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Does Aggregate Relative Risk Aversion Change Countercyclically over Time? 

Evidence from the Stock Market 

Abstract 

 Using a semiparametric estimation technique, we show that the risk-return tradeoff and 

the Sharpe ratio of the stock market increases monotonically with the consumption-wealth ratio 

(CAY) across time. While early studies have commonly interpreted such a finding as evidence of 

the countercyclical variation in aggregate relative risk aversion (RRA), we argue that it mainly 

reflects changes in investment opportunities for two reasons. First, we fail to reject the null 

hypothesis of constant RRA after controlling for CAY as a proxy for the hedge against changes 

in the investment opportunity set. Second, by contrast with habit formation models but consistent 

with ICAPM, we find that loadings on the conditional stock market variance scaled by CAY are 

negatively priced in the cross-sectional regressions. For illustration, we replicate the 

countercyclical stock market risk-return tradeoff using simulated data from Guo’s (2004) limited 

stock market participation model, in which RRA is constant and CAY is a proxy for 

shareholders’ liquidity conditions. 

Keywords: Habit Formation, Time-Varying Risk Aversion, Countercyclical Sharpe Ratio, 

Limited Stock Market Participation, Illiquidity Premium, ICAPM, Conditional CAPM, 

Nonparametric and Semiparametric Models 

JEL Classification: G12, C14 

 
 



  1
 
 

1. Introduction 

In Merton’s (1973) intertemporal capital asset pricing model (ICAPM), the conditional 

excess stock market return, , 1t M tE r + , is determined by its conditional variance, 2
,M tσ , and its 

conditional covariance, ,MF tσ , with the state variable(s), F: 

(1) 2
, 1 , ,t M t t M t t MF tE r γ σ λσ+ = + , 

where tγ  and tλ  are the prices of risk. Equation (1) nests two main explanations of stock return 

predictability. First, the price of the market risk, tγ , is a function of aggregate relative risk 

aversion (RRA), which changes across time countercyclically in habit formation models (e.g., 

Constantinides (1990), Campbell and Cochrane (1999), Brandt and Wang (2003), and Menzly et 

al. (2004)).1 Second, the quantity of risk, as measured by 2
,M tσ  and ,MF tσ , exhibits a strong 

countercyclical pattern in the data (e.g., French et al. (1987), Schwert (1989), Scruggs (1998), 

and Guo and Whitelaw (2006)). 

 Recent studies provide tentative empirical evidence for both hypotheses. Lettau and 

Ludvigson (2001a) find that the consumption-wealth ratio (CAY), which is the error term from 

the cointegration relation among consumption, wealth, and labor income, is a strong predictor of 

stock market returns. One possible explanation is that, in Campbell and Cochrane’s (1999) habit 

formation model, the scaled stock price, e.g., CAY, moves closely with time-varying RRA. To 

test this idea, Lettau and Ludvigson (2001b) estimate a variant of the conditional CAPM by 

                                                           
1 The coefficient tγ  is equal to RRA in the representative agent model with power utility function. Appendix A 
shows that, in Campbell and Cochrane’s (1999) habit formation model, these two measures are closely related to 
each other in a complex manner but they are not identical. We thank Sydney Ludvigson for suggesting this 
clarification. Time-varying RRA is also consistent with a few other hypotheses. In Chan and Kogan’s (2002) 
heterogeneous-agent model, aggregate RRA changes with the wealth distribution, although individual agents have 
constant RRA. Ang et al. (2005) and Post and Levy (2005) argue that investors may be risk averse for losses but 
(locally) risk-seeking for gains, and such a behavior can generate a potentially complex time-varying pattern of 
RRA. Many works in the loss aversion literature (e.g., Benartzi and Thaler (1995)) also endorse the idea that 
investors maintain an asymmetric attitude towards gains versus losses. 



  2
 
 

using CAY as the conditioning variable and find that their model performs substantially better 

than the unconditional CAPM, in which RRA is constant. By contrast, in Campbell’s (1993) 

ICAPM, tγ  and tλ  are constant across time, and the scaled stock price can serve as an 

instrumental variable for the hedge component, ,MF tσ , in equation (1).2 Consistent with this 

hypothesis, Guo and Whitelaw (2006) uncover a significantly positive risk-return tradeoff in the 

stock market after controlling for CAY as a proxy for the hedge component. 

 This paper provides the first attempt to evaluate the relative importance of these two 

hypotheses in explaining stock price movement over the post-World War II period. We first 

estimate equation (1) using the semiparametric smooth (or varying) coefficient model considered 

in Cai et al. (2000) and Li et al. (2002), in which tγ  depends nonlinearly on CAY in a 

nonparametric manner.3 Figure 1 summarizes the two main findings. First, the solid line shows 

that tγ  increases monotonically with CAY in the conditional CAPM specification, and the 

relation is statistically significant at the 1% level. Second, the countercyclical variation in tγ  

reflects an omitted variable problem. The dashed line shows that the positive relation between tγ  

and CAY is attenuated dramatically and becomes insignificant at the 40% level after we also 

control for CAY as a proxy for the hedge component. 

                                                           
2 There are two types of shocks in Campbell’s ICAPM—the discount-rate shock and the cash-flow shock. Under 
some moderate conditions, the hedge component is proportional to the conditional variance of the discount-rate 
shock. One can then use Campbell and Shiller’s (1988) log-linearization method to show that the log dividend yield 
is a linear function of conditional stock market variance and the conditional variance of the discount-rate shock. 
Therefore, the scaled stock price forecasts stock market returns because of its close relation with the hedge 
component. For brevity, we do not provide these derivations here but they are available on request. 
3 Appendix A shows that this specification is consistent with Campbell and Cochrane’s (1999) habit formation 
model. In their model, the coefficient of the risk-return tradeoff is a complex function of RRA, which increases 
monotonically with CAY. Therefore, a positive effect of CAY on the risk-return tradeoff indicates a positive relation 
between RRA and the risk-return tradeoff. Because the two measures are closely related and identical in some 
models considered here, we use RRA and the coefficient of the risk-return tradeoff interchangeably in the paper. 
Appendix A also shows that, in Campbell and Cochrane’s model, the Sharpe ratio is approximately a linear function 
of RRA. To address this issue, we also investigate the relation between the conditional excess stock market return 
and the conditional volatility (instead of the conditional variance) and find essentially the same results. (See Figure 
A1 in Appendix A.) 



  3
 
 

 For robustness, we conduct two additional tests. First, we use a nonparametric model and 

find a significantly positive relation between RRA and the conditional stock market variance. 

However, again, the countercyclical variation in RRA disappears after we control for CAY as a 

proxy for the hedge component of the conditional excess stock market returns. Second, we find 

qualitatively the same results by using other commonly used stock return predictors as 

instrumental variables for time-varying RRA. 

 We may fail to reject constant RRA in the time-series data because of a lack of power. To 

address this issue, we investigate whether the conditional CAPM helps explain the cross section 

of stock returns by using both conditional stock market variance and its interaction with lagged 

CAY as risk factors. The conditional CAPM performs substantially better in explaining the 25 

Fama and French (1993) portfolios sorted on size and the book-to-market (B/M) ratio than does 

the unconditional CAPM. However, by contrast with habit formation models, the interaction 

term carries a significantly negative risk premium because growth stocks have larger loadings on 

it than do value stocks. Because the interaction term is closely correlated with CAY, this 

seemingly puzzling result reflects the fact that CAY is a proxy for the hedge against changes in 

the investment opportunity set. The interaction term loses its explanatory power after we control 

for CAY or the Fama and French (1993) B/M factor in the cross-sectional regressions. 

   Lastly, solid line in Figure 2 shows that we replicate the countercyclical risk-return 

tradeoff in the conditional CAPM specification by using simulated data from Guo’s (2004) 

model. Because of (exogenously assumed) limited participation, Guo shows that shareholders 

also require an illiquidity premium, tILL , for holding stocks, in addition to the risk premium:   

(2) 2
, 1 , 1M t M t t tr ILLγσ λ ε+ += + +  . 
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Two implications of Guo’s model generate the time-varying risk-return tradeoff. First, the 

illiquidity premium is positively related to CAY. This is because a positive (negative) liquidity 

shock to shareholders decreases (increases) the illiquidity premium as well as CAY. Second, 

stock market variance is a U-shaped function of CAY because liquidity shocks, either positive or 

negative, always drive up volatility.4 Therefore, the risk-return tradeoff increases monotonically 

with CAY because the illiquidity premium and the risk premium in equation (2) are negatively 

(positively) correlated when CAY is low (high). To illustrate this point, the dashed line in Figure 

2 shows that, after we control for CAY as a proxy for the illiquidity premium, the countercyclical 

variation in CAY essentially disappears because RRA is constant in Guo’s model. 

 Our results are consistent with a number of recent studies. Campbell and Vuolteenaho 

(2004), Brennan et al. (2004), and Petkova (2006) find that changes in the investment 

opportunity set are important for understanding the cross-section of stock returns. Lettau and 

Wachter (2006) argue that, to jointly account for both time-series and cross-sectional stock return 

predictability, there must be a weak relation between the discount-rate shock and the cash-flow 

shock. Because the two shocks have a perfect negative relation in habit formation models, Lettau 

and Wachter show that these models cannot explain the B/M effect (e.g., Fama and French 

(1993)). Li (2005) finds that the consumption surplus in habit formation models does not fully 

account for the predictive power of CAY for stock market returns. Using household-level data, 

Brunnermeier and Nagel (2005) show that, by contrast with habit formation models, wealth 

fluctuations do not generate time-varying risk aversion. 

 Many studies, e.g., Whitelaw (1994), Lettau and Ludvigson (2003), Brandt and Kang 

(2004), Bliss and Panigirtzoglou (2004), Bollerslev et al. (2004), Post and Levy (2005), and 

                                                           
4 Consistent with this prediction, we find that, over the post-World War II period, the relation between stock market 
volatility and CAY is positive in the first subsample and is negative in the second subsample. By contrast, this result 
is inconsistent with habit formation models, which predict a positive relation between the two variables.  
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Lundblad (2006), have documented countercyclical variation in the risk-return tradeoff. These 

authors often interpret such a finding as evidence of time-varying RRA. The evidence presented 

here suggests that this interpretation could be misleading because by ignoring the hedge 

component, the specifications in these studies potentially suffer from an omitted variable 

problem. Also, these studies do not investigate the effect of the time-varying RRA on the cross-

section of asset returns, which we find to pose a serious challenge to habit formation models. 

 The remainder of the paper is organized as follows. We describe the data in Section 2 and 

present the estimation results of the linear specification in Section 3. We provide the nonlinear 

estimation results in Section 4 and the cross-sectional evidence in Section 5. We discuss 

theoretical implications in Section 6 and offer some concluding remarks in Section 7. 

 

2. Data 

Conditional stock market variance is not directly observable in the data. In this paper, we 

follow Merton (1980) and Anderson et al. (2003) and use realized variance constructed from 

daily excess returns as a proxy for conditional stock market variance. Compared with the 

GARCH model (e.g., see Bollerslev et al. (1992)), this specification has several desirable 

properties for the purpose of this paper. First, the CAY variable—the main focus of our 

analysis—is reliably available only at the quarterly frequency; however, the GARCH model is 

only appropriate for the return data of much higher, e.g., daily or weekly, frequencies. Second, a 

direct measure of conditional variance allows us to easily adopt the semiparametric and 

nonparametric models. Third, French et al. (1987) argue that full-information maximum 

likelihood estimators such as GARCH are generally more sensitive to model misspecification 
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than instrumental variable estimators.5 More importantly, as we show below, our results appear 

to be sensible, intuitive, and consistent with predictions of economic theory. That said, we 

acknowledge that realized variance is not necessarily an efficient measure of conditional 

variance. To address this issue, we also use monthly implied variance constructed from options 

contracts on the stock market index as a measure of conditional variance and find qualitatively 

the same results. The implied variance data are the same as those used in Guo and Whitelaw 

(2006), which span the period November 1983 to May 2001. 

