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Abstract

We show that predictable covariances between means and variances of stock returns may have a first

order effect on portfolio composition. In an international asset menu that includes both European and

North American small capitalization equity indices, we find that a three-state, heteroskedastic regime

switching VAR model is required to provide a good fit to weekly return data and to accurately predict

the dynamics in the joint density of returns. As a result of the non-linear dynamic features revealed by

the data, small cap portfolios become riskier in bear markets, i.e. display negative co-skewness with other

stock indices. Because of this property, a power utility investor ought to hold a well-diversified portfolio,

despite the high risk premium and Sharpe ratios offered by small capitalization stocks. On the contrary

small caps command large optimal weights when the investor ignores variance risk, by incorrectly assuming

joint normality of returns. These results provide the missing partial equilibrium rationale for the presence

of co-skewness in the empirical asset pricing models that have been proposed to explain the cross-section

of stock returns.
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Abstract

We show that predictable covariances between means and variances of stock returns may have

a first order effect on portfolio composition. In an international asset menu that includes both

European and North American small capitalization equity indices, we find that a three-state,

heteroskedastic Markov switching VAR model is required to provide a good fit to weekly return

data and to accurately predict the dynamics in the joint density of returns. As a result of the

non-linear dynamic features revealed by the data, small cap portfolios become riskier in bear

markets, i.e. display negative co-skewness with other stock indices. Because of this property, a

power utility investor ought to hold a well-diversified portfolio, despite the high risk premium and

Sharpe ratios offered by small capitalization stocks. On the contrary small caps command large

optimal weights when the investor ignores variance risk, by incorrectly assuming joint normality

of returns. These results provide the missing partial equilibrium rationale for the presence of co-

skewness in the empirical asset pricing models that have been proposed to explain the cross-section

of stock returns.
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1. Introduction

Small capitalization stocks have become important to international investors with the development of new

technologies and venture capital. They are however known to be rather peculiar assets in that their returns

display — along with high average risk premia — asymmetric risk across bull and bear markets (Ang and

Chen, 2002). For instance, small caps generally imply high risk in cyclical downturns due to tighter credit

constraints associated to lower firm collateral (Perez-Quiros and Timmermann, 2000). Several papers focus

on international portfolio choice under a variety of assumptions concerning the asset menu and the process

generating asset returns, e.g. Ang and Bekaert (2002) and De Santis and Gerard (1997). However, no specific

attention has been given to small capitalization firms. Our paper studies the contribution of small caps to the

international diversification of stock portfolios under realistic specifications for the stochastic process driving

asset returns, that allow for asymmetric risk.

Developing such a perspective on small capitalization firms appears to be warranted in the light of recent

asset pricing research showing that the cross-sectional distribution of the equity risk premium is related to

“variance risk” (Harvey and Siddique, 2000; Dittmar, 2002; Barone-Adesi, Gagliardini, and Urga, 2004), i.e.

the correlation between returns and aggregate volatility as well as between individual stock volatility and

aggregate volatility. Acharya and Pedersen (2005) have provided the economic rationale for why co-skewness

(what Black, 1976, referred to as “leverage”) should impact expected returns: An investor may dislike small

caps — whose illiquidity/volatility increase when the market is bear — because they fail to provide liquidity

when she may want to trade. Similarly, an investor may prefer large to small caps because the returns on the

latter fall when market volatility/illiquidity is high, and therefore fail to provide insurance against market

volatility. Hence small caps command higher expected returns than large caps, which happen to have low

variance risk, i.e. positive co-skewness. Additionally, also co-kurtosis could be priced, if an investor dislikes

assets whose risk increases in volatile markets.

While predictable variance risk plays a role in these pricing models, it is absent in the literature on

dynamic portfolio choice that has mostly focused on the ability to forecast expected returns (Campbell and

Viceira, 1999), even in multivariate asset menus (Campbell, Chan, and Viceira, 2003). However, it is clear

that the partial equilibrium, portfolio choice counterparts of the findings in the asset pricing literature ought

to show that optimal portfolio weights respond to predictable changes in the covariances between returns and

volatility as well as among cross-sectional volatilities. Our paper contributes to the literature on intertemporal

portfolio choice with predictable returns by showing that the interaction of predictability in mean returns

and volatilities has first order effects on portfolio composition in a multivariate asset menu. In particular,

we show that the portfolio share of small caps is significantly reduced by their high variance risk, which is

captured by their negative (positive) co-skewness. This provides the missing partial equilibrium rationale for

the role of variance risk in explaining differences in expected returns associated to firm size.

Our paper makes two choices in order to tease out the effects of variance risk on asset allocation. First, we

focus on an international equity diversification problem in which both U.S. and European small cap portfolios

figure prominently. The case for studying a non-U.S. portfolio of small caps one is based on two observations.

First, the European size effect has been basically neglected by the asset pricing literature that has instead

focused primarily on U.S. data. Since such a focus poses data-snooping problems, it is important to prevent
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our estimates of the small caps share in optimal portfolios to depend entirely on well-known but possibly

random features of U.S. data. Second, U.S. small caps have experienced an unprecedented performance in the

first part of our sample, from January 1999 to June 2001. Since a concern has been expressed that the size

premium may contain long and persistent swings (see Pástor, 2000 and Guidolin and Timmermann, 2005),

it is useful to obtain evidence involving at least one additional, major market for small caps.

Second, measuring the effect of predictable co-skewness on portfolio choice requires abandoning the tra-

ditional mean-variance approach. On the one hand, we assume that the investor has a power utility function,

implying a preference for positively skewed wealth as well as aversion to kurtosis of final wealth. On the other

hand, we allow the return process to generate non-normal and/or predictable returns. In particular, we ex-

amine the fit of competing models of asset returns, including multivariate ARCH models, linear VARs as well

as Markov switching VAR processes. It turns out that the latter are able to account for both non-normality,

asymmetric correlations, and predictability. Finally, a parametric Markov switching framework allows us to

obtain precise estimates of the high order (co-)moments that characterize variance risk.

Using a 1999-2007 weekly international data set, we find that the joint distribution of equity returns is

well captured by a three-state model. The states can be ordered by increasing risk premia. In two of the

regimes — that we label bear and bull because of the implied levels of expected returns — European small

caps returns exhibit both a relatively low variance and a high Sharpe ratio. Thus a risk averse investor, who

is assumed to start from this regime, would invest in excess of 60% her equity portfolio in European small

caps for horizons up to two years. On the other hand, the change in regime-specific variance is the highest

just for European small caps: in particular, variance almost triples when the regime shifts from bear to the

third, crash state. The high variance ‘excursion’ across regimes is compounded by the presence of high and

negative co-skewness with other asset returns, which means that the European small variance is high when

other excess returns are negative, and European small returns are small when the ‘market’ is highly volatile.

Similarly, the co-kurtosis of European small excess returns with other excess returns series is high — i.e., the

variance of the European small class tends to correlate with the variance of other assets. Both these features

suggest a tendency of European small caps to suffer from a disproportionate variance risk. The striking

implication is that a rational investor ought to give European small caps a limited weight (as low as 0% for

short horizons) when she is ignorant about the nature of the regime, which is a realistic situation. Further

experiments reveal that the dominant factor in inducing such shifts in optimal weights is represented by the

co-skewness, the predictable, time-varying covariance between returns and volatilities. This shows that higher

moments of the return distribution can considerably reduce the desirability of an asset. We quantify such an

effect in about 100 basis points per year under the steady-state distribution for returns. These results provide

a demand-side justification for the dependence of asset prices on co-skewness − as uncovered by Harvey and
Siddique (2000).

Importantly, in this paper we estimate a variety of non-linear models — in particular from the multivariate,

asymmetric ARCH-in-mean family, besides regime switching models — for the dynamics of international

equity returns. Consistently with prior evidence by Ang and Chen (2002), who report that regime switching

models may replicate the asymmetries in correlations observed in stock returns data better than GARCH-M

and processes, we find that both in-sample and out-of-sample, Markov switching models with time-varying
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covariance matrix fare as well as (or better than) multivariate ARCH models. However, our robustness checks

also confirm that our main portfolio implications would be qualitatively intact were we to adopt a dynamic

conditional correlations EGARCH(1,1) VAR(1) model as our baseline specification. Additionally, our results

prove qualitatively robust when both European and North American small caps are introduced in the analysis.

Our work is closely related to the research on the effects of predictability on intertemporal portfolio choice.

This strand of research has often concluded that predictable variance does not exert large effects. We extend

and qualify this observation by showing that the interaction of predictable variance with predictable mean re-

turns has first order effects on investors’ choices provided that assets with non-symmetric return distributions

are included in the investment set. Our application also bears similarities with Ang and Bekaert (2002), and

Guidolin and Timmermann (2006) who investigate the effects on international diversification of time-varying

moments when regime shifts are accounted for. Similarly to these papers, we overlook the analysis of infla-

tion risk, informational differences, and currency hedging costs that — while generally important — may not

radically affect the rational choices of a large investor who can hedge currency risk. Differently from these

papers, we focus on issues of international diversification across small and large capitalization firms.

Cvitanić, Polimenis, and Zapatero (2007) characterize optimal portfolio weights for the case of the choice

between one risky and a riskless asset when the dynamics of the risky asset is subject to pure-jump risk and the

jump arrival rates are stochastic. Differently from Liu et al. (2003), in which jumps arrive at a finite Poisson

rate, jumps may arrive at an infinite rate. The paper shows that under pure-jump dynamics all the moments

of risky returns are affected by the presence of jumps generating skewness and kurtosis and departures from

normality. When the process is specified to be a Variance-Gamma type, numerical examples are offered that

imply that welfare costs of misspecifying the dynamics of the return process may be substantial. Although our

econometric framework is different, our paper provides a specific, multivariate case study in which first-order

effects are derived from non-Gaussian dynamics. Similarly to Cvitanić, Polimenis, and Zapatero (2007) we

uncover substantial utility costs from misspecifying the process of returns.1

Finally, Harvey and Siddique (2000) show that conditional skewness contributes to the explanation of

cross sectional U.S. expected returns. They highlight that small cap portfolios have high expected returns

together with negative co-skewness while low expected returns, large cap portfolios have positive co-skewness.

Therefore they suggest analyzing portfolio choice in a richer conditional mean-variance-skewness framework.

Dittmar (2002) allows for expected returns to be related also to co-kurtosis between returns and aggregate

wealth, finding however a modest impact. In our framework, all moments above the second may be responsible

for departures of portfolio shares from the mean variance ones. We are able to show, however, that a large

fraction of such departures come from the (co-) skewness of the multivariate return distribution.

The paper is organized as follows. Section 2 presents a range of econometric models that have the

capability of generating variance risk. Section 3 introduces the portfolio choice problem and illustrates the

methodology employed to compute welfare costs from imposing restrictions on either the asset allocation

model or the asset menu. Section 4 describes the data, documents the outcomes of a model specification

1Das and Uppal (2004) study the effects of jumps on international equity portfolios when jumps are simultaneous and perfectly

correlated across assets. We also assume that regimes are perfectly correlated across stock portfolio returns, but allow for

persistence of regimes. While this prevents us from obtaining Das and Uppal’s simple analytic results, it allows to compute

portfolio allocations conditional on a given regime when the investor anticipates the probability of a regime shift next period.
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strategy based on the in- and out-of-sample performance, and gives econometric estimates. Section 5 reports

our findings on international portfolio diversification. This section contains the core results of the paper and

is organized around three sub-sections, each describing alternative sets of experiments useful to document the

effects of variance risk. Section 6 extends the asset menu to include North American small, besides European

small stocks and investigates the robustness of our results to the choice of the econometric framework. Section

7 concludes.

2. Econometric Models of Variance Risk

In general terms, any multivariate econometric model implying a non-zero correlation between levels vs.

squares and squares vs. squares of individual as well as aggregate (market) returns can be used to capture

and forecast what we have defined as variance risk. In this Section we provide an introduction to a variety

of parametric frameworks that display such properties, ranging from classical multivariate ARCH models,

to Dynamic Conditional Correlation (DCC) models, to models with regimes driven by Markov switching

processes. Clearly, all these models have a non-linear nature, in the sense that either their second moments

are predictable (and often all these moments are tied together, like in GARCH-in-mean models) or at least

their first moments are subject to discrete shifts driven by some switching mechanism. In addition to giving

some basic information on the structure of the models in each class and on related estimation issues, in this

Section we describe which specific components in each model are responsible for generating variance risk.

2.1. Markov Switching VARs

The popular press often acknowledges the existence of stock market states by referring to them as “bull” and

“bear” markets. Here we consider that the distribution of a set of international equity indices may depend on

states characterizing international equity markets. We write the joint distribution of a vector of m returns,

conditional on an unobservable state variable St, as:

rt = μSt +

pX
j=1

Aj,Strt−j + ut ut|Ft−1 ∼ N(0,ΣSt), (1)

where rt is them×1 vector collecting stock returns, μSt is a vector of intercepts (these correspond to expected

returns when either p = 0 or rt−j = 0 for j = 1, ..., p) in state St, Aj,St is the matrix of autoregressive

coefficients at lag j in state St, and ut ∼ N(0,ΣSt) is the vector of return innovations which are assumed to

be jointly normally distributed with zero mean and state-specific covariance matrix ΣSt . St is an indicator

variable taking values 1, 2, ...k, where k is the number of states. The presence of heteroskedasticity is allowed

in the form of regime-specific covariance matrices.

Crucially, St is never observed and the nature of the state at time t may at most be inferred (filtered) by

the econometrician using the history of asset returns. Similarly to most of the literature on regime switching

models (see e.g. Ang and Bekaert, 2002), we assume that St follows a first-order Markov chain. Moves

between states are assumed to be governed by a constant transition probability matrix, P, with generic

element pij defined as

Pr(st = j|st−1 = i) = pij , i, j = 1, .., k, (2)
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i.e. the probability of switching to state i between t and t + 1 given that at time t the market is in state j.

While we allow for the presence of regimes, we do not exogenously impose or characterize them, consistently

with the true unobservable nature of the state of markets in real life. On the contrary, in Section 4 we will

conduct a thorough specification search letting the data endogenously determine the number of regimes k

(as well as the VAR order, p) required to provide an accurate fit to the data and/or to correctly predict

their distribution one-step ahead. Although highly flexible, Markov switching VARs may imply a need to

estimate a relatively large number of parameters. For instance, (1) implies km[1+pm+(m+1)/2]+k(k−1)
parameters, e.g. as many as 96 free parameters in the case m = 4, p = 1, and k = 3, which will represent a

reasonable specification in our application.

