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Abstract: Spatial heterogeneity of the determinants of airport noise is explored using houses 
sold near the Atlanta airport.  Ordered probit locally weighted regressions (OPLWR) produce 
results substantively different than those using standard ordered probit.  We find notable 
differences in the signs and magnitudes of the parameter estimates for different individual 
observations using OPLWR.  For example, using a standard ordered probit model, the 
coefficient estimate for the connection between the percentage of neighborhood households 
headed by a Hispanic and noise is double the average of the OPLWR estimates.  Moreover, 
while the standard ordered probit point estimate is positive, 37 percent of the estimates using 
OPLWR are negative.  Even in relatively small areas, the OPLWR results imply that the 
standard ordered probit model can generate biased estimates due to ignored heterogeneity 
among individual houses. 
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Introduction 

 Airport noise is an undesirable consequence of arriving and departing flights.  Much 

research effort has focused on how such noise affects the prices of houses located nearby and 

consistently finds that more noise is associated with lower housing prices.1

Ogneva-Himmelberger and Cooperman (2010) and Sobotta, Campbell, and Owens 

(2007) are notable examples of studies focused on the determinants of airport noise. In the latter 

study, the authors regress airport noise in Phoenix, expressed as a qualitative dependent 

variable, on various independent variables, including the percentage of the neighborhood 

population that is Hispanic.  They find that households in neighborhoods with greater Hispanic 

population were subjected to higher noise levels than households in other neighborhoods.

  On the other hand, 

few studies have examined the determinants of airport noise. 

2,3

The importance of addressing spatial effects has become clear in recent studies of airport 

noise (Cohen and Coughlin, 2008). In the present study, we focus on spatial heterogeneity in the 

 One 

might wonder, however, whether a closer look might reveal some substantial differences across 

geographic locations. Such spatial heterogeneity could occur in the impacts of demographic 

variables, as well as other spatial variables including distance from the airport, on the 

probability of greater noise exposure. 

                                                 
1 See Cohen and Coughlin (2008; 2009) for numerous references. 
2 This finding led them to conclude that those with Hispanic ethnicity incurred an environmental injustice. 
Environmental justice is not an issue that we can address effectively with our dataset.  We lack sufficient data to 
assess whether a particular racial or ethnic group moved to a noisy neighborhood or airport noise encroached on a 
group to a disproportionate degree.  Thus, we reach no conclusions as to whether some groups are affected unfairly 
by the decisions of others concerning airport noise.   

3 Ogneva-Himmelberger and Cooperman (2010), using Boston’s Logan International Airport, find that minority 
and lower-income populations are subjected to relatively higher noise levels. 
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context of the determinants of the geographic distribution of airport noise.  We postulate that 

there is substantial geographical variation in the determinants of airport noise, and that ignoring 

such heterogeneity can produce misleading views of  where noise (from a geographic 

perspective) falls on different racial and ethnic groups.  

Beyond incorporating spatial heterogeneity, our contribution includes several 

innovations directly relevant to the analysis by Sobotta, Campbell, and Owen (2007).4 First, we 

order the dependent variable with three categories ranging from the least noisy to the greatest 

noisy area.  The three categories, based on yearly day-night sound levels (DNL) are: 1) buffer 

zone – houses are located in a less the 65 DNL zone (i.e., less than 65 dB); 2) 65 DNL zone 

(i.e., 65 up to 70 dB); and 3) 70 DNL zone (i.e., 70 up to 75 dB).5

In addition to estimating a standard ordered probit model, following McMillen and 

McDonald (2004), we estimate ordered probit locally weighted regressions (OPLWR).  This 

estimation approach allows us to explore the issue of spatial heterogeneity in the context of the 

determinants of airport noise, which to our knowledge has not been examined previously.