We mainly use quarterly data because the CAY variable is reliably available only at the 

quarterly or lower frequency. Also, Ghysels et al. (2005) argue that realized variance is a 

function of long distributed lags of past daily returns; therefore, it is likely to be more precisely 

estimated at the quarterly frequency than the monthly frequency. We obtain the CAY variable 

from Martin Lettau at New York University. Realized stock market variance (MV) is the sum of 

squared daily excess stock market returns in a quarter. We use the daily stock market returns 

constructed by Schwert (1989) before July 1, 1962, and the daily CRSP (the Center for Research 

in Security Prices) value-weighted stock market returns afterwards. Because the daily risk-free 

rate data are not directly available, we assume that the risk-free rate is constant within each 

month and calculate the daily risk-free rate by dividing the monthly CRSP risk-free rate by the 

number of trading days in the month. The daily excess market return is the difference between 

the daily risk-free rate and the daily market return. 

For robustness, we also use some other commonly used stock return predictors as proxies 

for time-varying RRA (see, e.g., Campbell (1987) and Fama and French (1989)). The default 

premium (DEF) is the yield spread between the Baa- and Aaa-rated corporate bonds. The 

                                                           
5 Bollerslev et al. (1992, p. 14) also point out that the estimation of a parametric GARCH-in-mean model can be 
severely biased in the presence of the model misspecification, especially when allowing for time-varying 
parameters. Time-varying parameters also greatly intensify the concern about the unclear theoretical properties of 
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dividend yield (DY) is the ratio of the dividend paid in the past one year to the end-of-period 

stock price for the S&P 500 stocks. The term premium (TERM) is the yield spread between 10-

year Treasury bonds and 3-month Treasury bills. The stochastically detrended risk-free rate 

(RREL) is the difference between the risk-free rate and its average in the previous 12 months. 

TERM is available over the 1953:Q2 to 2004:Q4 period and all the other variables are available 

over the 1951:Q4 to 2004:Q4 period. 

Figure 3 plots MV and the other stock return predictors, with the shaded areas denoting 

business recessions dated by the National Bureau of Economic Research (NBER). All the 

variables are quite persistent and exhibit strong cyclical patterns. While RREL tends to decrease 

during business recessions, the other variables move countercyclically. The visual inspection is 

confirmed by the summary statistics presented in panel A of Table 1. All the variables are 

serially correlated, with the autocorrelation coefficients ranging from 40% for MV to 97% for 

DY. Also, while RREL is negatively correlated with a business cycle indictor, BCI, which is 

equal to 1 for the recession quarters and 0 otherwise, the correlation is positive for all the other 

variables. Panels B and C illustrate similar patterns in the two subsamples. 

Table 1 reveals an unstable relation between MV and some other financial variables. MV 

and CAY are negatively correlated in the full sample (panel A) and the second subsample (panel 

C); however, the relation is positive in the first subsample (panel B). We find a similar pattern 

for DY and RREL, which are positively correlated with MV in the first subsample (panel B) and 

the relation becomes negative in the second subsample (panel C). These results are inconsistent 

with Campbell and Cochrane’s (1999) habit formation model, which predicts that MV is 

positively correlated with DY and CAY. As we discuss in Section 6, these results, which are 

consistent with the limited stock market participation model by Guo (2004), are important for 

                                                                                                                                                                                           
maximum likelihood estimator (or its variants such as quasi-maximum likelihood estimator) in the multivariate 
GARCH model (see, e.g., Engle and Kroner (1995)). 
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understanding the countercyclical variation in the risk-return tradeoff in the stock market. Paye 

(2006) also finds that financial variables have rather weak forecasting power for realized stock 

market variance at the business cycle frequency. For robustness, in this paper, we assume that 

conditional stock market variance is a linear function of realized variance only.6 

 

3. Linear Specifications 

 We use Guo and Whitelaw’s (2006) linear specification as the benchmark model, in 

which the excess stock market return ( , 1M tr + ) is a linear function of conditional stock market 

variance ( 2
,M tσ ) and financial variables ( tX ) that are proxies for the hedge component: 

(3) 2
, 1 , 1M t M t t tr Xα γσ λ ε+ += + + + , 

where α  is a constant and 1tε +  is the error term. 

 Panel A of Table 2 presents the ordinary least-squared (OLS) estimation results of 

equation (3) obtained from quarterly data. Row 1 shows that realized stock market variance, MV, 

is positively related to the one-quarter-ahead excess stock market returns but the relation is only 

marginally significant. After we also include CAY in the forecasting regression as a proxy for 

the hedge component, the positive effect of MV on the expected stock return becomes significant 

at the 5% level (row 4). Guo and Whitelaw (2006) point out that these results reflect an omitted 

variable problem. MV and CAY are both positively related to future stock market returns, 

although they are negatively related to each other in the full sample (panel A, Table 1). Thus, the 

point estimate of MV is downward biased if we do not control for CAY in the forecasting 

                                                           
6 Guo and Whitelaw (2006) assume that conditional stock market variance is a linear function of MV, CAY, and 
RREL. However, they find that some of their results are sensitive to such a specification because of instability in the 
relation between the conditional variance and CAY (p. 1458). 
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regression.7 Similarly, the effect of MV becomes significantly positive at the 1% level after we 

control for DEF, DY, RREL, and TERM in the forecasting equation (row 5). Overall, row 6 

shows that, in the linear specification, CAY appears to be a better proxy for the hedge 

component than the other financial variables. 

 Panel B of Table 2 reports very similar results for the monthly implied variance data. In 

particular, the point estimate of the RRA in the full-fledge specification (row 12) is about 3, 

which is almost identical to that obtained from the quarterly data (row 6). This result provides 

confidence that realized variance provides a reasonably good measure of conditional stock 

market variance. To summarize, consistent with Guo and Whitelaw (2006), we find a positive 

risk-return tradeoff after controlling for the hedge component, for which CAY is a good proxy. 

 We then investigate whether the coefficient γ  in equation (3) changes countercyclically 

across time. We first estimate a variant of the conditional CAPM, in which we follow Lettau and 

Ludvigson (2001b) by assuming that risk return tradeoff is a linear function of state variables:  

(4) 2
, 1 0 , 1( )M t t M t tr Xα γ γ σ ε+ += + + + . 

Appendix A shows that , in Campbell and Cochrane’s (1999) habit formation model, the risk-

return tradeoff is a complex nonlinear function of time-varying RRA, which is closely related 

with the state variables, for example, CAY. In particular, when CAY is high, consumption is 

closer to its habit level, investors are more risk averse, and thus expect a higher risk-return 

tradeoff. Recall that, as discussed in footnote 1, equation (4) is also consistent with several other 

economic theories, in which RRA is time varying. In this paper, we focus on whether the risk-

return tradeoff is time-varying and do not distinguish these alternative hypotheses. Note that the 

linear specification might be a bit too restrictive and we relax this assumption in the next section. 

                                                           
7 Section 6 shows that omitting CAY from the forecasting regression can also generate an upward bias in the point 
estimate of MV when CAY and MV are positively correlated, as in the first subsample (panel B, Table 1). 
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 We report the GMM (generalized method of moments) estimation results in Table 3. 

Because Table 1 shows that the cyclical variables are closely correlated with each other, we 

include only one of them in a regression. For example, for the column under BCI, we assume 

that RRA is a linear function of a constant and the business cycle indicator BCI. However, to 

improve the estimation efficiency, we include all the cyclical variables and a constant in the 

instrumental variable set. We use Hansen’s (1982) J-test to evaluate the goodness of fit for each 

specification. 

 Panel A of Table 3 shows that, consistent with Lettau and Ludvigson’s (2001b) finding, 

there appears to be strong support for the hypothesis that RRA moves countercyclically in 

quarterly data. The relation between RRA and CAY is positive and statistically significant at the 

1% level (row 3). The conditional CAPM accounts for about 8% of variation in quarterly excess 

stock market returns, which is very similar to that of the unrestricted linear specification reported 

in row 4, Table 2. This result reflects the fact that CAY and its interaction term with MV (as in 

equation 4) are closely correlated, with a correlation coefficient of 76%. Not surprisingly, the 

over-identifying restriction test does not reject the model at any conventional significance level, 

indicating the conditional CAPM provides a good description of the data. 

 Panel A of Table 3 also shows that the relations between RRA and all the other 

instrumental variables have expected signs and are statistically significant at the 1% level for 

TERM, the 5% level for BCI, MV, DY, and the 10% level for RREL. However, because Table 2 

shows that CAY is a better predictor of stock market returns, the over-identifying restriction test 

overwhelmingly rejects the specifications with these variables as the proxies for RRA. Panel B 

of Table 3 shows that we find similar results by using the monthly implied variance data. The 

relation between RRA and CAY is positive and significant at the 1% level, and we fail to reject 

the conditional CAPM at any conventional significance level. However, because the sample of 
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the monthly implied variance data is relatively short, we do not precisely identify the effect of 

the other variables on RRA. 

 Noteworthy, we need to interpret the results reported in Table 3 with caution. By ignoring 

the hedge component, the specification in equation (4) potentially suffers from an omitted 

variable problem, which could bias the risk-return tradeoff estimate. As mentioned above, in 

quarterly data, CAY is closely related to its interaction with MV. Therefore, the interaction term 

in equation (4) is found to be significantly positive possibly because of its close correlation with 

CAY—a proxy for the hedge component. To address this issue, we add CAY to the conditional 

CAPM as a control for the hedge component: 

(5) 2
, 1 0 , 1( )M t t M t t tr X CAYα γ γ σ λ ε+ += + + + + . 

Note that including the other instrumental variables as proxies for the hedge component does not 

change the results in any qualitative manner because Table 2 shows that they provide little 

information about future stock returns beyond CAY. 

 Table 4 presents the estimation results of equation (5). For quarterly data (panel A), the 

relation between RRA and CAY becomes statistically insignificant at any conventional level, 

although it is remains positive. Interestingly, the relations between RRA and all the other state 

variables are also statistically insignificant after we control for CAY as a proxy for the hedge 

component. Also, panel B shows that we find very similar results by using the monthly implied 

variance data. Lastly, for robustness, we assume that time-vary RRA is a linear function of all 

the state variables. These variables are jointly significant in the conditional CAPM specification 

(equation 4); however, the joint explanatory power becomes statistically insignificant at the 

conventional level after we control for the hedge component (equation 5). For brevity, we do not 

report these results here but they are available on request. To summarize, the countercyclical 

risk-return tradeoff appears to be mainly explained by the hedge against changes in the 
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investment opportunity set but not the countercyclical variation in RRA. 

 Equation (A9) in Appendix A shows that, in Campbell and Cochrane’s (1999) habit 

formation model, the Sharpe ratio is approximately a linear function of RRA. To address this 

issue, we use conditional volatility instead of conditional variance in equations (4) and (5) and 

find essentially the same results. For example, the Sharpe ratio is positively and significantly 

related to CAY; however, the relation becomes insignificant at any conventional level after we 

control for CAY a proxy for the hedge component. For brevity, these results are not reported 

here but are available on request. 

 

4. Nonlinear Specifications 

 Asset pricing theories do not provide unambiguous guidance for the functional form of 

the empirical specification, and it is a bit too restrictive to assume that RRA and the hedge 

component are linear functions of state variables, as in equation (5). In particular, Ghysels (1998) 

argues that a parametric asset pricing model with a known functional form may yield misleading 

results if the functional form is misspecified. It is tempting to use fully nonparametric models 

because they are robust against the functional form misspecification; however, they also have 

some drawbacks. First, it may not estimate the conditional mean with high accuracy. Second, it 

often cannot be estimated without running into a serious ‘curse of dimensionality’ problem, 

when the data are rather limited, as in our study. This is because the rate of convergence of many 

nonparametric estimators worsens dramatically as the number of covariates increases. For 

example, it appears that the number of quarterly data in this paper can meaningfully allow for no 

more than one covariate in the nonparametric estimation. 

