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Abstract

We study a stylized theory of the volatility reduction in the U.S.
after 1984—the Great Moderation—which attributes part of the stabi-
lization to less volatile shocks and another part to more difficult infer-
ence on the part of Bayesian households attempting to learn the latent
state of the economy. We use a standard equilibrium business cycle
model with technology following an unobserved regime-switching
process. After 1984, according to Kim and Nelson (1999a), the vari-
ance of U.S. macroeconomic aggregates declined because boom and
recession regimes moved closer together, keeping conditional vari-
ance unchanged. In our model this makes the signal extraction prob-
lem more difficult for Bayesian households, and in response they mod-
erate their behavior, reinforcing the effect of the less volatile stochas-
tic technology and contributing an extra measure of moderation to
the economy. We construct example economies in which this learn-
ing effect accounts for about 30 percent of a volatility reduction of the
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1 Introduction

1.1 Overview

The U.S. economy experienced a significant decline in volatility—on the

order of fifty percent for many key macroeconomic variables—sometime

during the mid-1980s. This phenomenon, sometimes called the Great Mod-
eration, has been the subject of a large and expanding literature. The main

question in the literature has been the nature and causes of the volatility

reduction. In some of the research, better counter-cyclical monetary policy

has been promoted as the main contributor to the low volatility outcomes.

In other strands, the lower volatility is attributed primarily or entirely to

the idea that the shocks buffeting the economy have generally been less

frequent and smaller than those from the high volatility 1970s era. In fact,

this is probably the leading explanation in the literature to date. Yet, it

strains credulity to think that the full amount of the volatility reduction is

simply due to smaller shocks. Why should shocks suddenly be 50 percent

less volatile?

In this paper, we study a version of the smaller shock story, but one

which we think is more credible. In our version, the economy is indeed

buffeted by smaller shocks after the mid-1980s, but this lessened volatil-

ity is coupled with changed equilibrium behavior of the private sector in

response to the smaller shocks. The changed behavior comes from a learn-

ing effect which is central to the paper. The learning effect reduces over-

all volatility of the economy still further in response to the smaller shock

volatility. Thus, in our version, the Great Moderation is due partly to less

volatile shocks and partly to a learning effect, so that the shocks do not have

to account for the entire volatility reduction. Quantifying the magnitude of

this effect in an equilibrium setting is the primary purpose of the paper.

1.2 What we do

There have been many attempts to quantify the volatility reduction in the

U.S. macroeconomic data. In this paper we follow the regime-switching
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approach to this question, as that will facilitate our learning analysis. The

regimes can be thought of as expansions and recessions. According to Kim

and Nelson (1999a), expansion and recession states moved closer to one

another after 1984, but in a way that kept conditional, within-regime vari-

ance unchanged. These results imply that recessions and expansions were

relatively distinct phases and hence easily distinguishable in the pre-1984

era. In contrast, during the post-1984 era, the two phases were much less

distinct.

The Kim and Nelson (1999a) study is a purely empirical exercise. We

want to take their core finding as a primitive for our quantitative-theoretic

model: Regimes moved closer together, but conditional variance remained

constant. The economies we study and compare will all be in the context of

this idea.

We assume that the two phases are driven by an unobservable variable,

and that economic agents must learn about this variable by observing other

macroeconomic data, such as real output. Agents learn about the unobserv-

able state via Bayesian updating. When the two states are closer together,

agents find it harder to infer whether the economy is in a recession or in an

expansion based on observable data since the two phases of the business

cycle are less distinct. Therefore, learning becomes more difficult and leads

to an additional change in the behavior of households. In particular, volatil-

ity in macroeconomic aggregates will be moderated since the households

are more uncertain which regime they are in at any point in time.

We wish to study this phenomenon in a model which can provide a

well-known benchmark. Accordingly, we use a simple equilibrium busi-

ness cycle model in which the level of productivity depends in part on a

first-order, two-state Markov process. The complete information version

of this model is known to be very close to linear for quantitatively plau-

sible technology shocks, so that a reduction in the variance of the driving

shock process translates one-for-one into a reduction in the variance of en-

dogenous variables in equilibrium. The incomplete information, Bayesian

learning version of the model is nonlinear. Reductions in driving shock
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variance result in more than a one-for-one reduction in the variance of en-

dogenous variables. The difference between what one observes in the com-

plete information case and what one observes in the incomplete informa-

tion, Bayesian learning case is the learning effect we wish to focus upon.

1.3 Main findings

We begin by establishing that the baseline complete information model

with regime-switching behaves nearly identically to standard models in

this class under complete information when we use a suitable calibration

that keeps driving shock variance and persistence at standard values. We

then use the incomplete information, Bayesian learning version of this model

as a laboratory to attempt to better understand the learning effect in which

we are interested.

We begin by reporting results obtained by allowing unconditional vari-

ance to rise as regimes are moved farther apart, keeping conditional vari-

ance constant. We compare the resulting volatility of endogenous vari-

ables to a complete information model. The complete information model

is close to linear, and so the volatility of endogenous variables relative to

the volatility of the shock is a constant. For the incomplete information,

Bayesian learning economies, endogenous variable volatility rises with the

volatility of the shock. This ratio begins to approach the complete informa-

tion constant for sufficiently high shock variance. Thus the incomplete in-

formation economies begin to behave like complete information economies

when the two regimes are sufficiently distinct. This is because the inference

problem is simplified as the regimes move apart, and thus agent behavior

is moderated less.

We then turn to a quantitative assessment of the moderating force in

two calibrated incomplete information economies. In these two economies

observed volatility in macroeconomic variables is substantially different,

with one economy enjoying on the order of 50 percent lower output volatil-

ity than the other. This volatility difference is then decomposed into a por-

tion due to lower shock variance and another portion due to more diffi-
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cult inference—the learning effect in which we are interested. We find that

the learning effect accounts for about 30 percent of the volatility reduction,

and the smaller shock portion accounts for about 70 percent. This suggests

that learning effects may help account for a substantial fraction of observed

volatility reduction in more elaborate economies which can confront more

aspects of observed macroeconomic data.

Finally, we turn to consider economies in which the stochastic driving

process is estimated via methods similar to those employed by Kim and

Nelson (1999a), for 1954:1 to 2004:4 data with 1983:4 as an exogenous break

date.1 We then compute volatility reductions implied by these estimates,

and the fraction of the volatility reduction that can be attributed to the

learning effect in which we are interested. We find that the total volatility

reduction implied by these estimates is about 35 percent for output in our

baseline estimated case. This is about two-thirds of the volatility reduction

that we observe in the data. Within this reduction, about 43 percent is due

to learning, while the other 57 percent is due to the regimes moving closer

together. In this empirical section we discuss in more detail the moderation

effects as they apply to other variables, mainly consumption, labor hours,

and investment. We also include a discussion of serial correlation in these

variables associated with the moderation. In general, we think this model

is not sufficiently rich to effectively confront the data at this level of de-

tail, but we offer this discussion in an attempt to be as complete as possible

and to offer some guidelines for future research on incomplete information

economies.

1.4 Recent related literature

Broadly speaking, there are two strands of literature concerning the Great

Moderation. One focuses on dating the Great Moderation and the other

1The calibrated case has the advantage of remaining closer to the standard equilibrium
business cycle literature, thus providing a benchmark, while the estimated case has the
advantage that the technology process is estimated using a regime-switching process, one
of the key features of our stylized model.
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looks into the causes that led to it. The dating literature, including Kim and

Nelson (1999a), McConnell and Perez-Quiros (2000), and Stock and Watson

(2003) typically assumes that the date when the structural break occurred is

unknown and then identifies it using either classical or Bayesian methods.