 

6

                                                 
4 In our study, we also considered confronting the possibility of simultaneity between housing prices and noise.  In 
addition to the standard relationship of noise affecting housing prices, it is possible that housing prices affect noise.  
Airport authorities may choose to direct flights so as to distribute relatively more noise over relatively less 
expensive houses.  This may be done for economic reasons, one of which is that compensation for harm might be 
less for lower-valued houses.  Political reasons may also be operative as those living in less valuable houses may 
lack the political power to resist higher noise levels. We considered estimating an equation in which airport noise is 
a function of the instrumented housing prices, demographic variables, and other variables.  This second equation 
would be estimated by ordered probit because airport noise is a qualitative dependent variable. But since the 
ordered probit is a nonlinear equation, we could not be sure that the parameters of the simultaneous system would 
be identified, so we opted to not pursue the simultaneous equations approach.   

  

5 The measure of noise, the yearly day-night sound level (DNL), is a standard measure of noise used by the Federal 
Aviation Administration.  A DNL of 65 decibels is the Federal Aviation Administration’s lower limit for defining a 
significant noise impact on people.  At 65 decibels and above, individuals experience the disruption of normal 
activities, such as speaking, listening, learning, and sleeping.  As a result, such noise levels are viewed as 
incompatible with residential housing. 
6 McMillen and Redfearn (2010) and Carruthers and Clark (forthcoming) estimate locally weighted regressions in 
the context of a hedonic housing price framework. However, we are unaware of any studies that attempt to 
implement locally weighted regressions to assess where noise falls on different groups of people. 
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OPLWR is a more tractable approach than parametric estimation approaches such as a spatial 

ordered probit model.  It also allows for heterogeneity in each individual parameter estimate by 

obtaining a separate parameter estimate for each data point. One might anticipate that because 

our dataset is limited to those sales near the airport spatial heterogeneity is likely to be 

unimportant.  Such an expectation is not supported by our results. 

 We find notable differences in parameter estimates for different houses in our sample 

with the OPLWR estimates. In particular, the sign on the coefficient for each explanatory 

variable contains some positive and some negative values. Also, the mean of the magnitudes of 

the coefficients for some of other explanatory variables are larger with the OPLWR model, 

while for other coefficients the mean is smaller. These differences between the OPLWR and the 

ordered probit results imply that focusing exclusively on an ordered probit model for the 

determinants of noise can lead to biased estimates in our context due to ignored heterogeneity 

among individual houses in our sample. 

 Prior to providing details on our equations and results, we provide an overview of our 

dataset.  Next, we focus on the standard ordered probit model and the results.  This is followed 

by details on the ordered probit locally weighted regressions.  A discussion of our key findings 

completes the paper. 

Data 

We use data on airport noise levels surrounding the Atlanta airport in 2003. The airport 

noise contours were obtained from the Atlanta Department of Aviation, and are the same noise 

contours used by Cohen and Coughlin (2008).  For 508 houses near the Atlanta airport that were 

sold in 2003, we purchased housing sales prices and characteristics data from First American 
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Real Estate.  These data include house sale price as well as detailed housing characteristics such 

as the number of bedrooms, bathrooms, fireplaces, stories and the lot size. 

Table 1 contains definitions of the variables in our regressions and Table 2 presents the 

descriptive statistics for the sales prices and characteristics of the data from 2003.   

Approximately 29 percent of our observations fall in the 65 DNL zone, about 4 percent fall in 

the 70 DNL zone, and the remainder are in a “buffer zone” extending 0.5 miles outside of the 65 

DNL zone. See Figure 1 for a plot of the locations of the houses that were sold in 2003 on the 

contour maps. 

The houses are located in either Fulton County or Clayton County.  In terms of cities, the 

houses are located in Atlanta, College Park, Conley, East Point, Forest Park, and Hapeville.  The 

average house sold for approximately $128,400, contained about 3 bedrooms and 1.78 

bathrooms, and was located on a lot of 0.37 acres. Block group data on demographics, including 

percent black, percent Hispanic, and median income, were obtained from the 2000 U.S. 

Decennial Census. Because the demographic information was from the year 2000 while the 

noise levels were based on estimates in 2003, it seems reasonable to postulate that previous 

demographics may have influenced 2003 noise levels. 

