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ABSTRACT: We present a new approach to trend/cycle decomposition of time series that follow 

regime-switching processes. The proposed approach, which we label the “regime-dependent 

steady-state” (RDSS) decomposition, is motivated as the appropriate generalization of the 

Beveridge-Nelson (1981) decomposition to the setting where the reduced-form dynamics of a 

given series can be captured by a regime-switching forecasting model. For processes in which 

the underlying trend component follows a random walk with possibly regime-switching drift, the 

RDSS decomposition is optimal in a minimum mean-squared-error sense and is more broadly 

applicable than directly employing an Unobserved Components model. 
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1. Introduction 

 Trend/cycle decomposition of integrated economic time series is important for 

both theoretical and statistical reasons.  When an appropriate forecasting model is 

available, one general approach to trend/cycle decomposition is the method presented in 

Beveridge and Nelson (1981), or BN hereafter.  The BN decomposition extracts a 

measure of trend from a given series using a long-horizon forecast based on the 

forecasting model, an approach that has been argued for in Rotemberg and Woodford 

(1996) and Cogley (2001), among others, and used in countless applications in the 

literature.   

 In recent years there has been an explosion of work using nonlinear forecasting 

models to describe economic time series.  Beginning with Hamilton (1989), models with 

Markov-switching parameters have been particularly popular.  While the BN 

decomposition can be calculated for such models using the techniques detailed in Clarida 

and Taylor (2003) and Kim (2006), the resulting measures of trend and cycle are often at 

odds with the underlying regime-switching processes.  As one example, the BN 

decomposition always extracts a trend component with a constant average growth rate, 

while many regime-switching processes explicitly allow for shifts in the average growth 

rate across different regimes (e.g., Lam, 1990).   

 In this paper we present a new approach to trend/cycle decomposition of regime-

switching processes, which we refer to as the regime-dependent steady-state (RDSS) 

decomposition.  We motivate the RDSS decomposition as the appropriate generalization 

of the BN decomposition to the setting where the reduced-form dynamics of a given 

series can be captured by a regime-switching forecasting model.  In particular, our 
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approach is based on the central premise of the BN decomposition, namely that a long-

horizon forecast can be used to eliminate predictable momentum implied by the cyclical 

component of an integrated series and thus extract a measure of its trend.  However, we 

show that the long-horizon forecast should be constructed under the assumption that the 

series remains inside of a particular regime (hence the label “regime dependent”), rather 

than averaging across all regimes, as is done with the BN decomposition.  Meanwhile, for 

linear forecasting models in which everything collapses to one regime, the RDSS and BN 

decompositions are equivalent. 

 It is useful to compare the RDSS and BN decompositions to direct estimation of 

trend and cycle using an Unobserved Components (UC) model.  As shown in Morley, 

Nelson, and Zivot (2003), Kalman filter estimates for linear Gaussian UC models with 

random walk trends are equivalent to BN measures of trend and cycle based on 

corresponding reduced-form forecasting models.  In this case, because the Kalman filter 

estimates and BN measures are equal to conditional expectations of the underlying trend 

and cycle, they provide optimal estimates in a “minimum mean-squared-error” sense.  

However, the equivalence between the UC approach and the BN decomposition breaks 

down for UC models with regime-switching parameters, of which there are many 

examples in the literature (e.g., Lam, 1990; Kim and Nelson, 1999).  In particular, while 

filtered estimates based for the UC models are equal to conditional expectations of the 

underlying trend and cycle, the BN measures of trend and cycle based on the 

corresponding reduced-form regime-switching forecasting models are biased in the 

presence of a regime-switching drift for the underlying trend and/or a non-zero mean for 

the underlying cycle.  By contrast, as long as the underlying trend follows a random walk 
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with a possibly regime-switching drift, the RDSS decomposition provides measures of 

trend and cycle that are equivalent to estimates from the UC approach and are, therefore, 

optimal.  Meanwhile, the RDSS measures are equal to conditional expectations of the 

underlying trend and cycle for a broader range of regime-switching processes, not just 

those that correspond to identified or finite-order UC models.  

 The rest of the paper is organized as follows.  The next section begins by 

describing the regime-switching processes for which our approach is appropriate and 

discusses the problems with the BN decomposition for such processes.  We then present 

the details of the RDSS decomposition, compare it to the UC approach, and address 

issues surrounding the identification of the mean of the cycle.  Section 3 provides some 

brief conclusions. 

2. Method 

2.1 Underlying Regime-Switching Processes 

 To explain our proposed approach to trend/cycle decomposition, it is most useful 

to start with the true data generating processes for which it would be appropriate.  We 

will discuss regime-switching forecasting models that can capture such processes later.  