According to the other strand, there are three broad causes of the sudden

reduction in volatility—better monetary policy, structural change, or luck.

Clarida, Gali and Gertler (2000) argued that better monetary policy in the

Volker-Greenspan era led to lower volatility, but Sims and Zha (2006) and

Primiceri (2005) conclude that switching monetary policy regimes were in-

sufficient to explain the Great Moderation and so favor a version of the luck

story. The proponents of the structural change argument mainly emphasize

one of two reasons for reduced volatility: a rising share of services in total

production, which is typically less volatile than goods sector production

(Burns (1960), Moore and Zarnowitz (1986)), and better inventory manage-

ment (Kahn, McConnell, and Perez-Quiros (2002)).2 A number of authors,

including Ahmed, Levin, and Wilson (2004), Arias, Hansen, and Ohanian

(2007), and Stock and Watson (2003) have compared competing hypotheses

and concluded that in recent years the U.S. economy has to a large extent

simply been hit by smaller shocks.3

In the literature, learning has often been used to help explain fluctua-

tions in endogenous macroeconomic variables. In Cagetti, Hansen, Sargent

and Williams (2002) agents solve a filtering problem since they are uncer-

tain about the drift of the technology. In Van Nieuwerburgh and Veldkamp

(2006) agents solve a problem similar to the one posed in this paper. They

use their model to help explain business cycle asymmetries. In their paper

learning asymmetries arise due to an endogenously varying rate of infor-

mation flow. Andolfatto and Gomme (2003) also incorporate learning in a

2Kim, Nelson, and Piger (2004) argue that the time series evidence does not support the
idea that the volatility reduction is driven by sector specific factors.

3Owyang, Piger, and Wall (2008) use state-level employment data and document signif-
icant heterogeneity in volatility reductions by state. They suggest that the disaggregated
data is inconsistent with the inventory management hypothesis or less volatile aggregate
shocks, and instead favors the improved monetary policy hypothesis.
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dynamic stochastic general equilibrium model. Here agents learn about the

monetary policy regime, instead of technology, and learning is used to help

explain why real and nominal variables may be highly persistent following

a regime change. In an empirical paper, Milani (2007) uses Bayesian meth-

ods to estimate the impact of learning in a DSGE New Keynesian model. In

his model, recursive learning contributes to the endogenous generation of

time-varying volatility similar to that observed in the U.S. postwar period.4

Arias, Hansen and Ohanian (2007) employ a standard equilibrium busi-

ness cycle model as we do, but with complete information. They conclude

that the Great Moderation is most likely due to a reduction in the volatil-

ity of technology shocks. Our explanation does rely on a reduction in the

volatility of technology shocks but that reduction accounts for only a frac-

tion of the moderation according to the model in this paper.

1.5 Organization

In the next section we present our model. In the following section we cal-

ibrate and solve the model using perturbation methods. We then report

results for a particular calibrated case in order to fix ideas and provide

intuition. The subsequent section turns to results based on an estimated

regime-switching process for technology. The final section offers some con-

clusions and suggests directions for future research.

2 Environment

2.1 Overview

We study an incomplete information version of an equilibrium business

cycle model. We think of this model as a laboratory to study the effects

in which we are interested. Time is discrete and denoted by t = 0, 1, ....∞.

4Two additional empirical papers, Justiniano and Primiceri (2008) and Fernandez-
Villaverde and Rubio-Ramirez (2007), introduce stochastic volatility into DSGE settings,
but without learning, and conclude that volatilities have changed substantially during the
sample period.
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The economy consists of an infinitely-lived representative household that

derives utility from consumption of goods and leisure. Aggregate output

is produced by competitive firms that use labor and capital.

2.2 Households

The representative household is endowed with 1 unit of time each period

which it must divide between labor, `t, and leisure, (1� `t). In addition,

the household owns an initial stock of capital k0 which it rents to firms and

may augment through investment, it. Household utility is defined over a

stochastic sequence of consumption ct and leisure (1� `t) such that

U = E0

∞

∑
t=0

βtu(ct, `t), (1)

where β 2 (0, 1) is the discount factor, E0 is the conditional expectations

operator and period utility function u is given by

u(ct, `t) =
[cθ

t (1� `t)1�θ ]1�τ

1� τ
. (2)

The parameter τ governs the elasticity of intertemporal substitution for

bundles of consumption and leisure, and θ controls the intratemporal elas-

ticity of substitution between consumption and leisure. At the end of each

period t the household receives wage income and interest income. Thus

the household’s end-of-period budget constraint is5

ct + it = wt`t + rtkt, (3)

where it is investment, wt is the wage rate, and rt is the interest rate. The

law of motion for the capital stock is given by

kt+1 = (1� δ)kt + it, (4)

where δ is the net depreciation rate of capital.

5We stress “end of period” since in the begining of the period the agent has only expec-
tations about the wage and the interest rate.
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2.3 Firms

Competitive firms produce output yt according to the constant returns to

scale technology

yt = ezt f (kt, `t) = ezt kα
t `

1�α
t , (5)

where kt is aggregate capital stock, `t is the aggregate labor input and zt is

a stochastic process representing the level of technology relative to a bal-

anced growth trend.

2.4 Shock process

We assume that the level of technology is dependent on a latent variable.

Accordingly, we let zt follow the stochastic process6

zt = (aH + aL)(st + ςηt)� aL, (6)

with

zt =

�
aH + (aH + aL)ςηt if st = 1
�aL + (aH + aL)ςηt if st = 0

, (7)

where aH � 0, aL � 0, ηt � i.i.d. N(0, 1), and ς > 0 is a weighting parame-

ter. The variable st is the latent state of the economy where st = 0 denotes a

“recession” state, and st = 1 denotes an “expansion” state. We assume that

st follows a first-order Markov process with transition probabilities given

by

Π =

�
q 1� q

1� p p

�
, (8)

where q = Pr(st = 0jst�1 = 0) and p = Pr(st = 1jst�1 = 1). Hamil-

ton (1989) shows that the stochastic process for st is stationary and has an

AR(1) specification such that

st = λ0 + λ1st�1 + vt, (9)

where λ0 = (1� q), λ1 = (p+ q� 1), and vt has the following conditional

probability distribution: If st�1 = 1, vt = (1� p) with probability p and

6As we discuss below, the process is written in this form to facilitate our use of pertur-
bation methods as implemented by Aruoba, et al., (2006).
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vt = �p with probability (1� p); and, vt = �(1� q) with probability q
and vt = q with probability (1� q) conditional on st�1 = 0. Thus

zt = ξ0 + ξ1zt�1 + σεt, (10)

where ξ0 = (aH + aL) λ0 + λ1aL � aL, ξ1 = λ1, σ = (aH + aL), and

εt = vt + ςηt � λ1ςηt�1. (11)

The stochastic process for zt, equation (10), has the same AR (1) form

as in a standard equilibrium business cycle model even though we have

incorporated regime-switching. In our quantitative work, we use σ as the

perturbation parameter in order to approximate a second-order solution to

the equilibrium of the economy. We sometimes call σ the “regime distance”

as it measures the distance between the conditional expectation of the level

of technology relative to trend, z, in the high state, aH, and the low state,

�aL. The distribution of ε is nonstandard, being the sum of discrete and

continuous random variables. Since η is i.i.d., v and η are uncorrelated.