Ordered Probit Model  

The first model we estimate, a standard ordered probit (OP) model, is as follows: 

Noise = f(X, u)    (1) 

where Noise is a categorical variable for a house sold in one of the three noise level groupings 

described above, ordered from least to most noisy; X represents a set of variables measuring: 1) 

the age of the house in logs – AgeLog, 2) the distance in logs from the house to the airport – 
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DistanceLog, 3) the percentage of the houses in the neighborhood in which the house was sold 

with a black head of household – BlkHH00, 4) the percentage of houses in the neighborhood in 

which the house was sold with a Hispanic head of household – HispHH00, and 5) the median 

household income in the neighborhood in which the house was sold – MedHHInc00; and u is an 

error term with a normal distribution with zero mean and constant variance.  The inclusion of 

variables is driven by our interest in both neighborhood characteristics – income levels as well 

as racial and ethnic characteristics – and house characteristics – location and age.7

Ordered Probit Results 

   

The results produced by estimating equation (1’) by ordered probit are presented in 

Tables 3 and 4.  The results in Table 3 indicate that all the variables are statistically significant. 

The results in Table 3 must be transformed before interpreting them as marginal effects.8

                                                 
7 Upon first impression, the inclusion of age might be puzzling.  It is an attempt to assess if newer or older houses 
are subjected to more noise.  One possibility is that the construction of newer house would tend to take place where 
there is less noise.  However, soundproofing might be more economical for new construction, so noise would be 
less of a nuisance for new construction.  Thus, new construction might not necessarily avoid noisier areas.  

   

Because there are three categories for the dependent variable, each can be ordered on a line 

segment under the normal distribution curve, and the width of each sub-segment would depend 

on the frequency of the observations for each noise level. The probability of each value of the 

dependent variable is the area under the curve between the boundaries of each particular sub-

segment. The marginal effects of an increase in an exogenous variable on the predicted 

probabilities of each possible value of the dependent variable can be assessed in the context of a 

normal distribution that shifts in response to the change in the exogenous variable. This shift 

leads to a different area under the normal distribution for each of the three possible outcomes. 

8 See Greene (2003). 
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When there is a positive relationship between the dependent variable and the exogenous 

variable causing the shift, there will be less area under the normal curve for the lowest outcome 

(noise less than 65 dB), so this probability will decrease. For the largest outcome (noise greater 

than 70 dB), the area under the normal curve will increase, so the probability that a house is 

exposed to noise greater than 70 dB increases. The outcome of an increase in an exogenous 

variable on the area in the middle range (65 up to 70 dB) is ambiguous, as the probability of 

being in this noise range may either increase or decrease. 

After transforming the results in Table 3, an examination of Table 4 reveals that the 

marginal effects are negative and significant in the buffer zone (noise less than 65 dB) for the 

black (BlkHH00), Hispanic (HispHH00), and income (MedHHInc) variables. Because of their 

positive coefficients in Table 3, increases in any of these three exogenous variables (i.e., larger 

neighborhood percentages of black and Hispanic heads of households and higher neighborhood 

median income) will shift the entire probability distribution to the right, which decreases the 

probability of being in the buffer zone.9

                                                 
9 Using different estimation methods and a different model, Sobotta, Campbell, and Owens (2007) find, similar to 
our result, that increased Hispanic percentages are significantly associated with more noise.  While they find a 
positive association between higher “non-white” percentages in a neighborhood and more noise, the relationship is 
not statistically significant.  Finally, they find a positive, statistically significant association between the percentage 
of households at or below the poverty rate in a neighborhood and more noise.  Contrary to expectations, but 
somewhat similar to our results, they also found a positive association between the percentage of high-income 
households and more noise.  However, this association was not statistically significant. 

 Meanwhile, the variables for the age of the house 

(AgeLog) and distance from the airport (DistanceLog) are negative and statistically significant. 

