
      Research Division 
          Federal Reserve Bank of St. Louis 
                   Working Paper Series 
 

 
 
 

The Stability of Macroeconomic Systems  
with Bayesian Learners 

 
 

 
 

James Bullard 
and 

Jacek Suda 
 

 
 
 

Working Paper 2008-043B 
http://research.stlouisfed.org/wp/2008/2008-043.pdf 

 
 
 

November 2008 
Revised July 2009 

 
 

 
FEDERAL RESERVE BANK OF ST. LOUIS 

Research Division 
P.O. Box 442  

St. Louis, MO 63166 
 

______________________________________________________________________________________ 

The views expressed are those of the individual authors and do not necessarily reflect official positions of 
the Federal Reserve Bank of St. Louis, the Federal Reserve System, or the Board of Governors. 

Federal Reserve Bank of St. Louis Working Papers are preliminary materials circulated to stimulate 
discussion and critical comment. References in publications to Federal Reserve Bank of St. Louis Working 
Papers (other than an acknowledgment that the writer has had access to unpublished material) should be 
cleared with the author or authors. 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Research Papers in Economics

https://core.ac.uk/display/6608164?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The Stability of Macroeconomic Systems
with Bayesian Learners

James Bullard�

Federal Reserve Bank of St. Louis

Jacek Suda
Washington University

This version: 16 July 2009

Abstract

We study abstract macroeconomic systems in which expectations
play an important role. Consistent with the recent literature on re-
cursive learning and expectations, we replace the agents in the econ-
omy with econometricians. Unlike the recursive learning literature,
however, the econometricians in the analysis here are Bayesian learn-
ers. We are interested in the extent to which expectational stability
remains the key concept in the Bayesian environment. We isolate
conditions under which versions of expectational stability conditions
govern the stability of these systems just as in the standard case of
recursive learning. We conclude that Bayesian learning schemes, while
they are more sophisticated, do not alter the essential expectational
stability �ndings in the literature.
Keywords: Expectational stability, recursive learning, learnability

of rational expectations equilibrium.
JEL codes: D84, E00, D83.
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1 Introduction

1.1 Overview

A large and expanding literature has developed over the last two decades
concerning the issue of learning in macroeconomic systems. These systems
have a recursive feature, whereby expectations a¤ect states, and states feed
back into the expectations formation process being used by the agents. The
focus of the literature has been on whether processes in this class are lo-
cally convergent to rational expectations equilibria. Evans and Honkapohja
(2001), in particular, have stressed that the expectational stability condition
governs the stability of real-time learning systems de�ned in this way.
This line of research has so far emphasized recursive updating, includ-

ing least squares learning as a special case. There has been little study of
Bayesian updating in the context of expectational stability. What might one
expect from an extension to Bayesian updating? There seem to be at least
two lines of thought in this area. One is that Bayesian estimation is a close
relative of least squares, and therefore that all expectational stability results
should obtain with suitable adjustments, but without conceptual di¢ culties.
A second, opposite view is that Bayesian agents are essentially endowed with
rational expectations� indeed Bayesian learning is sometimes called �ratio-
nal learning�in the literature� and therefore one should not expect to �nd
a concept of �expectational instability�in the Bayesian case. A goal of this
paper is to understand which of these views is closer to reality in abstract
macroeconomic systems.
It is also important to understand how Bayesian updating might repair

certain apparent inconsistencies in the recursive learning literature. Cogley
and Sargent (2008), for example, have noted that there are �two minds�
embedded in the anticipated utility approach to learning that has become
popular. According to Cogley and Sargent (2008, p. 186),

�[The anticipated utility approach recommended by Kreps
(1998)] is of two minds .... Parameters are treated as random
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variables when agents learn but as constants when they formu-
late decisions. Looking backward, agents can see how their beliefs
have evolved in the past, but looking forward they act as if fu-
ture beliefs will remain unchanged forever. Agents are eager to
learn at the beginning of each period, but their decisions re�ect a
pretence that this is the last time they will update their beliefs,
a pretence that is falsi�ed at the beginning of every subsequent
period.�

In this paper, we take a �rst step toward studying this issue in the context
of expectational stability. The Bayesian econometricians in our model will
recognize that their beliefs will continue to evolve in the future. The Bayesian
perspective means treating estimates as random variables, and is one way to
take parameter uncertainty into account.

