output

price (�s � �) when demand is high is measured by the unexpected forecast error, �t � ��t � 0.
The probability of case A and case B again depends endogenously on the choice of the output

level before the realization of demand ("), since ��t is determined by yt: Based on case A and case

B, the expected value of goods after seeing the signal x is given by

E [�st j
xt] =
Z
�t<�

�
t

�dG(�) +

Z
�t���t

[�t � ��t + �] dG(�): (3:14)

Therefore, the �rst-order condition with respect to Lt (equation 3:40) becomes:

w + �Rt = �c+

Z
�t<�

�
t

�dG(�) +

Z
�t���t

[�t � ��t + �] dG(�); (3:400)

which determines the optimal production level (yt) based on information set 
xt.

17



Equation (3:400) shows that the optimal output level depends also on the shadow value of labor

(�Rt ) because it is part of the marginal cost of production. However, �
R depends on the tightness

of the labor resource available to the �rm, which in turn depends on the existing labor stock

(Lt�1 + Rt�1 +Nt) that is determined earlier before signal x is observed. Thus, to determine �R,

we have two possible cases to consider:

Case C: xt < x�t : The received signal at the end of period t� 1 is low, indicating a low demand
in period t. In this case, optimal demand for workers on line should be low because expected future

demand is low. Hence it is optimal to hoard labor (Rt > 0). Therefore, �Rt = 0 and �
R
t = �c� �w

according to (3:50), which suggests that the value of labor hoarding is given by the discounted value

of gain by avoiding next-period hiring (�c) minus the current hoarding costs, �w. Substituting out

�R in equation (3:400) gives

(1� �)w = �

Z
�t<�

�
t

dG(�) +

Z
�t���t

[�t � ��t + �] dG(�) (3.15)

� �(��t ):

Equation (3.15) suggests that, conditioned on a low signal for demand (xt < x�t ), the optimal cut-o¤

value for �t is constant:

��t = ��; (3.16)

where �� solves the equation, �(��) = (1 � �)w; as de�ned in (3.15). The optimal output level (or
the optimal number of workers on line) is thus determined by yt = ��+E [�tj
xt]� (1� �)st�1 � �
according to (3.12).

Since the RHS of equation (3.15) is the average of two terms with the second term greater

than the �rst, in order for an interior solution of �� to exist, we must require (1 � �)w > � �
(1 � �)� [w + (1� �)c] ; where the LHS ((1� �)w) is the value of labor hoarding (= savings for

production costs by putting one less worker on line), and the RHS (�) is the discounted present

value of inventory after depreciation. Notice that this value is proportional to [w + (1� �)c], which
is the marginal cost of producing inventory. This requirement amounts to ensuring that the cost

of labor hoarding be su¢ ciently low relative to the cost of holding inventories in order for case C

(Rt > 0) to be optimal. Suppose this condition does not hold. Then the RHS of equation (3.15)

always exceeds the LHS, hence we must require �Rt > 0 in equation (3:400). This implies Rt = 0.

In the special case of � = 1, the above requirement becomes � < �; implying that the wage cost of

hoarding a worker cannot exceed the value lost by holding inventory. Otherwise, the �rm is better

o¤ producing inventory using the hoarded labor.
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Case D: xt � x�t : In this case, demand for workers on line is high because the observed signal
x indicates a high demand. Hence, hoarding labor is not optimal, suggesting Rt = 0 and yt =

Lt�1 +Rt�1 +Nt (producing at full capacity).

Again, the probability of case C and case D depends on the cut-o¤ value x�t . To determine x
�
t ;

note that under case C, yt = �� +  + ��t�1 + �xt � (1 � �)st�1 � �, hence the condition Rt > 0

implies Lt�1 +Rt�1 +Nt � yt > 0 or Lt�1 +Rt�1 +Nt � ��� � ��t�1� �xt+ (1� �)st�1 + � > 0;
or equivalently,

xt <
1

�
[Lt�1 +Rt�1 +Nt � ���  � ��t�1 + (1� �)st�1 + �] (3.17)

� x�t :

The cut-o¤ value for signal x is hence determined by (3.17). Clearly, the probability of case C and

case D depends endogenously on the choice of x�t , which in turn depends on the hiring decisions

made earlier (Nt) before xt is observed.