The mean of εt is zero and the variance is given by

σ2
ε = p (1� p)

λ0

1� λ1
+ q (1� q)

�
1� λ0

1� λ1

�
+ ς2

�
1+ λ2

1

�
. (12)

We draw from this distribution when simulating the model. The variance

is in part a function of ς, which will play a role in the analysis below.

2.5 Information structure

2.5.1 Overview

In any period t, the agent enters the period with an expectation of the level

of technology, ze
t . The latent state, st, as well as the two shocks ηt and vt,

are all unobservable by the agent. First, households and firms make deci-

sions. Next, shocks are realized and output is produced. We let actual con-

sumption equal planned consumption and require investment to absorb

any difference between expected output and actual output. At the end of

the period, the level of technology zt can be inferred based on the amount
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of inputs used and the realized output, since zt = log yt � log kα
t `

1�α
t . The

agents use zt in part to calculate next period’s expected latent state, se
t+1,

using Bayes’ rule, and then the expected level of technology for the next pe-

riod, ze
t+1. Period t ends and the agent enters the next period with ze

t+1. The

details of these calculations are given below. Given this timing, the infor-

mation available to the agent at the time decisions are made is Ft = fyt�1,

ct�1, zt�1, it�1, kt, `t�1, wt�1, rt�1g. Here ht = fh0, h1, ..., htg represents the

history of any series h.

2.5.2 Expectations

As shown in the appendix, the current expected state is given by

se
t = bt(1� q) + (1� bt)p, (13)

where bt = P (st�1 = 0jFt) and the expected level of technology at date t is

given by

ze
t = (aH + aL)se

t + (�aL). (14)

Equivalently

ze
t = [bt(1� q) + (1� bt)p] aH � [btq+ (1� bt)(1� p)] aL. (15)

We stress that the expectation of the level of technology can be written

in a recursive way. First, solve equation (15) for bt to obtain

bt =
(aH + aL) p� aL � ze

t
(aH + aL) (p+ q� 1)

. (16)

Also from equation (15), next period’s value of ze is

ze
t+1 = [bt+1(1� q) + (1� bt+1)p] aH � [bt+1q+ (1� bt+1)(1� p)] aL. (17)

The value of bt+1 in this equation can be written in terms of updated (t+ 1)

values of gL and gH defined in equations (36) and (37) in the appendix,

which will depend on bt, and, through the definitions of the conditional
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densities (38), (39), (40), and (41) in the appendix, on zt as well. Using

equation (16) to eliminate bt we conclude that we can write

ze
t+1 = f (ze

t , zt) (18)

where f is a complicated function of ze
t and zt. The fact that ze

t+1 has a recur-

sive aspect plays a substantive role in some of our findings below. When

the agent infers a value for zt at the end of the period, that value is not the

only input into next period’s expected value, as ze
t also plays a role.

2.6 The household’s problem

The household’s decision problem is to choose a sequence of fct, `tg for

t � 0 that maximizes (1) subject to (3) and (4) given a stochastic process for

fwt, rtg for t � 0, interiority constraints ct � 0, 0 � `t � 1, and given k0.

Expectations are formed rationally given the assumed information struc-

ture.

Assuming an interior solution, the optimality conditions imply that

u`(ct, `t)

uc(ct, `t)
= wt (19)

Before the shocks are realized, households make their consumption and

labor decisions. In this model investment is a residual and absorbs unex-

pected shocks to income. The Euler equation is

uc(ct, `t) = βEt [uc(ct+1, `t+1)(rt+1 + (1� δ))] . (20)

2.7 The firm’s problem

Firms produce a final good by choosing capital kt and labor `t such that

they maximize their expected profits. The firms period t problem is then

max
kt,`t

Et[ezt kα
t `

1�α
t � wt`t � rtkt] 8t. (21)

The first order conditions for the firm are

rt = Et[ezt fk(kt, `t)] (22)
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wt = Et[ezt f`(kt, `t)] (23)

These conditions differ from the standard condition because technology

level zt is not observable when decisions are made.

2.8 Second-order approximation

We follow Van Nieuwerburgh and Veldkamp (2006) and study a passive

learning problem.7 As a result, the timing and informational constraints

faced by the planner are the same as in the decentralized economy, and

the competitive equilibrium and the planning problem are equivalent. The

planner’s problem is to maximize household utility (1) subject to the re-

source constraint

ct + kt+1 = ezt kα
t `

1�α
t + (1� δ) kt (24)

and the evolution of beliefs given by equations (15) and (42) in the appen-

dix. The solution to this problem is characterized by (19), (20), (24), and the

exogenous stochastic process (10).

The perturbation methods we use are standard and are described in

Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006). To solve the

problem we find three decision rules, one each for consumption, labor sup-

ply, and next period’s capital, as a function of the two states (k, ze) and a

perturbation parameter σ. Our regime distance parameter σ = aH + aL

plays the role of σ in Aruoba, et al. (2006).

The core of the perturbation method is to approximate the decision

rules by a Taylor series expansion at the deterministic steady state of the

model, which is characterized by σ = 0.8 For instance, the second-order

7The planner does not take into account the effect of consumption and labor choices on
the evolution of beliefs.

8Auroba, et al., (2006) report that higher-order perturbation methods perform better
than simple linear approximations when the model is characterized by significant non-
linearities. They focus primarily on non-linearities arising due to high shock variance and
high risk aversion. In our analysis the non-linearities come about because of the Bayesian
learning mechanism. By using a second order approximation our objective is to avoid po-
tential numerical approximation errors due to these non-linearities.
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Taylor series approximation to the consumption policy function is

c (k, ze, σ) = css + ck (k� kss) + cze (ze � ze
ss) + cσ (σ� σss)

+
1
2

ck,k (k� kss)
2 +

1
2

ck,ze (k� kss) (ze � ze
ss) + ...

+
1
2

cσ,ze (σ� σss) (ze � ze
ss) +

1
2

cσ,σ (σ� σss)
2 ,

where xss is the steady state value of a variable (actually zero for ze
ss and

σss), ci is the first partial derivative with respect to i, and ci,j is the cross

partial with respect to i and then j, and all derivatives are evaluated at

the steady state. The program we use calculates analytical derivatives and

evaluates them to obtain numerical coefficients ci and ci,j as well as analo-

gous coefficients for the policy functions governing labor and next period’s

capital.

3 Learning effects

3.1 Calibration

In this section we follow the equilibrium business cycle literature and cal-

ibrate the model at a quarterly frequency. This helps to give us a clear

benchmark with which to compare and understand our results.

For the calibration, we remain as standard as possible. The discount

factor is set to β = 0.9896, the elasticity of intertemporal substitution is set

to τ = 2, and θ = 0.357 is chosen such that labor supply is 31 percent of

discretionary time in the steady state. We set α = 0.4 to match the capital

share of national income and the net depreciation rate is set to δ = 0.0196.

This is also the benchmark calibration used by Aruoba, et al., (2006). Apart

from the parameters commonly used in the business cycle literature, there

are some additional parameters that capture the regime-switching process.