In terms of possible underlying processes, our approach is based on the assumption that a 

time series of interest 

 

yt{ }t=−∞

∞  is the sum of a trend,

 

τ t , and a cycle, 

 

ct : 

  

 

yt = τ t + ct . (1) 

We are interested in the case where the parameters governing the evolution of both the 

trend and the cycle can take on different values in N distinct regimes, with the regimes 

indexed by a discrete state variable, denoted iSt = , i=1,…,N.  For simplicity, we assume 
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that tS  follows an unobserved Markov process with a fixed transition matrix, an 

assumption that is consistent with much of the applied literature.1

 

τ t = ηt− j
*

j= 0

∞

∑

   

 We define the trend as the permanent component of the time series process, which 

is given by the accumulation of permanent innovations:  

  , (2) 

where the mean of the permanent innovations is possibly regime switching, so that 

  

 

ηt
∗ = η St

+ ηt ,  

 

ηt ~ i.i.d.(0,ση
2 ). (3) 

These innovations are “permanent” in the sense that their impact on the level of the time 

series is not expected to be reversed.  Correspondingly, the trend process in (2)-(3) can be 

thought of as a random walk with regime-switching drift component—i.e., 

ttSt t
ητητ ++= −1 .  

 The cycle is then the transitory component of the time series process, which 

represents a weighted average of past transitory innovations: 

  

 

ct = ψ j ,tω t− j
*

j= 0

∞

∑ , (4) 

where  

 

ψ0,t =1.  There are two possible sources of regime switching in the cycle.  First, as 

was the case with permanent innovations, the mean of the transitory innovations can be 

regime switching: 

                                                 
1 The assumption of a fixed transition matrix could be relaxed to allow for time-varying transition 
probabilities based on exogenous variables, as in Diebold, Lee and Weinbach (1994) and Filardo (1994). 
Also, it would be straightforward to consider an observable state process based on exogenous variables, 
such as in the trivial case of a dummy variable. However, processes in which the regime depends on 
realized values of endogenous variables, such as so-called “self-exciting threshold autoregressive” models 
(e.g., Potter, 1995), introduce some complications in terms of the evaluation of regime-dependent long-
horizon forecasts. Adapting the basic approach developed in this paper to such processes would provide an 
interesting extension that we leave for future work. 
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  tSt t
ωωω +=∗ ,  

 

ω t ~ i.i.d.(0,σω
2 ). (5) 

Second, the moving average (MA) coefficients in (4) can depend on the current and past 

regimes: 

  

 

ψ j ,t =ψ j St ,St−1,...( ), (6) 

Meanwhile, to give the notion of “transitory innovations” meaning, we assume that the 

MA coefficients in (6) are always absolutely summable, 

 

ψ j,t
j= 0

∞

∑ < ∞, and their 

dependence on past regimes is described by a short-memory process.  Thus, conditional 

on remaining inside of a regime, the cyclical component becomes a covariance-stationary 

and ergodic process with a regime-dependent mean, 

 

E ct St = i{ }−∞

∞[ ].  Finally, in at least 

one regime, which we label regime *i , we assume that 0* =iω .  This final assumption 

identifies the unconditional mean of the cycle, and is discussed in further detail in Section 

2.5. 

 There are two aspects of this regime-switching process that are worth 

highlighting.  First, from (2) and (3), it is apparent that the trend depends only on current 

and past shocks and regimes and is, therefore, uniquely determined at time t.  In other 

words, future regimes contain no additional information about the current trend above 

and beyond current and past regimes and information available at time t.  Second, given 

the presence of 
tSω  in (5), the cycle is not necessarily unconditionally mean zero. 

 It should be emphasized that the assumptions in (3), (5), and (6) are quite general.  

First, the innovations to the trend and cycle can be correlated due to common regime 

switching and/or correlation between the i.i.d. shocks: 
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Cov ηt ,ω t( )= σηω . (7) 

Second, the overall process can be regime switching for a variety of reasons.  In 

particular, the regime switching can be in terms of the dynamics, the permanent 

innovation, the transitory innovation, or any combination of these.2

 Despite this general setup, our proposed approach to identifying and estimating 

the trend and cycle for such regime-switching processes requires no prior assumptions 

about the parametric structure of the cyclical component, the correlation between 

permanent and transitory innovations, or which sources of regime switching apply for a 

given time series of interest.  Instead, our approach requires only the specification of a 

forecasting model for the first differences, 

  

ty∆ , of the integrated time series and is 

optimal in a minimum mean-squared-error sense given any such model that captures the 

reduced-form dynamics of the underlying process.3

 