3.2 Results

Proposition 4 The optimal cut-o¤ value (x�t ) is a constant, x
�
t = �x: Hence, the optimal decision

rule for hiring is given by

Nt = ��x+ ��+  � � � Lt�1 �Rt�1 � (1� �)st�1 + ��t�1: (3.18)

Proof. De�ne the c:d:f of x as Z(x): The optimal level of hiring (Nt) based on information set


t�1 is given by equation (3.3),

c = E
�
�Rt j
t�1

�
(3.19)

= (�c� �w)
Z
xt<x�t

dZ(x) +

Z
xt�x�t

(�c� w + E [�st j
xt]) dZ(x)

where the �rst term is given by case A and the second term uses (3:40). Recall that

E [�st j
xt] =
Z
�t<�

�
t

�dG(�) +

Z
�t���t

[�t � ��t + �] dG(�) (3:130)

according to (3:14) where ��t � yt + (1 � �)st�1 + � � E [�tj
xt]. Also recall that under case D,

yt = Lt�1 +Rt�1 +Nt. Hence, conditioned on xt � x�t ; the cut-o¤ value in (3:130) is

��t � Lt�1 +Rt�1 +Nt + (1� �)st�1 + � � E [�tj
xt] (3.20)

� ��+ �(x�t � xt);
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where the second equality is obtained by using the de�nition for x�t in (3.17). Therefore, we haveZ
xt�x�t

E [�st j
xt] dZ(x) (3.21)

=

Z
xt�x�t

24 �R
�t<��+�(x

�
t�xt)

�dG(�)
�

+
�R
�t���+�(x�t�xt)

[�t � ��� �(x�t � xt) + �] dG(�)
� 35 dZ(x)

� �(x�t ):

Given that fxt; �tg are i:i:d, the above expression is a function of x�t only and hence can be denoted
as �(x�t ) : Thus condition (3.19) that solves for the optimal level of Nt is reduced to

c = (�c� �w)Z(x�t ) + (�c� w) [1� Z(x�t )] + �(x�t ): (3.22)

This suggests that a constant, x�t = �x; is the solution for (3.22). Using the de�nition for x�t in

(3.17), one obtains the decision rule for hiring.
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The decision rules of the model can be summarized as follows:

Nt = ��x+ ��+  � � � Lt�1 �Rt�1 � (1� �)st�1 + ��t�1 (3.23)

yt =

8<:
��+  + ��t�1 + �xt � (1� �)st�1 � � if xt < �x

��+  + ��t�1 + ��x� (1� �)st�1 � � if xt � �x
(3.24)

� t =

8>>>><>>>>:
�t � � if "t < ��+ �xt

��+  + ��t�1 + �xt � � if "t � ��+ �xt and xt < �x

��+  + ��t�1 + ��x� � if "t � ��+ �xt and xt � �x

(3.25)

Rt =

8<:
� (�x� xt) if xt < �x

0 if xt � �x
(3.26)

st =

8>>>><>>>>:
��+ �xt � "t if "t < ��+ �xt and xt < �x

��+ ��x� "t if "t < ��+ �xt and xt � �x

0 if "t � ��+ �xt

(3.27)

yt
Lt +Rt

=

8><>:
�xt+��++��t�1�(1��)st�1��
��x+��++��t�1�(1��)st�1�� if xt < �x

1 if xt � �x
(3.28)

Notice that the unconditional mean of inventories is given by (1� �s) ��; where �s � Pr ["t < ��+ �xt]
= Pr [�t < ��]. The unconditional mean of hoarded labor is given by (1� �R) ��x; where �R �
Pr [xt < �x] : Hence we can interpret �� as the target level of inventories and ��x as the target level

of labor hoarding. These target levels are strictly positive (except in degenerate cases) given the

non-negativity constraints on the inventory stock and the hoarded labor stock, re�ecting the pre-

cautionary motive for preventing stockout. These target levels become zero only in the limiting

case where demand uncertainty is completely eliminated.