In particular, the parameters aL and aH reflect the level of technology zt

relative to trend in recessions and expansions respectively. We also have

the transition probabilities p and q as well as a weighting parameter ς.
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To obtain a baseline complete information economy that can be com-

pared to the benchmark calibration of Aruoba, et al., (2006), (AFR), we use

equation (10), reproduced here for convenience

zt = ξ0 + ξ1zt�1 + σεt. (25)

We wish to choose the values of p, q, aH, aL and ς such that ξ0 = 0, ξ1 =

0.95, σ = 0.007, and σ2
ε = 1, the standard equilibrium business cycle values

and the ones used in the benchmark calibration of AFR. To remain compa-

rable to AFR, we would like εt to be close to a standard normal random

variable, with σ = aH + aL = 0.007. To meet this latter requirement, we

choose symmetric regimes by setting aH = aL = 0.0035. Since

ξ1 = λ1 = (p+ q� 1),

we set p = q = 0.975, yielding ξ1 = 0.95. These values imply ξ0 =

(aH + aL) λ0 + λ1aL � aL = 0. This leaves the mean and variance of εt. The

mean is zero, but to get the variance

σ2
ε = p (1� p)

λ0

1� λ1
+ q (1� q)

�
1� λ0

1� λ1

�
+ ς2

�
1+ λ2

1

�
equal to one, we set the remaining parameter ς = 0.719.9 Thus the uncon-

ditional standard deviation of the shock process, σσε, is 0.007 as desired,

and the conditional standard deviation, σςση = σς is 0.005 (since ση = 1 by

assumption). For this calibration, the nonstochastic steady state values are

given by: ze
ss = zss = 0, kss = 23.14, css = 1.288, `ss = 0.311, and yss = 1.742.

3.2 A complete information comparison

In the calibration of the baseline complete information economy, we choose

parameters for the regime-switching process such that the economy is as

close as possible to a standard equilibrium business cycle model. We now

investigate whether the equilibrium of this economy is comparable to the

9We chose the positive value for ς that met this requirement.
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TABLE 1.
Benchmark comparison.

Variable AFR Model
Output 1.2418 1.2398
Consumption 0.4335 0.4323
Hours 0.5714 0.5706
Investment 3.6005 3.5953

Table 1: A comparison of standard deviations of key endogenous variables
for a standard equilibrium business cycle model (Auroba, et al., (2006),
or AFR) and the complete information version of the present model with
regime-switching, calibrated to mimic the standard case.

equilibrium of a standard model. Table 1 shows that the baseline complete

information model with regime-switching delivers results almost identical

to a standard equilibrium business cycle model, that is, the same results

as Aruoba, et al, (2006).10 Since we use perturbation methods to solve our

model, it seems natural then to compare our model with Aruoba, et al.,

(2006).

This shows that despite the addition of regime-switching, the complete

information economy calibrated to look like the standard case delivers re-

sults very similar to the standard case. We now turn to incomplete infor-

mation economies with Bayesian learning.

3.3 Incomplete approaches complete information

Our intuition is that, keeping conditional (within regime) variance con-

stant, regimes which are closer together pose a more difficult inference

problem for agents. The agents then take actions which are not as extreme

as they would be under complete information. The result is a moderating

force in the economy.

Our model is designed to allow us to move regimes closer together

10In Table 1, for both cases, each simulation has 200 observations. For each simulation
we compute the standard deviations for percentage deviations from Hodrick-Prescott filter
with λ = 1600 and then average over 250 simulations.
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while keeping conditional variance constant. In particular, we can change

regime distance σ = aH + aL, and this will change the technology shock

volatility σε. At the same time, we can hold conditional (within regime)

variance constant using the parameter ς: The conditional standard devia-

tion is just σς. This means that the economies we compare in this subsection

will have substantially different unconditional variances, different levels of

volatility coming directly from the driving shock process in the economy.

We then need a benchmark against which we can compare these economies.

The benchmark we choose is the counterpart, complete information version

of these economies.

Standard equilibrium business cycle models are known to be very close

to linear for quantitatively plausible technology shocks when there is com-

plete information. In these economies, the standard deviation of key en-

dogenous variables increases one-for-one with increases in σσε. We ex-

pect that our regime-switching model with complete information is also

very close to linear with respect to the unconditional standard deviation,

σσε. The only difference between this case and the economies we study

is the addition of incomplete information and Bayesian learning. The lat-

ter economies are nonlinear, so that the standard deviation of key endoge-

nous variables no longer increases one-for-one with increases in σσε. By

comparing the complete and incomplete information versions of the same

economies, we can infer the size of the learning effect in which we are inter-

ested. In addition, we expect the inference problem to become less severe

as regimes move farther apart. The economies with learning should begin

to look more like complete information economies as regimes become more

distinct.

In Figure 1 we plot the unconditional standard deviation on the hori-

zontal axis. On the vertical axis, we plot the standard deviation of output

relative to the unconditional standard deviation. In our version of the stan-

dard “RBC” equilibrium business cycle model (no regime-switching, com-

plete information), the standard deviation of output is 1.24 percent and the

standard deviation of the shock is 0.7 percent. Thus the ratio of standard
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deviation of output relative to the standard deviation of the shock process

is 1.77. Because of linearity, this ratio does not change as the unconditional

variance of the shock increases. This is depicted by the horizontal dotted

line in Figure 1. We also know that our complete information model with

regime-switching delivers results close to the standard equilibrium busi-

ness cycle model for certain parameter values (see Table 1). Thus we expect

the ratio of standard deviations of output and shocks to be constant for this

case as well. This turns out to be verified in the Figure, as the solid line in-

dicates only minor deviations from the standard equilibrium business cycle

model.11

The linear relationship between σσε and the standard deviation of en-

dogenous variables breaks down in a model with incomplete information.

When the states become less distinct, moving from the right to the left along

the horizontal axis in Figure 1, the agents have to learn about the state of

the economy and the learning effect moderates the behavior of all endoge-

nous variables. But when states are distinct, toward the right in the Figure,

the standard deviation of output rises more than one-for-one. Agents are

more able to discern the true state when the states are more distinct.

Figure 1 shows that learning has a pronounced effect on private sector

equilibrium behavior. Moreover, it shows that the learning effect becomes

larger as regimes move closer together, keeping conditional variance un-

changed. This makes sense as the inference problem becomes more diffi-

cult for agents. The agents base behavior in part on the expected regime,

which, because of increased confusion, more often takes on intermediate

values instead of extreme values. This leads the agents to take actions mid-

way between the ones they would take if they were sure they were in one

regime or the other. This provides a clear moderating force in the economy

above and beyond the reduction in unconditional variance. We now turn

to a quantitative assessment of the size of this moderating force.

11Each point in this figure is computed by simulating 200 quarters for the given economy,
and averaging results over 250 such economies. We calculate 13 such points and connect
them for each line in the figure.
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Figure 1: The complete information economy, like the RBC model, has volatil-
ity which is proportional to the volatility of the shock. This is indicated by the
horizontal line in the Figure. In the incomplete information economy, this is no
longer true because of the inference problem. This problem becomes less severe
moving to the right in the Figure, and the incomplete information case approaches
the complete information case.

3.4 Comparing economies with high and low volatility

The empirical literature on the Great Moderation, including Kim and Nel-

son (1999a), McConnell and Perez-Quiros (2000), and Stock and Watson

(2003), has documented the large decline in output volatility after 1984. As

an example, we calculated the Hodrick-Prescott-filtered standard deviation

of U.S. output for 1954-1983 and 1984-2004. These values are 1.92 and 0.95,

and so the volatility reduction by this measure is 0.95/1.92 � 0.50. In this

subsection we want to choose parameters so as to compare two economies

across which the cyclical component of output endogenously exhibits a

volatility reduction of this magnitude. From there, we want to decompose

the sources of the reduction into a portion due to reduced volatility of the

shock and another portion due to the learning effect. The main idea is to un-
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TABLE 2. MODERATION IN CALIBRATED ECONOMIES.
High volatility economy Low volatility economy

Parameter values
aH = aL 0.0265 0.0025
p = q 0.975 0.975
σσε 0.0108 0.007
σς 0.005 0.005

Volatility, in percent standard deviation
Output 1.816 0.908
Consumption 0.390 0.138
Hours 1.141 0.082
Investment 6.504 3.487
1
T ∑(se � s)2 0.125 0.415

Table 2: Comparison of the business cycle volatility in the high and low
volatility incomplete information economies. The volatility reduction in
the cyclical component of output is about 50 percent, but the volatility re-
duction in the unconditional variance is only 35 percent. Learning accounts
for on the order of 30 percent of the volatility reduction in output.

derstand whether this learning effect could be a quantitatively significant

part of an output moderation of this magnitude in a general equilibrium

setting.