(1− φ1L − φ2L
2) ∆yt − µSt( )= (1+ θ1L + θ2L

2)et

 For example, suppose the trend 

component has a two-state regime-switching drift and the cyclical component follows a 

second-order autoregressive (AR(2)) process.  It is straightforward to show that the 

reduced-form dynamics take the following second-order regime-switching autoregressive 

moving-average (ARMA(2,2)) form: , 

 

et ~ i.i.d.(0,σ e
2) and 

 

µSt
= µ1 ⋅ I St =1( )+ µ2 ⋅ I St = 2( ), where 

 

I ⋅() is the indicator function 

that equals one if the argument is true and zero otherwise.  Thus, we can directly capture 

the reduced-form process with a regime-switching ARMA(2,2) forecasting model.  Of 

                                                 
2 It is also possible to allow the variances and covariance of the permanent and transitory innovations to be 
regime switching. Thus, the shocks do not have to be identically distributed over time and their 
distributions can depend on the regime. However, they must be martingale difference sequences. We ignore 
this extension for simplicity of presentation. 
3 Of course, it should always be acknowledged that if the forecasting model provides a poor approximation 
to the reduced-form dynamics of the underlying process, the inferences about trend and cycle will also be 
poor. 
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course, in this example, we could also have considered an Unobserved Components (UC) 

model that captures the specified trend and cyclical components and estimated it directly.  

However, as discussed in more detail in Section 2.4, an identified or finite-order UC 

model is not always available for the underlying process presented in (1)-(7).  

2.2 The Beveridge-Nelson Decomposition 

 When we have an appropriate reduced-form forecasting model for ty∆ , a useful 

approach to identifying and estimating the trend and cycle of ty  is the decomposition 

suggested by Beveridge and Nelson (1981), or BN hereafter.  The idea behind the BN 

decomposition is that, because the cyclical component is ergodic, a forecast of the time 

series into the infinite future will no longer be influenced by the expected cyclical 

momentum that exists at time t.  Thus, such a forecast should reveal the influence of the 

permanent component on the time series, and can be used to estimate the trend.4

 

ˆ τ t
BN ≡ lim

j →∞
E F yt + j Ωt[ ]− j ⋅ E F ∆yt[ ]{ }

   

 In precise terms, the BN measure of trend is the long-horizon forecast of a time 

series, adjusted to account for any future deterministic drift: 

  , (8) 

where 

 

E F ⋅[] is the expectations operator with respect to the forecasting model and tΩ  is 

the set of relevant and available information observed up to time t.   To see how the BN 

decomposition works, we can start with a simplified version of the process in (1)-(7) 

without regime-switching parameters, so that ηη =i  and 0=iω , i ∀ .  Letting 

 

E ⋅[] 

specifically denote the expectations operator with respect to the process, the BN measure 

of trend, BN
tτö , will be equal to 

 

E τ t Ωt[ ] as long as the forecasting model captures the 
                                                 
4 The long-horizon forecast can also be used to define the trend, although there are some issues with this 
interpretation of the BN decomposition (see Morley, 2007). 
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reduced-form dynamics of the process such that 

 

E F yt + j Ωt[ ]= E yt + j Ωt[ ].  To see this, 

substitute 

 

E ⋅[] for 

 

E F ⋅[] in (8) and note from (1) that 

 

yt + j = τ t + j + ct + j  in order to re-

write the expression for the BN measure of trend as 

  

 

ˆ τ t
BN = lim

j →∞
E τ t + j Ωt[ ]− j ⋅ E ∆yt[ ]{ }+ lim

j →∞
E ct + j Ωt[ ]{ } (9) 

  

 

= E τ t Ωt[ ]+ lim
j →∞

E ∆τ t +k Ωt[ ]− j ⋅ E ∆yt[ ]
k=1

j

∑
 
 
 

 
 
 

+ lim
j →∞

E ct + j Ωt[ ]{ }. 

In the absence of regime switching, the trend component defined in (2)-(3) is simply a 

random walk with drift, so that, for

 

k > 0, the conditional expectation 

 

E ∆τ t +k Ωt[ ]= η .  