The dynamic interactions between inventories and labor hoarding are highlighted by the decision

rules (3.26) and (3.27). Consider the case of xt < �x: The decision rules for inventories and labor
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hoarding in this case are given by

8<:
Rt = �(�x� xt);

st = ��+ �xt � "t:
(3.29)

Upon receiving a large signal xt; which indicates a high demand, the �rm opts to reduce labor

hoarding and increase production so as to build up inventories to meet the anticipated demand

increase. In fact, � units of reduction in labor hoarding is associated with � units of increase in

the inventory stock. This strategic behavior of using hoarded labor to cope with anticipated rises

in demand helps the �rm to maintain a relatively stable level of inventory stock. Also note that

one unit increase in demand ("t) directly reduces the inventory stock by one unit. But with the

help of hoarded labor, the net change in the inventory stock is less than one unit (i.e., j�� 1j < 1).
The reason that with a one unit anticipated increase in demand (xt), production rises by less than

one unit (� < 1), is that the signal contains noise. If the noise is zero (� = 1), the �rm would be

capable of using labor hoarding alone to completely meet anticipated changes in demand without

using inventories. On the other hand, if the signal contains no information about demand (� = 0),

the �rm does not use the labor hoarding margin; it uses only inventories to bu¤er demand shocks.

Proposition 5 The optimal volume of labor hoarding is zero if the �rm does not have the informa-

tion technology to update information about future demand (or equivalently, if xt = vt and � = 0)

after the decision for hiring but before the decision for production is made.

Proof. See equation (3.26).

Proposition 6 The optimal volume of inventories is zero if there is perfect information about

demand (i.e., xt = "t and � = 1) at the time of making production decisions.

Proof. If �t = 0, case A (�t < ��t ; st > 0) has zero probability since G(�) is a degenerate step

function and the support of � collapses into a single point at � = 0. Hence the only sensible solution

is the marginal case with st = 0 and ��t = �� = 0 (see equation 3.27).

There is now a fast growing literature addressing the fact of a less volatile U.S. economy since the

mid-1980s (e.g., see McConnell and Perez-Quiros 2000, and Stock and Watson 2002). This literature

�nds that the less volatile U.S. economy is mostly attributable to a less volatile inventory. One

popular explanation for the inventory volatility reduction is that improved information technology

and inventory management reduce inventory �uctuation by enhancing �rms� ability to forecast

demand (McConnell and Perez-Quiros, 2000). This information technology hypothesis is perfectly

consistent with the above proposition. That is, an improved information technology reduces the
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need for using inventories to bu¤er demand shocks, which reduces the variability of inventories,

leading to less volatile output production.

Proposition 7 The measured productivity of labor is procyclical as long as there is labor hoarding.

Proof. Denote � � Pr [xt < �x]. Denote y1t as the log output when xt < �x and y2t as the log output
when xt � �x. Notice that y1t has larger variance than y2t due to the presence of xt. Also notice

that the correlation between y1t and y2t is less than one because the corresponding xt in y2t is the

constant �x. Then conditioned on � > 0 (i.e., there is labor hoarding), the correlation between log

output and log productivity is given by

corr (y1t; y1t � y2t) = 1� corr (y1t; y2t) > 0:

Proposition 8 An increase in the hiring (�ring) cost of labor (c) raises the optimal target level of

both inventories (��) and labor hoarding (��x).

Proof. Equation (3.15) can be rewritten as

(1� �)w = � +
Z
�t���t

[�t � ��t ] dG(�):

Since the value of inventory, � = (1��)� [w + (1� �)c] ; increases with c, �� must increase in order
to keep the above equation unchanged on both sides after an increase in c:

Equation (3.22) can be rearranged as

w + (1� �)c = (1� �)wZ(x�) + �(x�):

Di¤erentiating both sides with respect to c gives

1� � = (1� �)wz(x�)dx
�

dc
+
@�

@x�
dx�

dc| {z }
(�)

+
@�

@��
d��

dc| {z }
(�)

;

where z() is the p:d:f of x�: Note that (1� �)wz(x�) > 0. Since it can be shown using the de�nition

of �(x�) in (3.21) that @�
@�� < 0; and @�

@x� and
dx�

dc have the opposite signs, the last two terms on

the RHS of the above equation are negative (it was shown earlier that d�
�

dc > 0). Since the LHS is

positive, it must be the case that dx
�

dc > 0 for the RHS of the above equation to be positive also.

