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Abstract

This paper constructs an endogenous growth model driven by self-ful�lling expectation

shocks to explain the stylized fact that the average growth rate of GDP is related negatively to

volatility and positively to capacity utilization. The implied welfare gain from further stabilizing

the U.S. economy is about a quarter of annual consumption, which is consistent in order of mag-

nitude with estimates based on the empirical studies of Ramey and Ramey (1995) and Alvarez

and Jermann (2004). Hence, policies designed to reduce �uctuations can generate large welfare

gains because smaller �uctuations are associated with permanently higher rates of growth.
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1 Introduction

Ramey and Ramey (1995) present empirical evidence of a negative relationship between business

cycle volatility and long-run growth: countries with lower output volatility tend to grow faster over

time. This negative relationship has also been validated by other empirical studies.1 The same

negative relationship between the business cycle and long-run growth also exists in the U.S. time

series. In particular, for the post-war period, the rate of capacity utilization is positively correlated

with the mean growth rate and negatively with its standard deviation (see Figure 1). This suggests

that, on average, periods of higher capacity utilization are also periods of faster growth and smaller

�uctuations.2

Figure 1. U.S. Time Series (1948:1 - 2007:4).

More speci�cally, Figure 1 shows movements of the U.S. manufacturing sector�s capacity uti-

lization rate, the real GDP growth rate, as well as the standard deviation of GDP growth based on
1See, e.g., Aghion, Angeletos, Banerjee, and Manova (2005), Easterly, Islam, and Stiglitz (2000), Hnatkovska and

Loayza (2004), Kroft and Lloyd-Ellis (2002), Martin and Rogers (2000), and Mobarak (2005), among others. Barlevy
(2004a) documents a negative relationship between growth and volatility using time series data from the U.S.

2Barlevy (2004a) also documents a negative relationship between the mean GDP growth rate and its volatility
based on U.S. data.
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a 16-quarter rolling-window moving average.3 It is clear from the graph that the average growth

rate and the capacity utilization rate are both negatively related to the standard deviation of GDP

growth. This stylized fact has important welfare and policy implications; it suggests that stabi-

lization policies may be able to increase the average growth rate by raising the average capacity

utilization rate, or vise versa.

Standard RBC models that treat the sources of long-run growth and short-tun �uctuations

as orthogonal components of total factor productivity (TFP) cannot explain such stylized facts.

This paper proposes an explanation for the stylized facts based on an endogenous growth model

featuring sunspot shocks driven by �rms�self-ful�lling expectations about aggregate demand. A

novel feature of our model is that volatilities are endogenous, instead of coming from exogenous

shocks to preferences or technology. Endogenous volatility stems from time-varying markups, which

provide the crucial link among capacity utilization, mean growth, and volatility in our model.

The motivation for focusing on time-varying markups as a fundamental source of �uctuations

derives from the argument that movements in the marginal cost (or markup) are closely related to

movements in measured TFP (see, e.g., Hall, 1986, 1988); hence, the link between shifts in marginal

costs and the business cycle is an important channel to exploit. Pioneering work along this line

includes Gali (1994,1996) and Rotemberg and Woodford (1991, 1992, 1995, 1999).4

To generate a time-varying markup, we use the mechanism analyzed by Ng (1980, 1992), Cooper

and John (1988), and especially Wang and Wen (2007).5 In these papers �rms face demand

externalities and set prices simultaneously without knowing the true marginal costs (because the

equilibrium marginal costs depend on other �rms�output levels). Hence, they may face extrinsic

uncertainty regarding the equilibrium outcome of aggregate demand and marginal costs. Due to

the strategic complementarity among �rms�actions, which arises from imperfect substitutability

of �rms�output in the goods market, the extrinsic uncertainty can be self-ful�lling. Consequently,

the economy is subject to coordination failures and endogenous �uctuations.6

The key distortion in a standard New Keynesian monopolistic competition model is a constant

markup over marginal costs. However, when marginal costs become stochastic due to extrinsic

uncertainty, there exists a further distortion which leads to larger average markups. This addi-

3The de�nition of the variables are as follows: the average 4-year capacity utilization rate is �ut = 1
16

P15
j=0 ut+j ;

the average 4-year GDP growth rate is �gt = 1
16

P15
j=0 gt+j ; and the standard deviation of GDP growth is �t =h

1
16

P15
j=0(gt+j � �gt)

2
i 1
2
. A rolling window is used in the estimation. The sample range is 1948:1 - 2007:4. The

capacity series u is based on the U.S. manufacturing sector and is normalized so that it has similar magnitude as the
other series in the graph. The results are robust for window sizes longer than 3 years.

4Also see Chatterjee, Cooper, and Ravikumar (1993), among others.
5Also see Svensson (1986), Ireland (1996), Carlstrom and Fuerst (1998a, 1998b), Adão, Correia, and Teles (2003),

among others.
6See Wang and Wen (2007) for detailed analysis of this mechanism of endogenous �uctuations in standard DSGE

models with imperfect competition.
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tional distortion arises because monopoly price is a constant markup over a weighted average of

the marginal costs (as in standard New Keynesian sticky price models). However, because a higher

marginal cost is associated with a higher aggregate demand, high-cost states will receive dispropor-

tionately higher weights under expected pro�t maximization, where the weights themselves depend

endogenously on expected demand. This nonlinearity and unequal distribution of weights generates

an additional distortion between prices and average marginal costs, which would not exist if the

marginal cost were constant.

This additional distortion due to stochastic marginal cost leads to lower average output because

�rms opt to charge higher prices with higher average markups during periods of higher demand.

In an endogenous growth model, a lower output level translates into lower investment and lower

economic growth. Hence, the larger the variability of the marginal cost, the lower will be the

average growth rate. This explains the negative correlation between volatility and growth. Because

production capacity (the capital stock) is predetermined by past investment, lower output in any

period also means a lower rate of capacity utilization.