Also, given the ergodicity of the cyclical component, it is straightforward to show that the 

unconditional expectation 

 

E ∆yt[ ]= η .  Finally, the ergodicity of the cyclical component 

along with the fact that 0=iω , 

 

∀ i , guarantees that the limiting conditional expectation 

 

lim
j →∞

E ct + j Ωt[ ]{ }= 0.  Taken together, these three expectations imply that, in the absence 

of regime-switching parameters, the last two terms in (9) drop out and the BN measure of 

trend is equal to the conditional expectation of the underlying trend component.  See 

Watson (1986) and Morley, Nelson, and Zivot (2003) on this point. 

 By contrast, when the process for 

 

yt  has regime-switching parameters, the last 

two terms in (9) do not necessarily drop out and BN
tτö  does not, in general, equal 

 

E τ t Ωt[ ], even if 

 

E F yt + j Ωt[ ]= E yt + j Ωt[ ].  First, in the presence of regime switching in 

the drift parameter of the trend component, the conditional expectation 

 

E ∆τ t +k Ωt[ ] no 

longer equals the unconditional expectation 

 

E ∆yt[ ] for all 

 

k > 0.  This is because 

information contained in tΩ  about current and past regimes is useful for predicting future 
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regimes, and thus future changes in the trend.  Thus, BN
tτö  will be biased by expected 

future changes in the trend.  Second, in the presence of regime switching, the ergodicity 

of tc  implies only that the limiting conditional expectation 

 

lim
j →∞

E ct + j Ωt[ ] converges to 

the unconditional mean of the cyclical component, which may or may not be zero.  Thus, 

BN
tτö  will also be biased by the expected effects of future regime shifts on the level of the 

cyclical component.5

 

E τ t Ωt[ ]

 

2.3 Measuring the Trend with a Regime-Dependent Steady State 

 While the BN decomposition generally fails to provide  for the regime-

switching processes described in Section 2.1, the principle of using a long-horizon 

forecast to eliminate the influence of the cyclical component can still be used to construct 

an alternative decomposition that will yield

 

E τ t Ωt[ ].  In this subsection we lay out the 

details of this alternative decomposition, which we refer to as the “regime-dependent 

steady-state” (RDSS) decomposition.   

 To begin, given an underlying process that corresponds to (1)-(7), the appropriate 

reduced-form forecasting model for ty∆  will involve current and, possibly, lagged values 

of the regime indicator variable.  To develop our approach, we initially proceed as if the 

relevant regimes, given by the vector ( )′≡ −− mtttt SSSS ,...,,~
1 , were observed in period t.  

Later, we address the fact that 

 

˜ S t  is unobserved by marginalizing inferences with respect 

to its distribution.  For now, we condition on 

 

˜ S t  and on a particular future sequence of 

regimes in order to construct a hypothetical “regime-dependent” j-step forecast of jty + : 

                                                 
5 In contemporaneous work, Chen and Tsay (2006) present a modification of the BN decomposition 
designed to incorporate Markov-switching in the average growth rate of the trend component.  However, 
their approach does not address the possibility of regime switching in the cyclical component.  
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E F yt + j St +k = i∗{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  . (10) 

In words, (10) is the period t forecast of jty +  given the hypothetical knowledge that the 

state process will enter regime *i  in period t+1 and remain there through period t+j.  

Now, define a regime-dependent long-horizon forecast as follows: 

  

 

ˆ τ t
RDSS ˜ S t( )≡ lim

j →∞
E F yt + j St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  − j ⋅ E F ∆yt St = i*{ }

−∞

∞ 
  

 
  

 
 
 

 
 
 

. (11) 

We can show that 

 

ˆ τ t
RDSS ˜ S t( )= E τ t

˜ S t ,Ωt[ ] as long as the forecasting model captures the 

reduced-form dynamics of the process such that 

 

E F yt + j Ωt[ ]= E yt + j Ωt[ ].  Again, 

substituting 

 

E ⋅[] for 

 

E F ⋅[] and noting 

 

yt + j = τ t + j + ct + j , the expression in (11) can be re-

written as  

  

 

ˆ τ t
RDSS ˜ S t( )= lim

j →∞
E τ t + j St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  − j ⋅ E ∆yt St = i*{ }

−∞

∞ 
  

 
  

 
 
 

 
 
 

 (12) 

  

 

+ lim
j →∞

E ct + j St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  .  

