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Kalman filtering with truncated normal
state variables for Bayesian estimation

of macroeconomic models

Michael Dueker∗

Federal Reserve Bank of St. Louis

Abstract

A pair of simple modifications—in the forecast error and forecast error variance—
to the Kalman filter recursions makes possible the filtering of models in which one or
more state variables is truncated normal and latent. Such recursions are broadly applica-
ble to macroeconometric models, such as vector autoregressions and estimated dynamic
stochastic general equilibrium models, that have one or more probit-type equation.
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1 Introduction

Multivariate models that contain a probit-type equation are emerging in empirical macroe-

conomics, such as the Qual VAR of Dueker (2005)—a vector autoregression that includes

an equation that determines a qualitative variable. The probit-type equation could be

one that includes information on business cycle turning points, or it could be a monetary

policy equation that uses data on the central bank’s interest rate target that changes by

discrete increments. Other macroeconomic phenomena also lead to qualitative variables

that evolve dynamically, such as currency pegs and central bank exchange-rate inter-

ventions. Dynamic probits aim to capture both the limited-dependent nature and serial

correlation inherent in qualitative time-series variables.1

Until now, however, multivariate macroeconometric models that contain a probit-type

equation have relied on single-move sampling techniques, even though multi-move sam-

pling dominates in terms of efficiency and convergence to the joint posterior distribution.

In single-move Markov Chain Monte Carlo (MCMC) sampling of a vector, z, the density

used to draw an element t for iteration i depends on the previous iteration’s draws:

π(z
(i)
t | {z(i)r}r<t, {z(i−1)

s }s>t, Data, parameters).

In multi-move sampling, in contrast, the entire vector of z is drawn without reference to

1The term “dynamic probit” is also used in some contexts to refer to a model in which the lagged
qualitative variable appears as a covariate; see Horowitz (1992). In this case, the presence of the lagged
qualitative variable adds persistence but not dynamics in the sense of time-varying expected durations to
the qualitative regimes. We refer here to dynamic probits as those for which the latent variable governing
the qualitative variable is autoregressive and, thereby, displays dynamic behavior. Eichengreen et al.
(1985) is the first example of an autoregressive dynamic probit.
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the last iteration’s draws:

π({z(i)t}T
t=1 | Data, parameters).

One hallmark feature of MCMC estimation of probit-type models is the sampling of

truncated normal latent variables; see Albert and Chib (1993). At the same time, the

Kalman filter has seen great use in Bayesian estimation as a tool to derive multi-move

sampling distributions, as pioneered by Carter and Kohn (1994), Fruhwirth-Schnatter

(1994), Shephard (1994) and De Jong and Shephard (1995). This paper demonstrates

that multi-move sampling of truncated normal variables is possible if one modifies the

Kalman filter recursions for the case where a state variable is truncated normal. To the

author’s knowledge, this specific modification of the Kalman filter recursions for truncated

state variables has not appeared in the literature to date. With such a modified Kalman

filter, it is possible to extend multi-move MCMC sampling to the Qual VAR model of

Dueker (2005) and also to extend estimation of dynamic stochastic general equilibrium

(DSGE) models to include probit-type features, such as the central bank’s discrete target

interest rate. Dueker and Nelson (2006) use a Qual VAR to conduct counterfactual

business cycle filtering of macroeconomic data. Because many linearized DSGE models

take the form of a vector autoregression, subject to coefficient restrictions, the the form

of the model we present here covers a wide range of macroeconometric models.

2 State-space model and truncation

Thus, consider a macroeconometric model written as a p-order vector autoregression,

where z is the latent variable that lies behind the qualitative data, zq, and observed

macroeconomic time seris, X:
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Yt = cY +
p∑

i=1

Φ(i)Yt−i + εt, (1)

where Yt = (Xt, zt)
′ is k × 1 and

Φ(i) =

(
Φ

(i)
XX Φ

(i)
Xz

Φ
(i)
zX Φ(i)

zz

)
.

A standard state-space representation of the VAR from eq. (1) has the following state

equation2 :




Yt

Yt−1
...

Yt−p+1




=




cY

0
...
0




+




Φ(1) Φ(2) · · · Φ(p)

I 0 · · · 0

0
. . .