Because of their negative coefficients in Table 3, the positive sign for the buffer zone partial 

derivatives in Table 4 reflects the fact that increases in these explanatory variables shift the 

buffer zone probability distribution to the left.  Thus, higher values of these variables (i.e., older 

houses and houses farther from the airport) increase the probability of being in the buffer zone. 

For each explanatory variable, the signs of the marginal effects for the buffer zone and the most 
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noisy (noise greater than 70 dB) part of the probability distribution are opposite each other, and 

the interpretations for houses in the most noisy zone follow accordingly. 

We also examine the marginal effects for the 65 up to 70 dB noise contour. For percent 

black and Hispanic households, the signs of their marginal effects imply that for the average 

house in the 65 up to 70 dB zone, higher percentages of either of these populations in the 

neighborhood leads to a higher probability that houses in the neighborhood will be exposed to 

65 up to 70 dB of noise. A similar finding holds for median household income – for the average 

house in the 65 up to 70 dB zone, higher household income in the neighborhood leads to a 

higher probability of exposure to 65 up to 70 dB of noise. On the other hand, the age and 

distance marginal effects are negative and significant for the 65 up to 70 dB dependent variable. 

Larger values of either age of a house or distance from the airport lead to a lower probability 

that a house is exposed to 65 up to 70 dB of noise.   

Ordered Probit Locally Weighted Regressions: Locally Weighted Maximum Likelihood 

It is possible that some of our variables affect the probability of a given level of airport 

noise nonlinearly. In other words, the neighborhood characteristics of different houses may have 

different impacts on the probability of a given level of noise exposure. A standard ordered 

probit model does not adequately account for such nonlinearities because the parameter 

estimates are constrained to be equal across all data observations. Thus, ignoring the spatial 

heterogeneity in the parameter estimates can lead to inaccuracies in interpretation of the 

magnitude and direction of the distance and the demographic variables on the probability of 

greater noise. 



 9 

McMillen and McDonald (2004) propose an estimation approach that allows for 

heterogeneity, which we call ordered probit locally weighted regressions (OPLWR).10

Σj wij [ D0j log Φ (- βi’Xj) + D1j [log Φ (μi - βi’Xj) – log Φ (- βi’Xj)]   

 They 

specify a “pseudo log-likelihood function” to estimate a separate set of parameters for each 

observation, and they call this a locally weighted ordinal probit pseudo log-likelihood function. 

For the case where there are 3 possible “regimes” in the ordered probit, the pseudo log-

likelihood function is: 

+ D2j log Φ (-μi + βi’Xj)] ,       i,j = 1,2,…,508,        (2) 

where Φ ( ) is the standard normal cumulative density function; βi is the parameter vector for 

observation i;  D0j , D1j and D2j are dummy variables taking the value of 1 if observation j is 

either 0, 1, or 2, respectively, and 0 otherwise; μi is a parameter for observation i; and wij is the 

weight that house j has on house i. 

The weight structure is somewhat different than for typical spatial econometric 

weighting matrices. One possibility, which we use in our analysis, relies on the “Gaussian 

function”, and is represented as: 

wij = φ (dij/(sib))                                                                                              (3) 

                                                 
10 See Fotheringham, et. al. (1998) and Fotheringham, et. al. (2002) for general background on locally weighted 
regressions. 
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where φ is the standard normal (Gaussian) density function; dij is distance (as the crow flies) 

between house i and house j; si is the standard deviation of the distances between house i and all 

other houses j; and b represents the “bandwidth”.11

Many locally weighted regression applications have used the Gaussian function.  The 

determination of the bandwidth tends to be more important than the choice of the weighting 

function.  For example, the results in Thorsnes and McMillen (1998) are essentially invariant to 

choosing among several different weighting functions.  McMillen and McDonald (2004) 

suggest the “cross-validation” approach for selecting the appropriate bandwidth. This approach 

consists of estimating the OPLWR model for several different bandwidths (and setting wii = 0), 

and choosing the bandwidth for which the pseudo-likelihood function is maximized. In the 

present context, we estimated the pseudo-likelihood model for bandwidths of 0.4, 0.6, 0.8, and 