 To address these issues, we adopt several popular classes of semiparametric nonlinear 

specifications, which are well suited for capturing the potentially complex nonlinearity without 



  13
 
 

much loss of generality. In general, the semiparametric models have the advantage of allowing 

for more appreciable flexibility in functional forms than does a parametric linear or nonlinear 

model. At the same time, they can gain more estimation efficiency than nonparametric models 

with (correctly) imposed linearity restrictions on some components of the model. Also, these 

models can avoid much of the ‘curse of dimensionality’ problem that plagues fully 

nonparametric models, which often render (meaningful) nonparametric model estimation (and 

inference) infeasible for the limited amount of economic data. Lastly, these models tend to be 

easier to interpret and thus could be more informative than fully nonparametric models. 

 In addition to the general appealing statistical properties, the semiparametric models 

considered here are particularly suitable for the main purpose of the paper. The multifactor asset 

pricing models, as in equation (1), are not interested in general interactions between different risk 

factors, which can be best captured by a fully nonparametric model. Instead, we are interested in 

whether the prices of risk factors are potentially nonlinear functions of some state variables, e.g., 

CAY, as suggested by finance theories. As we show below, one can illustrate this dependence in 

an intuitive manner by using the semiparametric smooth coefficient model (Cai et al., 2000; Li et 

al., 2002), which allows for a state variable to affect RRA in a nonparametric nonlinear manner. 

For robustness, we also consider semiparametric partially linear and additive models (and a 

nonparametric model in the one-factor context), in which the price of market risk does not 

depend on any state variable. We obtain essentially the same conclusion by using both classes of 

semiparametric nonlinear models. See Appendix B for more details on estimation of these 

models and associated model specification tests. 

 

 

 



  14
 
 

4.1. Semiparametric Smooth Coefficient Model 

 To address the potential nonlinearity in both the risk and hedge components, we first 

adopt the following smooth coefficient model: 

(6) 2
, 1 , 1( ) ( )M t t M t t tr X Xγ σ λ ε+ += + + , 

where the coefficients ( )tXγ and ( )tXλ are unspecified smooth functions of state variables tX . 

The model is quite general and nests threshold regression models, smooth transition regression, 

and many other regime-switching models as special cases. Due to the relatively small number of 

observations, we can allow for only one state variable in the coefficients ( )tXγ and ( )tXλ . This 

limitation is innocuous because our main focus is to test whether CAY proxies for time-varying 

RRA or the hedge component, as suggested by finance theories. 

Similar to Li et al. (2002), we estimate the term ( )tXγ  nonparametrically using a local 

constant estimator. We use the normal distribution as the kernel function, in which the smoothing 

parameter or the bandwidth of the window of the kernel estimation is determined by popular 

leave-one-out least square cross-validation method. We first test the null hypothesis of a constant 

risk-return tradeoff 

(7) 2
, 1 , 1M t M t tr α γσ ε+ += + +  

against the general smooth coefficient model, as in equation (6). This test, which is equivalent to 

a semiparametric variant of the omitted variable test as discussed in Fan and Li (1996), addresses 

whether state variables tX  provide additional information about future stock market returns 

beyond conditional stock variance that enters the equation linearly as implied by the CAPM. To 

evaluate the relative performance of the two models, we use the bootstrap version of the 

goodness-of-fit test statistic advocated by Cai et al. (2000), which can be understood as a type of 

generalized likelihood ratio tests. Panel A of Table 5 shows that CAY provides important 
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information about future stock market returns beyond the conditional stock market variance, and 

such a relation is statistically significant at the 1% level. 

We then investigate whether the effect of the state variables comes from their roles as the 

conditioning variables for time-varying RRA, as in habit formation models: 

(8) 2
, 1 , 1( )M t t M t tr Xα γ σ ε+ += + + .          

The benchmark or null model remains to be the conditional CAPM with constant RRA, as in 

equation (7). Panel B of Table 5 shows that we reject the linear one-factor model and accept the 

alternative of the model with state-variable-dependent RRA for CAY at the 1% level. Moreover, 

the solid line in Figure 1 shows that the estimated RRA increases monotonically with CAY and 

the relation is strikingly close to being a linear one. These results confirm that the specification 

of RRA as a linear function of CAY (equation 4) provides a good description of the expected 

stock market returns, as reported in row 3, Table 3. Interestingly, the estimated RRA is negative 

when CAY is low but becomes positive when CAY is high. Many early studies, e.g., Campbell 

(1987), Glosten, Jagannathan, and Runkle (1993), Whitelaw (1994), Lettau and Ludvigson 

(2003), and Brandt and Kang (2004), have also documented a negative risk-return tradeoff. Note 

that the negative RRA poses a challenge to habit formation models because they predict a 

positive risk-return tradeoff. Next, we show that the seemingly puzzling finding reflects an 

omitted variable problem. 

 Table 4 shows that the time-varying risk-return tradeoff might reflect the countercyclical 

variation in the hedge component. To address this issue, in panel C of Table 5, we investigate 

whether the countercyclical variation in RRA remains statistically significant after we control for 

the hedge component, which is a linear function of the state variable: 

(9) 2
, 1 , 1( )M t t M t t tr X Xγ σ λ ε+ += + + . 
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The benchmark model is that the expected excess stock market return is a linear function of 

conditional stock market variance and the hedge component, as in equation (3). 

 Consistent with the results reported in Table 4, panel C of Table 5 shows that we fail to 

reject the null hypothesis of no relation between RRA and CAY at the 40% significance level 

after controlling for CAY as a proxy for the hedge component. The dashed line in Figure 1 

shows that, although the estimated RRA still increases with CAY, the relation is dramatically 

weaker than the case without the control for the hedge component, as illustrated by the solid line 

in Figure 1. Interestingly, after we control for CAY as a proxy for the hedge component, the 

estimated RRA is always positive and falls into a tight range 0.9 to 3.3. The point estimate also 

falls comfortably within the plausible range 1 to 10, as advocated by Mehra and Prescott (1985). 

Therefore, allowing for time-varying RRA does not change Guo and Whitelaw’s (2006) main 

finding of a positive risk-return tradeoff in any qualitative manner. 

 Many finance theories, e.g., Campbell and Cochrane’s (1999) habit formation model and 

Guo’s (2004) limited participation model, predict a positive relation between CAY and future 

excess stock market returns; however, such a relation does not have to be linear. To address this 

issue, we allow for the possible nonlinear presence of the hedge component, which is modeled as 

a nonparametric function of a single state variable, ( )tXλ : 

(10) 2
, 1 , 1( )M t M t t tr Xγσ λ ε+ += + + . 

As a starting point, we assume that RRA is constant in equation (10) but will relax this 

assumption later. The benchmark model is that the expected excess stock market return is a 

linear function of conditional variance and the hedge component, as in equation (3). Panel D of 

Table 5 shows that we fail to reject the null hypothesis of the linear presence of the hedge 
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component for CAY at the 50% significance level. Similarly, the solid line in Figure 4 shows 

that the effect of CAY on the expected excess stock market return is essentially linear. 

 We then compare the linear specification of equation (3) with the general smooth 

coefficient specification in equation (6). Panel G of Table 5 shows that, again, we cannot reject 

the linear specification at any significance level for the CAY variable. Also, the estimated 

coefficients ( )tXγ and ( )tXλ are essentially the same as those plotted in Figure 1 (dashed line) 

and Figure 4 (solid line), respectively. Lastly, for completeness, we also compare the 

specifications in equations (10) and (9) with the general smooth coefficient specification in 

equation (6) and find no evidence of nonlinearity in either the risk (panel E) or the hedge (panel 

F) component. To summarize, the linear specification of equation (3), as adopted in Guo and 

Whitelaw (2006), has explanatory power for the expected stock market return almost identical to 

that of the more elaborate nonparametric smooth coefficient model. This finding suggests that 

one can use the simple linear specification without much loss of generality. 

 We find similar results by using the other financial variables as proxies for the time-

varying RRA. Panel A of Table 5 shows that DEF, DY, and TERM provide important 

information about future stock market returns beyond conditional stock market variance. 

Consistent with the results reported in Table 3, panel B shows that DEF, DY, and TERM have a 

significant effect on RRA in the one-factor model. Also, the estimated RRA moves 

countercyclically in all cases. (For brevity, this result is not reported here but available on 

request) However, by contrast with the results reported in Table 4, panel C shows that their 

effects in RRA remain statistically significant (DY and TERM) or marginally significant (DEF) 

after we control for the hedge component, which is a linear function of these state variables. 

There are two reasons for the difference. First, consistent with the finding in Boudoukh et al. 

(1997) and Harvey (1988), panels D and F of Table 5 show that there is a significant nonlinear 
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relation between TERM (as a proxy for the hedge component) and the expected stock market 

return. After we control for the nonlinear effect of the hedge component on the expected return, 

panel E of Table 5 shows that we fail to reject the null hypothesis of no relation between TERM 

and RRA at the 17% significance level. 

 Second, Table 2 shows that DEF and DY alone do not capture all the variation in the 

hedge component. To address this issue, we augment the proxy for the hedge component with 

additional state variable(s): 

(11) 2
, 1 1, , 1 1, 2 2, 1( )M t t M t t t tr X X Xγ σ λ λ ε+ += + + +  

or 

(12) 2
, 1 1, , 1 1, 2 2, 1( ) ( )M t t M t t t tr X X Xγ σ λ λ ε+ += + + + . 

We then test the augmented models with time-varying RRA against the augmented benchmark 

model with constant RRA: 

(13) 2
, 1 , 1 1, 2 2, 1M t M t t t tr X Xγσ λ λ ε+ += + + + . 

The models in equations (11) and (12) allow for potential nonlinear dependence of RRA on one 

state variable (i.e., DEF and DY), which is of central interest. Also, while the first model 

(equation 11) allows for the linear presence of both itself and one or all of the other state 

variables as proxy for the hedge component, the second model (equation 12) allows for the 

nonlinear presence of itself and the linear presence of one or all of the other state variables as 

proxy for the hedge component. When we use all the state variables as arguably the best 

empirical proxy for the hedge component, we fail to reject the null hypothesis of no dependence 

of RRA on DEF or DY at the 10% significance level in both specifications. For brevity, these 

results are not reported here but are available on request. 
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 Lastly, we investigate the relation between expected excess stock market returns and 

conditional stock market variance, as implied by Campbell and Cochrane’s habit formation (see 

equation (A9) in Appendix A). The results are essentially the same as those reported above. For 

example, we find that the Sharpe ratio is positively related to CAY and such a relation is 

statistically significant at the 1% level. However, it becomes insignificant at the over 40% level 

after we control for CAY as a proxy for the hedge component. Figure A1 in Appendix A shows 

that there is a strong positive relation between the Sharpe ratio and CAY (solid line); and it is 

attenuated dramatically after we control for the hedge component (dashed line). These patterns 

are essentially the same as those in Figure 1. 

 

4.2 Volatility-Dependent Risk Aversion   

The full-fledged semiparametric smooth coefficient two-factor model is quite general 

because it allows for the effect of both the risk and hedge components on the expected return to 

vary across business cycles. However, it does not adequately address the possibility of time-

varying risk aversion driven by volatility regimes shift, which may or may not be the same as the 

state-variable-dependent risk aversion. To address this issue, we consider a rather general 

additive two-factor model, 

(14) 2
, 1 , 1( ) ( )M t M t t tr g Xσ λ ε+ += + + , 

where we still allow the state variable as proxy for the hedge component to have potentially 

nonlinear effects on the expected stock return, as in the smooth coefficient model. 

 The difference between the additive model (equation 14) and the smooth coefficient 

model (equation 6) lies in the specification of volatility. In the additive model, time-varying 

RRA is modeled as an unspecified functional form in volatility. Such an issue of potential 

volatility-dependent risk aversion is also considered by Mayfield (2004), Bliss and 
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Panigirtzoglou (2004), and Lundblad (2006); and their specifications can be nested in the two-

factor model in equation (14). Nevertheless, unlike the smooth coefficient model, the additive 

model does not allow for the potential interaction between the state variable and the volatility. 

Hence, these two classes of nonparametric models are designed to capture different types of 

nonlinearity, both of which have been investigated in the existing literature. 

Again, we start with testing the general additive two-factor model (equation 14) against 

the CAPM with constant RRA (equation 7). We also use the bootstrap version of the goodness-

of-fit test statistic advocated by Cai et al. (2000) to evaluate the relative performance of the two 

models.8 Panel A of Table 6 shows that, in the cases of CAY and TERM, there is again evidence 

against the adequacy of the linear CAPM model, which could be due to either the nonlinearly 

priced risk component (as driven by the volatility-dependent risk aversion) or the linearly or 

nonlinearly priced hedge component. 