From Section 2.1, the cyclical component is ergodic inside of each regime.  Thus, the 

second limit on the right hand side of (12) converges to the unconditional mean of the 

cyclical component inside of regime *i , which is zero given our assumption that 

0* =iω .6

 

ˆ τ t
RDSS ˜ S t( )= lim

j →∞
E τ t + j St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  − j ⋅ E ∆yt St = i*{ }

−∞

∞ 
  

 
  

 
 
 

 
 
 

  Thus, (12) simplifies to 

  . (13) 

 
                                                 
6 It is this convergence that gives the RDSS decomposition its name.  In particular, the ergodicity of the 
cyclical component inside of each regime ensures that the regime-dependent long-horizon forecast of the 
series will no longer be influenced by the expected cyclical dynamics, and is thus in a “steady-state” in 
which expected growth in the series will be determined entirely by expected growth in the trend. 
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The first term on the right-hand-side of (13) can be decomposed as follows: 

  

 

E τ t + j St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
   (14) 

  

 

= E τ t St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  + E ∆τ t +k St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  

k=1

j

∑ ,  

where from the definition of the trend component in (2)-(3), we can solve for the last 

term in (14): 

  

 

E ∆τ t +k St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  

k=1

j

∑  (15) 

  

 

= E η St+k
+ ηt +k St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  

k=1

j

∑ = j ⋅ η i∗ . 

Then, from (1)-(6), the regime-dependent expectation in the second term on the right-

hand-side of (13) can be decomposed as follows: 

  

 

E ∆yt St = i*{ }
−∞

∞ 
  

 
  = E ∆τ t St = i*{ }

−∞

∞ 
  

 
  + E ∆ct St = i*{ }

−∞

∞ 
  

 
   (16) 

 

= E η St
+ ηt St = i*{ }

−∞

∞ 
  

 
  + E ψ j St ,St−1,...( )ω t− j

∗ −
j= 0

∞

∑ ψ j St−1,St−2,...( )ω t−1− j
∗

j= 0

∞

∑ St = i*{ }
−∞

∞ 

 
 
 

 

 
 
 
 

  

 

= η i∗ + E ψ j i*,i*,...( )ω i∗
j= 0

∞

∑ − ψ j i*,i*,...( )ω i∗
j= 0

∞

∑
 

 
 
 

 

 
 
 

= η i∗ . 

Thus, substituting (14)-(16) into (13) yields 

  

 

ˆ τ t
RDSS ˜ S t( )= E τ t St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  . (17) 

Finally, the Markov property of the state variable ensures that the sequence of future 

regimes, 

 

St +k = i*{ }k=1

j
, provides no additional information about the current trend beyond 
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the other conditioning information in (17).  Specifically, from (2) and (3), 

 

τ t  only 

depends on current and lagged regimes.  Therefore, the only relevance of knowing the 

future regimes in (17) would be to provide information about current and past regimes.  

However, because the state variable follows a Markov process, the probability 

distribution 

 

p St−1 St ,St +1( ) simplifies to 

 

p St−1 St( ).  Thus, given the knowledge of 

 

St , 

which is included in the vector 

 

˜ S t , the future regimes in 

 

St +k = i*{ }k=1

j
 provide no 

additional information about current and past regimes.  As a result, (17) simplifies to 

  

 

ˆ τ t
RDSS ˜ S t( )= E τ t

˜ S t ,Ωt[ ]. (18) 

In practice, the relevant current and past regimes, 

 

˜ S t , are not observed, but need 

to be integrated out of the right hand side of (18) to arrive at 

 

E τ t Ωt[ ].  This can be done 

using the following weighted sum: 

  

 

E τ t Ωt[ ]= E τ t
˜ S t ,Ωt[ ]⋅ p ˜ S t Ωt( )

˜ S t

∑ , (19) 

where 

 

p ˜ S t Ωt( ) represents the probability distribution of each possible sequence of 

relevant current and past regimes.  Thus, in general, the RDSS measure of trend is  

  

 

ˆ τ t
RDSS ≡ ˆ τ t

RDSS ˜ S t( )⋅ pF ˜ S t Ωt( ){ }
˜ S t

∑ , (20) 

where 

 

pF ⋅() is the probability distribution with respect to the forecasting model and the 

above analysis demonstrating that 

 

ˆ τ t
RDSS ˜ S t( )= E τ t

˜ S t ,Ωt[ ] directly implies that 

 

ˆ τ t
RDSS = E τ t Ωt[ ] as long as the forecasting model captures the state variable dynamics 
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such that 

 

pF ˜ S t Ωt( )= p ˜ S t Ωt( ).  In this case, it can also be easily shown that 

 

ˆ c t
RDSS = E ct Ωt[ ], where ≡RDSS

tcö  RDSS
tty τö−  is the RDSS estimate of the cycle. 

It is worth emphasizing the computational simplicity of the RDSS decomposition.  