1.0. Cross-validation implied that b = 0.4 was the preferred bandwidth. 

  

Ordered Probit Locally Weighted Regressions: Results 

Table 5 contains results for the OPLWR estimations, based on the preferred bandwidth 

of b = 0.4. Prior to examining the results for specific variables, we summarize some of our 

findings.  While some similarity in terms of the signs (e.g., the matching of the signs using OP 

with the averages signs using OPLWR) and magnitudes of the estimated coefficients (e.g., the 

magnitude of the coefficient for distance using OP is roughly equal to the average of the 

coefficients using OPLWR) exists, most noteworthy is that substantial heterogeneity is found.  

For each variable, the estimated coefficients for the OPLWR model exhibit positive as well as 

                                                 
11 See Thornes and McMillen (1998) and McMillen and McDonald (2004) for details on the Gaussian function. 
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negative values.  For every explanatory variable, there are at least some houses for which the 

estimated coefficients differ substantially between the OP and OPLWR models. 

Turning to the results for specific variables, the mean estimate from the OPLWR for the 

household income (MedHHInc00) is roughly 4 times the magnitude of the coefficient estimate 

from the OP.  While there are some negative values for some houses, the majority of the houses 

have positive income coefficients. Thus, the qualitative insights associated with this variable are 

similar across the two estimation procedures. 

Results associated with the age explanatory variables suggest the additional insights and 

value provided by OPLWR.  The mean OPLWR estimate for the age variable (AgeLog) is more 

than double the coefficient estimate of the OP.  The range of estimates, which contains mostly 

negative values, is much larger than the distribution suggested by the OP results. 

For the variable measuring the percentage of houses in the neighborhood in which a 

house was sold with a black head of household (BlkHH00), the mean from the OPLWR is 

roughly twice as large as the coefficient estimate of the OP.  The range of the OPLWR results 

includes some negative values, but the vast majority of the houses have positive values. 

The Hispanic variable (HispHH00) demonstrates a substantial amount of heterogeneity, 

with a notable mix of both positive and negative coefficients. The mean OPLWR is about half 

the magnitude, and the same sign as, the OP coefficient estimate. Thus, the OPLWR approach, 

compared with the OP estimates, adds explanatory power with respect to the Hispanic variable.  

For the distance variable (DistanceLog), the mean OPLWR has the same sign but is 

about 8 times the magnitude of the coefficient estimate of the OP.  Moreover, the range includes 
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mostly negative but only a handful of positive values.  In general, distances closer to the airport 

imply that houses are subjected to more rather than less noise. 

Where Does the Noise Fall and Upon Whom? A Graphical View 

The preceding discussion summarizes our results, but provides virtually no geographic 

perspective.  Now we attempt to increase the insights relating to the effects of our independent 

variables by adding some geographic meat.  Using a picture identifying the noise contours 

surrounding the Atlanta airport and the locations of houses in our sample, the estimates for each 

independent variable are presented in two ways.  In the top panel of each figure, the locations of 

positive coefficients (in red) are distinguished from the negative coefficients (in black).  In the 

bottom panel, the coefficients are grouped by quintiles with the first quintile containing the 

smallest estimates. 

Let’s start by examining the estimates for the distance variable (DistanceLog).  For the 

model with the b = 0.4 bandwidth, the 505 houses with negative coefficients on the distance 

variable are plotted in black in Figure 2a, while the three houses with positive coefficients for 

the distance variable are in red. For the “red” houses, moving closer to the airport (i.e., the value 

of the distance variable declines) increases the probability of those houses being in the buffer 

zone. While there are few red houses, their sign may be a result of the fact that just to the north 

of the airport, the 65 and 70 DNL zones are very thin. For the houses shaded in “black”, moving 

closer to the airport lowers the probability of those houses being in the buffer zone. Also, for 

houses not located directly east or west of the airport, moving closer to the airport may or may 

not lead to higher noise levels.  For example, for the “red” shaded houses located north of the 
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airport in the buffer zone, moving further from the airport in the southeasterly direction can put 

them in the 65 DNL zone and, thus, subjected to more noise. 