 Next, recognizing the possibility of rejection due to inadequacy of capturing volatility-

dependent risk aversion in the linear one-factor model (equation 7), we consider a one-factor 

CAPM model with potentially volatility-dependent risk aversion as the alternative specification: 

(15) 2
, 1 , 1( )M t M t tr g σ ε+ += + . 

Several recent studies have investigated specifications that are similar to that in equation (15). 

Bliss and Panigirtzoglou (2004) consider two equal-sized subsamples corresponding to periods 

of high and low volatility and examine whether the estimated RRA differs across the two 

subsamples. Mayfield (2004) uses a more sophisticated model to allow for two regimes of stock 

market volatility but assumes the same RRA in both states of volatility. Lundblad (2006) not 

only allows for two regimes of stock market volatility but also allows for the different values of 

RRA in the two regimes. Our model is more general than these specifications by observing that 
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2
,( )s tg σ  can approximate for 2 2

, ,( )s t s tγ σ σ , where S denotes different regimes of volatility (e.g., 

high versus low) as determined by different threshold levels of volatility. Note that 2 2
, ,( )s t s tγ σ σ  

allows for both multiple (rather than two) regimes in volatility and different risk aversion 

coefficients in each regime.9     

Panel B of Table 6 shows that we can reject the linear one-factor model and accept the 

alternative specification of the one-factor CAPM with volatility-dependent risk aversion at the 

5% level. Solid line in Figure 5 plots the fitted dependent variable from the nonlinear one-factor 

model against conditional variance, and the slope of the curve represents the risk aversion 

coefficient. It is clear that the slope of the nonparametrically fitted curve is generally upward, 

and not downward, indicating a positive risk-return tradeoff. Interestingly, Our result appears to 

verify the existence of roughly two regimes of volatility, as assumed in Mayfield (2004). When 

conditional stock market variance is relatively low, the slope is flat, indicating weak risk 

aversion. However, when stock market variance is higher, the upward slope becomes steeper and 

thus suggests stronger risk aversion. This finding is consistent with the results reported in row 2 

of Table 3, which shows that the risk-return tradeoff increases with conditional or realized stock 

market variance. But it differs from that in Bliss and Panigirtzoglou (2004), who find an inverse 

relation between stock market variance and their option-based measures of RRA. One possible 

reason is that these authors use a relatively short sample spanning the period 1983 to 2001, as 

opposed to the 1953 to 2004 period used here. 

                                                                                                                                                                                           
8 For partially linear and additive model specification tests in Table 6, we also implement another goodness of fit 
test due to Dette (1999) and Fan and Huang (2001), and find that the results are qualitatively the same. 
9 Mayfield (2004) uses a two-factor model, and our point here would better apply to our additive two-factor model 
with such nonparametric function in volatility. 
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To address the concern about the potential omitted-variable problem, we allow for a 

linear presence of the hedge component (proxied by one state variable) in the model of volatility-

dependent risk aversion: 

(16) 2
, 1 , 1( ) ( )M t M t t tr g Xσ α λ ε+ += + + + . 

The benchmark is the linear two-factor model, as in equation (3). Panel C of Table 2 shows that 

we fail to reject the null hypothesis of no volatility-dependent risk aversion at any conventional 

significance levels across all the five state variables considered after allowing for the linear 

presence of the hedge component. In particular, the dashed line in Figure 5 shows that the 

positive relation between 2
,( )M tg σ  and 2

,M tσ  becomes very close to being a linear one after we 

control for CAY as a proxy for the hedge component. 

Lastly, we estimate the additive model, which allows for nonlinear presence of both risk 

and hedge components, as specified in equation (14). The benchmark model is again the linear 

two-factor model, as in equation (3). The result (Panel D, Table 6) confirms no rejection of the 

linear two-factor model except for TERM. Note that the rejection of the linear model for TERM 

reflects its nonlinear effects on the expected stock return as a proxy for the hedge component. 

Overall, consistent with the smooth coefficient model, the result suggests that the Guo and 

Whitelaw’s (2006) specification of the expected excess stock market return as a linear function 

of conditional variance and CAY provides a reasonably good description of the data. 

The disappearance of volatility-dependent risk aversion in the two-factor model could 

again be a manifestation of the omitted variable bias in the one-factor model and can be well 

explained by the model of Mayfield (2004). Specifically, Mayfield (2004) theoretically 

demonstrates that changes in investment opportunities can be roughly proxied by unpredictable, 

state-dependent changes in the level of stock market volatility. Nevertheless, as his model is only 

a special case of Merton’s ICAPM, the explanatory power of the state-dependent volatility 
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regimes may well be subsumed by the state variables, which could be better proxies for 

investment opportunities. 

 

4.3 Monthly Data 

 We have repeated the above analysis using monthly implied variance data. In general, the 

results are qualitatively the same as those found in quarterly data. For example, in the additive 

model, we find a significant nonlinear risk-return tradeoff in the stock market, which tends to 

comove positively with stock market variance. Also, the countercyclical variation in RRA 

disappears after we control for CAY as a proxy for the hedge component. In the smooth 

coefficient model, we find that CAY provides important information about future stock market 

returns beyond conditional stock market variance. However, because of the relatively short span, 

countercyclical variation in RRA is never significant in the smooth coefficient model, even 

without the control for the hedge component. For brevity, we do not report these results here but 

they are available on request. 

 

5. Cross-Sectional Evidence 

 We have shown that the risk-return tradeoff in the stock market moves countercyclically 

in the conditional CAPM specification, and such a relation becomes statistically insignificant 

after we control for CAY as a proxy for the hedge component. This result appears to be robust 

because we reach the same conclusion by using three different specifications. 

 We argue that these results are consistent with the hypothesis of time-varying investment 

opportunities, as in Merton’s ICAPM. However, it is important to note that we cannot 

completely rule out the hypothesis of time-varying RRA, as in habit formation models. In 

particular, because of the close relation between CAY and its interaction with MV (CAY*MV), 
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the time-series data do not allow us to draw a clear-cut distinction between the two hypotheses. 

To illustrate this point, we run a regression of stock market returns on a constant, MV, CAY (as 

a proxy for the hedge component), and the interaction term between MV and CAY (as a proxy 

for time-varying RRA). We find that, because of the multicollinearity problem, the interaction 

term is statistically insignificant and CAY is significant only at the 10% level. Thus, there is only 

marginal support for time-varying investment opportunities. To further differentiate the two 

hypotheses, in this section, we follow Lettau and Wachter’s (2006) suggestion and investigate 

their implications for the cross-section of stock returns. 

 We investigate whether a variant of the conditional CAPM helps explain the cross-

section of stock returns on the 25 Fama and French (1993) portfolios sorted on size and the 

book-to-market ratio over the 1952:Q1 to 2004:Q4 period. For each of the 25 portfolios, we first 

run the time-series regression: 

(17) , 1 0 1*P t p p t p t t tr MV MV CAYα γ γ ε+ += + + + , 

where , 1P tr +  is the excess return on the portfolio p. If loadings on the market risk are constant 

across time, as assumed in Lettau and Ludvigson (2001b), the coefficients 0pγ  and pγ  are 

proportional to loadings on the market risk. Under the null hypothesis of habit formation models, 

the interaction term CAY*MV in equation (17) should carry a positive risk premium. 

 We can also motivate equation (17) using the equilibrium model by Zhang (2005). Zhang 

shows that, in the presence of adjustment costs for investment, stocks with high B/M (value 

stocks) have higher expected returns than stocks with low B/M (growth stocks) because the 

former tend to be more risky when the risk-return tradeoff or RRA is high. Therefore, under the 

null hypothesis of habit formation models, we expect that value stocks have higher loadings on 

the interaction term MV*CAY in equation (17) than do value stocks. 

 Figures 6 and 7 plot loadings of the 25 Fama and French portfolios on conditional stock 
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market variance MV and the interaction term MV*CAY, respectively.10 Each portfolio is 

identified with a two-digit number. The first digit refers to size, with 1 denoting the smallest 

stocks and 5 the largest stocks. The second digit refers to B/M, with 1 denoting the lowest B/M 

ration and 5 the highest B/M ratio. Figure 6 shows that, consistent with early studies, e.g., Lettau 

and Wachter (2006), growth stocks tend to have higher loadings on the market risk than do value 

stocks within each size quintile. However, by contrast with habit formation models, Figure 7 

shows that growth stocks have substantially higher loadings on the interaction term than do value 

stocks within each size quintile. 

 We then investigate whether loadings on MV and MV*CAY help explain the cross-

section of stock returns by using the Fama and MacBeth (1973) cross-sectional regression 

approach. Row 1 of Table 7 shows that the conditional CAPM accounts for over 40% of 

variation in the cross-section of stock returns. This result clearly indicates that the conditional 

CAPM is a substantial improvement over the unconditional CAPM, which has negligible 

explanatory power for the 25 Fama and French portfolios (see, e.g., Lettau and Ludvigson 

(2001b)). More importantly, the interaction term MV*CAY is significantly priced at the 5% 

level, according to Shanken’s (1992) corrected standard errors (as reported in squared brackets). 

However, there is a problem with the conditional CAPM interpretation.11 The interaction term 

carries a negative risk premium, as opposed to the positive premium predicted by habit formation 

models. The negative premium reflects the fact that growth stocks have higher loadings on the 

interaction term than do value stocks (Figure 7). Therefore, consistent with the theoretical work 

by Lettau and Wachter (2006), our empirical results indicate that habit formation models cannot 

explain the B/M effect. To summarize, the cross-sectional evidence casts doubt on the hypothesis 

                                                           
10 In the time-series regressions, the two factors are statistically significant at the 5% level for most portfolios. For 
brevity, we do not report the results here but they are available on request. 
11 Several recent studies, e.g., Petkova and Zhang (2005), Lewellen and Nagel (2005), and Fama and French (2005), 
have also cast doubt on explanatory power of the conditional CAPM for the cross-section of stock returns. 
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that CAY forecasts stock returns because it is a proxy for time-varying RRA. 

 One possible explanation is that the interaction term MV*CAY is significantly priced 

because of its close relation to CAY, which is a proxy for the hedge against changes in the 

investment opportunity set. To address this issue, we also include CAY as an additional risk 

factor in the cross-sectional regression: 

(18) , 1 0 1*P t p p t p t t p t tr MV MV CAY CAYα γ γ λ ε+ += + + + + . 

As conjectured, row 2 of Table 7 shows that the interaction term MV*CAY becomes 

insignificant at the 5% level, while loadings on CAY carry a significantly negative premium.12 

 Recent studies, e.g., Campbell and Vuolteenaho (2004) and Guo et al. (2005), show that 

the value premium is a priced risk factor because it moves closely with changes in the discount 

rate, which is the measure of investment opportunities in Campbell’s (1993) ICAPM. To 

illustrate this point, we run regressions of the excess portfolio returns on realized stock market 

variance (MV) and realized value premium variance (V_HML): 

(19) , 1 0 1_P t p p t p t tr MV V HMLα γ φ ε+ += + + + . 

We calculate the realized value premium variance using daily data obtained from Ken French at  

Dartmouth College, which span the July 1963 to December 2004 period. Figure 8 shows that 

loadings on V_HML are negative and decrease with B/M within each size quintile. Guo et al. 