In particular, for each possible 

 

˜ S t , one need only compute the quantity in (11), 

 

ˆ τ t
RDSS ˜ S t( ), 

which is simply a long-horizon forecast of the time series conditional on 

 

˜ S t , tΩ , and 

 

St +k = i*{ }k=1

∞
, adjusted to subtract the expected average growth of the time series in 

regime *i  that accumulates over the forecast horizon.  Given the assumption that 0=∗iω , 

the calculation of this adjusted long-horizon forecast is mechanically identical to the BN 

decomposition for the conditionally-linear forecasting model that would be implied by a 

sequence of known regimes.7

 

E τ t Ωt[ ]  Then, to arrive at a measure that is equivalent to , 

the values of 

 

ˆ τ t
RDSS ˜ S t( ) can be averaged, as in (20), using the estimated state probabilities, 

 

pF ˜ S t Ωt( ).  In most cases, these probabilities are a direct by-product of the filter used to 

estimate the parameters for a regime-switching forecasting model of ty∆ .  For 

convenience, Box 1 summarizes the mechanics of the RDSS decomposition. 

Box 1 – The RDSS Measure of Trend 

  

 

ˆ τ t
RDSS ≡ ˆ τ t

RDSS ˜ S t( )⋅ pF ˜ S t Ωt( ){ }
˜ S t

∑ ,  

where   

 

ˆ τ t
RDSS ˜ S t( )≡ lim

j →∞
E F yt + j St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  − j ⋅ E F ∆yt St = i*{ }

−∞

∞ 
  

 
  

 
 
 

 
 
 

. 

 

                                                 
7 In the case of a Gaussian disturbance term for the forecasting model, this BN decomposition can be easily 
computed using the analytical approach presented in Morley (2002).   
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We conclude this subsection by noting that the RDSS decomposition is equivalent 

to the BN decomposition when the forecasting model for ty∆  does not involve regime 

switching.  In particular, in the absence of regime switching, the regime indicator variable 

 

St  becomes redundant information and is no longer needed.  In this case, the regime-

dependent long-horizon forecast in (11) collapses to the expression in (8) for the BN 

measure of trend. 

2.4 Comparison to the Unobserved Components Approach 

 A popular approach to extracting estimates of the trend and cycle from an 

integrated time series 

 

yt  is to specify functional forms for these components directly in a 

UC model (e.g. Harvey, 1985; Watson, 1986; Clark, 1987).  For linear Gaussian UC 

models, the Kalman filter can then be used to calculate 

 

EUC τ t Ωt[ ], where 

 

EUC ⋅[] is the 

expectations operator with respect to the UC model.  Morley, Nelson and Zivot (2003) 

show that if the trend component follows a random walk with constant drift, the cyclical 

component follows a finite-order ARMA process, and the UC model is identified and 

appropriate such that 

 

EUC τ t Ωt[ ]= E τ t Ωt[ ], then the BN decomposition for the 

corresponding reduced-form ARMA forecasting model of 

 

∆yt  will also yield 

 

E F τ t Ωt[ ]= E τ t Ωt[ ], implying that the UC approach and BN decomposition are 

equivalent and optimal in this case. 

A similar equivalence exists for the UC approach and the RDSS decomposition 

when the UC model has regime-switching parameters.  In particular, several authors, 

notably Lam (1990) and Kim and Nelson (1999), have specified UC models for 

 

yt  in 

which the trend and/or cycle are regime switching.  For such models, posterior densities 
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for the trend and cycle will depend on the entire history of regimes.  Thus, even given 

Gaussian shocks, exact analytical inference based on the Kalman filter is computationally 

infeasible due to the need to keep track of up to 

 

NT  possible sequences of regimes, where 

T is the sample size under consideration.  However, it is possible to use the Gibbs 

sampler to compute 

 

EUC τ t Ωt[ ] numerically (Carter and Kohn, 1994).  If the trend 

component in the UC model is specified as a random walk with potentially regime-

switching drift, as in (2)-(3), the cyclical component follows a potentially regime-

switching finite-order ARMA process, and the UC model is identified and appropriate 

such that 

 

EUC τ t Ωt[ ]= E τ t Ωt[ ], then the RDSS decomposition for the corresponding 

reduced-form regime-switching ARMA forecasting model of 

 

∆yt  will also yield 

 

E F τ t Ωt[ ]= E τ t Ωt[ ], and thus the UC approach and RDSS decomposition are 

equivalent and optimal.  By contrast, because the BN decomposition does not generally 

produce 

 

E τ t Ωt[ ] for a regime-switching process, as discussed in Section 2.2. it is not 

equivalent to the UC approach, even given the appropriate reduced-form forecasting 

model.8

 Given that the RDSS decomposition produces identical results to the UC 

approach when an identified and appropriate UC model is available, a reasonable 

question is whether there is any value added from using the RDSS decomposition.  