Since volatility and growth is negatively related in the model, the welfare cost of business cycles

can be several orders larger than that calculated by Lucas (1987, 2003). In addition, because

expectations-driven �uctuations in the model are ine¢ cient, the welfare gain from eliminating such

�uctuations by stabilization policies is astonishingly large.7

Our paper is related to a large literature that studies the link between the business cycle

and growth. Important works in this literature include King and Rebelo (1993), Stadler (1990),

Acemoglu and Zilibotti (1997), Jones, Manuelli, and Stacchetti, (2000), Francois and Lloyd-Ellis

(2003), Barlevy (2004a), Jones, Manuelli, Siu, and Stacchetti (2005), and Aghion, Angeletos, Baner-

jee, and Manova (2005), among many others. However, the main body of this literature focuses

on complete-market economies with exogenous business cycles driven by shocks from outside the

economy. Consequently, the policy implications of this literature di¤er fundamentally from ours.

When �uctuations are driven by exogenous shocks (such as shocks to TFP) in a complete-market

economy, little scope exists for stabilization policies because �uctuations are optimal responses to

such shocks. Thus, there is no gain from stabilizing the economy even if the welfare gain from

eliminating the exogenous shocks is large (see, e.g., Barlevy, 2004a, 2004b). In contrast, in our

model �uctuations are endogenously driven by coordination failures and self-ful�lling expectations

about aggregate demand; business cycles are thus intrinsically ine¢ cient.8

7Yellen and Akerlof (2006) emphasize that the long-run Phillips curve may not always and everywhere be vertical;
hence, stabilization policies can have potentially large welfare e¤ects.

8For comprehensive literature reviews on the issue of welfare cost of business cycles and the bene�ts of stabilization,
see Lucas (2003) and the literature therein. For previous works that evaluate welfare cost by linking endogenous
growth to exogenous �uctuations, see Blackburn and Pelloni (2005), de Hek (1999), Epaulard and Pommeret (2003),
Jones, Manuelli, Siu, and Stacchetti (2005), and Krebs (2003), among others.
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The rest of the paper is organized as follows. Section 2 presents the model. Section 3 calibrates

the model and examines its dynamic properties. Section 4 discusses the welfare cost of business

cycles. Section 5 concludes the paper.

2 The Model

2.1 Firms

There is a �nal good in the economy, which is produced by using intermediate goods according to

the Dixit-Stiglitz technology:

Y =

0@ 1Z
0

y(i)
��1
� di

1A
�

��1

; (1)

where � > 1 measures the elasticity of substitution among intermediate goods y(i). The price of

the �nal good is normalized to one and the price of the intermediate good i is denoted p(i). The

�nal good producers behave competitively; pro�t maximization in the �nal good sector yields the

demand function for intermediate goods,

y(i) = p(i)��Y: (2)

Substituting this into the production function yields the aggregate price index,
R 1
0 p(i)

1��di = 1:

The economy has a continuum of monopolistic intermediate good producers of measure one,

each producing a single di¤erentiated good y(i). Intermediate goods are produced by capital (k)

only. The production function for intermediate goods is identical across �rms and is given by:

y(i) = Au(i)k(i); (3)

where A denotes the level of technology common to all �rms and u(i) the rate of capacity utilization

for �rm i. Intermediate good producers are assumed to be price takers in the input market. Let

r denote the market interest rate, and let �(i) denote the rate of capital depreciation for �rm i.

Following Greenwood et al. (1988), the rate of capital depreciation is assumed to depend on its

usage rate:

�(i) =
�

1 + �
u(i)1+�; � > 0: (4)

Hence the user�s cost of capital facing �rm i is r + �(i).9

9Since the capital stock is �xed in period t, in order for sunspot shocks to a¤ect aggregate output, a second
production factor (such as capacity utilization or hours worked) that can adjust instantaneously is needed. The
importance of capacity utilization in understanding business cycles and growth has been emphasized by Greenwood
et al. (1988), King and Rebelo (1999), Wen (1998), and Chatterjee (2005), among others. For an alternative approach
with �xed capacity utilization but variable labor demand, see our working paper (Wang and Wen, 2006).
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The cost function of an intermediate �rm can be found by minimizing [r + �(i)] k(i) subject to

Au(i)k(i) > y(i): Denote �(i) as the Lagrangian multiplier for the above constraint, which is also
the marginal cost. Cost minimization yields the following relationship:

r + �(i) = �(i)Au(i) (5)

�u(i)� = �(i)A: (6)

These �rst-order conditions imply �(i) = 1
1+��

� 1
� (�(i)A)

�+1
� and

r = ��(i) =
�

1 + �
(�)�

1
� (�(i)A)

�+1
� : (7)

The above equation shows that both the depreciation rate and the marginal cost are the same

across �rms. The intuition is that the production technology has constant returns to scale and

�rms face the same market interest rate; thus, the marginal cost � must be the same across all

�rms. Consequently, the optimal rates of capital utilization and depreciation are also the same

across �rms.

By the downward sloping demand curve (2), there exist demand externalities across �rms;

namely, how much a �rm should produce depends not only on its own price (p(i)) but also on the

aggregate demand (Y ). However, �rms must each choose a price one period in advance without

knowing the aggregate economic conditions (such as aggregate demand or aggregate marginal cost)

that may prevail in period t. Yet these aggregate economic conditions depend crucially on the

actions of the other �rms over which an individual �rm has no in�uence. Thus, each individual

�rm must form expectations for the level of aggregate demand (Y ) when setting prices. Such

expectations can become self-ful�lling, as explained by Ng (1980, 1992), Cooper and John (1988),

and Wang and Wen (2007).

Without loss of generality, assume there are no fundamental shocks in the economy; then the

only type of uncertainty, if any, is extrinsic uncertainty� in the language of Cass and Shell (1983)

(i.e., sunspots). An intermediate good �rm�s objective function is then to solve

max
pt(i)

Et�1 [(pt(i)� �t) yt(i)] (8)

subject to the demand function (2).10 The optimal price is given by

pt(i) =
�

�� 1
Et�1 (�tYt)

Et�1Yt
: (9)

10Modifying the �rm�s pro�t function to include the marginal utility of income, Eu0(c) [(p(i)� �)y(i)], where u0(c) is
household�s marginal utility, has no e¤ect on the existence of sunspot equilibria in the model, although the particular
distribution of the sunspot process may di¤er (see, e.g., Wang and Wen, 2007).
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Assuming �rms are rational and have the same information sets, then they all set the same prices

in a symmetric equilibrium. Thus, p(i) = p = 1 and

Et�1(�tYt) =
�� 1
�
Et�1(Yt): (10)

In the limiting case where �!1, the model converges to a perfectly competitive economy. Notice

that without the information lag, equation (10) implies the marginal cost is constant, �t =
��1
� . In

this case, the equilibrium is unique, as in standard Dixit-Stiglitz models.