1.2 What we do

We consider a standard version of an abstract macroeconomic model, the
generalized linear model of Evans and Honkapohja (2001). Instead of assum-
ing standard recursive learning, we think of the private sector agents as being
Bayesian econometricians. In particular, the agents will then treat estimated
parameters as random variables. In certain circumstances, the system will
behave as if the agents are classical recursive learners, but in general, the
system will behave somewhat di¤erently from the one where agents are clas-
sical econometricians. We highlight these di¤erences and similarities. The
primary question we wish to address is whether we can describe local conver-
gence properties of systems with Bayesian learners in the same expectational
stability terms as systems with standard recursive learning.

1.3 Main �ndings

We �nd expectational stability conditions for systems with Bayesian learn-
ers. We are able to isolate cases where these conditions are identical to the
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conditions for non-Bayesian systems. In these cases, in terms of expecta-
tional stability, the Bayesian systems yield no di¤erence in results vis-a-vis
the systems with standard recursive learning.
The actual stochastic dynamical systems produced by the classical re-

cursive learning versus the Bayesian learning assumptions are not identical,
however, except under special circumstances. This means that the dynamics
of the two systems will di¤er during the transition to the rational expec-
tations equilibrium, even if the local asymptotic stability properties do not
di¤er. We document via examples how the dynamics of Bayesian systems
can di¤er from the dynamics of non-Bayesian systems with identical shock
sequences. We show situations in which the di¤erences can be material and
situations where the di¤erences are likely to be negligible.
We interpret these �ndings as follows. When we replace the rational ex-

pectations agents in a model with recursive least squares learners, as has been
standard in this literature, we are assuming a certain degree of bounded ratio-
nality. This has been discussed extensively in the literature. However, since
the systems can converge, locally, to rational expectations equilibrium, the
bounded rationality eventually dissipates, which is perhaps a comforting way
to think about how rational expectations equilibrium is actually achieved.
Still, one might worry that if the agents were a little more rational at the
time that they adopt their learning algorithm, the local stability properties
of the rational expectations equilibrium might be altered. Here, �a little
more rational�means that the agents use Bayesian methods while learning
instead of classical recursive algorithms, and so they take into account that
they will be learning in the future. It is conceivable that equilibria which
were unstable under standard recursive learning might now be stable under
Bayesian learning, for instance. The results in this paper suggest that this
is not the case. The expectational stability conditions for the systems with
Bayesian learners are not any di¤erent, at least in the cases analyzed here,
from those which are commonly studied in the literature. This suggests that
the stability analysis following the tradition of Marcet and Sargent (1989)
and Evans and Honkapohja (2001) may have very broad appeal, and that
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the assumption of standard recursive learning may be less restrictive than
commonly believed.

1.4 Recent related literature

Bray and Savin (1986) studied learning in a cobweb model and noted that a
recursive least squares speci�cation for the learning rule implied that agents
assumed �xed coe¢ cients in an environment where coe¢ cients were actually
time-varying.1 They thought of this as a misspeci�cation, a form of bounded
rationality. They asked whether convergence to rational expectations might
occur at a pace that was rapid enough to cause agents to not notice the
misspeci�cation using standard statistical tests. They illustrated some cases
where this was true, and others where it was not. Bray and Savin (1986) used
what we would call �xed coe¢ cient Bayesian updating; this was their source
of bounded rationality. We allow agents to see their estimated coe¢ cients
as random variables. Also, the cobweb model used in the classic Bray and
Savin paper does not encompass the two-step ahead expectations which will
play an important role in the results reported below.
McGough (2003) studies Bray and Savin�s cobweb model but allows the

agents to use a Kalman �lter to update parameter estimates. This allows the
agents to take into account the fact that estimates are time-varying.2 He �nds
conditions under which such a system is expectationally stable. McGough
also studies a Muth model with Kalman �lter updating.
Cogley and Sargent (2008) study a partial equilibriummodel with a repre-

sentative Bayesian decision-maker. Like Bray and Savin, they are concerned
that while the agent is learning using standard recursive algorithms, �xed co-
e¢ cients are assumed in the learning rule, whereas actual coe¢ cients change
along the path to the rational expectations equilibrium.3 To address this,
they allow the household to behave as a Bayesian decision-maker. They il-