Beyond computational simplicity, the primary benefit of the RDSS decomposition is that 

it is appropriate for a broader range of regime-switching processes than the UC approach.  

First, there are some relevant processes that correspond to (1)-(7) for which UC models 

  

                                                 
8 As implied by the analysis in Section 2.2, the BN decomposition for a regime-switching forecasting 
model yields the conditional expectation of the trend only in the special case that, for the corresponding UC 
model, the trend is a random walk with constant drift and the cycle is unconditionally mean zero. 
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are not identified.  In this case, the RDSS decomposition will be robust in the sense that 

the RDSS decomposition will provide optimal estimates of trend and cycle when applied 

to forecasting models that capture the reduced-form dynamics of the set of underlying 

unidentified processes.  Second, there are also relevant processes that correspond to (1)-

(7) for which the reduced-form dynamics can be captured by flexible, yet tightly 

parameterized regime-switching forecasting models, while the dynamics cannot be 

captured by finite-order UC models. 

 To illustrate the robustness of the RDSS decomposition, consider simple 

“random-walk-plus-noise” UC models for ty , which correspond to MA(1) reduced-form 

dynamics for ty∆ .  These UC models are unidentified in the sense that the correlation 

between the shocks to trend and cycle cannot be estimated.  In such a setting, a standard 

approach is to consider only one of the possible UC models by making an assumption 

about the correlation parameter (usually that it is zero).  However, such an assumption 

can place false restrictions on the parameters related to the autocovariance structure of 

the process (see Nelson and Plosser, 1982, and Morley, Nelson, and Zivot, 2003, on this 

point).  Instead, by directly estimating the reduced-form MA(1) forecasting model and 

applying the RDSS decomposition (which would just be the BN decomposition given the 

linear MA(1) model in this simple example), the parameter estimates will be consistent 

and the inferences about trend and cycle will be optimal for the range of unidentified 

random-walk-plus-noise processes. In this sense, the RDSS decomposition provides a 

robust approach to estimation of the trend and cycle when UC parameters are not 

identified. 
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To illustrate the relative flexibility of the RDSS decomposition compared to the 

UC approach, note that identified UC models correspond to reduced-form models for 

 

∆yt  

that include MA dynamics, rather than just AR dynamics only.  Thus, unlike the RDSS 

decomposition, the UC approach implicitly limits the reduced-form dynamics that can be 

considered to the case of more complicated ARMA models.9  Restricting the class of 

reduced-form models in this way is undesirable for at least two reasons.  First, many 

popular regime-switching models in the literature include only AR dynamics (e.g. 

Hamilton, 1989; Hansen, 1992; Garcia and Perron, 1996).  Ruling out such models from 

consideration is problematic if their popularity reflects, at least in part, their empirical 

relevance.  Second, UC models and their corresponding reduced-form ARMA models are 

often difficult to estimate and may not be good forecasting models in practice.  

Estimation difficulties arise due to weak identification in the presence of near 

cancellation of roots in the AR and MA polynomials.10

                                                 
9 It might seem counterintuitive that an ARMA structure does not nest the simpler AR structure. However, 
given an identified UC model, the MA parameter for the corresponding reduced-form model is always 
nonzero, except in the limiting case of no cyclical component. Of course, in this limiting case, making 
inference about the trend is as simple as observing the series. Meanwhile, a reduced-form AR model 
provides a parsimonious way to capture the infinite-order MA structure for the first-differences of an 
integrated time series that would be implied by a cyclical component with a general infinite-order MA 
structure. 
10 See Nelson and Startz (2007) on weak identification of ARMA models. 

 Forecasting failures occur 

because, as pointed out by Campbell and Mankiw (1987), estimated ARMA models (and, 

implicitly, UC models) sometimes massively overstate the long-horizon predictability 

inherent in an integrated process due to a pile-up problem for the likelihood at a unit MA 

root.  This is a serious drawback for such models, as the main criterion for a model to be 

appropriate for use in a model-based decomposition is whether it credibly captures the 

actual predictability inherent in a given integrated time series process.   
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Another advantage of the RDSS decomposition over the UC approach that is 

worth mentioning is the ease with which non-Gaussian shocks can be accommodated.  In 

particular, the parameters of regime-switching AR forecasting models with non-Gaussian 

errors are relatively straightforward to estimate, as the likelihood function can be 

computed with minor modifications to existing recursive filters.  Long-horizon forecasts 

are also relatively straightforward to calculate for such models.  By contrast, both the 

construction of the likelihood function and the calculation of 

 

EUC τ t Ωt[ ] for UC models 

with non-Gaussian shocks (regardless of the presence of regime-switching) present 

substantial computational challenges, requiring the use of nonlinear filtering techniques 

(e.g. Kitagawa, 1987; Gordon, Salmond, and Smith, 1993).  This is relevant, as there is 

evidence for non-Gaussian shocks in many macroeconomic and financial time series (e.g. 