(1) nests several return processes as special cases. If there is a single market regime, we obtain the linear

VARmodel with predictable mean returns that is commonly used in the literature on strategic asset allocation,

see e.g. Campbell and Viceira (1999).2 However, when multiple regimes are allowed, (1) generates various

sources of predictability. When either μSt or Aj,St (j = 1, ..., p) depend on the latent state, then expected

returns vary over time. Similarly, when the covariance matrices differ across states there will be predictability

in higher order moments such as volatilities, correlations, skews and tail thickness, see Timmermann (2000).

Predictability is therefore not confined to mean returns but carries over to the entire return distribution.

Notice also that while current returns are normally distributed conditional on the state, the one- period ahead

return distribution is not simply normal with regime dependent conditional mean and/or regime dependent

conditional volatility. It is instead a mixture — i.e., a probability weighted combination, with time-varying

weights (the regime probabilities) that are updated as new return data arrive — of normal variates, which

is generally not Gaussian. Furthermore, because the T -period ahead distribution is a mixture of Gaussian

densities, higher order moments generally become more relevant (i.e. departures from the baseline, conditional

multivariate normal get stronger and stronger) as T grows.

Since we treat the state of the market as unobservable — which is consistent with the idea that investors

cannot observe the true state but can use the time-series of returns to filter the state — we model the evolution

of investors’ beliefs using a standard Bayesian updating algorithm (see Hamilton, 1990):

πt+1(θ̂t) =

³
π0t(θ̂t)P̂t

´0
¯ f(rt+1; θ̂t)

[(π0t(θ̂t)P̂t)0 ¯ f(rt+1; θ̂t)]0ιk
. (3)

Here πt(θ̂t) collects the k×1 vector of state probabilities and θ̂t all the estimated parameters characterizing
(1) and estimated at time t; ¯ denotes the element-by-element product, P̂t is the Markov transition matrix,

and f(·) is the density of returns conditional on the regime, on past returns and on estimated parameters

f(rt+1; θ̂t) =

⎡⎢⎢⎢⎢⎢⎣
(2π)−

N
2 |Σ̂−11 |

1
2 exp

∙
−12

³
rt − μ̂1 −

Pp−1
j=0 Â1jrt−j

´0
Σ̂−11

³
rt − μ̂1 −

Pp−1
j=0 Â1jrt−j

´¸
...

(2π)−
N
2 |Σ̂−1k |

1
2 exp

∙
−12

³
rt − μ̂k −

Pp−1
j=0 Âkjrt−j

´0
Σ̂−11

³
rt − μ̂k −

Pp−1
j=0 Âkjrt−j

´¸
⎤⎥⎥⎥⎥⎥⎦ ,

2The i.i.d. Gaussian model − also often adopted as a benchmark in the portfolio choice literature (see e.g. Barberis, 2000) −
obtains instead assuming k = 1 and p = 0.
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which exploits the fact that conditional on the state, stock returns have a Gaussian distribution. (3) implies

that the probability of the states at time t+1 is a weighted average of the one-step ahead predicted probabilities

(π0t(θ̂t)P̂t), with weights provided by the likelihood of observing the realized returns rt+1 conditional on each

of the possible states, as represented by scaled versions of f(rt+1; θ̂t).

Regime switching models are estimated by maximum likelihood. As shown by Hamilton (1990), the

relevant algorithms are considerably simplified if (1) is put in its state-space form. In particular, estimation

and inferences are based on the EM (Expectation-Maximization) algorithm proposed by Dempster et al.

(1977), a filter that allows the iterative calculation of the one-step ahead forecast of the state vector

ξt = [I(St = 1) I(St = 2) I(St = k)]0

where I(St = i) is a standard indicator variable. As for the properties of the resulting maximum likelihood

(MLE) estimators, under standard regularity conditions (such as identifiability, stability and the fact that

the true parameter vector does not fall on the boundaries) Hamilton (1989, 1990) and Leroux (1992) have

proven consistency and asymptotic normality of the ML estimator θ̂:

√
T
³
θ̂ − θ

´
d→ N

¡
0, Ia(θ)−1

¢
where Ia(θ) is the asymptotic information matrix. In our empirical results we are going to provide standard
results based on a ‘sandwich’ sample estimator of Ia(θ) by which:

gV ar(θ̂) = T−1
∙
I2(θ̂)

³
I1(θ̂)

´−1
I2(θ̂)

¸
,

where

I1(θ̂) ≡ T−1
TX
t=1

h
ht(θ̂)

i h
ht(θ̂)

i0
ht(θ̂) ≡

∂ ln p(yt|Ft−1; θ̂)

∂θ
I2(θ̂) ≡ −T−1

TX
t=1

"
∂2 ln p(yt|Ft−1; θ̂)

∂θ∂θ0

#
,

(p(yt|=t−1; γ̃) is the conditional density of the data).

2.2. Multivariate GARCH

Consider the single-state VAR(p) model

rt = μ+

pX
j=1

Ajrt−j + ut ut|Ft−1 ∼ N(0,Ht)

where Ht = Et−1[utu0t] is the conditional variance covariance matrix of the m × 1 vector of asset returns.
Engle and Kroner (1995) propose the following model for the conditional covariance matrix that generalizes

to the multivariate case Bollerslev’s (1986) univariate GARCH(1,1):

Ht = Ω+A(εt−1ε
0
t−1)A

0 +BHt−1B
0, (4)

where Ω, A, and B are m × m parameter matrices and εt is the standardized vector of residuals, εt =

H
−1/2
t ut. Ht is guaranteed to positive definite as long as Ω is positive definite, which can be ensured by re-

parameterizing Ω as Ω = ΥΥ0 with Υ lower triangular. Notice that this model does contain a large number
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of parameters (m(1 + pm) from the conditional mean function and 2m2+ m(m+ 1)/2 from the conditional

variance covariance one), as many as 62 in the case of m = 4 and p = 1 as in most of the empirical work that

follows.3

Interestingly, the baseline M-GARCH model in (4) does capture only one possible source of variance

risk, i.e., the existence of co-movements and predictability across conditional variances (and covariances) of

different assets: because the [i, j] element of Ht can be written as a function of

mX
l=1

mX
k=1

αijlkεl,tεk,t +
mX
l=1

mX
k=1

βijlkhlk,t−1,

it is clear that both cross-products of past return shocks and past variances and co-variances will affect

subsequent conditional variances and covariances of returns. On the opposite, by construction (4) prevents any

potential explicit covariation of expected returns and second moments across different assets and portfolios.

A simplified yet popular version of (4) is Bollerslev’s (1990) constant correlation multivariate GARCH in

which conditional correlations (ρij) are assumed to be constant over time so that the conditional covariances

in Ht are derived by the simple product

hij,t = ρij
p
hi,t
p
hj,t,

where the conditional variances hi,t and hj,t are estimated from plain vanilla, univariate GARCH(1,1) models

(usually with long-run variance matching restrictions imposed),

hi,t = (1− αi − βi)σ̄i + βihi,t−1 + αiε
2
i,t, (5)

and the constant correlations ρij are simply set to match their unconditional counterparts, ρ̄ij . Of course,

whilst the assumption of constant correlations may be questionable, the main advantage of the constant

correlation M-GARCH model is that the number of parameters drops to m(1 + pm)+ m[2 + (m− 1)/2], for
instance to 34 only in the case of m = 4 and p = 1. Importantly, the constant correlation model is proposed

purely as benchmark — since it has been widely used in the empirical finance literature — even though it

fails to generate any variance risk: although variances and covariances (not correlations) become stochastic

and therefore time-varying, expected returns fail to co-vary with variances or co-variances, while the narrow

univariate GARCH(1,1) specification in (5) fails to capture any co-variation between conditional variances or

covariances across assets.

2.3. Dynamic Conditional Correlation

Engle (2002) has recently proposed the DCC class as a way to overcome the well-known over-parameterization

(and hence, estimation) problems that plague the M-GARCH class. A DCC model is based on the idea

3The considerable growth in the number of parameters to be estimated derives from the fact that (4) implies that both

conditional variances (hi,t, on the main diagonal of Ht, i = 1, ...,m) and conditional covariances (hij,t, i 6= j) are allowed to

depend on past conditional covariances as well as cross-products of return residuals, εi,tεj,t. In our application we have actually

imposed Engle and Mezrich’s (1996) restriction that the long run variance matrix corresponds to the sample covariance matrix,

i.e. that in (4) the restriction Ω = (I−A−B)S applies, where S is the sample covariance matrix. The result of the estimation
differs from the maximum likelihood estimator (MLE) only in finite samples but reduces the number of parameters and often

gives improved performance in forecasting applications.
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of a two-step approach: first estimate conditional variances at the univariate level, and second directly

parameterize conditional covariances, using the first-stage estimates of conditional variances to go from the

conditional covariances to conditional correlations. Formally, a DCC model writes the m × m covariance

matrix Ht as

Ht = DtRtDt,

where Dt is a diagonal matrix which collects the time t volatilities obtained from any of the well-known

GARCH model (or combination thereof), Dt = diag{
√
h1t,
√
h2t, ...,

√
hmt}, and Rt is a time-varying matrix

which collects ones on the main diagonal, while its generic [i, j] element is:

ρij,t =
Et−1[εi,tεj,t]q

Et−1[ε2i,t]Et−1[ε2j,t]
i 6= j,

where εi,t is the standardized residual from the conditional mean function Et−1[ri,t],

εi,t =
ri,t −Et−1[ri,t]p

hi,t
i = 1, 2, ...,m.

In this paper we entertain three alternative DCC specifications. The first one is a simple DCC-EGARCH(1,1)

specification which can be written as4

rt = μ+

pX
j=1

Ajrt−j + ut ut|Ft−1 ∼ N(0,DtRtDt)

e0iD
2
tei = exp [ωi + βiln(hi,t−1) + αi|εi,t|+ γiεi,t]

qij,t = δ0 + δ1εi,t−1εj,t−1 + δ2qij,t−1 ρij,t =
qij,t√

qii,t · qjj,t
i 6= j. (6)

The correlation estimator ρij,t is guaranteed to be positive definite as the matrix Qt with generic element qij,t

can be shown to be a weighted-average of a positive definite and a positive semi-definite matrix, Qt =∆0+

∆1(εt−1ε0t−1) +∆2Qt−1. Also notice that by construction, when i = j then ρii,t = 1, as it should be. When

the restriction that the long run variance matrix corresponds to the sample covariance matrix is imposed,

the process for qij,t can be simply re-written as

qij,t = (1− δ1 − δ2)v̄ij + δ1εi,t−1εj,t−1 + δ2qij,t−1

= v̄ij + δ1(εi,t−1εj,t−1 − ρ̄ij) + δ2(qij,t−1 − ρ̄ij)

where v̄ij is the unconditional covariance between the residuals from assets i and j. In this case, variance

risk is generated by the asymmetric component (sometimes called leverage, from the fact that negative stock

returns imply declining stock prices and therefore a reduction of the value of the equity relative to corporate

debt, and thus an increase in corporate leverage) γiεi,t: assuming that αi > 0 and γi < 0, it is clear that

∂lnhi,t
∂εi,t

¯̄̄̄
εi,t≥0

= αi + γi ≤ αi − γi =
∂lnhi,t
∂εi,t

¯̄̄̄
εi,t<0

,

4In what follows the EGARCH label refers to the conditional variance component. As far as the conditional correlations are

concerned, we simply use the GARCH(1,1)-type structure suggested in Engle (2002, p. 341). e0iD
2
tei selects the i−th (squared)

element of the diagonal matrix Dt, where ei is an m× 1 vector with a 1 in the i−th position and zeros elsewhere.
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i.e., when εi,t < 0 there is a higher impact of a shock on the predicted variance than when εi,t ≥ 0. The
leverage effect creates a positive correlation between variance and expected returns. In this sense, assets or

portfolios with higher (absolute) values of the coefficient γi will be characterized by higher variance risk.

The second DCC model used in this paper is a DCC-GARCH(1,1)-in-mean model:

rt = μ+

pX
j=1

Ajrt−j +C·diag(Dt) + ut ut|Ft−1 ∼ N(0,DtRtDt)

e0iD
2
tei = (1− αi − βi)σ̄i + βihi,t−1 + αiε

2
i,t

qij,t = v̄ij + δij,1(εi,t−1εj,t−1 − v̄ij) + δij,2(qij,t−1 − v̄ij) ρij,t =
qij,t√

qii,t · qjj,t
i 6= j, (7)

where C is a full matrix. In this case variance risk comes from the ARCH-in mean component represented

by C · diag(Dt) (where diag(·) is the operator that stacks the elements on the main diagonal in Dt into an

m× 1 vector): when the [i, j] element of C is non-zero, then

∂Et−1[ri,t]

∂(h
1/2
j,t )

¯̄̄̄
¯ = cij

which means than a change in the volatility of asset j will affect the expected return on asset i. Notice that

while basic finance theory suggests that cii > 0 (i.e., higher own-volatility increases expected returns), no

priors are commonly expressed with reference to the off-diagonal elements of C.5

One final version of (7) that we estimate in this paper is the integrated DCC-GARCH(1,1) version, in

which the restrictions αi + βi = 1 and δ1 + δ2 = 1 are imposed so that

rt = μ+

pX
j=1

Ajrt−j +C·diag(Dt) + ut ut|Ft−1 ∼ N(0,DtRtDt)

e0iD
2
tei − e0iD2

t−1ei = ∆hi,t−1 = αi(ε
2
i,t − hi,t−1)

∆qij,t = δ1(εi,t−1εj,t−1 − qij,t−1) ρij,t =
qij,t√

qii,t · qjj,t
i 6= j, (8)

i.e. both conditional variances and conditional covariances follow driftless integrated moving average processes.

The comments expressed above with regard to the sources of variance risk apply to this case as well, with

the difference that the elements of Dt will obviously be considerably more persistent in determining expected

returns. Of course, an advantage the integrated DCC is that 2m less parameters have to be estimated.

Thanks to the joint normality assumptions in (6) and (7) one can easily write down the likelihood function

for a DCC model and proceed to numerical optimization to obtain MLE efficient (i.e., reaching the Cramer

bound) estimates. Alternative sets of sufficient conditions (see e.g., Newey and McFadden, 1994) may be

employed to yield consistency and asymptotic normality. However, Engle (2002) shows that a number of tricks

may be used to obtain consistent but inefficient estimators that greatly simplify our task.6 In particular,

it is easy to show that the log-likelihood function may be written as the sum of a volatility part and of a

correlation part.