Overall, however, the negative relationship between the estimated coefficients and 

distance (in logs) is strong.  Generally speaking, the farther the house from the airport, the more 

likely the house is in the buffer zone (is subjected to the lowest noise level).12

The results for the variable measuring the percentage of houses in the neighborhood in 

which a house was sold with a Hispanic head of household (HispHH00) exhibit much 

heterogeneity. While the majority of estimates are positive (319 or 63 percent), a substantial 

number (189 or 37 percent) of the estimates are negative.  The positive and negative values in 

Figure 3a do cluster.  Generally speaking, as shown in Figure 3b, the smallest values are located 

west of the airport, while the largest values are located southeast of the airport.  When we 

calculate the correlation between the coefficient estimates and HispHH00, we find a positive 

association.

  This statement is 

corroborated by Figure 2b.  The smallest coefficient estimates (i.e., houses identified by white 

dots) tend to be farthest from the airport, while the largest coefficient estimates (i.e.,  houses 

identified by red dots) tend to be nearest the airport. 

13

We also find heterogeneity in the parameter estimates for the variable measuring the 

percentage of houses in the neighborhood in which a house was sold with a black head of 

household (BlkHH00).  However, the vast majority of estimates are positive (463 or 91 percent).  

  This means that for these largest values an increase in the Hispanic percentage 

tends to be associated with a reduced probability of being in the buffer (i.e., more likely to be 

subjected to a noisier area).   

                                                 
12 The Pearson coefficient is -0.80 and the Spearman rank-order coefficient is -0.84. 
13 The Pearson coefficient is 0.44 and the Spearman rank-order coefficient is 0.56. 
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The few negative values (45 or 9 percent) are clustered and dominate the southwest portion of 

our map in Figure 4a. Because the majority of estimated coefficients are positive, an increase in 

the level of this variable is generally associated with a reduced probability of remaining in the 

buffer zone. 

Also, contrary to the findings for our Hispanic-related variable, the correlation between 

the coefficient estimates and BlkHH00 is negative.14

Turning attention to the income variable, the 36 negative values are clustered slightly 

northeast of the airport in Figure 5a.  Nearly all the negative values are in the buffer zone. The 

majority (472 or 93 percent) of estimated coefficients are positive.  Thus, somewhat 

surprisingly, an increase in income is generally associated with a reduced probability of 

remaining in the buffer zone.   The correlation between the coefficient estimates and income 

levels is, at most, weakly positive.

  Thus, the very largest percentages of this 

variable tend to be associated with the smallest (i.e., negative) coefficients. This means that for 

these largest values an increase in the black percentage tends to be associated with an increased 

probability of being in the buffer (i.e., less likely to be subjected to a noisier area). 

15

Finally, the clustering of positive values of the age variable occurs northeast of the 

airport in Figure 6a.  The vast majority (457 or 90 percent) of the estimated coefficients are 

negative.  Thus, an increase in age is generally associated with an increased probability of being 

in the buffer zone. This result is consistent with the possibility that modern soundproofing can 

  Still, we find that for these highest income levels, an 

increase in income is associated with a reduced probability of being in the buffer zone.  

                                                 
14 The Pearson coefficient is -0.43 and the Spearman rank-order coefficient is -0.32. 
15 The Pearson coefficient is 0.002 and the Spearman rank-order coefficient is 0.14. 
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increase the attractiveness of building a new house in a noisier area.  There is, however, no 

obvious relationship between the estimated coefficients and house age.16

Conclusion 

 

The findings of a vast degree of heterogeneity with the OPLWR approach contrast with 

those from the OP estimation, so it is clear that exploring heterogeneity in different 

neighborhoods generates additional insights in assessing where the noise falls are masked in the 

OP model estimates.17

The Hispanic population variable exhibits a notable amount of heterogeneity in the sign 

of the coefficients. The impact of Hispanic population on airport noise varies in sign depending 

on geographic location. For the preferred bandwidth of 0.4, the estimated coefficient tends to be 

negative for the majority of the houses located west of the airport and positive for most houses 

east of the airport. 