1This is the same concern raised by Cogley and Sargent (2008).
2Bullard (1992) also uses the Kalman �lter to allow agents to take time-varying para-

meters into account.
3See the quote above.
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lustrate di¤erences in decisions when households are modeled as Bayesian
versus rational expectations or standard recursive learners. They argue that
the standard recursive learning approximation to the Bayesian household is
actually very good in the problem they study. This theme will be echoed
in the results reported below, as the systems under recursive learning will
not behave too di¤erently from the systems under Bayesian learning. Cogley
and Sargent did not study the question of expectational stability. We, on the
other hand, do not have households making economic decisions, but instead
study the reduced form model of Evans and Honkapohja (2001).
Guidolin and Timmerman (2007) study an asset pricing model with Bayesian

learning. They study the nature of the asset price dynamics in this setting,
comparing Bayesian systems to those with rational expectations and stan-
dard recursive least squares, similar to Cogley and Sargent (2008).
Evans, Honkapohja, and Williams (2006) study stochastic gradient learn-

ing. They show that under certain conditions the stochastic gradient algo-
rithm can approximate the Bayesian estimator. They display expectational
stability conditions for their generalized stochastic gradient algorithm, and
these conditions have clear similarities to those under standard recursive least
squares.
In this paper, we think of systems in which private sector expectations are

important, so that learning refers to private sector learning. However, some
of the learning literature emphasizes policymaker learning with a rational
expectations private sector. For instance, Sargent and Williams (2005) study
the e¤ect of priors on escape dynamics in a model where the government is
learning. Wieland (2000) adapts the framework of Nyarko and Kiefer (1989)
to study optimal control by a monetary authority when the authority is a
Bayesian learner. We do not have any policy in this paper and so we cannot
address these topics.

1.5 Organization

We present a version of the generalized linear model of Evans and Honkapohja
in the next section. We analyze this model when the agents are Bayesian
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learners. We �nd expectational stability conditions and show that they are
the same as in the case of recursive learning. However, di¤erences can arise
along transition paths to the rational expectations equilibrium. We then turn
to simulations to illustrate some of the issues involved.

2 Environment

Evans and Honkapohja (2001) study a general linear model which can be
viewed as representative of a linear approximation to a rational expectations
equilibrium. This provides a common framework which will allow us to com-
pare results clearly. We study a somewhat less general, scalar version of their
model given by

yt = �+ �yt�1 + �0E
�
t�1yt + �1E

�
t�1yt+1 + vt; (1)

where vt � N (0; �2): Here yt is the state of the economic system, �; �; �0;
and �1 are scalar parameters, and E�t�1 is a subjective expectations operator,
as expectations may not initially be rational. We have chosen this particular
version of Evans and Honkapohja (2001), equation (1), carefully. One might
be tempted to set, say, � = 0 and �1 = 0; for instance. But as we show
below, both of these will have to be nonzero in order to e¤ectively see the
di¤erences between standard recursive learning and the Bayesian learners we
wish to understand.
The minimal state variable (MSV) solution is given by

yt = �a+�byt�1 + vt; (2)

where �a and �b solve
�+ (�0 + �1)�a+ �1�a�b = �a; (3)

and
� + �0�b+ �1�b

2 = �b: (4)

We stress that there may be two solutions �b which solve these equations. We
assign a traditional perceived law of motion (PLM), which is consistent in
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form with the MSV solution (2),

yt = a+ byt�1 + vt: (5)

The agents use the PLM to form expectations, which then can be substituted
into equation (1) to produce an actual law of motion (ALM) for the system.
In the standard analysis, agents are assumed to use recursive least squares

to update their parameter estimates. Using the PLM in (5) agents are as-
sumed to forecast according to

E�t�1yt = bat�1 +bbt�1yt�1;
E�t�1yt+1 = E(bat +bbtyt + vt+1jYt�1)

= bat�1(1 +bbt�1) +bb2t�1yt�1; (6)

with bat and bbt denoting the least squares estimates through time t. Substi-
tuting these equations into equation (1) we obtain the actual law of motion
under recursive least squares learning

yt = [� + (�0 + �1)bat�1 + �1bat�1bbt�1] + [� + �0bbt�1 + �1bb2t�1]yt�1 + vt: (7)

The expectational stability of the systemwill depend on mapping from the
perceived to the actual law of motion. We now wish to �nd the counterpart
of the actual law of motion, equation (7), in the case of Bayesian learning in
order to compare the two.