5(6) and (7) considerably reduce the number of parameters to be estimated, to m(1 + pm) + 6m in the DCC-EGARCH case

(e.g., for m = 4 and p = 1 these are 44 parameters) and to m(1 + pm) + 4m in the DCC-GARCH case in which long-run

restrictions are imposed on both variances and correlations (e.g., for m = 4 and p = 1 this yields a tight set of 36 parameters

only).
6The existence of these tricks and the notorious difficulties with the estimation of multivariate ARCH models with more
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2.4. The Economics of Variance Risk

In this paper what we have defined as variance risk derives from the presence of either switches in the expected

returns and/or variances and covariances of portfolio returns, or from the presence of peculiar features within

the class of multivariate ARCH models, in the form of asymmetries (like in the EGARCH case), cross-asset

dependence of second moments (e.g., when the volatility of asset i is persistently affected by the volatility of

asset j), and/or the presence of time-varying second moments in the conditional mean function (ARCH-in-

mean effects). Therefore variance risk is directly caused by regime switching and/or conditional autoregressive

heteroskedasticity. As a result, discussing the economics of variance risk implies researching the origins of

these important and widely documented statistical features.

As for regime switching, there are solid economic reasons why the equilibrium joint distribution of a

number of stock portfolio returns may contain regimes. Suppose that investors have constant relative

risk aversion and that asset returns are determined from the standard no-arbitrage, equilibrium relation

Et[Mt+1(1 + ri,t)] = 1, where Mt+1 is the pricing kernel which is commonly restricted to be Mt+1 ≡
β(Ct+1/Ct)

−γ and gt+1 ≡ Ct+1/Ct is real per-capita consumption growth. The risk premium on risky assets

(over and above the conditionally risk-free rate, rft ) is then given by

Et[ri,t+1 − rft ] = −
Covt[Mt+1, (ri,t+1 − rft )]

Et[Mt+1]
.

If the consumption growth rate follows a simple regime switching process, gt+1 ∼ N(μSt+1 , σ
2
St+1

) (St+1 =

1, ..., k), i.e. both the mean and the variance of the rate of growth of fundamentals may take a number of

different values, according to the state of the economy (e.g., expansions and recessions). This implies that

also the pricing kernel will follow a k−state process. It is then straightforward to show that

Et[ri,t+1 − rft ] = −
Pk

st+1|t=1
πst+1|tCov[Mt+1, (ri,t+1 − rft )|st+1]Pk
st+1|t=1

πst+1|tE[Mt+1|st+1]
,

where πst+1|t = E[St+1|Ft], a prediction of the probability of the future state, conditional on the information

currently available. This simple model implies that returns on risky assets follow a regime switching process

driven by the states in the underlying pricing kernel that reflect time-varying expected consumption growth

and time-varying conditional covariances between asset returns and consumption growth.7 Importantly, a

number of papers have recently documented the presence of regimes in a number of fundamental series

commonly employed in the equilibrium asset pricing literature, see e.g. Cecchetti, Lam, and Mark (2000). In

this sense, variance risk may be linked to business cycle variations in economic growth (cash flows) associated

with the economic cycle (e.g., Whitelaw, 2001), breaks in macroeconomic volatility (e.g., Lettau, Ludvigsson

and Wachter, 2006), large macroeconomic shocks (e.g. oil prices) or institutional changes.

than two or three return series explains why we have framed the discussion and estimation of the relatively rich multivariate

asymmetric (EGARCH), symmetric (GARCH) integrated, and GARCH-in mean models within the DCC framework. Of course,

the parametric assumption of a conditional multivariate normal distribution for the shocks might be removed, although in this

paper it is sensible to compare models that rely on a homogeneous assumption of conditional normality throughout.
7The extension of these claims to an international framework is straightforward when gt+1 is interepreted as real per-capita

world consumption growth.
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The literature on the economic origins of time-varying volatilities and covariances is older. Four key ideas

seem to have emerged. First, conditional heteroskedasticity may simply result from the fact that in modern

financial markets information flows in uneven ways and tends to cluster in short periods of time (see e.g.,

Tauchen and Pitts, 1983, and more recently Fong and Wong, 2005). However, this explanation preferentially

applies to explain the existence of ARCH effects in asset returns at the daily or even infra-daily level, while it

is considerably more difficult to use it to understand the presence of conditional heteroskedasticity at lower

frequencies (such as weekly or monthly), without taking stance on difficult issues of statistical aggregation.

Second, a literature has emerged (see e.g., DenHaan and Spear, 1998) that shows that frictions — such as

borrowing constraints and transaction costs — may cause transactions and therefore price movements to lump

in clusters that would cause ARCH in asset returns. Third, since the work by Timmermann (1996) (also see

Veronesi, 2000, for recent results on time-varying intensity in ARCH effects, and Guidolin and Timmermann,

2007) it has become known that the learning of a representative investor concerning the process followed by

the fundamentals priced in equilibrium may generate strong conditional heteroskedasticity. Finally, recent

work by Kurz and Motolese (2001) and Kurz, Jin, and Motolese (2005) has shown that — even in the absence of

market frictions and learning — it may be simply be that the interaction among investor with heterogeneous

beliefs may produce realistic conditional heteroskedastic patterns. In particular, Kurz, Jin, and Motolese

take interest in a few ARCH processes that may potentially generate variance risk. In this sense, it is

microstructure effects (i.e., concerning the arrival process of information), market frictions, learning, as well

as investor heterogeneity that may ultimately cause variance risk to be important in portfolio choices.

3. The Asset Allocation Problem

Consider an investor with power utility defined over terminal wealth,Wt+T , coefficient of relative risk aversion

γ > 0, and horizon T :

u(Wt+T ) =
W 1−γ

t+T

1− γ
(9)

The investor maximizes expected utility by choosing a vector of portfolio shares at time t, that can be

adjusted every ϕ = T
B months at B equally spaced points. When B = 1 the investor simply implements a

buy-and-hold strategy. Let ωb be the portfolio weights on m ≥ 1 risky assets at these rebalancing times.
Defining WB ≡Wt+T , and assuming for simplicity a unit initial wealth, the investor’s optimization problem

is:

max
{ωj}B−1j=0

Et

"
W 1−γ

B

1− γ

#
s.t. Wb+1 =Wbω

0
b exp (Rb+1) (10)

where exp (Rb+1) ≡ [exp (R1,b+1) exp (R2,b+1) ... exp (Rm,b+1)]
0 denotes an m × 1 vector of cumulative,

gross returns between two rebalancing points (under continuous compounding). The derived utility of wealth

function can be simplified, for γ 6= 1, to:

J(Wb, rb,θb,πb, tb) ≡ max
{ωj}B−1j=b

Eb

"
W 1−γ

B

1− γ

#
=

W 1−γ
b

1− γ
Q(rb,θb,πb, tb), (11)
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i.e. the optimal value function can be factored in such a way to be homogeneous in wealth (θb and πb are

vectors that collect the parameters of the return generating process, conditional on information at time b).

One interesting special case is the buy-and-hold framework in which ϕ = T. Under this assumption,

Appendix A shows that, similarly to Barberis (2000), the integral defining the expected utility functional can

be approximated as follows:

max
ωt

N−1
NX
n=1

h
ω0t exp

³PT
i=1 rt+i,n

´i1−γ
1− γ

,

where N is the number of simulations, and ω0t exp
³PT

i=1 rt+i,n

´
is the portfolio return in the n-th Monte

Carlo simulation when the portfolio structure is given by ωt. Each simulated path of portfolio returns is

generated using draws from the assumed econometric model, for instance (1)-(2) that allows regimes to shift

randomly as governed by the transition matrix, P. We use N = 30, 000 simulations.8 Appendix A provides

details on the numerical techniques employed in the solutions and extends these methods to the case of an

investor who adjusts portfolio weights every ϕ < T months. Here we only stress that because the backward

solution of (10) implies the relationship

Q(rb,πb, tb) = max
ωb

Etb

"µ
Wb+1

Wb

¶1−γ
Q (rb+1,πb+1, tb+1)

#
,

it is clear that portfolio choices will reflect not only hedging demands for assets due to stochastic shifts in

investment opportunities but also a hedging motive caused by changes in investors’ beliefs concerning future

state probabilities, πb+1.

3.1. Welfare Cost Measures

To quantify the utility costs of restricting the investor’s asset allocation problem, we follow Ang and Bekaert

(2002) and Guidolin and Timmermann (2005). Call ω̂R
t the vector of portfolio weights obtained by imposing

restrictions on the portfolio problem, for instance, when the investor is forced to avoid small capitalization

firms. We aim at comparing the investor’s expected utility under the unrestricted model − leading to some
optimal set of controls ω̂t − to the utility derived assuming the investor is constrained. Since a restricted
model is a special case of an unrestricted model, the following relationship between the value functions holds:

J(Wt, rt, π̂t; ω̂
R
t ) ≤ J(Wt, rt, π̂t; ω̂t),

i.e. imposing restrictions reduces the derived utility from wealth. The compensatory premium, λRt , is then

computed as:

λRt =

∙
J(Wt, rt, π̂t; ω̂t)

J(Wt, rt, π̂t; ω̂
R
t )

¸ 1
1−γ
− 1. (12)

The interpretation is that an investor would be willing to pay λRt in order to get rid of the restriction. In what

follows we report annualized percentage measures of such a certainty equivalent loss λRt , to be interpreted

8Of course, if a different econometric framework were to be postulated, this would simply change the baseline process from

which return paths ({rt+i,n}Ti=1) are simulated. Experiments indicated that for m = 4, a number of simulations N between

20,000 and 40,000 trials delivers satisfactory results in terms of accuracy and minimization of simulation errors vs. computational

speed.
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as the annual percentage fee that the investor stands ready to pay to purchase services that remove the

constraint.

4. Empirical Results

4.1. The Data

We use weekly data from the MSCI total return indices data base for Pacific, North American Small, European

Small Caps and European Large Caps (MSCI Europe Benchmark). Returns on North American Large Caps

are computed as a weighted average of the MSCI U.S. Large Cap 300 Index and the D.R.I. Toronto Stock

Exchange 300, using as weights the relative capitalizations of U.S. and Canada.9 We use total return data

series, inclusive of dividends, adjusted for stock splits, etc. Returns are expressed in the local currencies as

provided by MSCI. This implies a rather common assumption − see e.g. De Santis and Gerard (1997) and
Ang and Bekaert (2002) − that our investor is sophisticated enough to fully hedge her currency positions.

The sample period is January 1, 1999 - January 3, 2007. A Jan. 1, 1999 starting date for our study is

justified by the evidence of substantial portfolio reallocations induced by the disappearing currency risk in

the European Monetary Union (Galati and Tsatsaronis, 2001). We use data at a weekly frequency, which

guarantees the availability of 417 observations for each of the series. Furthermore, notice that our sample

straddles at least two complete stock market cycles, capturing both the last months of the stock market

rally of 1998-1999, its fall in March 2000, the crash of September 11, 2001, and the subsequent recovery of

2003-2006.

Tables 1 and 2 report summary statistics for stock returns. Since we have a well-balanced sample in

terms of sequence of bear and bull markets, average mean returns appear to take typical values for all

portfolios under consideration, i.e., from a low of 3.8 percent per year in the case of North American large

caps to 13.6 percent for European small cap stocks. However − as discussed in the Introduction − small
caps represent an exception. In particular, European small caps are characterized by a high annualized 39%

positive median return, followed by European large and North American small caps with 21 and 17% per

year.10 The resulting (median-based) Sharpe ratios for small capitalization firms make them highly appealing

from a portfolio perspective: European American small caps display a stunning 0.27 weekly Sharpe ratio.

On the other hand, Table 1 questions the validity of an approach that relies only on the Sharpe ratio: the

small cap skewness is negative and large, indicating that there are asymmetries in the marginal density that

make negative returns more likely than positive ones; their kurtosis exceeds the Gaussian benchmark (three),

indicating that extreme realizations are more likely than in a simple Gaussian i.i.d. framework. Second,

opposite remarks apply to other stock indices, in particular North American large caps and Asian Pacific

ones: their skewness is either positive or nil, which may be seen as an expected utility-enhancing feature by

many investors; their kurtosis is moderate, close to what a Gaussian i.i.d. framework implies. These remarks

9While the MSCI Europe Benchmark index targets mainly large capitalization firms, no equivalent for North America (i.e.

US and Canada) is available from MSCI. In practice, the U.S. large caps index receives a weight of 94.5% vs. a 5.5% for the

Canadian index.
10In addition to the mean, we also use the median of returns as an estimator of location: for variables characterized by

substantial asymmetries (negative skewness), the median is a more representative location parameter than the mean.
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beg our core question: When and how much do higher order moments matter for asset allocation?

The last two columns reveal that while serial correlation in levels is limited to European and small caps

portfolios, the evidence of volatility clustering − i.e. the tendency of squared returns to be serially correlated
− is widespread, which points to the possible need to capture conditional heteroskedastic patterns.

Finally, Table 2 reports correlation coefficients. Pacific stock returns have lower correlations (around 0.45

- 0.55 only) with other portfolios than all other pairs in the table. This feature makes Pacific stocks an

excellent hedging tool. All other pairs display correlations in the order of 0.55 - 0.8, which is fairly high

but also expected in the light of the evidence in the literature that all major international stock markets are

becoming increasingly prone to synchronous co-movements (e.g. Longin and Solnik, 2001).

4.2. Model Selection

We use two alternative sets criteria to select econometric frameworks able to effectively capture the properties

of the data. Since our main hypothesis that small caps would be plagued by pervasive variance risk requires

achieving an accurate specification of a sufficiently rich model from the set provided in Section 2, we make

an extensive effort. We estimate a large number of variants of (1) and of models in the multivariate ARCH

family and use five criteria to gauge their correct specification:

1. Davies (1977)-corrected likelihood ratio tests of the presence of multiple regimes, i.e. formal tests of the

null hypothesis of k = 1 against the alternative of k ≥ 2. As discussed in Garcia (1998), testing for the
number of regimes may be tricky as under the null a few parameters of the unrestricted model − i.e. the
elements of the transition probability matrix associated to the rows that correspond to “disappearing

states” – can take any values without influencing the likelihood function; these parameters are said to

become a nuisance to the estimation. In the presence of nuisance parameters, even asymptotically the

LR statistic fails to have a standard chi-square distribution. Davies (1977) derives an upper bound for

the significance level of the LR test under nuisance parameters:

Pr (LR > x) ≤ Pr
¡
χ21 > x

¢
+
√
2x exp

³
−x
2

´ ∙
Γ

µ
1

2

¶¸−1
,

where Γ (·) is the standard gamma function.