(2005) show that, because the value premium is a proxy for the discount-rate shock, the negative 

loadings on V_HML reflect a correction for overpricing of the discount-rate shock in the CAPM, 

as first pointed out by Campbell and Vuolteenaho (2004). Row 3 of Table 7 shows that, 

                                                           
12 Campbell (1996) suggests that we should use innovations in the state variables as the risk factors. However, Chen 
(2003) and Chen and Zhao (2005) find that, because stock return predictors are usually persistent, the estimation 
results could be sensitive to the identification scheme of these innovations. By contrast, we avoid such a problem in 
our estimation of the ICAPM (e.g., equation 18). 
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consistent with Fama and French (1993, 1996), for example, loadings on V_HML are positively 

and significantly priced at the 5% level.13 

 As mentioned in footnote 2, the scaled stock price such as CAY forecasts stock market 

returns because of its close relation with the hedge factor, e.g., V_HML, which is omitted from 

the CAPM. Consistent with this hypothesis, Guo et al. (2005) show that CAY forecasts stock 

market returns because of its close (negative) relation to V_HML. Their results suggest that 

loadings on CAY are negatively priced in the cross-section of stock returns because of their 

inverse relation with loadings on realized value premium variance, V_HML. Row 4 of Table 7 

confirms this conjecture by showing that CAY provides no additional information beyond 

V_HML at the 5% level. Similarly, row 5 of Table 7 shows that the explanatory power of the 

interaction term MV*CAY becomes insignificant at any conventional level after we also include 

V_HML in the cross-sectional regression. 

 To summarize, our cross-sectional evidence clearly indicates that CAY is not a proxy for 

time-varying RRA, but it might be a proxy for the hedge against changes in the investment 

opportunity set.14 

 

6. Discussion 

 We find that, in the time-series data, the risk-return tradeoff in the stock market increases 

monotonically with CAY. The cross-sectional results also clearly suggest that the countercyclical 

risk-return tradeoff mainly reflects time-varying investment opportunities (as in Merton’s or 

                                                           
13 We obtain a substantially higher R-squared (about 80%) if we use the Fama and French 3-factor model in the 
cross-sectional regression. The difference reflects the fact that loadings are much less precisely estimated in the first-
pass regression for our forecasting model than the Fama and French (1993) factor model. To improve the efficiency, 
we can impose the restriction that the constant term is equal to zero in the first-pass regression; and we find that the 
coefficient of value premium volatility is statistically significant at the 5% level and the R-squared is about 80%. 
Also see Guo and Savickas (2005) for discussion on this issue. 
 
14 We find that the interaction terms of MV with the other financial variables are not priced in the cross-section of 
stock returns. For brevity, we do not report these results here but they are available on request. 
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Campbell’s ICAPM) but not time-varying RRA (as in habit formation models). However, 

Merton (1973) and Campbell (1993) do not explicitly explain why investment opportunities 

change across time. In this section, we provide a tentative explanation by showing that our main 

findings are consistent with Guo’s (2004) limited stock market participation model.15 

 In Guo’s (2004) model, there are two (types of) agents: shareholders and 

nonshareholders. While both shareholders and nonshareholders can trade with each other in a 

one-period bond market, only shareholders own stocks. In the presence of idiosyncratic income 

(or liquidity) shock and borrowing constraints, (exogenously assumed) limited participation 

generates an illiquidity premium, tILL , for holding stocks, in addition to the risk premium as in 

the CAPM (see equation (2)). Guo (2004) shows that under some reasonable parameter 

configuration, the limited participation model provides a good explanation for the equity 

premium puzzle, the excess volatility puzzle, and stock return predictability. The model also has 

a new prediction that stock market volatility is a U-shaped function of the dividend yield, by 

contrast with the positive relation between the two variables, as implied by the conventional 

wisdom of the leverage effect (see, e.g., Campbell and Cochrane (1999) and Chan and Kogan 

(2002)). Below, we show that Guo’s model also helps explain the positive relation between the 

risk-return tradeoff and CAY, as documented in this paper. 

 Two implications of Guo’s (2004) model help explain our main findings. First, the state 

variable CAY is positively correlated with conditional stock market returns because of its close 

relation with the illiquidity premium. This result is quite intuitive. A positive income or liquidity 

shock lowers the illiquidity premium because it makes shareholders less vulnerable to binding 

borrowing constraints. The reduced illiquidity premium raises the stock prices and thus lowers 

                                                           
15 Our results might be potentially consistent with some other equilibrium asset pricing models, e.g., Whitelaw 
(2000), Bansal and Yaron (2004), and Santos and Veronesi (2006). For brevity, we omit the discussion of these 
models. 
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the CAY variable. Similarly, the negative shock raises the illiquidity premium and CAY. 

Second, stock market volatility is a U-shaped function of CAY because shocks, either positive or 

negative, always raise volatility. That is, volatility and CAY are positively correlated when CAY 

is high and negatively correlated when CAY is low. Note that the second implication helps 

explain the unstable relation between CAY and MV, as documented in Table 1. By contrast, 

Campbell and Cochrane’s (1999) habit formation model cannot explain the unstable relation 

because it predicts a positive relation between MV and CAY. 

 These two implications explain why the risk-return tradeoff is positively related to CAY 

even though RRA is constant in Guo’s (2004) model. When CAY is relatively low, the illiquidity 

premium ( tILL ) and the risk premium ( 2
,M tσ ) in equation (2) are negatively correlated. 

Therefore, omitting CAY as a proxy for the hedge component generates a downward bias in the 

estimated risk-return tradeoff. When CAY is relatively high, the illiquidity premium and the risk 

premium in equation (2) are positively correlated; therefore, omitting CAY as a proxy for the 

hedge component generates an upward bias in the estimated risk-return tradeoff. Overall, Guo’s 

(2004) model predicts a positive relation between the risk-return tradeoff and CAY. 

 To illustrate this point, we estimate the semiparametric smooth coefficient models of 

equations (8) and (9) using simulated data generated from Guo’s (2004) benchmark model. For 

comparison with the actual data, we also use CAY as the conditioning variable in the estimation. 

We use 20,000 simulated observations; however, we find a very similar pattern by using a 

sample with the number of simulated observations similar to that of the post-World War II 

quarterly data. Figure 2 shows that, consistent with the finding obtained from the actual data (as 

shown in Figure 1), the risk-return tradeoff increases monotonically with CAY (solid line) in the 

conditional CAPM specification. But the relation essentially disappears after we control for CAY 

as a proxy for the illiquidity premium (dashed line). More importantly, as conjectured (and also 
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confirmed by actual data in Figure 1), the dashed line is above the solid line when CAY is low 

and the dashed line is below the solid line when CAY is high. 

 For robustness, we also estimate the additive models of equations (15) and (16). By 

omitting the hedge component, the solid line in Figure 9 clearly shows that stock market variance 

has a nonlinear effect on the expected stock market returns in the conditional CAPM 

specification. In particular, consistent with the data (Figure 5), the effect appears to depend 

positively on variance. Again, after we control for CAY as a proxy for the hedge component, the 

dashed line in Figure 9 shows that the nonlinear effect of variance on the expected stock market 

essentially disappears. Although Figure 9 suggests that Guo’s (2004) model appears to explain 

the data well, it is important to note that modeling the stock return process as solely depending 

on the volatility regimes could generate misleading results because of the unstable relation 

between conditional variance and CAY. Instead, Guo’s (2004) model suggests that it is advisable 

to use CAY as the state variable.   

 Lastly, Table 8 presents further empirical evidence on the effect of the unstable relation 

between CAY and MV on the risk-return tradeoff. In particular, it shows that, consistent with 

Guo’s (2004) model (as illustrated in Figure 2), the bias of the estimated risk-return tradeoff in 

the conditional CAPM specification could be either positive or negative, depending on the level 

of CAY. For example, Table 1 shows that MV and CAY are positively correlated in the first 

subsample spanning the period 1952:Q1 to 1979:Q4. Consistent with the prediction of Guo’s 

(2004) model, we find that controlling for CAY as a proxy for investment opportunities lowers 

the point estimate of MV. By contrast, in the second subsample spanning the period 1980:Q1 to 

2004:Q4, controlling for CAY increases the point estimate of MV because CAY and MV are 

negatively correlated. 
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7. Conclusion  

 In this paper, we find that the risk-return tradeoff in the stock market increases 

monotonically with CAY across time. This result cannot be explained by the countercyclical 

variation in RRA, as well-accepted habit formation models imply. Instead, we argue that it 

mainly reflects the countercyclical variation in investment opportunities. In particular, we show 

that it is consistent with Guo’s (2004) limited stock market participation model, in which the 

risk-return tradeoff comoves with shareholders’ liquidity conditions even though RRA is 

constant. 

 Our results have important implications for future empirical studies. First, the 

specification of the excess expected stock market return as a linear function of conditional 

variance and the consumption-wealth ratio appears to provide a reasonably good description of 

the data. Second, because of the unstable relation between conditional variance and the 

consumption-wealth ratio across time, caution must be taken when modeling conditional stock 

market variance as a linear function of some state variables. 

 Our results also have important implications for future theoretical explorations. We show 

that, in Guo’s (2004) model, the time-varying risk-return tradeoff (as observed in the data) is 

mainly driven by the illiquidity premium. This result is in contrast with many early studies, e.g., 

Constantinides (1986), Heaton and Lucas (1996), and Huang (2003), who suggest that the effect 

of illiquidity premium is negligible. However, it appears to be consistent with a large number of 

empirical findings, which document important effects of the illiquidity premium on asset prices 

in many financial markets (e.g., see Amihud et al. (2005) for a recent survey). Moreover, Guo 

and Savickas (2006) find that many standard liquidity measures have predictive power for excess 

stock market returns very similar to that of CAY. These results highlight the important link 

between the general equilibrium theory and the microstructure, as stressed by O’Hara (2003). 
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 Lastly, the prediction of Guo’s (2004) model differs from that in the early studies because 

of the (exogenously assumed) limited participation in the stock market. While it is unclear why 

many households stay away from the equity market even though the equity premium is large in 

the historical data, a few empirical studies, e.g., Mankiw and Zeldes (1991), Vissing-Jorgensen 

(2002), Ait-Sahalia et al. (2004), Malloy et al. (2005), and Lettau and Ludvigson (2006), have 

illustrated its promising role in explaining the dynamic of stock prices. In future research, it will 

be interesting to develop equilibrium models with endogenous limited participation. 
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Appendix A 

The Relation between Risk-Return Tradeoff and Relative Risk Aversion in Campbell and 

Cochrane’s (1999) Habit Formation Model 

 In Campbell and Cochrane’s (1999) habit formation model, the utility function is 

(A1) 1

ln( ) 1
( ) ( ) 1 0 1

1

t t

t t t t

C X if
U C X C X if but

α

α

α α
α

−

− =⎧
⎪− = ⎨ − −

> ≠⎪ −⎩

. 

In equation (A1), tC  is the consumption, tX  is the habit level of consumption, and α  measures 

the curvature of the representative agent’s utility function with respect to it argument t tC X− .  

 Brandt and Wang (2003) show that RRA, which measures the curvature of the utility 

function with respect to consumption, is time-varying: 

(A2) 1
t

t

RRA
S

α= , 

where t t
t

t

C XS
C
−

=  is the consumption surplus ratio. Campbell and Cochrane (1999) assume that 

the log consumption surplus ratio ln( )t ts S=  follows an exogenous process. Note that the risk 

aversion measure in equation (A2) is very closely related to the risk aversion measure in 

Campbell and Cochrane (1998), which is defined as the curvature of the value function with 

respective to the wealth. For example, both measures decrease monotonically with tS . For the 

ease of illustration, we use the definition in equation (A2) here.  

 Brandt and Wang (2003, p. 1466) show that the conditional  equity premium is 

(A3) , 1 1 , 1( ( ) 1) ( , )g
t M t t t t M tE r s Cov rα λ ε+ + += + , 

where ( )tsλ  is the sensitivity function defined in Campbell and Cochrane (1999) and 1
g
tε +  is the 

consumption growth. In Campbell and Cochrane’s (1999) model, the volatility of the 
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consumption growth, gσ , is constant, and 1
g
tε +  and , 1M tr + are perfectly correlated. Also, their 

Figure 5 shows that conditional stock market volatility decreases monotonically with the 

consumption surplus ratio. For illustration, we assume that 

(A4) , ( )M t t gV sσ σ= , 

where ( )tV s is a nonlinear function of ts . We then can write equation (A3) as 

(A5) 2
, 1 ,[ ( ( ) 1) / ( )]t M t t t M tE r s V sα λ σ+ = + . 

Equation (A2) implies  

(A6) ln( ) ln( )t ts RRAα= − . 