3 Real time Bayesian learning

3.1 Priors and posteriors

We wish to assume that the private sector agents in this economy use a
Bayesian approach to updating the coe¢ cients in their perceived law of mo-
tion, that is, the scalar coe¢ cients a and b. They have priors which are given
by

�00 = (a0; b0) � N (�0;�0); (8)
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where �
0
0 = (�a;0; �b;0), and

�0 =

�
�2a;0 �ab;0
�ab;0 �2b;0

�
; (9)

where �xy indicates the covariance of x and y: The conditional distribution
of the state yt is

ytjYt�1; �t�1 � N (at�1 + bt�1yt�1; �2); (10)

where Yt�1 is the history of yt: The distribution of Yt conditional on � is

f(Ytj�) = f(ytj�; Yt�1)f(Yt�1j�)
= f(ytj�; Yt�1)f(yt�1j�; Yt�2) : : : f(y2j�; y1)f(y1j�): (11)

Using these expressions we can represent a posterior distribution of �t; i.e.
�jYt; as

f(�jYt) / f(Ytj�)f(�)
/ f(ytj�; Yt�1)f(yt�1j�; Yt�2) : : : f(y2j�; y1)f(y1j�)f(�): (12)

Assuming f(y1j�) is known (for instance, f(y1j�) = 1), we can obtain a
Normal-Normal update given by

f(�jYt) / N (�0zt) � � � N (�0z1)N (�0)
f(�jYt) = N (�t;�t); (13)

where zt = (1; yt�1)0, and where

�t = �t
�
��10 �0 + �

�2(Z 0tYt)
�
; (14)

and
�t =

�
��10 + ��2(Z 0tZt)

��1
; (15)

where Zt is the history of zt.
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3.2 Recursive forms

Both �t and �t can be written in a recursive form. For �t, we can write

��1t = ��10 + ��2(Z 0tZt)

= ��10 + ��2
tX
i=1

ziz
0
i

= ��10 + ��2
t�1X
i=1

ziz
0
i + �

�2ztz
0
t

= ��1t�1 + �
�2ztz

0
t: (16)

For �t, we use period-by-period updating, taking yesterday�s estimate as
today�s prior:

�t = �t(�
�1
t�1�t�1 + �

�2ztyt);

= �t�
�1
t�1�t�1 + �t�

�2ztyt;

�t � �t�1 = (�t��1t�1 � I)�t�1 + �t��2ztyt;
�t = �t�1 + �t

�
(��1t�1 � ��1t )�t�1 + ��2ztyt

�
; (17)

where I is a conformable identity matrix. Substituting the expression ��1t =

��1t�1 + �
�2ztz

0
t, we obtain

�t = �t�1 + �t
�
��2ztyt � ��2ztz0t�t�1

�
= �t�1 + �t�

�2zt (yt � z0t�t�1) : (18)

3.3 The actual law of motion

To consider the evolution of the system we have to determine the ALM under
Bayesian learning. We begin with the PLM under learning

yt = at�1 + bt�1yt�1 + vt

= �0t�1zt + vt; (19)

where at = ajYt: We now take expectations based on the PLM in order to
substitute these into (1) to obtain the ALM. The necessary expectation terms
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are given by

E�t�1yt = E(at�1 + bt�1yt�1 + vtjYt�1)
= �0t�1zt; (20)

E�t�1yt+1 = E(at + btyt + vt+1jYt�1)
= E(�0tzt+1jYt�1): (21)

We stress that one of the hallmarks of the Bayesian approach is that both yt
and bt are random variables. We next have to compute E(�0tzt+1jYt�1). We
can write joint distribution of � and y as

f(�t; ytjYt�1) = f(�tjYt)| {z }
Posterior beliefs

� f(ytjYt�1)| {z }
Posterior prediction

(22)

= N�(�t;�t)Ny(�
0
t�1zt; �

2 + z0t�t�1zt): (23)