2. - 4. Three standard information criteria, i.e. the Akaike (AIC), Bayes-Schwartz (BIC), and Hannan-Quinn

(H-Q) criteria. These statistics are supposed to trade-off in-sample fit with prediction accuracy and

rely on the principle that a correctly specified model should not only provide an accurate in-sample fit,

but also prove useful to forecast out-of-sample. In practice, information criteria identify the ex-ante

potential of good out-of-sample performance by penalizing models with a large number of parameters.

A well-performing model ought to minimize each of the information criteria. Information criteria do

not explicitly suffer from nuisance parameter issues and are therefore employed to compare models with

different number of regimes, as well models in the same k-class but with different structure.11

11These criteria are now relatively well-established in the regime switching literature, see e.g. Sola and Driffill (1994). Roeder

and Wasserman (1997) formally argue in favor of using information criteria in mixtures of normals.
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Table 3 reports the outcomes of these model selection/specification tests.12 Tests appear in the same

order in which they have been listed above, and each of them corresponds to columns 4 through 7 of the

table; columns 2 and 3 simply report the number of parameters implied by each model and the correspond-

ing maximized log-likelihood function. Obviously, simply maximizing the log-likelihood function does not

represent a useful model selection criterion, since the likelihood keeps increasing by simply adopting pro-

gressively more complicated models which end up requiring hundreds of parameters (and saturation ratios

below a standard minimum value of 20 observations per estimated parameter). Therefore we proceed and

inspect the additional columns of the table. When appropriate, the fourth column of Table 3 systematically

tests the null of k = 1 against k > 1 (the exact number of regimes varies) and reports p-values calculated

under Davies’ upper bound. Obviously, even adjusting for the presence of nuisance parameters, the evidence

against specifying traditional single-state models is overwhelming: the smallest LR statistic takes a value of

162, which is clearly above any conceivable critical value regardless of the number of restrictions imposed.

This gives a first, crucial implication: the data offer strong evidence of time-variation in the coefficients of

models capturing the dynamics of international stock returns.

Once we establish that k ≥ 2 is appropriate, this only rules out single-state models which are nested by
Markov switching VARs, i.e. only the first two rows of Table 3. We therefore compare the performance of

multivariate ARCH and Markov switching VARs. On the one hand, within the Markov switching class, the

range of models estimated is wide and spans models with k = 2, 3, 4, p = 1, 2, and with and without a regime-

dependent covariance matrix. Also models in which the VAR coefficients are constant over time and fail to

depend on the regime are estimated, since they are relatively parsimonious and economically interesting (see

Guidolin and Ono, 2006). Columns 5-7 of Table 3 show that some tension exists among different criteria.

The BIC is minimized by a tightly parameterized three-state heteroskedastic model with p = 0 in which 48

parameters have to be estimated. However, this is less than surprising as the BIC is generally known to

select relatively small models in nonlinear frameworks (see e.g. Fenton and Gallant (1996)). Next, the AIC

and H-Q criteria point towards a richer three-state heteroskedastic model with time-invariant VAR(1) matrix

(i.e., a MSIH(3,0)-VAR(1) model with a saturation ratio of 26). Even though Section 6 also entertains the

possibility that the data may be best described by a model in which p = 0 (see Guidolin and Nicodano, 2007,

for related evidence), in this Section and the following we take this three-state time-invariant VAR(1) model

as our baseline framework.

On the other hand, rows 3-8 of Table 3 estimate a range of multivariate ARCH models. Although the

best fit, in terms of maximizing the log-likelihood function, is provided by a multivariate GARCH(1,1)-in-

mean (including a VAR(1) component), once the log-likelihood is penalized by the relative large number

of parameters (78), both BIC and H-Q indicate that the most promising fit is instead achieved by a more

parsimonious (44 parameters) DCC EGARCH(1,1) VAR(1).13 Therefore it seems natural to proceed and

compare the statistical properties of the latter DCC EGARCH(1,1) model with a MSIH(3,0)-VAR(1).

12In the table, the switching models are classified as MSIAH(k, p), where I, A and H refer to state dependence in the intercept,

vector autoregressive terms and heteroskedasticity. p is the autoregressive order. Models in the class MSIH(k, 0)-V AR(p) have

regime switching in the intercept but not in the VAR coefficients.
13The AIC selects instead the larger full multivariate GARCH(1,1)-in-mean. Notice that both in the regime switching and in

the ARCH case, the AIC favors relatively large models which pose considerable risks of over-parametrization.
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A first piece of evidence that favors the regime switching framework is that all the information criteria

attain lower values (16.04 for the AIC, 16.76 for BIC, and 16.38 for H-Q) in the Markov switching case

than in the ARCH case (16.55, 16.98, and 16.72, respectively). This indicates that the increase in the log-

likelihood function caused by the adoption of multi-state models more than compensates the fact that the

Markov switching framework implies a need to estimate 20 additional parameters. However, it is obvious

that — even when penalized by a function that is monotone increasing in the number of estimated parameters,

therefore discounting the potential for parameter uncertainty and/or instability — a model should be selected

not for its in-sample fit, but for its potential of producing a useful out-of-sample performance. In particular,

notice that in an asset allocation application, what matters is chiefly the ability of an econometric model to

produce accurate forecasts of the entire joint density of equity returns.14 The seminal work of Diebold et al.

(1998) has spurred increasing interest in specification tests based on the h-step ahead accuracy of a model for

the underlying density. These tests are based on the probability integral transform, or z-score. This is the

probability of observing a value smaller than or equal to the realization r̃t+1 (assuming h = 1) under the null

that the model is correctly specified. Appendix B provides further details on this econometric tool in general

and on its specific application in our paper. The general idea is that the z-scores, being a function of the

forecast errors, should obey a number of statistical restrictions under the null of correct model specification.

Table 4 reports Berkowitz-style, transformed z-tests (for pseudo-out of sample one week-ahead scores)

for four models: a benchmark Gaussian IID model that implies the absence of predictability (i.e., con-

stant expected returns, variances, and covariances); a Gaussian VAR(1) inspired by the literature on lin-

ear predictability in finance; the three-state heteroskedastic Markov switching VAR(1) model; the DCC

EGARCH(1,1) VAR(1) model. Strikingly, the popular Gaussian IID and VAR(1) models are both resound-

ingly rejected by most tests and for three out of four international equity markets (the exception is Asian

Pacific returns, which is relatively unsurprising in the light of Table 1). Rejections tend to be harsh, in

the sense that even for the VAR(1) 13 out of 16 tests give p-values below 0.05 (11 are highly statistically

significant): applying standard linear methods (see e.g. Barberis, 2000) to our weekly international stock

return data would provide misleading inferences on optimal portfolio weights and therefore on the reasons

for the negligible importance of small capitalization stocks in internationally diversified portfolios.

The picture drastically improves when either of the two non-linear frameworks are fitted to the data. For

all international portfolios, the test statistics drastically drop sometimes declining by a factor of 600-700.

This means that either regimes or ARCH effects are needed to correctly forecast the joint density of returns.

Although for three out of four portfolios (the exception is European large firms) the differences in scores

between ARCH and regime switching are not substantial, we generally notice that a three-state VAR(1)

model seems to obtain a small hedge. For instance, out of 16 tests, 7 are significant in the ARCH case, vs.

3 only for the regime switching model. The z-score tests are in practice perfect — i.e., there is no sign of

departures from the null of Gaussian IID scores — for European small caps and North American large caps,

although some marginal problems are left for the other two portfolios.15 All in all, we take these results

14Very simply put, notice that a risk-averse investor with concave utility function will attach weight not only to mean wealth,

but to the entire density of wealth, which is obviously a function of the joint predictive density of future equity returns.
15We also produce and analyze (unreported) plots that display the empirical distributions of {z∗t+1} for each of the four return

series and compare them with a normal variate with identical mean and variance. The models’ faults are obvious for most series.
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as evidence of a superior out-of-sample performance of the regime switching framework vs. the ARCH one.

Therefore the Sections that follow treat the three-state VAR(1) model as our baseline case, and deal with the

DCC EGARCH(1,1) for robustness check purposes.

4.3. Econometric Estimates

Table 5, panel B reports ML parameter estimates for the three-state, heteroskedastic VAR(1) model. As a

benchmark, panel A shows estimates for a single-state VAR(1) model. Panel A shows typical linear results:

there is very weak evidence of non-zero expected returns. Linear predictability is weak, in the sense that

while European small cap returns are mildly persistent, European large caps are anti-persistent (i.e., a high

return today forecasts a lower return tomorrow) and are weakly affected by past returns on North American

large caps. However, the economic effects are almost negligible: even limiting our attention to the statistically

significant coefficients, a one standard deviation shock to European small (large) caps forecasts an increase

(decrease) in one-week ahead returns of 0.37% (-0.77%), while a one standard deviation shock to North

American large caps forecasts an increase in one-week ahead European large returns of 0.25%.16

Panel B of Table 3 reports parameter estimates for the three-state process. While the state-independent

VAR matrix remains similar to the one in panel A, the intercepts are significant only in the two “outside”

regimes. The interpretation of such regimes is made possible by computing the (unconditional, long-run)

regime-specific weekly mean returns in each of the regimes, using the formula E[rt|St = i] = (Im −A)−1μi:

Pacific EU Small EU Large NA Large

E[rt|St = 1] -1.11 -3.23 -2.41 -1.09

E[rt|St = 2] -0.01 0.33 0.35 0.08

E[rt|St = 3] 0.44 0.90 0.36 0.30

Regime 1 is clearly a crash state in which all international equity markets face large losses (these are weekly

means, i.e. a -1 percent corresponds a whopping annualized -52%). However, notice that this characterization

of regime 1 is not incompatible with an equilibrium interpretation (as well as common sense) because this

state has very low persistence, i.e. with probability in excess of 0.60 the international economy leaves the

crash state between t and t + 1 to move to positive expected return states.17 As a result, the crash state

has a negligible duration of less than 2 weeks, which well-fits the idea that extreme market crashes mostly

For single-state models, the score distributions are either leptokurtic or even multi-modal. Further analysis, reveals that the

forecast errors for Asian Pacific returns show signs of conditional heteroskedasticity (albeit weak) that cannot be captured by a

regime switching structure. The forecast errors for European large caps show some evidence of a need for two regimes only.
16In table 5, the VAR panels have to be read in the following way: each coefficient illustrates the effect a shock to the variable

in the column on the variable in the row.
17We explicitly compute E[rt+4|St = i, rt] =

3
i=1 π̂

i
t+4,t (μi +AE[rt|St = i]) , when in each state the system is inizialized at

its unconditional mean, and obtain:

Pacific EU Small EU Large NA Large

E[rt|St = 1] 0.08 0.22 0.07 0.06

E[rt|St = 2] 0.01 0.20 0.18 0.05

E[rt|St = 3] 0.21 0.34 0.01 0.11

showing that at a one-month horizon all expected returns become positive.
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correspond to short-lived episodes. However, this is not an irrelevant state, because the overall structure of

the estimated transition matrix implies that approximately 9.9% of the data will be generated by this regime.

Interestingly, when the world equity markets leave the crash state, roughly 46% of the time this is to regime

3, when expected returns are high. In the crash regime, volatilities are relatively high, especially in the case

of European stocks, both small and large caps. Also correlations are relatively high (with the exception of the

coefficient concerning the Pacific-EU large pair). Figure 1 gives a visual representation in terms of smoothed

(ex-post, full sample) probabilities which fits this interpretation, in the sense that this state appears relatively

often but lasts at most for three weeks. Although ‘crashing weeks’ seem to appear 2-3 times a year on average

(e.g. the week of September 11, 2001 is picked up by this state), these have become relatively more frequent

and persistent during the crisis period of 2002-2003.

Regime 2 is a persistent bear state in which expected returns are negligible and statistically insignificant.

The average duration of the state is 12 weeks, i.e. it fits periods in which the markets are hardly moving

in any direction (and excess returns are low or even negative). This state is characterized by intermediate

volatility, although the estimated values exceed their unconditional counterparts for three indices out of four.

Consistently with Longin and Solnik (2001), in this bear state correlations are higher than their unconditional

counterparts. Figure 1 shows that some portions of the turbulent 1999 and then most of the years 2001-2002

are captured by this bear state. Clearly, a sequence of visits to the bear state intertwined by sporadic hits of

the crash regime, may impress a negative trend to equity prices. Regime 3 is instead a persistent bull state

in which expected returns are positive and statistically significant. The average duration of this state is 11

weeks. The bull state is characterized by low volatility and relatively reduced correlations. To complement to

what could be seen for the bear regime, Figure 1 shows that most of 2000 and then 2004-2006 are captured by

this regime. Even though their persistence is similar, the peculiar structure of the transition matrix implies

that while on average 52.4% of the data will come from the bear state, 37.7% will be generated by the bull

regime.

4.4. Diagnostic Tests

Standard, residual-based diagnostic checks are made difficult within the multivariate Markov switching class

by the fact that in (1) ut ∼ N(0,Σst) only conditional on a given regime. Since for most t, the vector of

state probabilities π̂t will differ from ei (i = 1, ..., k), the generalized residuals,

kX
i=1

(e0iπ̂t)
³
rt − μ̂i − Ârt−1

´
,

will fail to be either i.i.d. or normally distributed. Therefore standard residual-based tests will fail if focussed

on testing the i.i.d. properties of the residuals and will anyway run into difficulties when tests rely on

normality. However, Krolzig (1997) shows that under the assumption of correct specification, one important

property ought to pin down at least the one-step ahead forecast errors,

ηt+1 ≡ rt+1 −
kX
i=1

(e0iP̂π̂t)
³
μ̂i + Ârt

´

18



(where π̂t is the vector of real-time, filtered state probabilities and π̂
0
tP̂ei is the one-step ahead prediction of

the probability of state i = 1, ..., k): {ηt+1} should define a martingale difference sequence (MDS), i.e.

E[ηt+1|Ft] = 0.

This hypothesis is testable in standard ways, i.e. looking at the ability of elements of the information set

at time t (e.g. current returns and forecast errors) to forecast both elements of ηt+1 as well as their powers

(since E[ηt+1|Ft] = 0 is more restrictive than Cov[ηt+1, Yt] = 0, where Yt is any variable that belongs to Ft).