  One implication is that standard ordered probit in the present case 

generates misleading and biased estimates due to the ignored heterogeneity among individual 

houses.  Thus, generalizations concerning the relationship between racial or ethnic groups and 

airport noise are quite likely inaccurate and inappropriate.  This implication arises despite the 

fact that our analysis is restricted to a relatively small geographic area near the Atlanta airport.  

One might reasonably expect spatial heterogeneity to become even more pronounced for larger 

geographic areas. 

                                                 
16 The correlation coefficients are absolutely small and  possess opposite signs – the Pearson coefficient is -0.12, 
while the Spearman rank-order coefficient is 0.12 
17 Due in part to this heterogeneity, we are unable to make any general statements about the presence of 
environmental justice (or injustice) with respect to airport noise in Atlanta. This is because the heterogeneity 
implies no clear pattern in the effects of demographics on noise levels, particularly for the Hispanic-related 
variable. 
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We find heterogeneity depending on the composition of neighborhoods.  The use of 

OPLWR is especially well-suited to identify such heterogeneity. In contrast, it is not possible to 

generate such detailed insights in an ordered probit model, so the OPLWR model enhances the 

interpretative potential by generating different parameter estimates for each house in our 

sample. By providing detailed geographic content, the OPLWR approach allows a more 

thorough and nuanced understanding of how location, neighborhood, and house characteristics 

relate to airport noise.  Our OPLWR results lead us to conclude that there are differences in 

where and to what extent noise falls on different groups of people. Such understanding provides 

important background for designing and assessing the wisdom of policies to address noise 

pollution and environmental justice issues. 
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Table 1 

Variable Definitions 

Name Definition 

Noise Ordered categorical variable with three noise levels for houses in the buffer zone (least 
noise), 65 decibel day-night sound level noise contour, and 70 decibel day-night sound 
level noise contour. 

DistanceLog Distance in miles from house to airport (in natural logs). 
AgeLog Age of house (in natural logs). 

B1kHH00 Percentage of houses in the neighborhood in which a house was sold with a black head 
of household. 

HispHH00 Percentage of houses in the neighborhood in which a house was sold with a Hispanic 
head of household. 

MedHHInc00 Median household income in the neighborhood in which a house was sold. 
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Table 2: Summary Statistics -- 508 Observations 

  Count Percentage 

House Sales  in the buffer zone – 2003 contours 343 67.5 
House Sales  in 65 db zone -- 2003 contours 146 28.7 
House Sales  in 70 db zone -- 2003 contours 19 3.7 
   
House Sales in Atlanta 49 9.6 
House Sales in College Park 147 28.9 
House Sales in Conley 60 11.8 
House Sales in East Point 66 13.0 
House Sales in Forest Park 136 26.8 
House Sales in Hapeville 50 9.8 
   
1 story 425 83.7 
2 or more stories 83 16.3 
   
2 or less bedrooms 138 27.2 
3 bedrooms  258 50.8 
4 bedrooms  99 19.5 
5 or more bedrooms 13 2.6 
   
1 bathroom 246 48.4 
2 bathrooms  151 29.7 
3 or more bathrooms 111 21.9 
   
0 or 1 fireplace 494 97.2 
2 or more fireplaces 14 2.8 
   
  Mean Range 
Price (dollars)  128,442   32,378-460,500  
Distance (miles) 3.29 1.06-6.06 
Acres 0.37 0.03-3.88 
Age (years) 39.85 0-100 
B1kHH00 (percent) 56.96 0-97.5 
HispHH00 (percent) 8.64 0-30.1 
MedHHInc (hundreds of dollars) 319.4 116.7-606.3 
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TABLE 3:  Estimation Results (1’) 