To see the second term of (23), we write the distibution of yt+1 conditional
on Yt as

f(yt+1jYt) =
Z
f(yt+1jYt; �t)f(�tjYt) d�t

=

Z
Ny(z

0
t+1�t; �

2)N�(�t;�t) d�t

= Ny(�
0
tzt+1; �

2 + z0t+1�tzt+1); (24)

so that f (ytjYt�1) is as given in (23).
The density function can be written as

f(�t) = f

�
at
bt

�
= N

��
�a;t
�b;t

�
;

�
�2a;t �ab;t
�ab;t �2b;t

��
: (25)
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Also, using (18),

�t =

�
�a;t
�b;t

�
= �t�1 + �t�

�2zt (yt � z0t�t)

=

�
�a;t�1
�b;t�1

�
+

�
�2a;t �ab;t
�ab;t �2b;t

�
��2

�
1
yt�1

�
(yt � at�1 � bt�1yt�1)

�a;t = �a;t�1 + �
�2(�2a;t + �ab;tyt�1)| {z }

�a;t

(yt � at�1 � bt�1yt�1)

�b;t = �b;t�1 + �
�2(�ab;t + �

2
b;tyt�1)| {z }

�b;t

(yt � at�1 � bt�1yt�1): (26)

We can write

f(bt; ytjYt�1) = f(btjyt; Yt�1)f(ytjYt�1)
= Nb(�b;t; �

2
b;t)Ny(�

0
t�1zt; �

2 + z0t�t�1zt) (27)

We are interested in an expression for E(�0tzt+1jYt�1). As we have a
joint distribution of both random variables we can compute the expectations
directly:

E(�0tzt+1jYt�1) = E
�
(at; bt)

�
1

yt

�
jYt�1

�
= E(at + btytjYt�1)
= E(atjYt�1) + E(btytjYt�1): (28)

Consider E(btytjYt�1):

E(btytjYt�1) =
Z Z

btytf(bt; ytjYt�1) dyt dbt

=

Z Z
btytNbt(�b;t; �

2
b;t)Nyt(�

0
t�1zt; �

2 + z0t�t�1zt)dbtdyt: (29)
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As Nyt does not depend on bt we can write it as

E(btytjYt�1) =
Z
ytNyt(�

0
t�1zt; �

2 + z0t�t�1zt| {z }

yt

)

Z
btNbt(�b;t; �

2
b;t)dbt| {z }

Ebt=�b;t

dyt

=

Z
�b;t ytNyt(�

0
t�1zt;
yt) dyt

=

Z
(�b;t�1 + �b;t(yt � at�1 � bt�1yt�1)) ytNyt(�

0
t�1zt;
yt)dyt

= (�b;t�1 � �b;t(at�1 + bt�1yt�1))
Z
ytNyt(�

0
t�1zt;
yt) dyt| {z }
Eyt

+ �b;t

Z
y2tNyt(�

0
t�1zt;
yt) dyt| {z }

Ey2t=V ar(yt)+(Eyt)
2

= (�b;t�1 � �b;t(at�1 + bt�1yt�1))Eyt + �b;tV ar(yt) + �b;t(Eyt)2: (30)

Therefore, we obtain

E(btytjYt�1) = (�b;t�1 + �b;t(Eyt � at�1 � bt�1yt�1))Eyt + �b;tV ar(yt)
= E(�b;tjYt�1)E(ytjYt�1) + �b;t
yt : (31)

Then,

E(�0tzt+1jYt�1) = E(atjYt�1) + E(btytjYt�1)
= E(�a;tjYt�1) + E(�b;tjYt�1)E(ytjYt�1) + �b;t
yt
= E(�tjYt�1)0E(zt+1jYt�1) + �b;t
yt

= �0t�1

�
1

�0t�1zt

�
+ �b;t
yt : (32)

Recall that

E�t�1yt = E(at�1 + bt�1yt�1 + vtjYt�1) = �0t�1zt: (33)

Substituting these expressions into (1) under Bayesian learning we obtain
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the following expression:

yt = �+ �yt�1 + �0E
�
t�1yt + �1E

�
t�1yt+1 + vt;

= �+ �yt�1 + �0�
0
t�1zt + �1�

0
t�1

�
1

�0t�1zt

�
+ �1�b;t
yt + vt;

= �+ �yt�1 + �0(�a;t�1 + �b;t�1yt�1)