We implement two types of residual-based tests. In each case, we make an effort to provide intuition

for what a rejection of the null of the forecast errors being a martingale difference sequence would imply in

economic terms. To gain additional insights, we generally apply tests to the each of the elements of {ηt+1}
in isolation (i.e. to the univariate series of forecast errors concerning portfolio returns). We start by testing

whether any lagged return predicts current and future forecast errors. Rejections of the null of zero predictive

power, would point to misspecification in the conditional mean function implied by our MSIH(3,0)-VAR(1)

model in particular (but not exclusively) in the VAR order (p). While for the Pacific, European small,

and North American large past returns fail to be correlated with current forecast errors, for European large

returns we find that at one lag such correlation is 0.24 and with a p-value below 0.05. This is hard to interpret

because in Section 4.1 it became clear that either p = 2 or a fully-fledged Markov switching VAR(1) structure

are not required by the data.

Obviously, similar restrictions apply to the ability of past forecast errors to predict future errors, i.e. on

the implied serial correlation structure of the forecast errors themselves. If past forecast errors help predict

future errors, clear improvements in the model are possible. Here we find once more that while all indices

but European large cap errors have no appreciable serial correlation structure (e.g. their Ljung-Box order 12

p-values are 0.57 and 0.14, respectively), once more European large stocks are negatively serially correlated

at lag one (-0.12), which is borderline significant. All in all, we interpret this evidence as roughly consistent

with the absence of obvious misspecifications in our conditional mean functions.18

Next, we examine the ability of variables in the information set to predict squared forecast errors. In case

of rejections of the no predictability restriction, this test can be interpreted as a test of omitted volatility

clustering and ARCH effects in the model. There is borderline evidence of some positive and significant

first-order serial correlation in squared forecast errors for Asian Pacific and North American large returns,

while both past own and cross-returns fail to predict subsequent squared forecast errors. We notice that these

two portfolios are the ones for which the GARCH(1,1) and EGARCH(1,1) (univariate) models estimated in

Section 3.2 turned out to be the most persistent. Even though these diagnostic results may reveal a weak

need for a more persistent conditional heteroskedastic process than what the combination of regime-dependent

covariance matrices and persistent Markov states imply, we take the evidence of an overwhelming inability

to reject the MDS null as a sign that there is no strong need to specify ARCH effects on the top of making

Σst a function of the state.
19

18We also examine the ability of lagged excess returns of market i to predict forecast errors of market j, i 6= j. We fail to find

any appreciable linear (cross-) correlation structure in the forecast errors.
19We formally test a regime switching ARCH(1) specification in which

Σt = ΩSt +AStutu
0
tASt
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5. International Portfolio Diversification

In this section we present the core results of the paper. We start by computing optimal portfolio weights

for an asset menu which allows for European small caps in addition to traditional stock portfolios, such as

Asian Pacific, North American large, and European large caps portfolios (m = 4). We impose no-short sale

restrictions and focus on the simpler buy-and-hold case.20 We also solve a traditional portfolio problem in

which the asset menu includes no small cap portfolios (m = 3). The purpose of this exercise is to enable us to

compute the welfare gains obtainable by expanding the asset menu to include small caps. Since this portfolio

problem is merely entertained as a benchmark, details are available upon request.21 We then proceed in

Section 5.2 to make sense of the results using the notion of variance risk and to link such concept with the

notions of co-skewness and co-kurtosis that have played a central role in the recent work by Harvey and

Siddique (2000) and Dittmar (2002). To stress the importance of variance risk, in Section 5.3 we provide a

decomposition of our results to distinguish between the contribution of co-skewness and co-kurtosis.

5.1. Implied portfolio weights

We discuss two sets of portfolio weights. A first exercise computes optimal asset allocation at the beginning

of 2007 for an investor who, using all past data for estimation purposes, has obtained the estimates in Table

5. This is a simulation exercise in which the unknown model parameters are calibrated to coincide with the

full-sample estimates. In such a type of exercise the assessment of the role played by the different equity

portfolios in international diversification may dramatically depend on the peculiar set of parameter estimates

one obtains. As a result, we supplement this first exercise with calculations of real time optimal portfolio

weights, each vector being based on a recursively updated set of parameter estimates.

The role of European small caps (henceforth EUSC) in portfolio choice may strongly depend on the

regime: indeed they have the best and second-best Sharpe ratios in the bear and bull states (a non-negligible

0.17 and a stellar 0.62, respectively), and display the worst possible combination (negative mean and high

variance) in the crash state. However, it is not clear how this contrasting information may influence the

choice of investors who cannot observe the state. Furthermore, speculating on the Sharpe ratio to trace back

portfolio implication may be incorrect when portfolios have higher-moment properties featuring high variance

risk, see Table 1.

Figure 2 shows optimal portfolio shares as a function of the investment horizon (from 1 week to 2 years)

for a buy-and hold investor who employs parameter estimates at the beginning of January 2007. Results are

computed for a level of risk aversion γ = 5. Each plot concerns one of the available equity portfolios and

reports five schedules: three of them condition on knowledge of the initial state of the markets (crash, bear

or bull); one further schedule implies the existence of uncertainty on the state and assumes that the regime

This specification implies specifying 16 additional parameters, the elements of the matrix A1st . A LR test resoundingly rejects

this specification.
20Guidolin and Nicodano (2007) show that these two restrictions hardly matter for the main result of this paper.
21We find substantial demand for North American large and Asian Pacific stocks (55 and 45% at a two-year horizon) and

negligible weights for European large firms. The utility loss of ignoring regimes is rather small, less than 100 basis points for a

long-horizon investor, which is consistent with the findings in Ang and Bekaert (2002).

20



probabilities are set to match the long run, ergodic frequencies (0.10, 0.52, 0.38, for crash, bear and bull); one

last schedule depicts the optimal choice by a myopic investor who incorrectly believes that international stock

returns are drawn by a multivariate IID Gaussian model.22 Importantly, this last set of results corresponds

to the case in which variance risk is disregarded altogether.

The demand for EUSC in Figure 2 is high but monotone decreasing in the investment horizon in the bear

and bull state, and rather modest but increasing in the horizon in the crash state. However, since for long

horizons and because of the ergodic nature of the Markov chain estimated in Table 5 the initial state tends

to be of minor importance in determining the shape of the joint density of stock returns, the three schedules

show rapid convergence for T ≥ 1 year, all reaching weights between 45 and 65 percent. Importantly, the
schedule for the crash state provides first evidence that using the Sharpe ratio may be misleading: in regime

1 and for horizons below 4 months, EUSC are never demanded as all the weight is given to Asian Pacific (40

percent) and North American large stocks (60 percent).

Even more interesting is the result concerning the ‘steady-state’ allocation to EUSC, when the investor

assumes that all regimes are possible with a probability equal to the long-run measure. In this case − the
most realistic situation since regimes are not observable − EUSC plays a limited role. Their weight is zero
for short horizons (T = 1, 2) and grows to a reasonable 50% for intermediate horizons of about one year.

Once more, at short horizons the steady-state portfolio puts almost identical weights on North American and

Pacific equities. On the opposite, the IID myopic portfolio would be grossly incorrect, when compared to

the steady-state regime switching weights, as it would place high weights on EUSC (87%) and Pacific stocks

(13%).23

We repeat these calculations using different levels of risk aversion, γ. For instance, when γ = 10, the

demand for EUSC becomes steeply decreasing in the bear and bull regimes, and flat (although always in-

creasing) in the crash state. While in the crash state the weight assigned to EUSC remains nil for T ≤ 7-8
months, we notice that even investors with relatively long horizons of two years express a moderate demand

of EUSC, around 30-35 percent at most. Interestingly, very risk averse investors shift their portfolios away

from small caps and towards North American large firms, which is consistent with the notion that small firms

are very risky.

Figure 3 shows our estimates of the (annualized) welfare costs of ignoring the existence of variance risks

(regimes). Since Figure 2 stresses the existence of large differences between regime-switching and IID myopic

weights, it is less than surprising to see that the utility loss from ignoring variance risk is of a first-order

magnitude: for instance, a moderately risk-averse (γ = 5), long-horizon (T = 2 years) investor who assigns

ergodic probabilities to the states would be indifferent to regimes if compensated by an annualized, riskless

fee equal to 80 basis points. These sums are of course much larger should we endow the investor with precise

information on the nature of the current state (especially when the information is profitable, as it is in the

22Similarly to Barberis (2000), the investment horizon is irrelevant for asset allocation purposes. We have also computed

optimal portfolio weights under a Gaussian VAR(1) model and obtained similar results, since the linear predictability patterns

are weak.
23There is no reason to think that the IID schedule ought to be an average of the regime-specific ones: the unconditional

(long-run) joint distribution implied by a Gaussian IID and a multivariate regime switching model need not be the same; on

the opposite, our specification tests offer evidence that the null of a Gaussian IID model is rejected, an indication that the

unconditional density of the data differs from the one implied by a switching model.
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crash regime when the horizon is short), as the welfare loss climbs to an annualized level in excess of 10%.

Next, we recursively estimate our three-state switching VAR(1) model and compute optimal portfolio

weights with data covering the expanding samples Jan. 1999 - Dec. 2002, Jan. 1999 - first week of Jan. 2003,

etc. up to the full sample Jan. 1999 - Jan. 2007. The previous results do not entirely depend on the point in

time in which they have been performed. The average weight assigned to EUSC remains only approximately

44%, while European large caps acquire importance (13%), with North American large and Pacific stocks still

playing the role of quality stocks useful for diversification at long horizons and in the crash regime (22 and

21%).24 Also in this case, ignoring variance risk would assign way too high a weight to EUSC, in excess of

75% on average (the remaining goes to Pacific stocks). As a result, our recursive estimates of the welfare loss

of ignoring regime switching (not reported) are extremely large over certain parts of the sample, exceeding

annualized compensatory variation of 3-5% even under the most adverse parameters and investment horizons.

5.2. Making sense of the results: variance risk

Our simulations find that, under realistic assumptions concerning knowledge of the state, a rational investor

should invest a limited proportion of her wealth in EUSC despite their high Sharpe ratio. Tables 5-7 report

several findings that help us put this result into perspective. It is well known that investors with power

utility functions are not only averse to variance and high correlations between pairs of asset returns − as
normally recognized − but also averse to negative co-skewness and to high co-kurtosis, i.e. to properties of
the higher order co-moments of the joint distribution of asset returns. For instance, investors dislike assets

whose returns tend to become highly volatile at times in which the price of most of the other assets declines:

in this situation, the expected utility of the investor is hurt by both the low expected mean portfolio returns

as well as the high variance contributed by the asset. Similarly, investors ought to be wary of assets the price

of which declines when the volatility of most other assets increases. Investors will also dislike assets whose

volatility increases when most other assets are also volatile. We say that an asset that suffers from this bad

higher co-moment properties is subject to high variance risk.

Tables 6 and 7 pin down these undesirable properties of EUSC. In Table 6 we calculate the co-skewness

coefficients,

Si,j,l ≡
E[(ri −E[ri])(rj −E[rj ])(rl −E[rl])]

{E[(ri −E[ri])2]E[(rj −E[rj ])2]E[(rl −E[rl])2]}1/2
,

between all possible triplets of portfolio returns i, j, l. We do that both with reference to the data as well

for the three-state VAR model estimated in Section 4.2. In the latter case, since closed-form solutions

for higher order moments are hard to come by, we employ simulations to produce estimates of the co-

moments. Calculations are performed both unconditionally (i.e. averaging across regimes) and conditioning

on knowledge of the initial regime. In the latter case, the conditional co-moments refer to the one-step ahead

predictive joint density of asset returns. Based on our definition, variance risk relates to the cases in which

the triplet boils down to a pair, i.e. either i = j, or i = l, or j = l.25 When i = j = l we shall be looking at

24These weights are obtained by averaging across investment horizons, although slopes tend to be moderate, consistently with

the shapes reported in Figure 2. These results are for the γ = 5 case.
25Coefficient estimates for the cases in which i 6= j 6= l are available but are hard to interpret. However our comments

concerning the general agreements between sample and model-implied co-moment estimates also extend to the i 6= j 6= l case.
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the standard own-skewness coefficient of some portfolio return. In Table 6, bold coefficients highlight point

estimates’ significance at standard levels (5 percent). There is a remarkable correspondence between signs

and magnitudes of co-skewness coefficients in the data and the unconditional estimates under our estimated

Markov switching model, in the sense that when the coefficient is statistically significant in the data, it is

always so also under the Markov switching model, with the correct sign and appropriate magnitude. Similarly

to Das and Uppal (2004) we interpret this result as a sign of correct specification of the model, although

we record some tendency to generate more negative co-skewness than one can actually find in the data.26

Furthermore, notice that the co-skewness coefficients SEUSC,EUSC,j are all negative and large in absolute

value: the volatility of EUSC is indeed higher when each of the other portfolios performs poorly. On the

opposite, similar co-skewness coefficients for most other indices (e.g. SEU large,EU large,j for varying js) are

close to zero and sometimes positive. Worse, all of the SEUSC,j,j coefficients are also large and negative

(particularly, when j = Pacific and Europe large), an indication that EUSC may be losing ground exactly

when some of the other assets become volatile. Therefore EUSC does display considerable variance risk. On

the top of variance risk, from Tables 1 and 5 it emerges that EUSC also show high and negative own-skewness,

another feature a risk-averse investor ought to dislike.

The results in the third column of Table 6 are relevant to interpret long-run portfolio choices, when the

statistical properties of stock returns are well-approximated by their unconditional density. Table 6 also

reports regime-specific, one-step ahead co-skewness coefficients, when the initial state is known. In the highly

persistent bull and bear regime 2 and 3, departures from multivariate normality are minimal and in fact none

of the co-skewness coefficients is significantly different from zero. Therefore, at least for short investment

horizons of a few weeks at most, using the Sharpe ratio for portfolio allocation purposes may be justified and

− consistently with the results in Figure 2 − EUSC ought to receive considerable weight. On the opposite,
the crash state 1 implies some important departures of the joint predictive density of stock returns even over

short investment horizons. In particular, EUSC have a tendency to decline when the volatility of Pacific and

North American stocks is above average, while the volatility of EUSC tends to be high when each of the other

markets is bear.