Equation (10) permits multiple sunspot equilibria where the marginal cost (�) and aggregate

output (Y ) follow stochastic processes and such equilibria are not mere randomizations over fun-

damental equilibria (note the fundamental equilibrium is always uniquely given by � = ��1
� ). The

intuition is as follows. Without the information lag, �rms know the marginal cost; hence, they

set prices as a markup over the marginal cost, pt(i) = �
��1�t. Since p(i) = 1 in a symmetric

equilibrium (by normalization), the equilibrium marginal cost equals ��1� , implying a
1
�% markup.

Because the marginal cost determines the real interest rate and the household income, the other

aggregate variables are hence all pined down uniquely in general equilibrium.

However, if the marginal cost is not known to �rms at the time of choosing prices pt(i), monop-

olistic prices can depend only on expected marginal cost, which is a function of aggregate demand,

�(Y ). Because of demand externalities across �rms, such expectations can be self-ful�lling so that

there exist multiple equilibrium paths of the marginal cost.

Intuitively, a higher output level leads to higher marginal costs, i.e., �0Y � 0.11 Equation (10)
can be rewritten as �

Et�1�t �
�� 1
�

�
Et�1Yt = �cov (�t; Yt) ; (11)

where the covariance term cov(�; Y ) � 0 because �0Y � 0. Therefore, we have the following

restriction:

Et�1�t �
�� 1
�
; (12)

where the equality holds if and only if the marginal cost is constant (as in a standard New Keynesian

model). Most importantly, the more variable the marginal cost, the lower is its expected value.

The intuition for understanding the inequality in equation (12) is as follows. With uncertainty

in aggregate demand and the marginal cost, monopoly price is a constant markup over a weighted

11This positive relationship between output level and marginal costs can be seen from equations (3) and (6). The
sign is a straightforward consequence of assuming the depreciation rate to be convex in the utilization rate so that
higher production is associated with a higher marginal cost.
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average of marginal costs across di¤erent states, as equation (9) implies

pt(i) =
�

�� 1
X
s

!(s)�(s); (13)

where !(s) = q(s)Y (s)P
q(s)Y (s) and q(s) denotes probability of state s. So pt(i) is a linear function of a

weighted average of marginal costs across states, with marginal costs above average (�(s) > E�)

receiving a weight q(s)Y (s)EY � i.e., higher than the probability q(s). In fact if �(s) > E�, then

Y (s) > EY (given �0Y > 0), i.e.,
q(s)Y (s)P
q(s)Y (s) > q(s).

This nonlinear and unequal distribution of weights leads to a higher monopoly price or markup.

When the price is normalized to unity, a higher monopoly price translates into a lower average

marginal cost � and thus a lower level of output (aggregate demand). This explains the inequality

in equation (12), which is the key to delivering the negative relationship between volatility and

mean growth in the model.

2.2 Households

We close the model by adding a standard household sector. There is a continuum of in�nitely lived

identical households of measure one. The representative household chooses paths of consumption

(fCtg1t=0) and capital holdings (fKt+1g
1
t=0) to solve

maxE0

1X
t=0

�t log(Ct) (14)

subject to K0 > 0 and the budget constraint,

Ct +Kt+1 = (1 + rt)Kt +Dt; (15)

where Dt denotes real pro�ts distributed from intermediate good �rms. The �rst-order condition

is given by 1
Ct
= �Et

1
Ct+1

(1 + rt+1); plus the transversality condition, limT!1 �T
KT+1

CT
= 0.

2.3 Symmetric Rational Expectations Equilibria

In this paper we restrict attention to symmetric equilibria where y(i) = Y and k(i) = K for

all i 2 [0; 1]. The equilibrium conditions in this economy can be summarized by the following

equations:

1

Ct
= �Et

1

Ct+1

�
1 +

�

1 + �
��

1
�
�
�t+1A

� �+1
�

�
; (16)
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Ct +Kt+1 = Yt + (1� �t)Kt =
�
1 + ��

1
�A

1+�
� �t

1
�

�
1� �t

1 + �

��
Kt; (17)

Et�1�
1+�
�
t =

�� 1
�
Et�1�

1
�
t ; (18)

where the last equation is derived from equations (3), (6), and (10).12 These three equations, in

conjunction with a transversality condition, fully determine the equilibrium paths of the marginal

cost, consumption, and the capital stock. In particular, given any path of the marginal cost (�) as

speci�ed by equation (18), equations (16) and (17) fully determine the paths of consumption and

the capital stock.

Notice that equation (18) implies E�
1
� (E� � ��1

� ) = �cov(� 1
� ; �) � 0; hence, any stochastic

process f�tg1t=0 satisfying E� � ��1
� and cov(�

1
� ; �) = E�

1
� ( ��1� � E�) constitutes a rational

expectations equilibrium path for the marginal cost.13 The fundamental equilibrium (in the absence

of extrinsic uncertainty or sunspots) corresponds to the case where cov(�
1
� ; �) = 0 and � = ��1

� ;

and it is clearly unique.14 But there also exist multiple sunspot equilibria. As an example for

constructing such sunspot equilibria, consider the process

�t =
�� 1
�
"t; (19)

where " denotes sunspot shocks. Equation (18) implies

Et�1"
1+�
�
t = Et�1"

1
�
t : (20)

Clearly, any random variable satisfying the distribution

Et�1"t 2 [0; 1]; cov("
1
�
t ; "t) = Et�1"

1
�
t (1� Et�1"t) ; (21)

constitutes an equilibrium. This paper restricts attention to i:i:d: sunspot shocks with mean E" =

�" 2 [0; 1].
De�ning a balanced growth path in the model as an equilibrium path along which consumption,

the capital stock, and output all grow at the same expected rate, we have the following propositions:

Proposition 1 For any and each i:i:d: sunspot shock process, there always exists a balanced growth

path along which the stochastic growth rates of consumption and capital are both given by ln [s(1 + �t)],

12Note that Kt is a state variable known to �rms in the end of period t� 1.
13To avoid complex values, the condition E� � 0 must be imposed.
14Notice that the uniqueness occurs regardless of fundamental shocks. For example, suppose the technology A is a

stochastic process; then, in the fundamental equilibrium, we still have � = ��1
�
.
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and the growth rate of output is given by ln
��

�t
�t�1

�1=�
s(1 + �t)

�
, where �t � ��

1
�A

1+�
� �t

1
�

�
1� �t

1+�

�
and s � �Et 1+rt+11+�t+1

.