+ �1 (�a;t�1 + �b;t�1(�a;t�1 + �b;t�1yt�1)) + �1�b;t
yt + vt: (34)

Finally, rearranging this expression, we are ready to present our key equation.
In particular, we conclude that the actual law of motion under Bayesian
learning can be written as

yt = [� + (�0 + �1)�a;t�1 + �1�a;t�1�b;t�1]

+
�
� + �0�b;t�1 + �1�

2
b;t�1

�
yt�1 + �1�b;t
yt + vt: (35)

Except for the term �1�b;t
yt, the above expression is exactly analogous to
what one would obtain under standard recursive least squares [as shown by
equation (7) above] as analyzed by Evans and Honkapohja (2001) for the
MSV solution, but with parameters in the RLS case being here represented
by their means.

3.4 Remarks on the Bayesian ALM

We said that we chose equation (1) carefully. In particular, we made sure that
a lagged endogenous variable was included with a non-zero coe¢ cient �; and
that a two-step ahead expectation was included with a non-zero coe¢ cient
�1: By considering the actual law of motion under Bayesian learning, we can
show clearly why both � 6= 0 and �1 6= 0 are necessary to see the di¤erences
between standard recursive learning and Bayesian learning. First, if �1 = 0;
then the term �1�b;t
yt drops out of the expression (35). Second, if � = 0;
then there would be no term 
yt, as the MSV solution (2) would not depend
on yt�1, and so the agents would only need to estimate means.
To return to a standard recursive learning case, we would have to make

two assumptions. One is that the agents use the standard recursive least
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squares estimator instead of the Bayesian estimator, and the second is that
agents treat parameter estimates as constants when using their PLM to form
expectations. So, there are really two levels to Bayesian learning. One is that
the agents use the Bayesian estimators �a and �b; and the second is that the
agents treat the estimates as random variables, not constants, which gives
rise to the term �1�b;t
yt in the actual law of motion (35). It is important
to stress that even systems with Bayesian estimation only (e.g., �1 = 0) do
not produce an actual law of motion equivalent to the RLS case, because �a
and �b are not treated as constants.

3.5 Alternative expressions for the ALM

In order to work with the expression (35), we can write it in an expanded
fashion. First, consider �b;t
yt:

��1t = ��1t�1 + �
�2ztz

0
t

=

�
�2a;t�1 �ab;t�1
�ab;t�1 �2b;t�1

��1
+ ��2

�
1 yt�1
yt�1 y2t�1

�

=

0@ �2b;t�1
At�1

+ ��2 ��ab;t�1
At�1

+ ��2yt�1

��ab;t�1
At�1

+ ��2yt�1
�2a;t�1
At�1

+ ��2y2t�1

1A ; (36)

where At�1 = �2a;t�1�
2
b;t�1 � �2ab;t�1 is the determinant of �t�1. Then,

�t = (�
�1
t )

�1

=

0@ �2a;t�1
At�1AIt

+
��2y2t�1
AIt

�ab;t�1
At�1AIt

� ��2yt�1
AIt

�ab;t�1
At�1AIt

� ��2yt�1
AIt

�2b;t�1
At�1AIt

+ ��2

AIt

1A ; (37)

where AIt = det(�
�1
t ). We de�ned �b;t as

�b;t = X�
�2�tzt = �

�2(�ab;t + �
2
b;tyt�1); (38)
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with X = (0 1). Therefore,

�b;t = �
�2
�
�ab;t�1
At�1AIt

� �
�2yt�1
AIt

+

�
�2b;t�1
At�1AIt

+
��2

AIt

�
yt�1

�
;

=
��2

At�1AIt

�
�ab;t�1 + �

2
b;t�1yt�1

�
;

=
�ab;t�1 + �

2
b;t�1yt�1

�2 + �2a;t�1 + 2�ab;t�1yt�1 + �
2
b;t�1y

2
t�1
; (39)

as
AIt =

1

�2At�1

�
�2 + �2a;t�1 + 2�ab;t�1yt�1 + �

2
b;t�1y

2
t�1
�
: (40)

We are ultimately interested in �b;t
yt. Using


yt = V ar(ytjYt�1) = �2 + z0t�t�1zt
= �2 + �2a;t�1 + 2yt�1�ab;t�1 + y

2
t�1�

2
b;t�1; (41)

we can express �b;t
yt as

�b;t
yt = �ab;t�1 + �
2
b;t�1yt�1: (42)

Substituting this expression into the ALM yields

yt = [� + (�0 + �1)�a;t�1 + �1�a;t�1�b;t�1 + �1�ab;t�1]

+
�
� + �0�b;t�1 + �1�

2
b;t�1 + �1�

2
b;t�1

�
yt�1 + vt: (43)

This is an AR (1) process, consistent with the perceived law of motion, given
beliefs at date t: Using this alternative expression for the actual law of motion
allows us to de�ne a T-map in a convenient way.