Of course, it may be hard to balance off co-skewness coefficients involving EUSC with different magnitudes

or signs. Therefore it is helpful to calculate quantities similar to those in Table 6 for portfolio returns vs.

some aggregate portfolio benchmark. For our purposes we use an equally weighted portfolio (EW ptf , 25% in

each stock index), although results proved fairly robust to other notions (e.g. value-weighted) of benchmark

portfolio. For instance, Si,EW ptf,EW ptf for the generic portfolio i has expression

Si,EW ptf,EW ptf ≡
E[(ri −E[ri])(rEW ptf −E[rEW ptf ])

2]p
V ar[ri]V ar[rEW ptf ]

,

the notion of co-skewness between a security i and the market portfolio employed in Harvey and Siddique

(2000). Once more the match between data- and model-implied coefficients is striking. In particular, in panel

A of Table 7 we obtain model estimates SEUSC,EUSC,EW ptf = −0.50 and SEUSC,EW ptf,EW ptf = −0.63, i.e.
26In particular, there is some evidence of negative skewness and co-skewness affecting Asian Pacific stocks which is relatively

weak in the data. This probably explains why in Table 4 the regime switching model seems to generate z-scores with some

structure in squares, a sign that some conditional heteroskedastic patterns are incorrectly specified.
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the variance of EUSC is high when equally weighted returns are below average, and EUSC returns are below

average when the variance of the equally weighted portfolio is high. This is another powerful indication of

the presence of variance risk plaguing EUSC. For comparison purposes, in panel B of Table 7 we repeat

calculations for high-quality North American large stocks and obtain negligible (or even positive) coefficients,

both from the model and in our sample of data.

We perform an operation similar to Table 6 with reference to the fourth co-moments of equity returns.

In table 8, we find a striking correspondence between co-kurtosis coefficients measured in the data and

unconditional coefficients implied by our regime switching model. Generally speaking, EUSC have dreadful

co-kurtosis properties: for instance KEUSC,EUSC,j,j exceeds 2.2 for all js and tends to be higher than all

other similar coefficients involving other portfolios, which means that the volatility of EUSC is high exactly

when the volatility of all other portfolios is high. As already revealed by Table 1, also the own-kurtosis

of EUSC substantially exceeds a Gaussian reference point of 3. These results confirm that also the model-

implied KEUSC,EUSC,EW ptf,EW pft is 4.7, which is one of the highest among these types of coefficients.

KEUSC,EUSC,EW ptf,EW pft is reminiscent of an indicator of covariance between EUSC illiquidity and market

illiquidity. All in all, we have also some evidence that the extreme tails of the marginal density of EUSC

tends to be fatter than for other portfolios and that their volatility might be dangerously co-moving with

that of other assets.

5.3. Welfare Costs of Ignoring European Small Caps

Our evidence concerning the high variance risk of EUSC may in principle be able to explain their neglect as

higher moments of their return distribution increase undesired skewness and kurtosis of wealth. However:

Does this mean that there is no utility loss from restricting the available asset menu to exclude small caps? We

provide an answer for the case of EUSC. We compute compensatory variations, using the approach illustrated

in Section 3.We assume that the investor chooses the best specification for the return generating process for

each asset menu. The conclusion that can be drawn is that — in spite of their limited optimal weight — the

loss from disregarding EUSC would be of a first-order magnitude for all investment horizons:

Investment Horizon (in weeks)

T = 1 T = 12 T = 24 T = 104

Ergodic state probabilities

γ = 5 3.37 3.35 3.59 5.81

γ = 10 9.55 7.83 8.67 18.94

Recursive out-of-sample results (Means)

γ = 5 10.19 5.58 5.88 4.25

When faced with compensatory variation in excess of 3% per year, it is difficult to think that small caps are

not important for international diversification purposes. Although it is well-known that the effective costs

paid when transacting on small caps tend to be high, it is unlikely that any sensible estimate of the costs

implied by long-run buy-and-hold positions may systematically exceed the spectrum of welfare loss estimates

we have found. So, modest optimal weights and high doses of variance risk are still compatible with a claim

that small caps are key to expected utility enhancing international portfolio diversification.
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6. Further Discussion

In this Section we briefly deal with two residual issues raised by the preceding analysis. In Section 6.1 we ask

whether our portfolio results are specific to the Markov switching VAR framework assumed in this paper. In

Section 6.2 we ask whether our results on European small caps may be generalized to small capitalization

firms at large, by performing the exercise afresh when the asset menu includes North American small caps in

addition to European ones.

6.1. The Return Generating Process

Section 4.2 has left us with two potential questions. First, in Table 3 the information criteria gave conflicting

indications as to whether a VAR(1) component was needed within a three-state heteroskedastic switching

framework. As a result, we have also estimated a simpler, three-state Markov switching model with p = 0

(as in Guidolin and Nicodano, 2007) and proceeded to compute optimal weights and welfare loss estimates.

The interpretation and dynamic properties of the regimes are essentially unchanged vs. Section 4.3. Optimal

portfolio weights display the same patterns commented in Section 5.1: when the investor ignores the nature

of the current regime, the demand for EUSC is zero at short horizons and grows to approximately 55% at

longer horizons, but in any event remains well below the share of 85-90% that a Gaussian IID model that

ignores variance risk would imply. A careful examination of the resulting weights in fact shows that the

differences vs. the ones plotted in Figure 2 are negligible.27 Therefore, it is hard to think that details of

the regime switching process selected in this paper (apart from the obvious, that the model should not be

blatantly misspecified) may entirely drive our results on the effects of variance risk on the demand of EUSC.

More interestingly, even though Table 4 has provided reassuring evidence on the properties of the

regime switching VAR model, at least one of the multivariate ARCH frameworks — in particular, the DCC

EGARCH(1,1), in which variance risk is generated by leverage effects — did come close to provide relatively

low information criteria and appreciable out-of-sample predictive accuracy. We have therefore computed

afresh optimal portfolio weights when the joint process of returns is described by the DCC EGARCH(1,1)

VAR(1). To save space, we simply report results for the optimal shares of EUSC when γ = 5 (for comparison,

also results for the three-state Markov switching model, a Gaussian IID and a single-state VAR(1) model are

presented):28

Weight to EUSC Investment horizon (in weeks)

T = 1 T = 12 T = 24 T = 104

Three-state MS VAR(1) 0.00 0.46 0.58 0.65

DCC EGARCH(1,1) VAR(1) 0.18 0.31 0.36 0.76

Single-state VAR(1) (linear) 0.89 0.88 0.87 0.87

Gaussian IID (no predictability) 0.86 0.86 0.86 0.86

27Detailed results and parameter estimates are available upon request.
28Some more details are needed for replicability: for purposes of computation of predicted returns, the VAR(1) is initialized at

the unconditional means for each of the return series (these unconditional means are regime-dependent in case of regime switching);

in the DCC EGARCH variances and covariances are initialized at their unconditional levels (these are by construction equal to

their sample estimates). For the regime switching model, calculations initialize state probabilities at their ergodic values.
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Clearly, even if we had opted in favor of the DCC EGARCH model in Section 4.1, the qualitative results would

have not changed: an appropriate multivariate ARCH framework is able to capture sufficient variance risk in

the data to yield a EUSC weight schedule which is upward sloping and implies relatively low investments in

EUSC for short horizons. Unreported results show that in practice the qualitative structure of the optimal

DCC EGARCH portfolio is similar to the one shown in Figure 2, i.e., at short horizons the most important

portfolios are Asia Pacific and North America large, while at a two-year horizon EUSC plays a major role.

The only remarkable difference is that now for T ≥ 52 weeks also European large caps receive a positive

weight.

6.2. Expanding the Asset Menu

How general are our results for the role of small capitalization firms in internationally diversified equity

portfolios? To answer this question, we proceed to generalize the problem to also include North American

small caps (NASC), besides the North American large portfolio, i.e. m = 5.We repeat the analysis of Section

5 and therefore omit many details to save space.

Estimation of a MSIH(3,0)-VAR(1) model for the expanded asset menu leads to a characterization of

the regimes which is very similar to one in Table 5: the second regime is a normal/bear highly persistent

state (average duration is 11 weeks) in which expected returns (with the exception of NASC) are moderate

and often not statistically positive, while volatilities and correlations are close to their unconditional values.

In this state, only small caps (both European and North American) yield statistically significant, positive

expected returns. The first regime is non-persistent a bear/crash state in which mean returns are significantly

negative and large (between -2.5 and -2.7 percent per week for European large, EUSC, and NASC), volatilities

are high (between 25 and 250% higher than in the normal state), and correlations high. The third regime is a

persistent (average duration is 10 weeks) bull state implying high and significant means, high volatilities and

modest correlations. Strikingly, the structure of the estimated transition matrix is virtually indistinguishable

from the one in Table 5, to the point that most estimates of the transition probabilities do fall in a 95%

confidence interval around the estimates obtained in Table 5. This is an important finding that corroborates

the validity of our three-state regime switching model. The ergodic probabilities of the regimes are almost

unchanged, 0.11, 0.50, and 0.39, respectively.

NASC have properties similar to those that characterize EUSC: for instance, the NASC weekly Sharpe

ratio is 0.076 (vs. 0.095 for EUSC). Unreported plots of the optimal portfolio schedules similar to Figure

2 show that a myopic investor that ignores variance risk would invest most of her wealth (85%) in EUSC,

and another important proportion in NASC (10%), and the remainder (5%) in Pacific stocks, essentially for

hedging reasons. This portfolio recommendation would be once more incorrect: regime switching portfolio

schedules contain dramatic departures from the IID myopic assumption: focussing on the case of γ = 5

and assuming the investor ignores the current regime, her commitment to EUSC would remain large (and

increasing in T ) but would be in the 45-55% range; once more, EUSC imply large amounts of variance risk

and poor third- and fourth-order moment properties, which brings their weights down by a full 35% (i.e.,

85% minus 50%). A similar argument applies to NASC, whose weight declines from 10% in the single-state

case to essentially zero when variance risk is taken into account. Optimal allocations also turn out to be
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strongly regime-dependent: for instance, the crash state 1 is highly favorable to North American large cap

and Pacific investments as these stocks have the highest Sharpe ratio in this regime, while Pacific stocks

provide a relatively good hedge.29

7. Conclusion

We have measured three important components of the variance risk of an asset that adversely affect the

skewness and the kurtosis of wealth. These are the negative covariance between its returns and the volatility

of other assets, the negative covariance between its volatility and returns of other assets, and the covariance

between volatilities, that are reminiscent of the priced factors in the cross section of returns reported by

Harvey and Siddique (2000) and Dittmar (2002). In this metric, small caps have large variance risk. A

powerful display of the effects of variance risk on portfolio choice is our result that the optimal portfolio share

of European small caps under state-dependent returns — when the state of the stock market is unobservable

— is always less than 50%, while their optimal weight in a myopic portfolio ought to be close to 90%.

Interestingly, this finding does not depend on the details of the econometric model employed, such as the

number of regimes, the presence of linear predictability patterns, or even the adoption of a multivariate,

asymmetric ARCH framework to capture the presence of non-linear dynamics in returns and variance risk.
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[43] Pástor, L., 2000, “Portfolio Selection and Asset Pricing Models”, Journal of Finance, 55, 179-223.

[44] Peres-Quiros G., and A., Timmermann, 2000, “Firm Size and Cyclical Variations in Stock Returns”,

Journal of Finance, 55, 1229-1262.

[45] Roeder, K., and L., Wasserman, 1997, “Practical Bayesian Density Estimation Using Mixtures of Nor-

mals”, Journal of the American Statistical Association, 92, 367-377.

[46] Rosenblatt, M., 1952, “Remarks on a Multivariate Transformation”, Annals of Mathematical Statistics,

23, 470-472.

[47] Sola, M., and J., Driffill, 1994, “Testing the Term Structure of Interest Rates Using a Stationary Vector

Autoregression with Regime Switching”, Journal of Economic Dynamics and Control, 18, 601-628.

[48] Tauchen, G., and M., Pitts, 1983, “The Price Variability-Volume Relationship on Speculative Markets”,

Econometrica, 51, 485-505.

[49] Timmermann, A., 1996, “Excess Volatility and Predictability of Stock Prices in Autoregressive Dividend

Models with Learning”, Review of Economic Studies, 63, 523-557.

[50] Timmermann, A., 2000, “Moments of Markov Switching Models”, Journal of Econometrics, 96, 75-111.

[51] Veronesi, P., 2000, “How Does Information Quality Affect Stock Returns?”, Journal of Finance, 55,

807-837.

[52] Whitelaw, R., 2001, “Stock Market Risk and Return: An Equilibrium Approach”, Review of Financial

Studies, 13, 521-548.

Appendix A − Solution Methods

A variety of solution methods have been applied in the literature on portfolio allocation under time-varying

investment opportunities. Barberis (2000) employs simulation methods and studies a pure allocation problem

without interim consumption. Ang and Bekaert (2002) solve for the optimal asset allocation using quadrature

methods. Campbell and Viceira (1999, 2002) derive approximate analytical solutions for an infinitely lived

investor when interim consumption is allowed and rebalancing is continuous. Finally, some papers have

derived closed-form solutions by working in continuous-time, e.g. Kim and Omberg (1996) for the case

without interim consumption.

In our paper we make two choices that simplify the computational task with respect to competing approaches.

First, solving (10) by standard backward induction techniques is, unfortunately, a formidable task (see e.g.
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the discussion in Barberis, 2000, pp. 256-260). Under standard discretization techniques the investor first

needs to use a sufficiently dense grid of size G, {θjb, π
j
b}Gj=1 to update both θb+1 and πb+1 from θb and

πb. In the presence of a high number of parameters implied by (1), standard numerical techniques are not

feasible for this problem or would at best force us to use a very rough discretization grid, introducing large

approximation errors. Therefore our approach simply assumes that investors condition on their current (as

opposed to future ones, θb+1) parameter estimates, θ̂t. Under this assumption, since Wb is known at time tb,

Q(.) simplifies to:

Q(rb,πb, tb) = max
ωb

Eb

"µ
Wb+1

Wb

¶1−γ
Q (rb+1,πb+1, tb+1)

#
.

Second, we resort to simulation methods similarly to Barberis (2000). Ang and Bekaert (2002) were the first

to study this problem under regime switching. They consider pairs of international stock market portfolios

under regime switching with observable states, so the state variable simplifies to a set of dummy indicators.

This setup allows them to apply quadrature methods based on a discretization grid (see also Guidolin and

Timmermann, 2005). Our framework is quite different since we treat the state as unobservable and calculate

asset allocations under optimal filtering (3).

To deal with the latent state we use Monte-Carlo methods for expected utility approximation. In the case

in which dynamic rebalancing is admitted (B ≥ 2), suppose that the optimization problem has been solved

backwards at the rebalancing points tB−1, ..., tb+1 so that Q(π
j
b+1, tb+1) is known for all values j = 1, 2, ..., G

on the discretization grid. For each πb = πj
b, it is then possible to find Q(π

j
b, tb) at time tb. For concreteness,

consider the case of p = 0, i.e. the conditional mean function does not imply any autoregressive structure.