For this purpose, we set aH = aL = 0.0265 in the high volatility econ-

omy and aH = aL = 0.0025 in the low volatility economy. This implies

σ = 0.053 in the former case and σ = 0.005 in the latter case. We again

choose ς to keep the conditional standard deviation σς constant at 0.005.

These parameter choices imply that σσε, the unconditional standard devia-

tion of the productivity shock, is 1.08 percent in the high volatility economy

and 0.7 percent in the low volatility economy. We view these as plausible

values. We set p = q = 0.975, so that ξ1 = p + q � 1 = 0.95 as is stan-

dard in the equilibrium business cycle literature. These parameter choices

are described in the top panel of Table 2. With these parameter values,

the endogenous output standard deviation in the high volatility economy

is 1.816, whereas the corresponding standard deviation in the low volatil-
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ity economy is 0.908, a reduction of 50 percent. Moreover, all endogenous

variables are considerably less volatile.12 This is documented in the lower

panel of Table 2. Our measure of confusion is given in the last line of Ta-

ble 2. This measure increases substantially as the economy becomes less

volatile suggesting that the inference problem becomes more severe in the

low volatility economy.13

If these were complete information economies, the volatility reduction

would be proportional to the decline in the unconditional standard devi-

ation of the productivity shock εt. If that was the case, endogenous vari-

ables in the low volatility economy would be about 65 percent as volatile� 0.007
0.0108

�
as those in the high volatility economy—this would be a volatility

reduction of 35 percent. The actual output volatility reduction is 50 per-

cent, and the extra 15 percentage points of output volatility reduction can

be attributed to the learning effect described in the previous subsection.

Thus we conclude that for these two economies, the luck part of the output

volatility reduction accounts for 35/50 or 70 percent of the total, and the

learning effect accounts for 15/50 or 30 percent.

We think this calculation, while far from definitive, clearly demonstrates

that learning could play a substantial role in the observed volatility reduc-

tion in the U.S. economy, with a contribution that may have been on the

order of 30 percent of the total. This is fairly substantial, and it suggests

that it may be fruitful to analyze the hypothesis of this paper in more elab-

12Instead of investment, if consumption is residual, as in Van Nieuwerburgh and Veld-
kamp (2006), we find that learning still plays a key role in explaining the reduction in out-
put volatility observed in recent years. The main implication of this assumption, however,
is on the business cycle volatility of consumption and investment: cyclical component of
consumption becomes more volatile while the volatility of investment falls. For example
in the baseline calibrated case, the standard deviations of the cyclical component of con-
sumption and investment in the pre-moderation period are 2.0 and 1.8 respectively. In the
post-moderation period these volatilities fall to 1.2 and 0.14. The level of consumption and
investment volatilities under this assumption are therefore inconsistent with what we ob-
serve in the data.

13See Campbell (2007) for a discussion of the increased magnitude of forecast errors in
the post-moderation era among professional forecasters. One might also view the well-
documented increase in lags in business cycle dating in the post-moderation era as an indi-
cation of increased confusion between boom and recession states.
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orate models which can confront the data on more dimensions.

3.5 Understanding the learning mechanism

3.5.1 Complete information case

One way to understand the effect of incomplete information and Bayesian

learning is to first consider the optimal decision rules for the baseline com-

plete information case and then compare them with the corresponding in-

complete information economies. For the complete information economies,

the state variables are k and z. To simplify our discussion here, we will fo-

cus on the first-order terms.14 In the complete information case, the deci-

sion rules for consumption, labor hours, and next period’s capital are given

as

c� css = 0.03 (k� kss) + 0.60 (z� zss) + ... (26)

l � lss = �0.002 (k� kss) + 0.20 (z� zss) + ... (27)

k0 � kss = 0.97 (k� kss) + 1.80 (z� zss) + ... (28)

Not surprisingly, these rules are almost identical for the high and low

volatility economies.15 Given this, why does the volatility of the endoge-

nous variables change as we move from high to low volatility economies?

This is primarily due to changes in the volatility of (k� kss) and (z� zss).

In the complete information case, the standard deviation of (k� kss) and

(z� zss) decreases in proportion to the decrease in the standard devia-

tion of the underlying shock. As a result, the relative standard deviations

of (k� kss) and (z� zss) are almost identical across the two economies,

see the top panel of Table 3. Therefore, in the complete information case,

14Some of the higher order terms are non-zero but they are relatively small and hence not
very critical for understanding the learning mechanism. For example, the policy function
for consumption in the high volatility economy is c� css = 0.03 (k� kss) + 0.60 (ze � ze

ss)�
0.0005 (k� kss)

2 +0.47 (ze � ze
ss)

2 + 0.008 (k� kss) (ze � ze
ss)� 0.027 (σ� σss)

2 .
15Note that the only difference between the two economies is the driving shock process.

The coefficient that differs across the two economies in both cases—complete information
and incomplete information—is the second order coefficient on the perturbation parameter.
However, this coefficient is relatively small to impact the results in any significant way.
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TABLE 3. KEY ELEMENTS OF THE DECISION RULE.
Relative standard deviation

High volatility economy Low volatility economy
Complete information case

k� kss 88.26 85.78
z� zss 2.82 2.83

Incomplete information case
k� kss 104.45 85.58
ze � ze

ss 2.15 0.30

Table 3: Relative volatility of the key elements of the decision rule in the
baseline calibrated case. To compute the relative standard deviation, in
each case we divide the actual standard deviation by the standard devia-
tion of the technology process, 1.08 percent in the high volatility economy
and 0.7 percent in the low volatility economy of our baseline calibrated
case.

the volatility of key endogenous variables decreases one-for-one with de-

creases in σσε, as noted earlier in section 3.3.

3.5.2 Incomplete information case

The following equations describe the decision rules for the incomplete in-

formation economy where the state variables are k and ze :

c� css = 0.03 (k� kss) + 0.29 (ze � ze
ss) + ... (29)

l � lss = �0.002 (k� kss) + 0.29 (ze � ze
ss) + ... (30)

k0 � kss = 0.97 (k� kss) + 0.67 (ze � ze
ss) + ... (31)

From these optimal decision rules, equations (29), (30), and (31), it appears

that when agents are unsure about the the state of the economy the weight

on ze relative to k is lower compared to the complete information case for

all the decision rules except hours. This directly reflects the impact of un-

certainty on endogenous decisions.16

16Also note that as we move from the complete information case to the incomplete in-
formation case, while the coefficients on capital in these equations remain unchanged, the
coefficients on technology change.
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As in the case of complete information, the reason why the variability

of the endogenous variables changes as we move from high to low volatil-

ity economies is primarily due to changes in the volatility of (k� kss) and

(ze � ze
ss) . However, unlike the complete information case, now the volatil-

ity of both (k� kss) and (ze � ze
ss) falls more than proportionately relative

to the decline in the volatility of z as we move from high to low volatility

economies—see the bottom panel in Table 3. Moreover, it is the relative

volatility of ze that declines sharply—the standard deviation of ze relative

to the unconditional standard deviation of z is only 14 percent (0.30/2.15)

in the low versus the high volatility economy.17

Our conjecture is that the sharp fall in the relative volatility of ze is pri-

marily due to a harder inference problem in the low volatility economy.