Proof. Since �t is i:i:d:; any function of �t is also i:i:d: An educated guess of the equilibrium paths

of consumption and the capital stock is given by

Ct = (1� s)(1 + �t)Kt; (22)

Kt+1 = s(1 + �t)Kt; (23)

where s = �Et
1+rt+1
1+�t+1

denotes the optimal rate of savings, which is a constant under the i:i:d:

assumption and is derived from the intertemporal Euler equation

1

(1� s)(1 + �t)Kt
= �Et

1 + rt+1
(1 + �t+1)(1� s)s(1 + �t)Kt

: (24)

Using equations (22) and (23), it can be shown that Ct+1
Ct

= s(1 + �t+1). Hence, the balanced

growth rates of consumption and capital are both given by gt = ln [s(1 + �t)]. The growth rate of

output is given by gyt = ln utKt
ut�1Kt�1

= 1
�

�
ln�t � ln�t�1

�
+ ln

�
s(1 + �t�1)

�
, which has the same

(unconditional) expected value as g.

Proposition 2 In the absence of extrinsic uncertainty, the model has a unique balanced growth

path with its growth rate determined by

g� = ln s(1 + �) = ln

"
�

 
1 +

�

1 + �
��

1
�

�
�� 1
�
A

� �+1
�

!#
: (25)

Proof. In the absence of extrinsic uncertainty, Equation (10) implies the marginal cost is constant,

� = ��1
� . Hence, r and � are all constant. Consequently, the fundamental (no-sunspot) growth rate

in the economy is uniquely determined by ln�(1 + r).

Proposition 3 If the following condition,

� >
1 + �

�
+ 2��

1
�A

1+�
� ; (26)

is satis�ed, the mean growth rate of a stochastic growth path is strictly less than the deterministic

growth rate without uncertainty (�t =
��1
� ), i.e., E [s(1 + �t)] < �(1 + r):

10



Proof. See the Appendix.

As an example, consider the limiting case where � = 1: In this case, the deterministic (gross)

growth rate is given by g� = �(1+r) = �
�
1 + �

1+��
� 1
�A

1+�
�

�
, and the price equation (18) becomes

E�
1
�
+1

t = E�
1
�
t : (27)

Since we restrict our attention to the interval, 0 � � � 1, the only distribution that can satisfy

the above relationship for the marginal cost is the binary distribution, �t = f0; 1g with probability

f1� p; pg. Under this distribution, we have rt = �t; hence, s = �E 1+rt+1
1+�t+1

= � and E�t =

p �
1+��

� 1
�A

1+�
� . The mean (gross) growth rate is hence given by

�g = �

�
1 + p

�

1 + �
��

1
�A

1+�
�

�
; (28)

which is strictly less than the deterministic (gross) growth rate g� for any p 2 (0; 1). In this limiting

case, the condition � > 1+�
� + 2A

1
�
+1 is trivially satis�ed.

Notice that if the source of uncertainty comes from shocks to the aggregate technology (A), the

relationship between volatility and growth is then strictly positive. However, if a su¢ ciently large

adjustment cost of investment is assumed, then this relationship can become negative (see Barlevy,

2004a).

3 Model Simulation

Let the time period be a year and the time discounting rate � = 0:98.15 For the U.S. economy,

the markup is approximately 10% � 20%, which implies that � = 0:9 � 0:8 or � = 10 � 6. Let

� = 0:6 and the annual rate of depreciation � = 10%. Hence, Equation (7) implies r = �� = 6%

in the deterministic economy without sunspots.16 Since �u� = �A and � = 1
1+��

� 1
� (�A)

�+1
� , these

two equations can help pin down the values of f�;Ag once the value of the utilization rate (u) is
given. Let u = � = 0:9 in the deterministic economy (which implies � = 10); then the above two

relationships imply � = 0:18938 and A = 0:19753.

Given these values, the condition required in Proposition 3, � > 1+�
� + 2��

1
�A

1+�
� (� 3:1), is

more than satis�ed. It can be shown easily that this condition is still satis�ed under other plausible

parameter con�gurations, such as when the annual real interest rate in the deterministic equilibrium

15This implies that � = 0:995 in a quarterly model.
16The average interest rate in the model can be signi�cantly lower under the in�uence of sunspots than it is in the

deterministic equilibrium.
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is as low as 1:5%. Figure 2 shows the regions of parameter values where the condition in Proposition

3 is satis�ed. Speci�cally, each downward sloping curve represents a di¤erent combination of

structural parameters (�; �) that de�nes the left-hand side of equation (26), the horizontal lines

correspond to di¤erent values of �; so any point lying above the downward sloping curve(s) satis�es

the restriction in equation (26). In particular, given the elasticity parameter �, the higher the

interest rate, the easier the condition can be satis�ed. For example, when � = 0:1 and � = 0:9

(implying � = 10), the condition is satis�ed for r > 1:2%; when � = 0:1 and � = 0:8 (implying

� � 6), the condition is satis�ed for r > 2:4%.

Figure 2. Parameter Region for � > 1+�
� + 2��

1
�A

1+�
� :

Based on the calibrated parameter values, the deterministic growth rate is given by ln s(1+�) =

ln�(1+ r) ' 0:0381; in other words, the fundamental growth rate is about 4% a year. To compute

the mean growth rate of a stochastic growth path, we generate a time series for �t =
��1
� "t, where

the sunspot shock (") has the log-normal distribution ln " � N(�; �2) with

e
�2

� E"t = 1: (29)

Notice that this distribution satis�es equation (20) and the condition 0 < E"t < 1.