Approximating the expectation in the objective function

Etb

h©
ω0b exp (Rb+1)

ª1−γ
Q(πj

b+1, tb+1)
i

by Monte Carlo methods requires drawing N samples of asset returns {Rb+1,n(π
j
b)}Nn=1 from the (b + 1)ϕ-

step-ahead joint density of asset returns conditional on bθt, assuming that πj
b is optimally updated.

The algorithm consists of the following steps:

1. For a given πj
b calculate the (b + 1)ϕ-step ahead probability of being in each of the possible future

regimes sb+1 = j as πb+1|b = (π
j
b)
0P̂ϕ

t , using that P̂
ϕ
t ≡

Qϕ
j=1 P̂t is the ϕ-step ahead transition matrix.

2. For each possible future regime, simulate N ϕ−period returns {Rb+1,s(sb)}Nn=1 in calendar time from
the switching model:

rtb+i,n(sb) = μ̂stb+i
+ εtb+i,n.

At all rebalancing points this simulation allows for stochastic regime switching as governed by the

transition matrix P̂t. For example, if we start in regime 1, between tb+1 and tb+2 there is a probability

p̂12 ≡ e01P̂te2 of switching to regime 2, and p̂11 ≡ e01P̂te1 of staying in regime 1.

3. Combine the simulated ϕ−period asset returns {Rb+1,n}Nn=1 into a random sample of size N, using the

probability weights contained in the vector πj
b:

Rb+1,n(π
j
b) =

kX
i=1

(πj
b)
0eiRb+1,n(sb = i).
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4. Update the future regime probabilities perceived by the investor using the formula:

πb+1,n(π
j
b) =

³
π0b(θ̂b)P̂

ϕ
b

´0
¯ η(rb+1; θ̂b)

[(π0b(θ̂b)P̂
ϕ
b )
0 ¯ η(rb+1; θ̂b))]0ιk

obtaining an N × 4 matrix {πb+1,n(π
j
b)}Nn=1, each row of which corresponds to a simulated row vector

of perceived regime probabilities at time tb+1.

5. For all n = 1, 2, ..., N, calculate the value π̃j
b+1,n on the discretization grid (j = 1, 2, ..., G) that is

closest to πb+1,n(π
j
b) according to the metric

P3
i=1 |(π

j
b+1)

0ei − π0b+1,nei|, i.e.

π̃j
b+1,n(π

j
b) ≡ argmin

x∈πjb+1

3X
i=1

|x0ei − π0b+1,nei|.

Knowledge of the vector {π̃j
b+1,n(π

j
b)}Nn=1 allows us to build {Q(π

(j,n)
b+1 , tb+1)}Nn=1, where π

(j,n)
b+1 ≡ π̃j

b+1,n(π
j
b)

is a function of the assumed vector of regime probabilities πj
b.

6. Solve the program

max
ωb(π

j
b)
N−1

NX
n=1

∙n
ω0b exp

³
Rb+1,n(π

j
b)
´o1−γ

Q(π
(j,n)
b+1 , tb+1)

¸
,

which for large values of N provides an arbitrarily precise Monte-Carlo approximation of the expec-

tation E

∙n
ω0b exp

³
Rb+1,n(π

j
b)
´o1−γ

Q(πj
b+1, tb+1)

¸
. The value function corresponding to the optimal

portfolio weights ω̂b(π
j
b) defines Q(π

j
b, tb) for the jth point on the initial grid.

This algorithm is applied to values πj
b on the discretization grid until all values of Q(π

j
b, tb) are obtained for

j = 1, 2, ..., G. It is then iterated backwards until tb+1 = t + ϕ. At that stage the algorithm is applied one

last time, taking Q(πj
t+ϕ, t+ ϕ) as given and using one row vector of perceived regime probabilities πt, the

vector of smoothed probabilities estimated at time t. The resulting vector of optimal portfolio weights ω̂t is

the desired optimal portfolio allocation at time t, while Q(πt, t) is the optimal value function.

Appendix B — Density Specification Tests

Under a k-regime mixture of normals, the z-score is given by

Pr (rt+1 ≤ r̃t+1|Ft) =
kX
i=1

Φm

⎛⎝Σ−1i
⎡⎣rt+1 −μi −

pX
j=1

Aj,irt+1−j

⎤⎦⎞⎠Pr(St+1 = i|Ft) ≡ zt+1 ∈ R, (13)

where Φm(·) is the standardm-variate normal c.d.f. As stressed by Rosenblatt (1952), if the model is correctly
specified, zt+1 should be independently and identically distributed (IID) and uniform on the interval [0, 1].

The uniform requirement relates to the fact that deviations between realized values and predicted ones should

be conditionally normal and as such describe a uniform distribution once it is ‘filtered through’ an appropriate

Gaussian cdf. The IID condition reflects the fact that if the model is correctly specified, forecast errors ought
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to be unpredictable and fail to show any detectable structure. Unfortunately, testing whether a distribution

is uniform is not a simple task. Berkowitz (2001) has recently proposed a likelihood-ratio test that inverts Φ

to get a transformed z-score,

z∗t+1 ≡ Φ−1(zt+1),

which essentially turns the z-score back into a bell-shaped random variable. Provided that the model is

correctly specified, z∗ should be IID and normally distributed (IIN(0, 1)). We follow Berkowitz (2001) and

use a likelihood ratio test that focuses on a few salient moments of the return distribution. Suppose the

log-likelihood function is evaluated under the null that z∗t+1 ∼ IIN(0, 1):

LIIN(0,1) ≡ −
T

2
ln(2π)−

TX
t=1

(z∗t )
2

2
.

Under the alternative of misspecification, the likelihood incorporates deviations from the null, z∗t+1˜ IIN(0, 1):

z∗t+1 = η +
wX
j=1

rX
i=1

ψji(z
∗
t+1−i)

j + νut+1, (14)

where ut+1 ∼ IIN(0, 1). The null of a correct model implies w × r + 2 restrictions — i.e., η = ψji = 0

(j = 1, ..., w and i = 1, ..., r) and ν = 1 — in (14). Let L(η̂, {ψ̂ji}w r
j=1 i=1 , ν̂) be the maximized log-likelihood

obtained from (14). To test that a null model is correctly specified, we can then use the following test statistic:

LRwr+2 ≡ −2
h
LIIN(0,1) − L(η̂, {ψ̂ji}w r

j=1 i=1 , ν̂)
i

d→ χ2wr+2.

In addition to the standard Jarque-Bera test that considers skew and kurtosis in the z-scores to detect non-

normalities in z∗t+1, it is customary to present three likelihood ratio tests, namely a test of zero-mean and

unit variance (w = r = 0), a test of lack of serial correlation in the z-scores (w = 1 and r = 1) and a test

that further restricts their squared values to be serially uncorrelated in order to test for omitted volatility

dynamics (w = 2 and r = 2). Notice that a rejection of the null of normal transformed z-scores has the same

meaning as rejecting the null of a uniform distribution for the raw z-scores, i.e. the model fails to generate a

density with the appropriate shape. A rejection of the zero-mean, unit variance restriction points to specific

problems in the location and scale of the density underlying the model. A rejection of the restriction that

{z∗t+1} is IID points to dynamic misspecifications (serial correlation or heteroskedasticity).
In our paper, density specification tests are applied not the vector rt+1, but to each of its components:

Pr
³
rjt+1 ≤ r̃jt+1|=t

´
=

kX
i=1

Φ

Ã
σ−1j,i

"
rjt+1 − μj,i − e0j

pX
u=1

Aj,irt+1−u

#!
Pr(St+1 = i|Ft) ≡ zjt+1 j = 1, ...,m,

where σj,i is the volatility of variable j in state i.
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Table 1 

Summary Statistics for International Stock Returns 
The table reports basic moments for weekly percentage equity total return series (including dividends, adjusted for stock 
splits, etc.) for a few international portfolios and two sample periods. The sample period is January 1999 – January 
2007. All returns are expressed in local currencies. Means, medians, and standard deviations are annualized by 
multiplying weekly moments by 52 and 52 , respectively. LB(j) denotes the j-th order Ljung-Box statistic. 

 

Portfolio Mean Median St. Dev. Skewness Kurtosis LB(4) LB(4)- 
squares 

 January 1999 – June 2003 
DJ Stoxx Europe – Large Caps 6.137 20.881 23.900 -0.288 6.520 31.817** 84.586** 

MSCI Europe – Small Caps 13.575 38.844 19.838 -1.922 12.649 11.037* 14.708** 

North America – Large Caps 3.812 6.874 16.525 0.065 4.965 12.588* 55.783* 

MSCI North America –  
Small Caps 12.846 16.519 23.559 -0.435 4.936 18.395** 15.535** 

MSCI Asia Pacific 5.942 17.058 16.772 -0.259 3.672 4.343 10.602* 

 * denotes 5% significance, ** significance at 1%. 
 

 

 

 

Table 2 

Correlation Matrix of International Stock Returns 
The table reports linear correlation coefficients for weekly equity total return series (including dividends, adjusted for 
stock splits, etc.) for a few international portfolios. The sample period is January 1999 – June 2003. All returns are 
expressed in local currencies.  

 

 EU – Large EU – Small North Am. – 
Large 

North Am. – 
Small Pacific 

EU – Large Caps 1 0.669 0.735 0.662 0.545 

EU – Small Caps  1 0.562 0.591 0.548 

North Am. – Large 
Caps 

  1 0.811 0.491 

North Am. – Small Caps    1 0.446 

Pacific     1 
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Table 3 

Model Selection: Information Criteria 
The table reports model selection criteria for a range of multivariate regime switching and autoregressive conditional 
heteroskedasticity models. The regime switching models have structure: 

t

p

1j
1ts,jst εrAμr

tt
∑
=

− ++=  

where rt is a 4×1 vector collecting weekly total return series, 
tsμ  is the intercept vector in state st, 

ts,jA  is the j-th order 

matrix of VAR coefficients that characterizes state st, and ),( ~]'  [ 4321 tsttttt N Σ= 0ε εεεε . The unobservable state st 
is governed by a first-order Markov chain that can assume three values. The multivariate ARCH models span full 
multivariate GARCH and DCC models with and without ‘ARCH-in-mean’ components (in this case the indication of 
the model is followed by ‘-M’). In one DCC case, an integrated version is estimated. The data are weekly. The sample 
period is January 1999 – January 2007 (for a total of 1,668 observations). 
 

Model 
Number of 
parameters

Log-
likelihood 

LR test for 
linearity 

AIC BIC Hannan-
Quinn 

 Baseline model: Single-state, Homoskedastic 
Gaussian IID 14 -3660.66 NA 17.6243 17.7597 17.6778 

Gaussian VAR(1) 30 -3612.42 NA 17.5116 17.8023 17.6266 
 Baseline model: Single-state, Conditional Heteroskedastic VAR(1) 

MGARCH(1,1) VAR(1) 62 -3374.92 NA 16.4841 17.0837 16.7211 
M-CCORR GARCH(1,1) VAR(1) 34 -3533.96 NA 17.1125 17.4413 17.2425 

MGARCH(1,1)-M VAR(1) 78 -3345.64 NA 16.4203 17.1747 16.7186 
DCC EGARCH(1,1) VAR(1) 44 -3406.75 NA 16.5504 16.9759 16.7185 
DCC GARCH(1,1)-M VAR(1) 56 -3392.98 NA 16.5419 17.0835 16.7560 
Integrated DCC GARCH(1,1)-

M VAR(1) 
48 -3458.23 NA 16.8165 17.2807 17.0000 

 Baseline model: Two-state, Regime Switching 

MMSI(2,0) 20 -3579.84 161.6538 
(0.000) 17.2654 17.4588 17.3419 

MMSIH(2,0) 30 -3398.37 524.5905 
(0.000) 16.4430 16.7332 16.5577 

MMSIAH(2,1) 62 -3345.62 533.5979 
(0.001) 16.3828 16.9835 16.6203 

MMSIAH(2,2) 94 -3304.88 568.5333 
(0.001) 16.3802 17.2926 16.7410 

               Baseline model: Three-state, Regime Switching 

MMSI(3,0) 28 -3564.39 192.5370 
(0.000) 17.2297 17.5005 17.3368 

MMSIH(3,0) 48 -3339.88 641.5576 
(0.000) 16.2488 16.7131 16.4324 

MMSIAH(3,1) 96 -3266.88 691.0677 
(0.000) 16.1677 17.0979 16.5355 

MMSIH(3,0)-VAR(1) 64 -3292.25 640.3429 
(0.000) 16.0358 16.7559 16.3810 

 Baseline model: Four-state, Regime Switching 

MMSI(4,0) 38 -3527.62 266.0879 
(0.000) 17.1013 17.4688 17.2466 

MMSIH(4,0) 68 -3315.97 689.3923 
(0.000) 16.2301 16.8877 16.4901 

MMSIH(4,0)-VAR(1) 84 -3262.39 700.0574 
(0.000) 16.0884 16.9023 16.4102 
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Table 4 

Model Selection: Tests Based on One-Step Ahead Density Forecasts 
This table reports model specification tests based on the principle that under a correct specification, the properly 
transformed one-step-ahead standardized residuals should follow an independently and identically distributed normal 
distribution with zero mean and unit variance (see Berkowitz (2001)). Significant tests indicated by stars show that the 
model is misspecified. Jarque-Bera tests whether the normalized residuals have zero skew and excess kurtosis. LR2 is a 
test for correct mean and variance (zero and one, respectively); LR3 tests for first order serial correlation, while LR6 tests 
for first and second order serial correlation in the normalized residuals and their squares. This gives the ability to detect 
the presence of residual ARCH effects. 
 