The following subsection investigates this further.

Uncertainty and the expected state From equation (14), it is clear that the

volatility of the expected level of technology, ze, depends largely on the

volatility of the expected state. In figures 2 and 3, we plot time series of

the latent state st and the agent’s expectations of that state at each date, se
t .

The state st is either 0 or 1 and is indicated by solid diamonds at 0 and 1 in

the figures. The expectation is indicated by the gray triangles and is never

exactly zero or one. For the high volatility economy, shown in Figure 2,

the agent is only rarely confused about the state. This is characterized by

relatively few dates at which the expectation of st is not close to zero or one.

Consequently, the expected level of the state and hence the expected level

of technology are more volatile in this case. For the low volatility economy,

17Because the volatility of k does not fall as much as the volatility of ze, the coefficients
in the decision rules matter much more in the incomplete information case with Bayesian
learning. In the labor hours rule, the ratio of coefficients between ze and k is on the order of
150 : 1. For consumption, it is about 10 : 1, and for capital it is closer to 1 : 1. Accordingly,
the decline in ze volatility relative to z volatility has a dramatic impact on hours volatil-
ity, a significant impact on consumption volatility, and a more moderate impact on capital
volatility. Consequently, learning accounts for a large fraction, 62 percent, of the decline in
hours volatility, a more modest fraction, 46 percent, of the decline in consumption volatility,
and a smaller fraction, 25 percent, of the decline in investment volatility.
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Figure 2: The true state st versus the expected state in the high volatility economy,
measured on the left scale. The true state is indicated by solid diamonds at zero
or one. The expected state is represented by the gray triangles. The dashed line
shows the evolution of the log of output about its mean value of 0.55, measured
on the right scale. The agent is relatively sure of the state in this economy.

shown in Figure 3, the agent is confused about the state much more often,

as indicated by many more dates at which the expectation of the state is

far from zero or one—more gray triangles nearer 0.5. This leads to a less

volatile se
t and ze

t .

These figures also show the evolution of output for each economy. The

log of output is measured on the right scale in the figures and is shown

as a dashed line. The logarithm of the steady state of output is 0.55 and

is shown as a solid line; we can therefore refer to output above or below

steady state. Output tends to be above steady state when beliefs are high

and below steady state when beliefs are low.

A surprise Confusion about the latent state st leads to some surprising

behavior which we did not expect to find. This behavior is illustrated in
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Figure 3: The true state versus the expected state in the low volatility economy,
along with the evolution of log output about its steady state value. The agent is
relatively confused about the true state, causing moderated behavior.

Figure 3. In particular, the agent sometimes believes in recession or expan-

sion states when in fact the opposite is true. This occurs, for instance, in the

time period around t = 250 in this simulation. Here the true state is low,

but the agent believes the state is high. Interestingly, output remains above

steady state for this entire period. The beliefs are driving the consumption,

investment, and labor supply behavior of the agent in the economy, such

that belief in the high regime is causing output to boom.18

How does this belief-driven behavior come about? At the end of each

period, agents can observe labor, capital, and output and therefore can in-

fer a value for zt. Let’s suppose the agent observes a high level of labor

input and a high level of output. The agent may infer that the current la-

18We also calculated the real wage and interest rate volatility to see if prices adjust more
than one-for-one in the low volatility period to compensate for the discrepancy between the
actual and the expected state, and therefore the expected level of technology. We find that
relative to the shock process, real wages are more volatile in the low volatility period, but
real interest rates are less volatile.
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tent state st is high and construct next period’s expectation of the level of

technology based on the expectation that st+1 is also likely to be high (since

the latent state is very persistent). But the high level of labor input may also

itself have been due to an expectation of a high level of technology in the

past period. The agent may therefore propagate the expectation of a high

state forward. Labor input in the current period would then again be high,

output would again be high, and the agent may again infer that the state

st is high and construct next period’s expectation of the level of technology

based on the expectation that st is high. In this way beliefs can influence the

equilibrium of the economy, and this effect is more pronounced as regimes

move closer together.

Another way to gain intuition for the nature of the belief-driven behav-

ior is to consider equation (18), which is derived earlier and reproduced

here:

ze
t+1 = f (ze

t , zt) . (32)

The expected level of technology is a state variable in this system. The agent

is able to calculate a value for zt at the end of each period after production

has occurred based on observed values of yt, kt, and `t, and this provides

an input, but not the only input, into the next period’s expected level of

technology. This is because the decisions taken today that produced today’s

output depend in part on the belief that was in place at the beginning of

the period, ze
t . The true state is not fully revealed by the zt calculated at the

end of the period. Nevertheless, when regimes are far apart, the evidence

is fairly clear regarding which state the economy is in and so zt provides

most of the information needed to form an accurate expectation ze
t+1. When

regimes are closer together, zt is not nearly as informative and the previous

expectation ze
t can play a large role in shaping ze

t+1.
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4 An estimated shock process

4.1 Overview

Until this point, we have considered a calibrated case in which the stochas-

tic driving process changes in such a way (by moving the regimes closer to-

gether) that equilibrium output volatility falls by 50 percent, as suggested

by the data. Other aspects of the calibration were chosen to remain con-

sistent with standards in the equilibrium business cycle literature. In this

section we take an alternative approach. We estimate the stochastic driving

process in a manner similar to Kim and Nelson (1999a),19 and then examine

the implied volatility reduction and the component of that reduction that

can be attributed to the learning effect.

4.2 Data

Table 4 reports the business cycle volatility of key variables that are rel-

evant for our analysis.20 In this table we also compare how volatile the

1984:1-2004:4 period is relative to the 1954:1-1983:4 period. Based on the

last column we note that (i) overall all the variables are less volatile after

1984, and (ii) the data suggests that reduction in business cycle volatility

is not equal across different macroeconomic variables. Any satisfactory ex-

planation for this reduction in volatility must then endogenously produce

an asymmetric response for different series. A standard real business cy-

cle model would not be compelling in this respect for reasons mentioned

in our discussion of Figure 1. Below we report the asymmetric effects in

our model, some of which are promising, and others of which will call for

further additions to the model to match data.
19We depart from Kim and Nelson (1999a) in two ways. We fit the regime-switching

process to Hodrick-Prescott filtered technology and we assume an exogenous structural
break.

20We use quarterly data and the sample period is 1954:1-2004:4. All National Income and
Product Accounts (NIPA) data from the Bureau of Economic Analysis (BEA) is in billions
of chained 2000 dollars. The employment data is from the establishment survey. Data has
been logged before being detrended using the Hodrick-Prescott filter.
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TABLE 4. CYCLICAL VOLATILITY OF KEY VARIABLES

1954:1-83:4 1984:1-04:4 Low/High

GNP 1.92 0.95 0.50
Personal consumption expenditure 0.92 0.73 0.79
Nondurables and services consumption 0.91 0.57 0.63
Consumption of durables 4.91 2.94 0.60
Gross private investment 8.39 5.16 0.62
Fixed investment plus consumer durables 5.34 3.14 0.59
Total hours of work 1.80 1.08 0.60
Average weekly hours of work 0.50 0.37 0.74
Employment 1.57 0.94 0.60
TFP 1.80 1.02 0.57

Table 4: Percent standard deviation of the cyclical component of key macro-
economic variables.