...
0 · · · I 0







Yt−1

Yt−2
...

Yt−p




+




εY,t

0
...
0




The measurement equation for the Qual VAR is simply

Xt =
(

Ik−1 0 · · · 0
)




Yt

Yt−1
...

Yt−p+1




(2)

To achieve multi-move sampling, it is necessary to derive the conditional distribution

of the entire vector of the latent variable conditional on the parameter vector, Θ, the

observed qualitative data, zq, and the other macroeconomic data, Xt:

π({zt}T
t=1 | Θ, {zq

t }T
t=1, {Xt}T

t=1).

We can summarize the above state-space model (suppressing the constants) as:

2Macroeconometric models have made great use of the state-space form to take account of latent state
variables, e.g., Kuttner (1994).
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Xt = HSt

St = FSt−1 + εt (3)

The number of rows in the state vector is k and Fk denotes row k of F .

Without loss of generality, assume that z is the last element in the state vector S.

Because we want to allow for the possiblity that the covariance matrix of εt has non-zero

off-diagonal elements, let

εt = Wηt,

where W is an upper-triangular Cholesky decomposition of the covariance matrix Q of εt.

The truncation from having zq
t in category j implies that zt lies in the range (dj, dj+1),

and this truncation of z will change the mean and variance of the last element of η from

the unconditional values of zero and one, respectively.

The mean of ε, conditional on trunction, becomes

E[εt+1 | zq
t+1] = W




0
...
0
a




,

where we denote αj+1 = W−1[zt+1−FkSt|t + dj+1], αj = W−1[zt+1−FkSt|t + dj] such that

a =
φ(αj+1)− φ(αj)

Φ(αj+1)− Φ(αj)
.

and the variance of ε, conditional on truncation, becomes

Q̃ = W




1 0 · · · 0

0
. . . 0 0

0 · · · 1 0
0 · · · 0 v




W ′,
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where

v = 1− a2 − αj+1φ(αj+1)− αjφ(αj)

Φ(αj+1)− Φ(αj)
.

3 Kalman filter recursions

The Kalman filter with the truncated state variable proceeeds as follows:

1. Data forecast error (DFE) conditional on zq:

yt+1 − yt+1|t = yt+1 −HFSt|t −HE[εt+1 | zq
t+1]

2. State forecast variance:

Pt+1|t = FPt|tF
′ + Q̃

3. Data forecast error variance:

Vart(DFEt+1) = HPt+1|tH
′

The equations to update the state and the precision matrix are based on

St+1|t+1 = St+1|t + E[(St+1 − St+1|t)DFEt+1]× [HPt+1H
′]−1DFEt+1.

Nevertheless, because

E[(St+1 − St+1|t)DFEt+1] = Pt+1|tH
′,

the Kalman filter update equations take the usual form, although the truncation infor-

mation alters the data forecast error (DFE) and forecast variance inputs:

St+1|t+1 = St+1|t + Pt+1|tH
′[HPt+1|tH

′]−1DFEt+1 (4)

Pt+1|t+1 = Pt+1|t − Pt+1|tH
′[HPt+1|tH

′]−1HPt+1|t (5)
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Thus, these modifications to the Kalman filter recursions show that the Kalman filter

remains a useful tool to calculate conditional densities in the case where one or more of

the state variables is truncated normal. The same logic would apply if an observation

equation variable were truncated normal.

After the modified Kalman filtering, the usual (no modification necessary) Kalman

smoothing equations can be applied in order to draw values of z backwards from the end of

the sample, with the net result being a draw from the density π({z} | {zq}, {X}, parameters).

See Fruwirth-Schnatter (1994) for a discussion of backwards sampling from Kalman fil-

tered and smoothed conditional densities.

4 Conclusion

A few simple modifications of the Kalman filter recursions make the approach applicable

to the case where one or more state variables is truncated normal. No approximation

of the Kalman filter is required, in contrast to the extended Kalman filter and its first-

order Taylor approximations. This extension of the Kalman filter makes it possible to

do multi-move sampling for Bayesian estimation of vector autoregressions and dynamic

stochastic general equilibrium macroeconomic models that involve a probit-type equation

that makes use of qualitative or discrete-valued data.
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