The previous two propositions not only recon�rm the conventional wisdom that the degree of

labor hoarding depends positively on the size of the adjustment costs of the labor stock (e.g., hiring
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costs) since hoarding labor can help obviate or reduce the need for adjusting a �rm�s labor stock,

but also reveals that similar e¤ects of avoiding or reducing labor adjustment can also be achieved

by inventories. This shows the substitutability between these two forms of strategic behavior of the

�rm in coping with demand uncertainty. It is also easy to see that as the cost of labor hoarding (�)

increases, the optimal level of labor hoarding decreases while that of inventories increases. These

results are consistent with Topel�s (1982) analysis.

Proposition 9 The target-level of inventory stock (��) depends positively on the variance of demand

(�2").

Proof. Given that �t = "t � �xt = (1 � �)"t � �vt; we have �2� = (1 � �)2�2" + �2�2v. Recall

that � = �2"
�2"+�

2
v
: Hence, it can be shown that

@�2�
@�2"

= (1 � �)2 > 0: Namely, the variance of the

forecast error increases as the variance of demand increases. On the other hand, equation (3.15)

indicates that �(��) is monotonically decreasing in �� since the second term exceeds the �rst on

the RHS. Now, consider an increase in the variance of �t that preserves the mean (E�t = 0). Since

a mean-preserving spread increases the weight of the tail of the distribution, the right hand side of

(3.15) increases (since �� � 0). Thus �� must also increase in order to keep the right-hand side of
(3.15) unchanged. Therefore, a higher variance of " will induce a higher value of �� = ��.

Proposition 10 The target-level of labor hoarding (��x) depends positively on the variance of de-

mand (�2").

Proof. Given that xt = "t + vt; we have �2x = �2" + �
2
v. Hence, an increase in the variance of

" is associated with an increase in the variance of x. Equation (3.19) indicates that the RHS is

monotonically decreasing in �� since the �rst term on the RHS is less than c (the LHS) and the

second term must therefore be greater than c. Now, consider an increase in the variance of x

that preserves the mean (Ext = 0). Since a mean-preserving spread increases the weight of the

tail of the distribution, the right hand side of (3.19) increases (since x� � 0). Thus x� must also
increase in order to keep the right-hand side of (3.19) unchanged. Therefore, a higher variance of "

is associated with a higher value of x� = �x. It is easy to see that � increases with �2" but decreases

with �2v; hence ��x increases with the variance of ".

Proposition 11 The variance of labor hoarding increases with the variance of demand ("), and

the increase is more than the increase (if any) in the variance of inventories.

Proof. By equations (3.26) and (3.27), in the case that there is labor hoarding (xt < �x), the

variance of Rt is given by �2R = �
2(�2"+�

2
v); which increases with �

2
"; and the variance of st is given
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by �2s = (1� �)2�2" + �2�2v, which does not respond to changes in �2" since

@�2s
@�2"

= �2(1� �)�2"
@�

@�2"
+ 2��2v

@�

@�2"

= �2
�
(1� �)�2" + ��2v

� @�
@�2"

= 0:

Call this case the case �. On the other hand, in the case that there is no labor hoarding (xt � �x),

the variance of Rt is zero and the variance of st is ��2�2" (where � � Pr [�t < ��]), which increases

with �2". Call this case the case �. Since an increase in �
2
" makes case � (labor hoarding) more likely

and case � less likely (i.e., �x increases with �2" implies Pr [xt < �x] increases with �
2
"), we conclude

that the variance of labor hoarding (�2R) increases and the increase is more than the increase (if

any) in the variance of inventories (�2s).

The intuition behind this result is that hoarded labor neutralizes the impact of demand shocks

on inventories. The existence of inventories depends positively on the size of the forecast error.