Therefore, in Campbell and Cochrane’s (1999) habit formation model, the risk-return tradeoff is 

a complex nonlinear function of relative risk aversion: 

(A7) 2
, 1 ,[ ( (ln( ) ln( )) 1) / (ln( ) ln( ))]t M t t t M tE r RRA V RRAα λ α α σ+ = − + − . 

Figure 1 in Campbell and Cochrane (1999) shows that ( )tsλ  decreases monotonically with ts  

and the relation is essentially linear. Therefore, we can rewrite equation (A7) approximately as 

(A8) 2
, 1 ,[ (ln( ) ln( ) 1) / (ln( ) ln( ))]t M t t t M tE r RRA V RRAα α α σ+ ≈ − + − . 

Therefore, the risk-return tradeoff increases with RRA if (ln( ) ln( ))tV RRAα −  is not very 

sensitive to changes on RRA. Moreover, Equation (A4) and (A8) imply positive relation between 

the Sharpe ratio and RRA: 

(A9) , 1 ,(ln( ) ln( ) 1)t M t t g M tE r RRAα α σ σ+ ≈ − + . 

Figure A1 plots the smooth-coefficient estimates of the Sharpe ratio as a nonlinear function of 

CAY, with and without control for CAY as the proxy for the hedge component. 
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Figure A1 Smooth-Coefficient Estimates of the Sharpe Ratio as a Nonlinear Function of CAY 
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Note: The solid line plots the estimate of the coefficient ( )tXγ  in the one-factor CAPM, 

, 1 , 1( )M t t M t tr Xα γ σ ε+ += + + ; and the dashed line is for the two-factor ICAPM, 

, 1 , 1( )M t t M t t tr X Xα γ σ λ ε+ += + + + . The data span the period 1951:Q4 to 2004:Q4. 
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Appendix B 

Nonparametric and Semiparametric Model Estimation and Specification Tests 

This appendix provides a brief summary of estimation procedures and model 

specification tests of various nonparametric and semiparametric models considered in the paper. 

We start with a general linear model for data ( tX , tY ): 

(B1) '
0 , 1, 2,...,t t tY X t Tβ β ε= + + =              

where tX is a (d × 1) vector of regressors and β  is the corresponding vector of parameters.  The 

data can be independent or weakly dependent (i.e., stationary) with 0)|( =tt XE ε .  In all the 

following models, we also allow for a conditionally heteroscedastic error process of unknown 

form: )|( tt XE ε = )(2
tXσ . 

1. The estimation of nonparametric and semiparametric models 

In general, a nonparametric regression model corresponding to equation (B1) can be 

generally expressed as:  

(B2) ttt XgY ε+= )( ,            

where ( )g ⋅  is an unknown smooth function. Although as general as it may be, equation (B2) 

cannot be estimated without running into a serious ‘curse of dimensionality’ problem, when d is 

relatively large while the data are limited.  To address the problem, we consider several popular 

semiparametric models.  

The first model under consideration is a partially linear model, which is originally 

considered by Robinson (1988). Let tX = ''' ),( tt ZW and tW  and tZ  are respectively (p × 1) and (q 

× 1) vectors (p + q = d). The partially linear model is given as follows:  

(B3) ' ( ) , 1, 2,..., .t t t tY Z f W t Tδ ε= + + =                                                
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Note that the partially linear model of equation (B3) consists of a linear component '
tZ δ  and 

nonparametric components )( tWf , where the functional form of ( )f ⋅  is left unspecified.   

The second type of semiparametric models is an additive model, which is similar to the 

one discussed in Linton and Nielsen (1995). The model can be generally expressed as follows: 

(B4) 0 1 1 2 2( ) ( ) ... ( ) .t t t d dt tY g X g X g Xβ ε= + + + + +       

Compared to the partially linear models above, the additive model (B4) jointly allows for the 

potential nonlinearity in each independent variable itX . On the other hand, it still has the 

advantage of mitigating much curse of dimensionality, as the partial linear model. Such 

advantage is obtained through the imposition of an additive structure on the unspecified function 

( )g ⋅ , compared to a fully nonparametric model (B2).   

The third semiparametric model we consider is the following smooth (varying) 

coefficient model:    

(B5) ' ( ) ( )t t t t tY Z W Wθ ψ ε= + +                         

where both model coefficients ( )tWθ and ( )tWψ are unspecified smooth functions of vector tW .  

The model, as considered in Cai et al. (2000) and Li et al. (2002), is a relatively new nonlinear 

time series model with state-dependent coefficients. The smooth coefficient model generally 

allows more flexibility than a partially linear model, and at the same time it still avoids much of 

the ‘curse of dimensionality’ problem as the nonparametric function is restricted only to a subset 

of the vector tX  (i.e., tW ). Note that by allowing for '
0 1( )t tW Wψ ψ ψ= + , we also have the 

following partially linear smooth coefficient model: 

(B6) ' '
0 1( )t t t t tY Z W Wθ ψ ψ ε= + + +                  
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We estimate model (B3) using the standard Robinson’s (1988) procedure, and model 

(B4) using the marginal integration method as proposed by Linton and Nielson (1995), among 

others. Since there has been much discussion about models (B2)-(B4) in the literature, their 

estimation details are omitted here. We only discuss in a bit more detail on the estimation of 

model (B5) due to its relative newness. Denote ' '( ) ( ( ) , ( ) ) 't t tW W Wβ θ ψ=  and '( ,1) 't tV Z= , the 

smooth coefficient model (B5) can be estimated as follows (Li et al., 2002; Cai et. al., 2000): 

(B7) 
1

'

1 1

ˆ( ) ,
T T

t t
t t h t t h

t t

W w W ww VV K V Y K
h h

β
−

= =

⎡ ⎤− −⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
∑ ∑  

where Kh(.) is a kernel estimator, and h is the vector of bandwidths associated with Wt. Under 

some regularity conditions, it can be shown that ˆ( )wβ follows a normal distribution at the rate of  

1 2 .qnh h h  The partially linear smooth coefficient model (B6) can be estimated by combining 

the estimation procedures for models (B3) and (B5). 

Throughout the paper we use the local constant estimator due to its popularity and well-

developed theoretical properties, while the basic results are doubled checked with the local linear 

estimator. We use the standard Normal kernel, and it is well known in the literature that the 

choice of the kernel function would have little effect on nonparametric estimation. The selection 

of the smoothing parameter (bandwidth) h is based on the data-driven leave-one-out least squares 

cross-validation method.  

2. The model specification test 

To test a nonparametric or semiparametric model against another semiparametric or a 

linear specification, we consider a bootstrap version of goodness of fit test due to Cai et al. 

(2000). This is based on the difference of the sums of squared residuals between the two 

competing models: 
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(B8) 2 2 2

1 1 1

ˆ /
T T T

t t t
t t t

LR e e e
= = =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ ∑ ∑ ,                             

where t̂e  is the estimated residual from the null model, and te is the residual from the alternative 

model. The empirical distribution of the LR test is obtained via the bootstrap approach with the 

number of simulations equal to 500. In particular, we bootstrap the centralized residuals from the 

alternative mode instead of the null model, because for all semi- and nonparametric models 

considered here residuals from the alternative model are consistent under both null and 

alternative hypotheses (Cai et al. (2000)). 

 To control for possible serial correlation in the innovations (εt), we adopt a block 

bootstrap method in generating the pseudo samples. We use overlapping rather than 

nonoverlapping blocks here. The steps involved in generating random samples are as follows: 

(i) Denote the block length as l. For k = 1, 2, …, (T/l), randomly draw with replacement 

kth block of consecutive residuals *
ke  of length l from t̂e : *

1 1 1 2 1{ , ,..., }.k k k k le e e e− + − + − +=  A vector of 

random residuals of length T is formed as * * * *
1 2 ( / ){ ', ',..., '}'.T le e e e=    

(ii) Obtain * *ˆ( , ) ,t t tY m X eδ= +  where ˆ( , )tm X δ  is, in our application, the conditional 

mean under the null hypothesis. The resulting sample *
1( , )T

t t tX Y =  is called the bootstrap sample. 

Then estimate the bootstrap sample under both null and alternative hypotheses to obtain 

bootstrap residuals *
t̂e  and *

te . 

(iii) Use the bootstrap residuals to compute the test statistic 

* *2 *2 *2

1 1 1

ˆ / .
T T T

t t t
t t t

LR e e e
= = =

⎛ ⎞= −⎜ ⎟
⎝ ⎠
∑ ∑ ∑  

(iv) Repeat steps (i) through (iii) a large number of times, say nb, and then construct the 

empirical distribution of the bootstrap statistics, *
1{ } .nb

j jLR =  This bootstrap empirical distribution is 
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used to approximate the null distribution of the test statistic LR in equation (B8). One then rejects 

the null model for a relatively large value of LR. 

For simplicity, we set the nonrandom block length to 4 (quarters). Nevertheless, we also 

examined various block lengths ranging from 1 to 12 (quarters, with the maximum length 

equivalent to three years). We find that the results are not sensitive to the choice of the block 

length. Also note that when the block length is 1, the block bootstrap reduces to the basic 

bootstrap assuming no dependence in the innovations. In this case, to improve the finite sample 

performance of the test, we also compute the wild bootstrap statistics as advocated by Li and 

Wang (1998). The reported results in the paper still remain qualitatively unchanged.  
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Figure 1 Smooth-Coefficient Estimates of RRA as a Nonlinear Function of CAY 
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Note: The solid line plots the estimate of the coefficient ( )tXγ  in the one-factor CAPM, 
2

, 1 , 1( )M t t M t tr Xα γ σ ε+ += + + ; and the dashed line is for the two-factor ICAPM, 
2

, 1 , 1( )M t t M t t tr X Xα γ σ λ ε+ += + + + . The data span the period 1951:Q4 to 2004:Q4. 
 
 

 
Figure 2 Smooth-Coefficient Estimates of RRA as a Nonlinear Function of CAY 

Using Guo’s (2004) Simulated Data 
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Note: The solid line plots the estimate of the coefficient ( )tXγ  in the one-factor CAPM, 
2

, 1 , 1( )M t t M t tr Xα γ σ ε+ += + + ; and the dashed line is for the two-factor ICAPM, 
2

, 1 , 1( )M t t M t t tr X Xα γ σ λ ε+ += + + + . We use 20,000 simulated observations generated from Guo’s (2004) 
benchmark model. 
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Figure 3 Realized Stock Market Variance and State Variables 
MV CAY 
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Note: MV is realized stock market variance; CAY is the consumption-wealth ratio; DEF is the yield spread between 
Baa- and Aaa-rated corporate bonds; DY is the ratio of the dividend in the past year to the end-of-period stock price 
for S&P 500 stocks; RREL is the difference between the short-term interest rate and its average in the previous 12 
months; and TERM is the yield spread between 10-year Treasury bonds and 3-month Treasury bills. TERM is 
available over the period 1953:Q2 to 2004:Q4 and the other variables are available over the period 1951:Q4 to 
2004:Q4. Shared areas indicate business recessions, as dated by NBER. 
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Figure 4 Smooth-Coefficient Estimate of the Hedge Component as a Nonlinear Function of CAY 
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Note:  The solid line plots the coefficient ( )tXλ  in the semiparametric model, 2

, 1 , 1( )M t M t t tr Xγσ λ ε+ += + + ; 

and the dashed line plot the coefficient λ  in the linear model 2
, 1 , 1M t M t t tr Xα γσ λ ε+ += + + + . The data span the 

period 1951:Q4 to 2004:Q4. 
 

 
 

Figure 5 Volatility-Dependent Risk Aversion Estimates 

0

0.03

0.06

0.09

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035

Variance

E
xp

ec
te

d 
R

et
ur

n

 
Note:  The solid line plots the term 2( )tg σ  in the one-factor CAPM, 2

, 1 , 1( )M t M t tr g σ ε+ += + ; and the dashed line 

is for the two-factor ICAPM, 2
, 1 , 1( ) ( )M t M t t tr g Xσ α λ ε+ += + + + . We use CAY as proxy for the hedge 

component in the ICAPM. The data span the period 1951:Q4 to 2004:Q4. 
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Figure 6 Loadings on Realized Stock Market Variance 
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Note: The line plots the coefficient estimate 0pγ  obtained from the forecasting regression:  

, 1 0 1*P t p p t p t t tr MV MV CAYα γ γ ε+ += + + + . 
Each portfolio is identified with a two-digit number on the horizontal axis. The first digit refers to size, with 1 
denoting the smallest stocks and 5 the largest stocks. The second digit refers to B/M, with 1 denoting the lowest 
B/M and 5 the highest B/M. 