Based on these calibrated parameter values, Table 1 shows the statistical relationship between

growth volatility (�g) and the mean growth rate (�g) as the standard deviation of sunspot shocks

(�) increases. The statistics reported in the table are estimates based on simulated time series

12



with a sample size of 107. The �rst row is the standard deviation of sunspots (�), the second

row the implied average marginal cost (��), the third row the implied average growth rate (�g), and

the last row the implied standard deviation of the growth rate (�g). The table shows that, as

the standard deviation of the sunspot shock (�) increases, the average markup (1 � ��) and the
standard deviation of the stochastic growth rate (�g) also increase, while the mean growth rate of

the economy (�g) decreases. The same pattern of results can also be con�rmed under a uniform

distribution of sunspot shocks (see Table 2).17 This prediction of a negative relationship between

volatility and growth is consistent with the empirical regularity documented by Ramey and Ramey

(1995) in cross-country data.

Table 1. Predicted Volatility and Growth (Log-Normal Distribution)

� 0 0:1 0:2 0:3 0:4 0:5 0:6 0:7 0:8 0:9 1:0
�� 0:90 0:89 0:84 0:77 0:69 0:59 0:49 0:40 0:31 0:23 0:17

�g(%) 3:81 3:68 3:32 2:83 2:26 1:5 0:6 �0:1 �1:0 �1:2 �1:9
�g 0 0:003 0:01 0:02 0:03 0:05 0:07 0:09 0:15 0:20 0:30

Table 2. Predicted Volatility and Growth (Uniform Distribution)

� 0 0:029 0:058 0:087 0:12 0:14 0:17 0:23 0:29 0:35 0:40
�� 0:9 0:899 0:895 0:888 0:880 0:868 0:853 0:815 0:763 0:693 0:619

�g(%) 3:81 3:79 3:77 3:70 3:63 3:54 3:41 3:10 2:69 2:17 1:70
�g 0 0:001 0:002 0:003 0:004 0:005 0:007 0:011 0:016 0:022 0:026

Figure 3 shows simulations of the stochastic growth paths of consumption and the implied log

consumption levels for each of the distributions considered above. In particular, the simulation un-

der the log-normal distribution is presented in the �rst row windows (A and B), and the simulation

based on uniform distribution is presented in the second row windows (C and D). The growth rate

series are graphed in the left column windows (A and C) and the log consumption level series are

graphed in the right column windows (B and D). In windows A and C, which show the growth

series, the solid horizontal line represents the deterministic growth rate in the model in the absence

of sunspot shocks, the solid random time series represents the growth rate of the model under the

in�uence of sunspots, and the dashed time series represents the annual consumption growth of the

U.S. economy for the period 1947-2005. Clearly, the model is able to generate growth volatility

17Even with the large sample size, the standard deviation of the growth rate (�g) is quite large for the log-normal
distribution when � is close to 1, suggesting that the estimated mean growth rate can have large standard errors if
the volatility is very high. Despite this, the tendency for the mean growth rate to decline as the growth volatility
increases is clear. When a uniform distribution is assumed instead for sunspot shocks, the standard error of the
growth rate (�g) is much smaller and the mean growth rate is more tightly estimated even with large values of �,
which makes the negative relationship between volatility and growth even clearer (see Table 2). Note that, under the
uniform distribution, the growth rate of the model is always positive when the parameters of the distribution (mean
and variance) of sunspot shocks satisfy equation (20).
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similar to the U.S. data. Since the mean growth rate in the model under a particular sunspot

process is lower than that of the U.S. data, the implied consumption level (Window B or D) is

stochastically dominated by the U.S. consumption level.

Notice that, because of the negative relationship between volatility and mean growth, the model-

generated time series of growth rate tends to have a lower mean than the U.S. data. However, a

mean growth rate similar to or above the actual U.S. data can also be generated from the model

by choosing the structural parameters (such as �) to yield a higher deterministic growth rate in the

model.

Figure 3. Volatility and Growth ( � �Model; - - - Data).

As suggested by Windows B and D, along a lower consumption growth path due to a higher

volatility, the loss in consumption is irreversible (unrecoverable) even if the mean growth rate

recovers to the previous level because of a decrease in volatility. That is, a large and ever-increasing

gap in consumption levels can be caused by business cycles (i.e., a higher volatility) alone. This

property is striking and in sharp contrast to the Okun�s gap and the random walk characterization

of aggregate output. The lesson: When growth is endogenous, �uctuations in output can a¤ect not

only the consumption level permanently, but also its long-run growth rate.

14



4 Welfare Cost of Fluctuations

4.1 The Lucas Calculation

The Lucas calculation of the cost of business cycles is based on a simple yet fundamental assump-

tion: Volatility and growth are unrelated. Given this dichotomy and the fact that the aggregate

consumption series is smooth, Lucas (1987 and 2003) concludes that the welfare cost of �uctuations

is trivial in terms of consumption.

Suppose a representative consumer is endowed with the stochastic consumption stream

ct = Ae
ute�(1=2)�

2
"t; (30)

where u is a deterministic growth rate and ln("t) is a normally distributed random variable with

zero mean and variance �2. Hence, e�(1=2)�
2
E"t = 1, which is the normalization on the mean of

"t taken by Lucas (1987). The preference over consumption is assumed to be E
P1
t=0

�
�t
c1�
t
1�


�
:

The welfare gain can be computed as a � percentage increase in consumption one would get by

eliminating all the volatility (without a¤ecting the mean growth rate u), namely:

E

1X
t=0

"
�t
((1 + �)ct)

1�


1� 


#
=

1X
t=0

"
�t
�
Aeut

�1�

1� 


#
; (31)

which implies a welfare cost of � � 

2�

2. The annual U.S. real consumption growth in the period

of 1947-2005 is about 3:5% with a standard deviation of 0:0165. Assuming log utility (
 = 1), the

welfare cost is estimated to be � � 1
2(0:0165)

2 � 0:014%: This is less than 1:5c/ for every $100 of

annual consumption.18

4.2 Calculation based on Hall�s (1978) Random Walk

A crucial feature of the Lucas calculation is that random shocks to consumption have no permanent

e¤ect on the consumption level. According to the permanent income theory, however, consumption

follows a random walk; hence, transitory shocks can have permanent e¤ects (Hall, 1978). Adopting

the random walk framework, the consumption path can be described by

ct = ct�1(e
u��2

2 "t); (32)

where u is a drift term in the random walk speci�cation of log consumption, which determines the

average growth rate of consumption. This characterization of consumption is also an implication of