4.3 Estimates of the technology process

The total factor productivity (TFP) series is constructed using log(zt) =

log(GNPt)� (1� α) log(Hourst)� α log(Capitalt).21,22 We then fit a regime-

switching process on total factor productivity after detrending it using the

Hodrick-Prescott filter for the sample period 1954:1 to 2004:4 with 1983:4 as

an exogenous break date. To stay consistent with Kim and Nelson (1999a)

we hold the conditional (within regime) standard deviation and the transi-

tion probabilities of the Markov switching process constant across the two

sample periods. We also assume that the process is symmetric.23 An advan-

21The measure of output used here is real GNP which is in chained 2000 dollars. The
labor input is measured in aggregate hours. We construct the series for aggregate hours by
multiplying payroll employment data with average weekly hours. As a measure of capital,
we use the gross stock of real nonresidential fixed private capital.

22To stay consistent with the business cycle model used here, this measure does not adjust
for cyclical variations in labor effort and capacity utilization. Such abstractions, as has been
previously noted in the literature (see King and Rebelo (1999) for an earlier overview of
the main drawbacks of using the Solow residual as a measure of aggregate technology) can
lead to significant mis-measurements in the measure of technology.

23Results for a model with an asymmetric regime-switching process are reported in Table
8 and Table 9 in the Appendix. We find that the asymmetric case does not fit the data
significantly better than the symmetric case because the likelihood ratio statistic is 0.348,
substantially less than the critical value of 7.81 at the 95 percent significance level. Several
empirical studies document asymmetries in business cycles, both in terms of duration and
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TABLE 5. ESTIMATES OF THE TECHNOLOGY PROCESS.
1954:1-1983:4 1984:1-2004:4

Parameter Values
Regime distance 2.709 (0.195) 0.657 (0.389)

Transition probability 0.844 (0.034)
Conditional standard deviation 1.116 (0.129)
Log likelihood �339.69

Table 5: Estimates of the coefficients of the regime-switching process for
the two sample periods with an exogenous break date of 1983:4. Standard
errors are in parenthesis. We allow only regime distance to change across
the two samples. Transition probability and conditional standard deviation
are held constant across the two sample periods. The regime distance and
conditional standard deviation are expressed as percent.

tage of this approach is that the business cycle volatility generated by the

estimated technology process can be compared to the calibrated economies

studied in the previous section.

We estimate four parameters: Regime distance for both sample periods,

transition probability and conditional standard deviation. Table 5 reports

our estimates.

4.4 Moderation in the baseline estimated case

Using the estimates of our technology process we compute aH, aL, and the

parameters of the stochastic AR(1) process for zt given by equation (10).

The top panel of Table 6 reports these parameters. The high and low states

of technology have come closer together after 1984, as reflected in the top

panel. However, the unconditional standard deviation of the technology

process declines by 20 percent instead of the 35 percent decline in our cal-

ibrated example.24 Combining the estimates of the process of technology

amplitude. However, after filtering the data using Hodrick-Prescott filter typically there is
very little evidence of asymmetry.

24The cyclical measure of TFP was half as volatile after 1984 as shown in the last row in
Table 4. However, our estimation procedure captures about 45 percent of the actual decline
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TABLE 6. MODERATION IN THE ESTIMATED CASE.
High volatility economy Low volatility economy

Parameter Values
aH = aL 0.014 0.003
p = q 0.844 0.844
σσε 0.0162 0.013
σς 0.011 0.011

Volatility, in percent standard deviation
Output 2.044 1.335
Consumption 0.289 0.147
Hours 0.616 0.071
Investment 7.716 5.166

Table 6: Comparison of the business cycle volatility in the high volatility
and low volatility incomplete information economies. The top panel re-
ports the relevant parameters of the technology process based on our es-
timation. The bottom panel reports the percent standard deviation of the
Hodrick-Precott filtered data of key endogenous variables.

with the calibrated values of the rest of the parameters we compute the

cyclical volatility implied by our model.

According to these estimates, the unconditional standard deviation of

the technology shock fell by 20 percent across the two periods (0.013/0.0162) .

As a consequence, the volatility of output fell, albeit by 35 percent (1.335/2.044) .

This 35 percent reduction in output volatility is about two-thirds of the ac-

tual moderation observed in the data. Still, of the estimated moderation in

output volatility of 35 percent, a significant component, about 43 percent,

observed in the data. The key reason for this is that we restrict the conditional standard
deviation to remain constant across the two sample periods to stay consistent with Kim
and Nelson (1999a). If we remove this restriction, the variability of the TFP process declines
by 50 percent, the model collapses to a linear model—there is no role for learning—and the
variability of output declines by 50 percent as well. Such an outcome is not surprising and
is consistent with the findings of Arias, Hansen and Ohanian (2007).

However, as noted earlier, we want to take the core finding of Kim and Nelson (1999a) as a
primitive for our quantitative-theoretic analysis. Our analysis explores the role of learning
when there is imperfect information in an otherwise standard equilibrium business cycle
model. Imperfect information with Bayesian learning allows us to move away from the
case where there is one-to-one correspondence between the variability of the shock and the
variability of the endogenous variables.
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TABLE 7. SERIAL CORRELATIONS.
Baseline estimated case Data

High volatility Low volatility High volatility Low volatility

Output 0.62 0.54 0.84 0.87
Consumption 0.79 0.90 0.73 0.80
Hours 0.58 0.81 0.90 0.93
Investment 0.59 0.53 0.90 0.95

Table 7: Comparing serial correlation of the cyclical component of key vari-
ables. In the data, the serial correlation of output, consumption, hours and
investment corresponds to the serial correlation of real GNP, consumption
expenditure on non-durables and services, total hours in the establishment
survey, and fixed investment plus durable goods consumption.

is due to learning (1� 20/35).

The moderations produced for other variables differ from those for out-

put. Learning produces asymmetric effects across different macroeconomic

variables, some of which are almost in line with what we observe in the

data.25 For consumption, the reduction of 49 percent exceeds the volatility

reduction observed in the data as described in Table 4. However, with re-

spect to investment, the model generated volatility decline is close to what

we observe in the data. For hours the decline is almost 88 percent, far ex-

ceeding what we observe in the data.

4.5 Change in correlations

In our analysis so far we have focused on how incomplete information im-

pacts business cycle volatility. We now turn to examine the implications

for serial correlation for the baseline estimated case.26 In Table 7, we report

the first-order serial correlations for the cyclical component of key macro-

25To stay consistent with the model and the literature, we compare consumption, hours
and investment generated by the model to their respective components in the data: con-
sumption of non-durables and services, total hours input from establishment survey, and
fixed investment plus durable goods consumption.