However, the size of the forecast error depends negatively on the variance of the true demand

relative to noise, since the smaller the noise relative to true demand, the larger is the value of � and

the better is the quality of the information, hence the more responsive is labor hoarding to demand

shocks. A larger response in labor hoarding leads to less movement in inventories (see equation

3.29).12 Thus, not only is the increase in the variance of inventories less, but it is even possible for

the variance of inventories to decrease as the variance of demand increases. This result appears to

contradict the predictions of the existing inventory literature (e.g., see Kahn 1987, and Maccini and

Zabel 1996). The reason, though, is simple. In the inventory literature, inventories exist because

of production lags, and labor hoarding does not factor into the analysis. Hence the variance of

inventories increases with demand uncertainty because a higher uncertainty is associated with a

larger amount of unwanted inventories when the demand is low. Here, inventories exist not because

of production lags per se but because of imperfect information. A larger variance of demand

reduces the relative size of noise and improves the quality of information, inducing the �rm to

adjust production more fully by utilizing hoarded labor. This raises the variance of labor hoarding.

Since larger adjustments in production (or labor hoarding) reduce the impact of demand shocks on

inventories, this may lead to less variable inventories. In other words, as the variance of demand

increases, the burden of adjustment falls largely upon labor utilization (labor hoarding) instead of

upon inventories. This would not be the case without the option of labor hoarding.

12Mathematically, we have @Rt
@"t

= �� and @st
@"t

= � � 1 in the case of labor hoarding (xt < �x). Thus, a higher value
of � (due to a high value of �2") increases the response of labor hoarding but reduces the response of inventories.
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Hence, labor hoarding can alter the dynamics of inventories in an important way. The analysis

con�rms Blinder�s (1982) conjecture regarding �rms�strategic behavior under demand uncertainty.

That is, inventories of labor are partial substitutes for inventories of goods as a means to cope with

demand shocks.

4 Conclusion

This paper provides a simple model to study �rms�optimal decisions of labor hoarding and their dy-

namic interactions with inventory decisions. It shows that the conventional wisdom which explains

the existence of labor hoarding is inadequate. With the option of inventories, labor adjustment

costs alone do not su¢ ciently justify labor hoarding because �rms can produce inventories by us-

ing hoarded labor. Other conditions must also be met in order for labor hoarding to be optimal.

These conditions include lower costs of hoarding labor than holding inventories, and an information-

updating technology that makes labor hoarding both necessary and optimal as information about

demand unfolds. In the absence of either of these conditions, �rms will opt to use inventories to

cope with demand uncertainty despite the fact that labor hoarding is an option and that labor is

a quasi-�xed factor (due to adjustment costs).

While the required information technology for information updating appears to be reasonable,

the relative cost structure of labor hoarding versus inventories, however, is an empirical question

that has to be further investigated by reference to the data. Therefore, this paper not only provides

a simple and convenient framework for studying labor hoarding, but also raises new empirical

questions for future studies. These empirical questions include (to name just a few): How to

correctly measure and compare labor hoarding costs and inventory holding costs for any particular

�rm? What is the elasticity of substitution between inventories and hoarded labor? How to

assess a �rm�s information structure about future demand? What would be the consequence of

estimating an inventory model without taking into account �rms� labor decisions, or vice versa?

These important questions and related issues regarding inventories and labor hoarding have only

begun to gain attention from the profession very recently (see Galeotti, Maccini and Schiantarelli,

2005).

It is now a well-known stylized fact that the U.S. economy has become less volatile since the

mid-1980s (e.g., see McConnell and Perez-Quiros 2000, and Stock and Watson 2002). One popu-

lar explanation for the volatility reduction is that improved information technology and inventory

management reduce inventory �uctuation by enhancing �rms� ability to forecast demand (Mc-

Connell and Perez-Quiros, 2000). The model presented in this paper is perfectly consistent with

this information-technology hypothesis. In addition, the model also o¤ers a second alternative ex-

planation for the volatility reduction in GDP. That is, the reduction in adjustment costs of labor
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due to improved labor market competition can also reduce the need for using inventories and labor

hoarding to cope with demand shocks. Based on this alternative explanation, not only inventories

but also employment can become less volatile after labor market conditions are improved. This may

also explain the less volatile U.S. economy since the mid-1980s. Exploring further and empirically

testing this plausible alternative explanation is a potentially fruitful project worth pursuing in the

future.
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