 
 
 
 

Figure 7 Loadings on Realized Stock Market Variance Scaled by CAY 
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Note: The line plots the coefficient estimate pγ  obtained from the forecasting regression: 

, 1 0 1*P t p p t p t t tr MV MV CAYα γ γ ε+ += + + + . 
Each portfolio is identified with a two-digit number on the horizontal axis. The first digit refers to size, with 1 
denoting the smallest stocks and 5 the largest stocks. The second digit refers to B/M, with 1 denoting the lowest 
B/M and 5 the highest B/M. 
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Figure 8 Loadings on Realized Value Premium Variance 
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Note: The line plots the coefficient estimate pφ  obtained from the forecasting regression: 

, 1 0 1_P t p p t p t tr MV V HMLα γ φ ε+ += + + + . 
Each portfolio is identified with a two-digit number on the horizontal axis. The first digit refers to size, with 1 
denoting the smallest stocks and 5 the largest stocks. The second digit refers to B/M, with 1 denoting the lowest 
B/M and 5 the highest B/M. 

 
 
 
 
 

Figure 9 Volatility-Dependent Risk Aversion Estimates: Guo’s (2004) Simulated Data 
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Note:  The solid line plots the term 2

,( )M tg σ  in the one-factor CAPM, 2
, 1 , 1( )M t M t tr g σ ε+ += + ; and the dashed 

line is for the two-factor ICAPM, 2
, 1 , 1( ) ( )M t M t t tr g Xσ α λ ε+ += + + + . We use CAY as proxy for the hedge 

component in the ICAPM. We use 2,000 simulated observations generated from Guo’s (2004) benchmark model. 
. 



  54
 
 

 Table 1 Summary Statistics 
 MV CAY DEF DY RREL TERM 

Panel A Full Sample 1953:Q2 to 2004:Q4 
Autocorrelation 

 0.424 0.856 0.909 0.971 0.511 0.790 
Correlation with BCI 

 0.245 0.108 0.311 0.338 -0.433 0.046 
Cross-Correlation 

MV 1.000      
CAY  -0.107 1.000     
DEF 0.238 0.037 1.000    
DY -0.060 0.237 0.427 1.000   

RREL -0.034 -0.075 -0.282 0.029 1.000  
TERM -0.091 0.335 0.262 -0.106 -0.610 1.000 

       
 

Panel B Subsample 1953:Q2 to 1979:Q4 
Autocorrelation 

 0.460 0.764 0.898 0.931 0.619 0.857 
Correlation with BCI 

 0.350 0.386 0.210 0.374 -0.385 0.039 
Cross-Correlation 

MV 1.000      
CAY  0.152 1.000     
DEF 0.326 0.146 1.000    
DY 0.308 0.431 0.255 1.000   

RREL 0.159 -0.154 -0.289 0.106 1.000  
TERM -0.192 0.284 0.348 -0.016 -0.605 1.000 

       
 

Panel C Subsample 1980:Q1 to 2004:Q4 
Autocorrelation 

 0.367 0.890 0.897 0.983 0.457 0.711 
Correlation with BCI 

 0.183 -0.076 0.516 0.328 -0.546 0.128 
Cross-Correlation 

MV 1.000      
CAY  -0.322 1.000     
DEF 0.117 -0.124 1.000    
DY -0.169 0.291 0.767 1.000   

RREL -0.098 -0.002 -0.236 -0.069 1.000  
TERM -0.158 0.282 0.055 0.045 -0.611 1.000 

Note: The table reports the summary statistics of the instrumental variables used in the paper. MV is realized stock 
market variance; CAY is the consumption-wealth ratio; DEF is the yield spread between Baa- and Aaa-rated 
corporate bonds; DY is the ratio of the dividend in the past year to the end-of-period stock price for S&P 500 stocks; 
RREL is the difference between the short-term interest rate and its average in the previous 12 months; TERM is the 
yield spread between 10-year Treasury bonds and 3-month Treasury bills; and BCI is a business cycle indicator, 
which is equal to 1 for the recession quarters and 0 otherwise. 
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Table 2 Forecast One-Period-Ahead Excess Stock Market Returns 
 MV CAY DEF DY RREL TERM 2R (%) 

Panel A Quarterly Data 
1 2.030* 

(1.737) 
     1.1 

2  1.671*** 
(4.436) 

    6.6 

3   -0.010 
(-0.625) 

0.013** 
(2.275) 

-3.585 
(-0.462) 

0.011 
(1.599) 

3.0 

4 2.540** 
(2.389) 

1.783*** 
(4.834) 

    8.7 

5 3.023*** 
(2.685) 

 -0.025 
(-1.500) 

0.017*** 
(2.902) 

-2.413 
(-0.321) 

0.014** 
(2.181) 

5.6 

6 2.951*** 
(2.725) 

1.412*** 
(3.213) 

-0.016 
(-0.962) 

0.011* 
(1.894) 

-6.016 
(-0.784) 

0.005 
(0.697) 

9.1 

        
Panel B Monthly Data 

7 1.314 
(1.431) 

     0.3 

8  0.483** 
(2.246) 

    2.3 

9   -1.266 
(-0.914) 

0.425 
(0.823) 

-4.877 
(-1.186) 

-0.047 
(-0.152) 

-1.0 

10 2.806*** 
(3.400) 

0.717*** 
(3.189) 

    4.9 

11 3.104*** 
(3.727) 

 -2.726* 
(-1.777) 

1.121* 
(1.934) 

-5.381 
(-1.330) 

0.020 
(0.066) 

1.5 

12 3.036*** 
(3.806) 

0.783** 
(2.540) 

0.728 
(0.354) 

-0.102 
(-0.139) 

-5.041 
(-1.292) 

0.047 
(0.163) 

4.2 

Note: The table reports the OLS estimation results of forecasting one-period-ahead excess stock market returns. We 
report heteroskedasticity-corrected t-statistics in parentheses. ***, **, and * denote significance at the 1%, 5%, and 
10% levels, respectively. MV is realized stock market variance; CAY is the consumption-wealth ratio; DEF is the 
yield spread between Baa- and Aaa-rated corporate bonds; DY is the ratio of the dividend in the past year to the end-
of-period stock price for S&P 500 stocks; RREL is the difference between the short-term interest rate and its 
average in the previous 12 months; and TERM is the yield spread between 10-year Treasury bonds and 3-month 
Treasury bills. The quarterly data span the period 1953:Q3 to 2004:Q4 for TERM and the period 1952:Q1 to 
2004:Q4 for all the other variables. The monthly data span the period January 1984 to May 2001. 
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Table 3 RRA as a Linear Function of State Variables in the Conditional CAPM 
 Const. BCI MV CAY DEF DY RREL TERM OIR 2R (%) 

Panel A Quarterly Data 
1 0.669 

(0.516) 
5.803** 
(2.230) 

      17.791 
(0.003) 

2.1 

2 -19.236** 
(-2.350) 

 8.329**a 
(2.389) 

     11.385 
(0.044) 

-0.3 

3 2.065* 
(1.854) 

  2.756***a 
(4.648) 

    2.492 
(0.778) 

7.8 

4 -1.324 
(-0.442) 

   3.291 
(1.402) 

   19.688 
(0.001) 

2.4 

5 -3.230 
(-1.299) 

    1.694** 
(2.535) 

  17.069 
(0.004) 

4.2 

6 2.298* 
(1.951) 

     -1.474*b 
(-1.713) 

 18.566 
(0.002) 

0.5 

7 -1.711 
(-0.976) 

      2.416*** 
(2.957) 

12.787 
(0.025) 

1.0 

           
Panel B Monthly Data 

8 -6.379 
(-0.795) 

 6.407a 
(0.841) 

     6.351 
(0.174) 

-0.6 

9 -1.161***a 
(-2.649) 

  2.679***a 
(2.652) 

    1.214 
(0.876) 

2.7 

10 0.966 
(0.210) 

   -0.672a 
(-0.150) 

   7.285 
(0.122) 

0.1 

11 -1.365 
(-0.433) 

    0.677a 
(0.536) 

  7.132 
(0.129) 

-0.7 

12 -0.415 
(-0.330) 

     -1.850b 
(-1.183) 

 6.264 
(0.180) 

1.3 

13 -0.944 
(-0.445) 

      66.995 
(0.635) 

6.870 
(0.143) 

-0.7 

Note: The table reports the GMM estimation results of the conditional CAPM, 
2

, 1 0 , 1( )M t t M t tr Xα γ γ σ ε+ += + + + , 
in which RRA is a linear function of a state variable. We include all the state variables in the instrumental variable 
set. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, respectively. Letters a and b denote being 
scaled by 100 and 1000, respectively. Column OIR presents Hansen’s (1982) J-test statistics, with the p-value in 
parentheses. MV is realized stock market variance; CAY is the consumption-wealth ratio; DEF is the yield spread 
between Baa- and Aaa-rated corporate bonds; DY is the ratio of the dividend in the past year to the end-of-period 
stock price for S&P 500 stocks; RREL is the difference between the short-term interest rate and its average in the 
previous 12 months; TERM is the yield spread between 10-year Treasury bonds and 3-month Treasury bills; and 
BCI is a business cycle indicator, which is equal to 1 for the recession quarters and 0 otherwise. The quarterly data 
span the period 1953:Q3 to 2004:Q4 for TERM and the period 1952:Q1 to 2004:Q4 for all the other variables. The 
monthly data span the period January 1984 to May 2001. 
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Table 4 RRA as a Linear Function of State Variables with Control for the Hedge Component 
 Const. BCI MV CAY DEF DY RREL TERM OIR 2R (%) 

Panel A Quarterly Data 
1 1.910 

(1.545) 
2.727 

(1.054) 
      3.687 

(0.450) 
8.7 

2 -3.136 
(-0.385) 

 2.257a 
(0.716) 

     3.841 
(0.428) 

6.4 

3 1.402 
(0.831) 

  5.215a 
(1.513) 

    1.835 
(0.766) 

4.4 

4 1.464 
(0.498) 

   1.096 
(0.468) 

   4.348 
(0.361) 

8.7 

5 -0.377 
(-0.151) 

    0.914 
(1.340) 

  2.941 
(0.568) 

9.6 

6 2.818** 
(2.642) 

     -8.760a 
(-1.054) 

 3.749 
(0.441) 

7.8 

7 1.309 
(0.779) 

      0.955 
(1.101) 

3.482 
(0.481) 

7.9 

           
Panel B Monthly Data           

8 8.903 
(0.911) 

 -6.906a 
(-0.753) 

     1.672 
(0.643) 

0.4 

9 -1.309a 
(-1.112) 

  3.015a 
(1.124) 

    1.189 
(0.756) 

2.1 

10 -0.066 
(-0.014) 

   1.532a 
(0.339) 

   2.167 
(0.539) 

1.7 

11 1.198 
(0.370) 

    9.435 
(0.074) 

  2.249 
(0.522) 

1.8 

12 0.825 
(0.622) 

     -1.747b 
(-1.139) 

 1.075 
(0.783) 

3.4 

13 1.026 
(0.470) 

      23.501 
(0.225) 

2.204 
(0.531) 

1.8 

Note: The table reports the GMM estimation results of the conditional ICAPM, 
2

, 1 0 , 1( )M t t M t t tr X CAYα γ γ σ λ ε+ += + + + + . 
in which RRA is a linear function of a state variable and the hedge component is a linear function of CAY. We 
include all the state variables in the instrumental variable set. ***, **, and * indicate significance at the 1%, 5%, and 
10% levels, respectively. Letters a and b denote being scaled by 100 and 1000, respectively. Column OIR presents 
Hansen’s (1982) J-test statistics, with the p-value in parentheses. MV is realized stock market variance; CAY is the 
consumption-wealth ratio; DEF is the yield spread between Baa- and Aaa-rated corporate bonds; DY is the ratio of 
the dividend in the past year to the end-of-period stock price for S&P 500 stocks; RREL is the difference between 
the short-term interest rate and its average in the previous 12 months; TERM is the yield spread between 10-year 
Treasury bonds and 3-month Treasury bills; and BCI is a business cycle indicator, which is equal to 1 for the 
recession quarters and 0 otherwise. The quarterly data span the period 1953:Q3 to 2004:Q4 for TERM and the 
period 1952:Q1 to 2004:Q4 for all the other variables. The monthly data span the period January 1984 to May 2001. 
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Table 5 Semiparametric Smooth Coefficient Models 
 