26Van Nieuwerburgh and Veldkamp (2006) interpret their related model as capturing
correlations of expected variables on the grounds that actual variables are not observed
contemporaneously in actual economies. We have not pursued this approach here.
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economic variables for the estimated baseline case and compare them to

the data. The serial correlations implied by the model are lower than in a

standard equilibrium business cycle model. This is not surprising as the

AR(1) coefficient for the stochastic technology process is 0.72 in our base-

line estimated case whereas this coefficient is 0.95 in a standard equilibrium

business cycle model. In the data, the serial correlation in the low volatil-

ity period has increased for all the variables considered here. The incom-

plete information model generates an increase in serial correlation in the

low volatility period for consumption and hours, but not for output and

investment.27

5 Conclusions

We have investigated the idea that learning may have contributed to the

great moderation in a stylized regime-switching economy. The main point

is that direct econometric estimates may overstate the degree of “luck” or

moderation in the shock processes driving the economy. This is because

the changes in the nature of the shock process with incomplete information

can also change private sector behavior and hence the nature of the equi-

librium. Our complete information model has provided a benchmark in

which it is well known that equilibrium volatility is linear in the volatility

of the shock process, such that doubling the volatility of the shock process

will double the equilibrium volatility of the endogenous variables. Against

this background, we have demonstrated that learning introduced a pro-

nounced nonlinear effect on volatility, in which private sector behavior

changes markedly in response to a changed stochastic driving process for

the economy with incomplete information. We have found, in a bench-

mark calculation, that such an effect can account for about 30 percent of a

change in observed volatility. We think this is substantial and is worth in-

27We also considered the implications for contemporaneous correlations of macroeco-
nomic variables with output. In moving from high to low volatility economies, the contem-
poraneous correlation for consumption changes from 0.3 to 0.0, for hours 0.6 to 0.5, and for
investment 1.0 to 1.0.
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vestigating in more elaborate models that can confront the data along more

dimensions.
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A Beliefs and expectations

A.0.1 Beliefs

We follow Kim and Nelson (1999b) in the following discussion of the evo-

lution of beliefs. At date t, agents forecast st�1 given information available

at date t. Letting bt = P(st�1 = 0jFt),

bt = ∑
st�2=0,1

P(st�1 = 0, st�2jFt)

= P(st�1 = 0, st�2 = 0jFt) + P(st�1 = 0, st�2 = 1jFt), (33)

where the joint probability that the economy was in a recession in the last

two periods is given by

P(st�1 = 0, st�2 = 0jFt) = P(st�1 = 0, st�2 = 0jzt�1, Ft�1)

=
φ(zt�1, st�1 = 0, st�2 = 0jFt�1)

φ(zt�1jFt�1)

=
φL(zt�1jst�1 = 0, st�2 = 0, Ft�1)

φ(zt�1jFt�1)
�

P(st�1 = 0jst�2 = 0, Ft�1)P(st�2 = 0jFt�1), (34)

where φi denotes the density function under regime i 2 fL, Hg, and φ(zt�1

j Ft�1) = Σst�1 Σst�2 φ(zt�1, st�1, st�2jFt�1). Similarly,

P(st�1 = 0, st�2 = 1jFt) =

φL(zt�1jst�1 = 0, st�2 = 1, Ft�1)P(st�1 = 0jst�2 = 1, Ft�1)P(st�2 = 1jFt�1)

φ(zt�1jFt�1)
.

(35)

Using the transition probabilities define gL and gH as

gL = φL(zt�1jst�1 = 0, st�2 = 0, Ft�1)qbt�1

+ φL(zt�1jst�1 = 0, st�2 = 1, Ft�1)(1� p)(1� bt�1), (36)

and

gH = φH(zt�1jst�1 = 1, st�2 = 0, Ft�1)(1� q)bt�1

+ φH(zt�1jst�1 = 1, st�2 = 1, Ft�1)p(1� bt�1). (37)
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Since zt�1 = ξ0 + ξ1zt�2 + σ(vt�1 + ςηt�1 � λ1ςηt�2), then conditional

on vt, zt has a normal distribution. Letting st�1 = 0 and st�2 = 0, then

vt�1 = �(1� q) and zt�2 = �aL + σςηt�2, and so, if in the last two periods

the economy was in a recession, zt�1 = ξ0 + ξ1(�aL)� σ(1� q) + σςηt�1.

We can therefore write the conditional density function as

φL00 = φL(zt�1jst�1 = 0, st�2 = 0, Ft�1)

=
1p

2πσ2ς2
exp

�
� (zt�1 � ξ0 � ξ1(�aL) + σ(1� q))2

2σ2ς2

�
. (38)

When st�1 = 0 and st�2 = 1, then vt�1 = �p and zt�2 = aH + σςηt�2, and

the density function is

φL10 = φL(zt�1jst�1 = 0, st�2 = 1, Ft�1)

=
1p

2πσ2ς2
exp

�
� (zt�1 � ξ0 � ξ1(aH) + σp)2

2σ2ς2

�
. (39)

Similarly

φH01 = φH(zt�1jst�1 = 1, st�2 = 0, Ft�1)

=
1p

2πσ2ς2
exp

�
� (zt�1 � ξ0 � ξ1(�aL)� σq)2

2σ2ς2

�
, (40)

and

φH11 = φH(zt�1jst�1 = 1, st�2 = 1, Ft�1)

=
1p

2πσ2ς2
exp

�
� (zt�1 � ξ0 � ξ1(aH)� σ(1� p))2

2σ2ς2

�
. (41)

Thus we can write bt as

bt =
gL

gL + gH
. (42)

A.0.2 Expectations

Since bt is the probability that the economy was in a recession and (1� bt)

is the probability that the economy was in an expansion in the last period,
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TABLE 8. ESTIMATES OF THE TECHNOLOGY PROCESS FOR ASYMMETRIC CASE.
1954:1-1983:4 1984:1-2004:4

Parameter Values
aH + aL 2.713 (0.195) 0.703 (0.448)
aL �1.406 (0.212) �0.276 (0.214)

p 0.848 (0.050)
q 0.844 (0.052)
σς 1.108 (0.132)
Log likelihood �339.52

Table 8: Estimates of the coefficients of the regime-switching process for the
asymmetric case. Standard errors are in parenthesis. The regime distance
and the conditional standard deviation are expressed as percent.

we determine the probability distribution of the current state by allowing

for the possibility of state change. In particular,

[P(st = 0jFt), P(st = 1jFt)]

= [P(st�1 = 0jFt), P(st�1 = 1jFt)]

�
q 1� q

1� p p

�
(43)

which can be rewritten as

[P(st = 0jFt), P(st = 1jFt)] = [bt, (1� bt)]

�
q 1� q

1� p p

�
. (44)

Given that P(st = 0jFt) = btq+ (1� bt)(1� p) and P(st = 1jFt) = bt(1�
q) + (1� bt)p,

B Estimates of the asymmetric technology process

In the asymmetric case we no longer impose that aH = aL and p = q. As

before, we hold the transition probabilities and conditional standard de-

viation constant across the two sample periods. Therefore, we estimate 7

parameters here: aH + aL, aL for each sample period, transition probabili-

ties p, q, and conditional standard deviation. Table 8 reports our estimates.
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TABLE 9. MODERATION IN THE ASYMMETRIC MODEL.
High volatility economy Low volatility economy

Parameter values
aH 0.013 0.004
aL 0.014 0.003
p 0.848 0.848
q 0.844 0.844
σσε 0.016 0.013
σς 0.011 0.010

Volatility, in percent standard deviation
Output 1.960 1.479
Consumption 0.276 0.164
Hours 0.603 0.089
Investment 7.408 5.715

Table 9: Comparison of the business cycle volatility in the high volatil-
ity and low volatility incomplete information economies. The top panel
reports the relevant parameters of the technology process based on our
estimation of the asymmetric case. The bottom panel reports the percent
standard deviation of the Hodrick-Precott filtered data of key endogenous
variables.

Using these estimates, we compute the remaining parameters of the tech-

nology process, reported in the top panel of Table 9 and the bottom panel

reports the business cyclical volatility implied by these estimates.
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