Hamilton, 2005).   

2.5 Identifying the Mean of the Cycle 

 The RDSS decomposition relies on the assumption that 0* =iω , which implies 

that the regime-dependent mean of the cycle is zero in regime 

 

i*, where the regime is 

specified by the researcher.  This assumption was necessary to identify the unconditional 

mean of the cycle.  To see this, note that, while the long-horizon forecast in (11) 

guarantees that the cyclical component has converged to its regime-dependent mean, it 

does not identify the level of this mean.  Also, note that the differences in regime-

dependent means of the cycle are identified by (11).  In particular, suppose we consider 

an alternative version of (11), where instead of assuming that the process entered and 

remained in regime 

 

i* beginning in period t+1, we assume that the process entered and 

remained in a different regime, labeled 

 

j* .  It is straightforward to show from (12) that 
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the difference between (11) with regime 

 

i* and its alternative version with regime 

 

j* 

simplifies to 

  

 

lim
j →∞

E ct + j St +k = i*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  

 
 
 

 
 
 

− lim
j →∞

E ct + j St +k = j*{ }k=1

j
, ˜ S t ,Ωt

 
  

 
  

 
 
 

 
 
 

, (21) 

which is simply the difference in the mean of the cycle in regime 

 

i* from the mean of the 

cycle in regime 

 

j*.  Thus, this difference is readily calculable using (11) for different 

regimes, meaning that, if the mean of the cycle in regime 

 

i* is zero, it is possible to 

identify the regime-dependent mean of the cycle in all other regimes, and thus the 

unconditional mean of the cycle. 

 Of course, this identification requires the choice by the researcher of which 

regime to label 

 

i*, and thus in which regime the cyclical component has a zero mean.  It 

is worth noting that this choice is also required in the UC approach to trend/cycle 

decomposition for regime-switching processes.  In particular, UC models require explicit 

functional forms for the cyclical component in each regime, with the overall mean of the 

cycle only identified by fixing the mean of the cyclical component in one of the regimes. 

 It should be stressed that the choice of 

 

i* need not be completely arbitrary (i.e., it 

is not merely a matter of normalization).  While the decomposition method itself provides 

no guide as to how this choice should be made and the estimated variation in trend and 

cycle are robust to the choice, there may be compelling reasons in any particular 

application to choose one regime over another.  For example, for UC models of the 

business cycle, the usual practice is to assume that the mean of the cycle in the “normal” 

regime, defined as the most frequently occurring, is zero (e.g. Kim and Nelson, 1999).  

This choice is driven by the argument that the large, asymmetric shocks that yield non-
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zero mean cycles are abnormal events.  In certain cases, it might also be possible to use 

subsequent analysis with the different measures of the cycle obtained from different 

choices of 

 

i* in order to discriminate amongst them.11

                                                 
11 For example, Keynesian macroeconomic theory suggests that inflation will have a tendency to increase 
or decrease depending on whether the economy is above or below trend. In this case, the plausibility of 
alternative measures of the cyclical component of economic activity could be evaluated based on their 
ability to explain the direction of change in inflation.  

   

Finally, and in contrast to the RDSS decomposition and the UC approach, the BN 

decomposition identifies the mean of the cycle by assuming that it is zero.  Thus, the BN 

decomposition ties the hands of the researcher wanting to extract the trend and cycle from 

a regime-switching process.  In particular, even if the researcher has a priori reasons for 

allowing a non-zero mean cycle, the BN decomposition does not permit it.   

3. Conclusion 

We have developed a new approach to trend/cycle decomposition of time series 

that follow regime-switching processes.  Because of its mechanics, we refer to this new 

approach as the “regime-dependent steady-state” (RDSS) decomposition.  The RDSS 

decomposition is useful because it provides optimal estimates of trend and cycle for a 

broader class of regime-switching processes than either the Beveridge-Nelson 

decomposition or the Unobserved Components approach.  In future research, we plan to 

apply the RDSS decomposition to study the U.S. business cycle using a range of linear 

and nonlinear forecasting models.  
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