State Variables 
Bootstrap Empirical Distributions 

(Upper Percentiles) 
 

2R (%) 
 

 
Statistics 

 
P-Value 

99% 95% 90% 80%  
 Panel A    2 2

0 , 1 , 1 , 1 , 1: : ( ) ( )M t M t t A M t t M t t tH r vs H r X Xα γσ ε γ σ λ ε+ + + += + + = + +  
CAY 0.087 0.01 0.084 0.051 0.042 0.032 1.6 / 9.5 
DEF 0.024 0.05 0.035 0.024 0.019 0.014 1.6 / 3.9 
DY 0.027 0.02 0.034 0.020 0.016 0.012 1.6 / 4.2 

RREL 0.052 0.14 0.128 0.082 0.060 0.045 1.6 / 6.4 
TERM 0.196 0.01 0.165 0.121 0.100 0.081 1.6 / 17.8 

Panel B    2 2
0 , 1 , 1 , 1 , 1: : ( )M t M t t A M t t M t tH r vs H r Xα γσ ε α γ σ ε+ + + += + + = + +  

CAY 0.071 0.01 0.061 0.035 0.025 0.017 1.6 / 8.1 
DEF 0.013 0.05 0.024 0.013 0.010 0.006 1.6 / 2.9 
DY 0.089 0.02 0.093 0.061 0.053 0.042 1.6 / 9.7 

RREL 0.013 0.24 0.073 0.032 0.023 0.015 1.6 / 2.9 
TERM 0.146 0.01 0.140 0.099 0.078 0.062 1.6 / 14.1 

Panel C    2 2
0 , 1 , 1 , 1 , 1: : ( )M t M t t t A M t t M t t tH r X vs H r X Xα γσ λ ε α γ σ λ ε+ + + += + + + = + + +  

CAY 0.005 0.44 0.033 0.019 0.013 0.008 9.5/10.0 
DEF 0.048 0.06 0.097 0.050 0.037 0.028 1.8/6.3 
DY 0.076 0.04 0.104 0.067 0.057 0.046 3.6/10.4 

RREL 0.012 0.25 0.064 0.030 0.021 0.014 2.9/4.0 
TERM 0.089 0.02 0.104 0.063 0.049 0.037 4.1/11.9 

Panel D    2 2
0 , 1 , 1 , 1 , 1: : ( )M t M t t t A M t M t t tH r X vs H r Xα γσ λ ε γσ λ ε+ + + += + + + = + +  

CAY 0.002 0.58 0.052 0.029 0.019 0.012 9.5/9.8 
DEF -0.002 0.75 0.012 0.008 0.005 0.003 1.8/1.6 
DY -0.007 0.54 0.005 0.001 0.000 -0.002 3.6/2.9 

RREL 0.003 0.31 0.044 0.022 0.012 0.005 2.9/3.1 
TERM 0.133 0.00 0.102 0.074 0.061 0.045 4.1/15.3 

Panel E    2 2
0 , 1 , 1 , 1 , 1: ( ) : ( ) ( )M t M t t t A M t t M t t tH r X vs H r X Xγσ λ ε γ σ λ ε+ + + += + + = + +  

CAY -0.003 0.50 0.036 0.018 0.013 0.006 9.8/9.5 
DEF 0.023 0.01 0.019 0.013 0.010 0.007 1.6/3.9 
DY 0.013 0.07 0.024 0.016 0.012 0.008 2.9/4.2 

RREL 0.035 0.19 0.098 0.054 0.042 0.034 3.1/6.4 
TERM 0.030 0.17 0.109 0.058 0.042 0.027 15.3/17.8 

Panel F    2 2
0 , 1 , 1 , 1 , 1: ( ) : ( ) ( )M t t M t t t A M t t M t t tH r X X vs H r X Xα γ σ λ ε γ σ λ ε+ + + += + + + = + +  

CAY -0.005 0.65 0.034 0.021 0.013 0.007 10.0/9.5 
DEF -0.025 0.54 -0.005 -0.008 -0.011 -0.015 6.3/3.9 
DY -0.065 0.74 -0.021 -0.025 -0.029 -0.037 10.4/4.2 

RREL 0.026 0.17 0.083 0.044 0.031 0.024 4.0/6.4 
TERM 0.071 0.03 0.098 0.062 0.051 0.040 11.9/17.8 
Panel G    2 2

0 , 1 , 1 , 1 , 1: : ( ) ( )M t M t t t A M t t M t t tH r X vs H r X Xα γσ λ ε γ σ λ ε+ + + += + + + = + +  
CAY 0.000 0.52 0.063 0.034 0.021 0.012 9.5/9.5 
DEF 0.021 0.02 0.027 0.015 0.012 0.008 1.8/3.9 
DY 0.006 0.09 0.017 0.009 0.006 0.003 3.6/4.2 

RREL 0.038 0.21 0.119 0.075 0.051 0.038 2.9/6.4 
TERM 0.166 0.01 0.159 0.112 0.093 0.074 4.1/17.8 
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Note: The table reports the model specification test results for various smooth coefficient models (and partially 
linear models in Panel D). The bootstrap version goodness-of-fit test statistics are based on Cai et al. (2000). MV is 
realized stock market variance; CAY is the consumption-wealth ratio; DEF is the yield spread between Baa- and 
Aaa-rated corporate bonds; DY is the ratio of the dividend in the past year to the end-of-period stock price for S&P 
500 stocks; RREL is the difference between the short-term interest rate and its average in the previous 12 months; 
and TERM is the yield spread between 10-year Treasury bonds and 3-month Treasury bills. The quarterly data span 
the period 1953:Q3 to 2004:Q4 for TERM and the period 1952:Q1 to 2004:Q4 for all the other variables. 
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Table 6 Partially Linear and Additive Models 
Bootstrap Empirical Distributions 

(Upper Percentiles) 
 

State Variables 
 

Statistics 
 

P-Value 
99% 95% 90% 80% 

 
2R (%) 

Panel A    2 2
0 , 1 , 1 , 1 , 1: : ( ) ( )M t M t t A M t M t t tH r vs H r g Xα γσ ε σ λ ε+ + + += + + = + +  

CAY 0.272 0.03 0.302 0.260 0.236 0.205 1.6/22.7 
DEF 0.133 0.26 0.255 0.197 0.168 0.142 1.6/13.1 
DY 0.171 0.16 0.249 0.212 0.187 0.162 1.6/16.0 

RREL 0.090 0.74 0.282 0.222 0.191 0.159 1.6/9.8 
TERM 0.286 0.01 0.262 0.208 0.191 0.167 1.6/23.5 

Panel B    2 2
0 , 1 , 1 , 1 , 1: : ( )M t M t t A M t M t tH r vs H r gα γσ ε σ ε+ + + += + + = +  

 0.936 0.04 1.299 0.897 0.580 0.221 1.6/1.9 
Panel C    2 2

0 , 1 , 1 , 1 , 1: : ( )M t M t t t A M t M t t tH r X vs H r g Xα γσ λ ε α σ λ ε+ + + += + + + = + + +  
CAY -0.005 0.59 0.025 0.013 0.008 0.003 9.5/9.0 
DEF 0.001 0.38 0.026 0.013 0.009 0.005 1.8/1.9 
DY -0.002 0.44 0.025 0.014 0.009 0.004 3.6/3.4 

RREL 0.004 0.23 0.027 0.014 0.010 0.004 2.9/3.2 
TERM 0.001 0.34 0.025 0.015 0.010 0.005 4.1/4.2 
Panel D    2 2

0 , 1 , 1 , 1 , 1: : ( ) ( )M t M t t t A M t M t t tH r X vs H r g Xα γσ λ ε σ λ ε+ + + += + + + = + +  
CAY 0.170 0.37 0.290 0.248 0.223 0.194 9.5/22.7 
DEF 0.130 0.24 0.247 0.193 0.164 0.137 1.8/13.1 
DY 0.148 0.26 0.242 0.207 0.181 0.155 3.6/16.0 

RREL 0.076 0.82 0.276 0.212 0.185 0.154 2.9/9.8 
TERM 0.254 0.01 0.255 0.203 0.186 0.163 4.1/23.5 

Note: The table reports the model specification test results for the nonparametric model and its partially linear and 
additive variants. The bootstrap version goodness-of-fit test statistics are based on Cai et al. (2000).  MV is realized 
stock market variance; CAY is the consumption-wealth ratio; DEF is the yield spread between Baa- and Aaa-rated 
corporate bonds; DY is the ratio of the dividend in the past year to the end-of-period stock price for S&P 500 stocks; 
RREL is the difference between the short-term interest rate and its average in the previous 12 months; and TERM is 
the yield spread between 10-year Treasury bonds and 3-month Treasury bills. The quarterly data span the period 
1953:Q3 to 2004:Q4 for TERM and the period 1952:Q1 to 2004:Q4 for all the other variables. 
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Table 7 Cross-Sectional Regressions Using 25 Fama and French (1993) Portfolios 
 Constant MV MV*CAY CAY V_HML 2R  

1 0.049 
(6.813) 
[4.264] 

0.003 
(1.670) 
[1.059] 

-0.012a** 
(-3.266) 
[-2.070] 

  41.0 

2 0.061 
(6.856) 
[3.789] 

0.002 
(1.503) 
[0.848] 

-0.014a* 
(-3.389) 
[-1.905] 

-0.019** 
(-2.553) 
[-1.992] 

 46.6 

3 0.024 
(3.642) 
[2.546] 

0.002 
(1.331) 
[0.940] 

  0.002** 
(3.253) 
[2.311] 

45.3 

4 0.038 
(4.322) 
[2.649] 

0.003 
(1.399) 
[0.868] 

 -0.016* 
(-2.739) 
[-1.697] 

0.002** 
(3.169) 
[1.990] 

42.0 

5 0.021 
(3.239) 
[2.239] 

0.002 
(1.255) 
[0.878] 

-0.003 
(-0.945) 
[-0.670] 

 0.002** 
(3.277) 
[2.305] 

39.0 

Note: The table reports the Fama and MacBeth (1973) cross-sectional regression results. In parentheses, we report t-
statistics obtained using the original Fama and MacBeth standard error. In squared bracket, we report t-statistics 
obtained using the Shanken (1992) corrected standard error. ***, **, * denote significant at the 1%, 5%, and 10% 
levels, according to the Shanken corrected t-statistics. The letter a denotes being scaled by 100. MV is realized stock 
market variance; CAY is the consumption-wealth ratio; and V_HML is realized value premium variance. MV and 
CAY are available over the period 1951:Q4 to 2004:Q4 and V_HML is available over the period 1963:Q3 to 
2004:Q4.  
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Table 8 Forecasting One-Quarter-Ahead Excess Stock Market Returns: Subsamples 
 MV CAY 2R (%) 

Subsample 1952:Q1 to 1979:Q4 
1 3.836** 

(2.131) 
 3.9 

2  3.032*** 
(4.678) 

14.0 

3 2.979* 
(1.807) 

2.845*** 
(4.516) 

16.1 

Subsample 1980:Q1 to 2004:Q4 
4 0.752 

(0.535) 
 -0.8 

5  1.085** 
(2.189) 

2.8 

6 1.954 
(1.431) 

1.324** 
(2.566) 

3.2 

Note: The table reports the OLS estimation results of forecasting one-quarter-ahead excess stock market returns. We 
report heteroskedasticity-corrected t-statistics in parentheses. ***, **, and * denote significance at the 1%, 5%, and 
10% levels, respectively. MV is realized stock market variance and CAY is the consumption-wealth ratio. 

 