18Of course, a higher 
 can increase the estimation. Micro evidence suggests that 
 2 [1; 4]. But even with 
 = 100,
the annual cost of the business cycle is still less than 1:5 percent of consumption.
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the RBC theory where technology shocks following random walks. The welfare cost of �uctuations

can then be computed as the solution (�) to equation (31) based on the random-walk consumption

in (32). Again assuming log utility (
 = 1) and ln "t � N(0; �2), we have

� � �2

2

�

(1� �) : (33)

Notice that the welfare measure under the random walk assumption is a multiplier ( �
1�� ) times

the welfare measure of Lucas. This is the result obtained by Obstfeld (1994a).19 This multiplier

exists because a one dollar increase in consumption today is translated into a
P1
t=1 �

t = �
1�� dollar

increase in life-time consumption. Letting � = 0:98 and � = 0:0165; we get � � 0:67%, which is

about 48 times larger than the welfare gain under the Lucas speci�cation of the consumption path.

However, it is still small in absolute magnitude.

4.3 Calculation based on Ramey and Ramey (1995)

According to the empirical studies of Ramey and Ramey, volatility and growth are negatively

related. Hence eliminating volatility should increase the growth rate, which implies a large welfare

cost of business cycles, consistent with Lucas�s (1987) analysis on the welfare e¤ect of long-run

growth. But Lucas did not relate business cycle to growth; hence, he failed to appreciate the welfare

cost of �uctuations. To illustrate this, consider a counterfactual experiment where completely

removing uncertainty can increase the growth rate by � percent from u to u(1+�). Then equation

(31) becomes

E

1X
t=0

"
�t
((1 + �)ct)

1�


1� 


#
=

1X
t=0

"
�t
�
Aeu(1+�)t

�1�

1� 


#
: (34)

Under the random-walk consumption path (32) and log utility speci�cation (
 = 1), equation (28)

implies

� �
�
�2

2
+ �u

�
�

1� � : (35)

According to Ramey and Ramey (1995, p.1141), one standard deviation of the volatility in the

growth rate of output translates into about one-third of a percentage point of the mean growth

rate. Applying this estimate to consumption, it means that by decreasing the consumption volatility

from � = 0:0165 to zero, the gain in growth rate is about 0:01653 = 0:55%, which is about 16% of

the current mean consumption growth rate for the U.S. economy (u = 3:5%). This implies that

19Also see Reis (2009) for a more general ARMA speci�cation of the consumption process.
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� = 16% and �u = 0:55%. Assuming � = 0:98, we have � � 27%. This is an enormous welfare

gain: more than one quarter of total annual consumption.20

4.4 Calculation Based on Our Model

To facilitate the analysis, we assume that there are no sunspots in period 0 and sunspots appear

only form period 1 and beyond. Consumption in our endogenous growth model follows the path

ct = ct�1 [s(1 + �t)]. Notice that since sunspot shocks are i:i:d:, we have E0g(�1) = E0g(�2) =

� � � = E0g(�t) for all t > 0. Hence, the expected life-time utility is given by

E0

1X
t=0

�t ln(ct(1 + �)) =
ln(1 + �)

1� � +
ln c0
1� � +

� (ln s+ E ln(1 + �t))

(1� �)2
; (36)

where

c0 = (1� s)(1 + �0)k0 (37)

s = �Et
1 + rt+1
1 + �t+1

: (38)

In the absence of uncertainty, the model implies � = ��1
� , so the fundamental growth rate of

consumption is given by ln�(1+r) = 3:81%. The life-time utility of the deterministic consumption

path is given by
1X
t=0

�t ln
�
c�0 (1:0381)

t� = ln c�0
1� � +

� ln(1:0381)

(1� �)2
; (39)

where

c�0 = (1� s�)(1 + �0)k0 (40)

s� = �
1 + �r

1 + ��
: (41)

Notice that, in general c0 6= c�0 and s 6= s� because the average saving rate s is a¤ected by sunspots.

Comparing the two expressions in (36) and (39) gives the welfare cost:

� � �

1� � [0:0381� E ln s(1 + �t)] + ln
1� s�
1� s : (42)

Notice that the welfare cost (or gain) is the multiplier ( �
1�� ) times the di¤erence between the

maximum sustainable growth rate under full information (i.e., without sunspots) and the mean

of the stochastic growth rate under the in�uence of sunspots, adjusted by the di¤erence in saving

20 Interestingly, this estimate is close to the estimate obtained by Alvarez and Jermann (2004) using a nonparametric
asset-pricing approach.
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rates due to uncertainty (ln 1�s
�

1�s � s � s�). As Proposition 3 shows, the mean growth rate of a

stochastic growth path is strictly less than the fundamental growth rate; hence, the �rst term on

the RHS of equation (42) is always positive. Furthermore, as Table 1 and Table 2 both show,

when the volatility of sunspot shocks increases in the model, the mean of the stochastic growth

rate, E ln s(1 + �), decreases, which increases the value of �. On the other hand, since uncertainty

raises s because of precautionary saving motives, the second term on the RHS of equation (42)

is also positive, further increasing the welfare costs of the business cycle by decreasing the initial

consumption level c0 under uncertainty.

For example, under the assumption of a log-normal distribution (Table 1), a standard deviation

of 0:2 for sunspot shocks ("t) implies a stochastic consumption growth path with mean 3:32 and a

standard deviation �g = 0:01 (along with an average markup of 100�
�
1� ��

�
= 16%), not too far

from the U.S. data. The expected saving rate in the deterministic case is s� = 0:96384 and that

under uncertainty is s = 0:96511, higher than without uncertainty. Substituting E ln s(1 + �) =

3:32% and ln 1�s
�

1�s = 3:58% into equation (42) implies � � 27%. Under the assumption of a uniform

distribution (Table 2), a standard deviation of 0:17 for sunspot shocks implies a stochastic growth

path with mean 3:41 and a standard deviation �g = 0:007 (along with an average markup of 15%).

The saving rate in the deterministic case is s� = 0:96384 and that under uncertainty is s = 0:96472.

Substituting this information into equation (42) implies � � 22%. The welfare cost would be much
higher (e.g., � = 40%) if we increase �g from 0:007 to 0:011.