 

Model Number of 
parameters 

Jarque-
Bera test LR2 LR3 LR6 

                 Asian Pacific Returns 

Single-state Gaussian IID 14 11.6962** 4.5063 8.0395* 23.1629** 

Single-state VAR(1) 30 12.2945** 3.0559 9.1113* 24.4797** 

DCC EGARCH (1,1) VAR(1) 44 1.7125 3.8076 6.0539 16.0505* 

Three-state switching VAR(1) 64 0.2435 2.1002 4.5020 15.0220* 
                European Small Caps Returns 

Single-state Gaussian IID 14 1842.85** 9.0504* 23.1624** 29.0764** 

Single-state VAR(1) 30 1713.56** 7.8042* 15.0302** 24.0624** 

DCC EGARCH (1,1) VAR(1) 44 6.9604* 4.5064 7.0936 15.9039* 

Three-state switching VAR(1) 64 3.8467 1.3234 5.5732 10.3962 
                European Large Caps Returns 

Single-state Gaussian IID 14 1373.65** 10.3795** 32.2275** 42.8775** 

Single-state VAR(1) 30 1815.78** 9.9389** 17.9249** 24.9474** 

DCC EGARCH (1,1) VAR(1) 44 14.7638** 4.9884 8.7494* 14.1148* 

Three-state switching VAR(1) 64 7.5521* 1.8200 4.1316 6.2666 
                North American Large Caps Returns 

Single-state Gaussian IID 14 43.1248** 2.8740 13.3314** 24.5946** 

Single-state VAR(1) 30 33.5435** 2.9638 6.6524 17.2950** 

DCC EGARCH (1,1) VAR(1) 44 8.0634* 3.0495 7.4425 11.8231 

Three-state switching VAR(1) 64 0.3220 1.3368 3.1414 13.4038* 
         *denotes significance at the 5% level, ** significance at the 1% level. 
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Table 5 

Estimates of a Three-State (Time-Invariant) VAR(1) Regime Switching Model 
The table shows estimation results for the regime switching model: 

t1tst εArμr
t

++= −  

where rt is a 4×1 vector collecting weekly total return series, 
tsμ  is the intercept vector in state st, and 

),( ~]'  [ 4321 tsttttt N Σ= 0ε εεεε . The unobservable state st is governed by a first-order Markov chain that can assume 
three values. The first panel refers to the single-state case of a single-state Gaussian VAR(1). Asterisks attached to 
correlation coefficients refer to covariance estimates. Transition probabilities have to be read as the probability of 
switching from the state in the row to the state in the column. 

 Panel A – Single State Model 
 Pacific Europe – Small caps Europe – Large caps North America 

Large 
1. Intercept 0.1159 0.2393* 0.0820 0.0610 
2. VAR Coefficients     
Pacific  -0.0510 -0.0124 0.0213 0.0879* 
Europe – Small caps -0.0501 0.1349** -0.0199 0.0748 
Europe – Large caps -0.0381 0.0551 -0.2333*** 0.1082*** 
North America - Large caps -0.0859 0.1542** -0.0908* -0.0770 
2. Correlations/Volatilities     
Pacific  2.3164***    
Europe – Small caps 0.5504*** 2.7134***   
Europe – Large caps 0.5258*** 0.6592*** 3.4494***  
North America - Large caps 0.5117*** 0.5746*** 0.7012*** 2.2471*** 
 Panel B – Three State Model 
 Pacific Europe – Small caps Europe – Large caps North America 

Large 
1. Intercepts     
Crash State -1.1424** -3.0750*** -2.8111*** -1.1692*** 
Bear State 0.0080 0.3367 0.4240 0.1000 
Bull State 0.4378*** 0.8178*** 0.3748** 0.2853*** 
2. VAR Coefficients     
Pacific  0.0204 -0.0404 -0.0323 0.1376* 
Europe – Small caps 0.0289 0.0608 -0.1056** 0.1645*** 
Europe – Large caps 0.0199 0.0037 -0.2928*** 0.2443*** 
North America - Large caps -0.0356 0.0840* -0.1294** -0.0021 
3. Correlations/Volatilities     
Crash state:     
Pacific  2.9458***    
Europe – Small caps 0.6584*** 6.1870***   
Europe – Large caps 0.3047** 0.5268*** 6.7203***  
North America - Large caps 0.4108*** 0.6295*** 0.7058*** 2.8631*** 
Bear state:     
Pacific  2.7288***    
Europe – Small caps 0.5531*** 1.9938***   
Europe – Large caps 0.6324*** 0.7604*** 3.5717***  
North America - Large caps 0.5385*** 0.6546*** 0.7455*** 2.9000*** 
Bull state:     
Pacific  1.6663***    
Europe – Small caps 0.5816*** 1.3236***   
Europe – Large caps 0.5548*** 0.7627*** 1.7849***  
North America - Large caps 0.4631** 0.6067*** 0.6368*** 1.2638*** 
3. Transition probabilities Crash State Bear State Bull State 
Crash State 0.3973** 0.3263** 0.2763* 
Bear State 0.0436 0.9097*** 0.0467 
Bull State 0.0821* 0.0035 0.9145*** 

* denotes 10% significance, ** significance at 5%, *** significance at 1%. 
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Table 6 

Sample and Implied Co-Skewness Coefficients 
The table reports the sample co-skewness coefficients, 

2/1222,, ]}])[[(]])[[(]])[[({
])][])([])([[(

lljjii

lljjii
lji rErErErErErE

rErrErrErE
S

−−−

−−−
≡    

(i, j, l = Europe large, North America large, Pacific, Europe small) and compares them with the co-skewness 
coefficients implied by a three-state VAR(1) regime switching model: 

t1tst εArμr
t

++= − , 

where εt )I,( ~ 40I.I.D.  N  is an unpredictable return innovation. Coefficients under regime switching are calculated 
employing simulations (50,000 trials) and averaging across simulated samples of length equal to the available data 
(January 1999 – January 2007). In the table NA stands for ‘North American small caps’, and Pac for ‘Pacific’ portfolios. 
Bold coefficients are significantly different from zero. 
 
 

Coeff. Sample MS – ergodic Regime 1 Regime 2 Regime 3
SEU_large,EU_large,NA -0.181 -0.314 -0.318 -0.304 -0.227 
SEU_large,EU_large,Pac -0.219 -0.157 -0.158 -0.151 -0.164 

SEU_large,EU_large,EU_small -0.518 -0.341 -0.142 -0.136 -0.148 
SNA,NA,Pac -0.109 -0.547 -0.552 -0.233 -0.267 

SNA,NA,EU_small -0.257 -0.631 -0.536 -0.315 -0.352 
SNA,NA,EU_large 0.006 -0.063 -0.063 -0.064 -0.065 
SPac,Pac,EU_small -0.577 -0.376 -0.381 -0.261 -0.295 
SPac,Pac,EU_large -0.274 -0.254 -0.256 -0.244 -0.265 

SPac,Pac,NA -0.215 -0.730 -0.735 -0.312 -0.453 
SEU_small,EU_small,EU_large -0.791 -0.358 -0.160 -0.152 -0.167 

SEU_small,EU_small,NA -0.603 -0.444 -0.348 -0.230 -0.262 
SEU_small,EU_small,Pac -0.881 -0.446 -0.249 -0.235 -0.261 

      
SEU_large, EU_large, EU_large -0.288 -0.233 -0.235 -0.225 -0.243 

SNA,NA,NA 0.065 -0.017 0.072 -0.017 -0.014 
SPac,Pac,Pac -0.259 -0.693 -0.701 -0.272 -0.079 

SEU_small, EU_small, EU_small -1.922 -1.222 -0.231 -0.217 -0.244 
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Table 7 

Sample and Implied Co-Skewness and Co-Kurtosis Coefficients of European Small Caps vs. 
an Equally Weighted International Equity Portfolio 

The table reports average sample co-skewness coefficients, 
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(i, j, l = Europe large, North America large, Pacific, Europe small, Equally weighted portfolio) and compares them with 
the co-kurtosis coefficients implied by a three-state regime switching model with a time-invariant VAR(1) component. 
Coefficients under multivariate regime switching are calculated employing simulations. Bold co-skewness coefficients 
are significantly different from zero; bold co-kurtosis coefficients are significantly different from their Gaussian 
counterparts. 
 

 Co-Skewness Co-Kurtosis 
 Sample MS - ergodic Sample MS - ergodic 
 European Small Caps 
SEU_small,EU_small,EW_ptf -1.266 -0.499 − − 
SEU_small,EW_ptf,EW_ptf -0.913 -0.628 − − 
SEU_small,EU_small,Pac,EW_ptf − − 4.174 3.298 

SEU_small,EU_small,NA,EW_ptf − − 3.039 2.944 
SEU_small,EU_small,EU_large,EW_ptf − − 4.171 2.172 
SEW_ptf,EW_ptf,EU_small,Pac − − 3.304 3.789 

SEW_ptf,EW_ptf,EU_small,NA − − 2.977 3.666 

SEW_ptf,EW_ptf,EU_small,EU_large − − 5.945 4.645 

SEW_ptf,EW_ptf,EU_small,EU_small − − 5.697 4.675 

SEW_ptf,EW_ptf,EU_ptf,EU_small − − 8.234 5.710 

SEU_small,EU_small,EU_small,EU_ptf − − 4.937 4.157 
 North American Large Caps 
SNA_large,NA_large,EW_ptf 0.087 -0.171 − − 
SNA_large,EW_ptf,EW_ptf -0.297 -0.280 − − 
SNA_large,NA_large,EU_large,EW_ptf − − 3.245 3.844 

SNA_large,NA_large,Pac,EW_ptf − − 1.914 2.046 
SNA_large,NA_large,EU_small,EW_ptf − − 2.456 3.864 

SEW_ptf,EW_ptf,NA_large,Pac − − 2.130 2.045 
SEW_ptf,EW_ptf,NA_large,EU_large − − 3.273 4.233 

SEW_ptf,EW_ptf,NA_large,EU_small − − 2.977 3.666 

SEW_ptf,EW_ptf,NA_large,NA_large − − 3.479 3.233 
SEW_ptf,EW_ptf,EW_ptf,NA_large − − 3.857 4.844 

SNA_large,NA_large,NA_large,EU_ptf − − 3.682 3.490 
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Table 8 

Sample and Implied Co-Kurtosis Coefficients 
The table reports the sample co-kurtosis coefficients, 
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(i, j, l, b = Europe large, North America large, Pacific, Europe small) and compares them with the co-kurtosis 
coefficients implied by a three-state VAR(1) regime switching model: 

t1tst εArμr
t

++= − , 

where εt )I,( ~ 40I.I.D.  N  is an unpredictable return innovation. Coefficients under multivariate regime switching are 
calculated employing simulations (50,000 trials) and averaging across simulated samples. In the table NA stands for 
‘North American small caps’, and Pac for ‘Pacific’ equity portfolios. Bold coefficients are significantly different from 
their Gaussian counterparts. 
 

Coeff. Sample MS – erg. Regime 1 Regime 2 Regime 3

KEU_large, EU_large,NA, EU_small 2.477 2.534 1.533 1.510 1.559 
KEU_large, EU_large,NA, Pac 1.448 1.745 1.741 1.325 1.272 

KEU_large, EU_large,Pac, EU_small 1.704 1.644 1.640 1.629 1.458 
KNA,NA,EU_large,Pac 1.524 1.416 1.421 1.386 1.365 

KNA,NA,EU_large,EU_small 2.189 1.996 1.999 1.858 1.401 
KNA,NA,Pac,EU_small 1.179 2.180 1.183 1.157 1.141 

KPac,Pac,EU_large,EU_small 1.846 1.762 1.758 1.123 1.255 
KPac,Pac,EU_large,NA 1.462 2.014 2.017 1.743 1.585 
KPac,Pac,EU_large,NA 1.350 1.224 1.228 1.156 1.270 

KEU_small,EU_small,EU_large,NA 2.336 2.595 1.594 1.294 1.626 
KEU_small,EU_small,EU_large,Pac 2.662 1.694 1.687 1.675 1.711 

KEU_small,EU_small,,NA,Pac 1.769 2.482 2.482 1.430 1.540 
      

KEU_large,EU_large,NA,NA 3.341 2.840 2.246 1.794 1.896 
KEU_large,EU_large,Pac,Pac 1.657 2.167 1.765 1.545 1.793 

KEU_large,EU_large,EU_small,EU_small 3.370 2.979 1.975 1.959 1.997 
KNA,NA,Pac,Pac 1.811 2.906 4.910 1.843 1.800 

KNA,NA,EU_small,EU_small 2.228 2.982 2.985 2.015 2.058 
KPac,Pac,EU_small,EU_small 3.585 3.312 2.314 1.847 1.389 

      
KEU_large,EU_large,EU_large,NA 4.375 3.299 2.304 2.264 1.229 
KEU_large,EU_large,EU_large,Pac 1.504 1.928 1.921 1.620 1.436 

KEU_large,EU_large,EU_large,EU_small 3.918 2.860 1.856 1.448 1.371 
KNA,NA,NA,Pac 1.963 2.663 5.659 2.612 1.757 

KNA,NA,NA,EU_small 2.461 3.484 3.486 1.809 1.580 
KPac,EU_small,EU_small,EU_small 5.824 4.082 3.246 2.190 1.554 

KNA,NA,NA,EU_large 3.501 4.473 3.475 2.412 2.271 
KPac,Pac,Pac,EU_large 1.808 2.360 2.356 1.337 1.548 

KEU_small,EU_small,EU_small,EU_large 5.209 3.064 2.058 1.541 1.940 
KPac,Pac,Pac,NA 1.604 1.594 1.601 1.524 1.336 

KEU_small,EU_small,EU_small,NA 3.656 2.628 2.495 1.572 2.064 
KPac,Pac,Pac,EU_small 2.485 4.082 4.091 1.999 1.596 

      
KEU_large,EU_large,EU_large,EU_large 6.520 3.673 3.474 3.164 3.450 

KNA,NA,NA,NA 4.965 5.061 4.023 3.648 3.049 
KPac,Pac,Pac,Pac 3.672 4.958 3.981 3.286 3.394 

KEU_small,EU_small,EU_small,EU_small 12.649 8.422 4.422 3.354 3.249 
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Figure 1 

Smoothed State Probabilities from Three-State VAR(1) Regime Switching Model 
The graphs plot the smoothed state probabilities for the multivariate four-state VAR(1) Switching model comprising 
weekly return series on four international equity portfolios (including European small cap firms). The sample period is 
Jan. 1999 – Jan. 2007. Parameter estimates underlying these plots are reported in Table 4. 
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Figure 2 

Buy-and-Hold Optimal Allocation 
The graphs plot the optimal international equity portfolio weights when returns follow a three-state VAR(1) switching 
model as a function of the investment horizon. The vector autoregressive coefficients are constant over time. As a 
benchmark (horizontal lines) we also report the IID/Myopic allocation. Optimal portfolio weights are computed 
assuming constant relative risk aversion preferences with  = 5. 
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Figure 3 

Welfare Costs of Ignoring Regime Switching 
The graphs plot the (annualized) percentage compensatory variation from ignoring the presence of regime switches in 
the multivariate process of asset returns. The graphs plot the annualized welfare costs as a function of the investment 
horizon; calculations were performed for two alternative levels of the coefficient of relative risk aversion. The investor 
is assumed to have a simple buy-and-hold objective. 
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