 
Variable 

 
Ordered Probit 

 
AgeLog 

 
-0.178* 

(-4.43) 
DistanceLog -0.548* 

(-2.89) 
B1kHH00 0.029* 

(8.07) 
HispHH00 0.034* 

(3.16) 
MedHHInc 
 
 
µ 
 
Const 

0.003* 
(3.92) 

 
1.7 

 
-2.14 

  
Log likelihood 
LR χ2 (5) 
Prob > χ2  
Pseudo R2 
Observations 

-312.46 
133.47 

0.00 
0.18 

508 

*Denotes significance at the 5 percent (two-tailed) level.  
       
Notes:  Z-statistics are in parentheses.  Dependent variable is an ordered, categorical noise variable with 
three noise levels starting from least noise (lowest level). 
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TABLE 4:  Partial Derivatives (z-statistics) – Ordered Probit 

 
Variable 

 
Buffer Zone 

 
65DB 

 
70DB 

 
AgeLog 

 
0.062* 

(4.40) 

 
-0.056* 

(-4.26) 

 
-0.006* 

(-2.97) 
DistanceLog 0.189* 

(2.90) 
-0.171* 

(-2.87) 
-0.018* 

(-2.31) 
B1kHH00 -0.010* 

(-8.19) 
0.009* 

(7.52) 
0.001* 

(3.46) 
HispHH00 -0.012* 

(-3.18) 
0.010* 

(3.14) 
0.001* 

(2.43) 
MedHHInc -0.001* 

(-3.91) 
0.001* 

(3.83) 
0.00009* 

(2.75) 
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TABLE 5:  Ordered Probit Models for Aviation Noise 

 
Variable 

 
Standard Ordered Probit1 

 
Locally Weighted Ordered 

Probit2 

 
AgeLog 

 
-0.178 

(-4.43) 
 

 
-0.422 
(0.299) 

[-1.613, 0.233] 
 

DistanceLog -0.548 
(-2.89) 

 

-4.460 
(2.420) 

[-9.600, 0.109] 
 

B1kHH00 0.029 
(8.07) 

 

0.056 
(0.039) 

[-0.129, 0.104] 
 

HispHH00 0.034 
(3.16) 

 

0.017 
(0.056) 

[-0.239,  0.122] 
 

MedHHInc 0.003 
(3.92) 

 

0.013 
(0.014) 

[-0.003,  0.042] 
 
µ 
 
 
 
Const 
 

 
1.7 

 
 
 

2.14 
 
 

 
2.78 

(1.00) 
[ 1.27, 5.37] 

 
-0.981 
(5.234) 

[-6.802, 27.489] 
 

Log likelihood 
 
Observations 

-312.46 
 

508 

-6855.42 
 

508 

 1 Parameter estimates with z-statistics in parenthesis. 

2 The average of the 508 parameter estimates for the variable is listed on the first of the three lines, the 
standard deviation in parenthesis is on the middle line, and the range of parameter estimates in brackets is 
provided on the third line.  The log-likelihood value is the sum of the log likelihoods for the 508 
regressions.  Bandwidth = 0.4. 
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Figure 1 
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Figure 2a 
 Distance Coefficients and Location of Houses 

  
 

b = 0.4 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2b 

 Distance Coefficient Quintiles and Location of Houses 
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Figure 3a 
 Hispanic Coefficients and Location of Houses 
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Figure 3b 

 Hispanic Coefficient Quintiles and Location of Houses 
 

 
 



 26 

Figure 4a 
 Black Coefficients and Location of Houses 
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Figure 4b 

 Black Coefficient Quintiles and Location of Houses 
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Figure 5a 
 Income Coefficients and Location of Houses 
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Figure 5b 

 Income Coefficient Quintiles and Location of Houses 
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Figure 6a 
 Age Coefficients and Location of Houses 
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Figure 6b 

 Age Coefficient Quintiles and Location of Houses 
 

 
 
 