Thus, based on our endogenous growth model, the welfare cost of business cycles with volatility

and mean consumption growth similar to the U.S. data is around 22% � 27% of annual consumption
(or even higher). Such estimates are quite close in the order of magnitude to those based on Ramey

and Ramey�s empirical studies as well as to those obtained by Alvarez and Jermann (2004) based

on a nonparametric asset-pricing approach.

Notice that uncertainty implicitly enters equation (42) to a¤ect the welfare measure through

two channels. First, the expected value, E ln (1 + �t), is negatively related to the variance of

�t because ln (1 + �t) is strictly concave in �t. For example, the Lucas (1987) model features

E ln "t = �1
2�

2 under the assumption of log-normal distribution for "t. This is the direct channel

emphasized by Obstfeld (1994b) Epaulard and Pommeret (2003). Second, in our model the mean

growth (1 + ��) and average saving rate s are endogenously tied to uncertainty. In particular, higher

uncertainty leads to lower average growth through the marginal cost (see equation (12)). Hence,

in our simulation analyses we cannot perform standard �mean-preserving spread�experiments for

sunspot shocks as in the Lucas (1987) model where the mean growth (�) and uncertainty (�2) are

independent of each other.
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4.5 Robustness Analyses

The above results may be sensitive to our assumptions of the parameter values for a number of

reasons. First, the time discounting factor � signi�cantly a¤ects the multiplier in the welfare

measure. Second, in the previous calibration we �x the value of � and then pick the corresponding

mean growth rate and volatility in Table 1 (or Table 2) to compute welfare costs. An alternative

calibration strategy is to �x the mean growth rate and the volatility of growth using U.S. data, and

then deduce the implied value of � and other parameters in the model.

Consider the e¤ects of � �rst. Suppose the value of � reduces from 0:98 to 0:96 in our previous

model and continue to assume lognormal distribution of sunspots with standard deviation � = 0:2.

The implied welfare cost becomes � = 26:3%, very similar to the original estimate. The reason is

as follows. With a lower value of �, although the multiplier �
1�� has reduced by half from 49 to 24,

the implied gap between the maximum growth and the mean growth, ln� (1 + r) � E ln s(1 + �),
happens to be doubled, which almost exactly cancels the reduction in the multiplier. However, this

near complete cancellation is not a general feature of the model.

Now consider an alternative calibration of �. Let the growth rate volatility �g = 0:0165 and the

mean growth rate E ln s(1 + �) = 3:57%, as in the U.S. economy. Suppose � = 0:98 �rst. These

parameter values imply � = 0:715, the volatility of sunspots � = 0:32, and the maximum growth

rate ln�(1+r) = 4:54%. Under this alternative calibration, the implied average markup is 22% and

the welfare cost � = 55% according to equation (42). This increase in the welfare costs originates

mostly from the fact that the gap between the maximum growth and the mean growth is nearly

doubled. However, under this alternative calibration, changing the value of � will signi�cantly

change the implied welfare costs. For example, if we reduce the value of � from 0:98 to 0:96 while

maintaining � = 0:715, the implied welfare cost becomes 39% while the average markup remains

essentially unchanged.

In addition, the negative correlation between volatility and mean growth may depend on the

coe¢ cient of risk aversion in the utility function. Intuitively, with a lower intertemporal elasticity

of substitution in consumption, volatility may induce more saving than with log utility. The

(higher) positive e¤ect of volatility on growth through this saving channel could partially o¤set the

negative e¤ect through higher markups and reduced production. For example, suppose we use a

more general CRRA utility function (as in equation (31)) with 
 = 5. To ensure that the implied

deterministic growth rate remains the same as in the case of 
 = 1, we must recalibrate the value

of the productivity coe¢ cient from A = 0:19753 to A = 0:3706. The results are reported in Table

3 for log-normal distribution.
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Table 3. Predicted Volatility and Growth (Log-Normal Distribution)


 = 1 (A = 0:19753) 
 = 5 (A = 0:3706)
� 0 0:1 0:2 0:3 0:4 0 0:1 0:2 0:3 0:4
�g(%) 3:81 3:68 3:32 2:83 2:26 3:81 3:72 3:60 3:50 3:32
�g 0 0:003 0:01 0:02 0:03 0 0:01 0:026 0:043 0:057

When 
 = 5, the negative correlation between mean growth (�g) and growth volatility (�g) still

exists but is weaker than the case with 
 = 1. Namely, when 
 = 5, as the volatility of output

growth increases (with �), the mean growth rate declines at a signi�cantly slower pace than in the

case of 
 = 1. This suggests that the implied welfare cost of �uctuations will also be signi�cantly

smaller with 
 = 5 than with log utility, everything else equal except the value of A. As argued by

Obstfeld (1994b), the negative impact of uncertainty on welfare can work through two channels:

(i) A direct channel that uncertainty increases the volatility of consumption, and (ii) an indirect

channel that uncertainty reduces the mean growth rate. Since the welfare e¤ect under the direct

channel is small (as e¤ectively demonstrated by Lucas, 1987), the indirect channel dominates the

direct channel in our endogenous growth model. Since a higher value of 
 weakens the second

(indirect) channel in our model through a precautionary saving e¤ect, the large welfare cost due to

sunspots is consequently reduced.

However, this result is subject to caveats because it depends on how to re-calibrate the model

when 
 changes. Holding all other parameters constant, a change in 
 would change the determin-

istic growth rate g�. To make the results comparable, we can either keep the same deterministic

growth rate g� by changing the productivity parameter A, or keep the same value of A = 0:19753

by allowing the deterministic growth rate to change. These two calibration methods give very

di¤erent results. In Table 3, a higher value of 
 also implies a higher productivity A for given

growth volatility �g. This factor has played a role in weakening the negative relationship between

volatility and growth.

As a second example, suppose we keep A = 0:19753 while increasing 
 to 5, then the implied

deterministic growth rate would decrease from g� = 3:81% to a substantially lower value of g� =

0:66%. The results are reported in Table 4, which shows that the mean growth rate is substantially

lower for each possible value of the sunspot volatility.

Table 4. Predicted Volatility and Growth (Log-Normal Distribution)


 = 1 (A = 0:19753) 
 = 5 (A = 0:19753)
� 0 0:1 0:2 0:3 0:4 0 0:1 0:2 0:3 0:4
�g(%) 3:81 3:68 3:32 2:83 2:26 0:657 0:638 0:589 0:512 0:405
�g 0 0:003 0:01 0:02 0:03 0 0:002 0:005 0:009 0:012

The intuition behind is that a higher value of 
 implies not only a higher degree of risk aversion

but also a lower intertemporal elasticity of substitution between current and future consumption.
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The �rst e¤ect tends to increase the saving rate because of a stronger precautionary saving motive,

while the second e¤ect tends to decrease the saving rate because of a higher cost of intertemporal

substitution. In the second case, the negative relationship between volatility and growth may

become even stronger instead of weaker. For example, Table 4 shows that when the volatility of

output growth increases from �g = 0 to �g = 0:01, the mean growth rate is reduced by 13% (i.e.,

1 � 3:32
3:81 = 0:1 3) when 
 = 1 while it is reduced by more than 22% (i.e., 1 � 0:512

0:657 = 0:22) when


 = 5. The implied welfare costs based on Table 3 would be much smaller when 
 = 5 but would

be similar in magnitude based on Table 4.

5 Conclusion

This paper shows that market imperfections (i.e., imperfect competition and self-ful�lling specu-

lations under imperfect information) may lead to endogenous �uctuations in �rms�markups and

aggregate demand, which can directly translate into �uctuations in output growth and adversely

a¤ect its mean growth rate. Consequently, the welfare cost of the business cycle and the associated

gain from stabilization can be extremely large. In particular, our analysis suggests that the welfare

gain from further stabilizing the U.S. economy can be several orders larger than that calculated by

Lucas (1987)� more than a quarter of annual consumption. This estimate is very close in order of

magnitude to that implied by the empirical �ndings of Ramey and Ramey (1995).

However, our main estimates are based on log utility function with a relatively low degree of

risk aversion. Adopting a more general recursive utility function with separate parameter values

for the degree of risk aversion and the intertemporal elasticity of substitution (as in Epaulard

and Pommeret, 2003) may change the estimated welfare costs of business cycles and the negative

relationship between growth and volatility. Intuitively, with endogenous growth, a higher degree

of risk aversion can induce higher mean growth through stronger precautionary savings, which

partially o¤sets the negative e¤ects of sunspots on the mean growth (due to �rms pricing behaviors).

On the other hand, a lower intertemporal elasticity of substitution can induce lower mean growth

through weaker saving motives, which can strengthen the negative e¤ects of sunspots on the mean

growth. More detailed analyses along these lines are left to future works.

In addition, since our results are based on a highly stylized model, the implied welfare cost of

�uctuations could also be overstated when labor market dynamics and labor�s cost share are not

included in the analysis. Given the importance of understanding the link between growth and the

business cycle, the development of a more comprehensive framework is needed in future work.
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Appendix: Proof of Proposition 3.

Proof. The key in the proof is to show that E�
1
�
t �

�
��1
�

� 1
� and that the average growth rate is a

strictly increasing function of E�
1
�
t under certain conditions. In such a case, the maximum growth

rate is achieved when �t =
��1
� .

The growth rate of the model is given by

gt = s(1 + �t); (43)

where �t = ��
1
�A

1+�
� �t

1
� (1 � �t

1+� ), s = �E 1+rt
1+�t

, and rt = �
1+��

� 1
� (�tA)

1+�
� . The monopolistic

price follows the rule, E�
1+�
�
t = ��1

� E�
1
�
t . Since Ex

1+� � (Ex)1+� ; we have ��1
� E�

1
�
t = E�

1+�
�
t ��

E�
1
�
t

�1+�
. It follows that

E�
1
�
t �

�
�� 1
�

� 1
�

: (44)

Given the de�nition of �t, we have

E�t = ��
1
�A

1+�
�

�
E�

1
�
t �

1

1 + �
E�

1+�
�
t

�
(45)

= ��
1
�A

1+�
� E�

1
�
t

�
1� �� 1

�

1

1 + �

�

� ��
1
�A

1+�
�

�
�� 1
�

� 1
�
�
1� �� 1

�

1

1 + �

�
:

Notice that s can be approximated as

s ' �E(1 + rt � �t) (46)

= �E

�
1 +

�

1 + �
��

1
� (�tA)

1+�
� � ��

1
�A

1+�
� �t

1
�

�
1� �t

1 + �

��

= �

�
1 + ��

1
�A

1+�
�

�
E�

�+1
�
t � E�

1
�
t

��

= �

�
1� ��

1
�A

1+�
�
1

�
E�

1
�
t

�
:

Denoting �x � E�
1
�
t , the mean growth rate is then given by

�g = s (1 + E�t) (47)

= �

�
1� ��

1
�A

1+�
�
1

�
�x

� �
1 + ��

1
�A

1+�
�

�
1� �� 1

�

1

1 + �

�
�x

�
:
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Di¤erentiating with respect to �x, it can be shown that if the condition

�x <
��

�
1� ��1

�
1
1+�

��1
2��

1
�A

1+�
�

(48)

is satis�ed, then �g is a strictly increasing function of �x. Since �x �
�
��1
�

� 1
� according to (44); hence,

the maximum growth rate will be achieved by the certainty equilibrium where �t =
��1
� , provided

that Condition (48) holds.

But a su¢ cient condition for (48) to hold is the condition,

�
�� 1
�

� 1
�

<
��

�
1� ��1

�
1
1+�

��1
2��

1
�A

1+�
�

: (49)

Notice that
�
1� ��1

�
1
1+�

��1
� 1+�

� since � � 1, we have the following inequality for the right-hand

side of (49):

��
�
1� ��1

�
1
1+�

��1
2��1=�A(1+�)=�

�
�� 1+�

�

2��1=�A(1+�)=�
: (50)

If the right-hand side of the above equation is greater than one, namely, if

� >
1 + �

�
+ 2��

1
�A

1+�
� ; (51)

we then have

��
�
1� ��1

�
1
1+�

��1
2��

1
�A

1+�
�

� �� (1 + �) =�
2��

1
�A

1+�
�

> 1 �
�
�� 1
�

� 1
�

: (52)

Hence, (51) is a su¢ cient condition for the inequality (48) to hold.
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