4 Expectational stability

In this section we turn to an analysis of expectational stability. Agents have
beliefs about the parameters in their PLM and update them using Bayes
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rule. Conditional on information at time t, that is, the observed sequence of
fy�gt�=1 = Yt, their beliefs are given by

f(�jYt) = N (�t;�t); (44)

where �t and �t have the recursive form

�t = �t�1 + �t�
�2zt(yt � z0t�t�1); (45)

��1t = ��1t�1 + �
�2ztz

0
t; (46)

where yt in the �rst equation is given by the actual law of motion in equation
(43) above. The evolution of the mean of the distribution is given by

�t = �t�1 + �t�
�2zt(�+ (�0 + �1)�a;t�1 + �1�a;t�1�b;t�1 + �1�ab;t�1

+
�
� + �0�b;t�1 + �1�

2
b;t�1

�
yt�1 + vt � z0t�t�1): (47)

De�ne a T-map as

Ta(�;�) = �+ (�0 + �1)�a + �1�a�b + �1�ab (48)

Tb(�;�) = � + �0�b + �1�
2
b + �1�

2
b : (49)

Rewritting �t =
1
t
R�1t , where

Rt = (1=t)�
�1
0 + (1=t)��2Z 0tZt; (50)

and de�ning St�1 = Rt, we can represent the problem in the stochastic
recursive form,4

�t = �t�1 + t
�1��2S�1t�1zt(z

0
t(T (�t�1; St�2)� �t�1)� vt); (51)

St = St�1 + t
�1(��2zt+1z

0
t+1 � St�1)

+ t�2
�
� t

t+ 1

�
(��2zt+1z

0
t+1 � St�1): (52)

4See Evans and Honkapohja (2001, Section 8.4) for technical conditions on the recursive
stochastic algorithm.
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Using the stochastic recursive algorithm we can approximate the above
system with the ordinary di¤erential equation

d�

d�
= h(�)

= lim
t!1

E��2S�1zt(z
0
t(T (�; S)� �)� vt)

= eT (�)� � (53)

as
lim
t!1

T (�; S) = eT (�) (54)

with

eTa(�) = �+ (�0 + �1)�a + �1�a�b (55)eTb(�) = � + �0�b + �1�2b : (56)

Linearizing and computing the eigenvalues of eT (�) at an equilibrium, we
obtain the stability conditions

�0 + �1 + �1�b � 1 < 0 (57)

�0 � 1 + 2�1�b < 0

These conditions are identical to the ones shown by Evans and Honkapohja
(2001) to govern expectational stability under recursive least squares. We
conclude that the system under Bayesian learning has the same E-stability
conditions as with classical recursive learning.
This is an important �nding, as it shows that concerns about the sta-

bility of macroeconomic systems under learning are equally relevant under
a Bayesian learning assumption as under a recursive learning assumption.
In particular, the system with Bayesian learners could be locally stable or
unstable� it may or may not converge locally to the rational expectations
equilibrium if expectations were initially displaced a small distance away from
the REE. And, in fact, for the system we study the expectational stability
conditions are the same under the two assumptions.
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The intuition for this result is straightforward, given the known connec-
tions between Bayesian and least squares estimation methodology. In par-
ticular, if the variance terms vanish as data accumulates, and if in addition
the estimators converge to their means, then the system will in e¤ect be the
same one which is analyzed for expectational stability under recursive least
squares. The agents using recursive learning are assuming no variance terms
and replacing mean parameter estimates with constants at the outset.
Even though stability properties are not altered, we have already stressed

that the actual law of motion will not be the same under a Bayesian as-
sumption relative to RLS. This means transition paths will be altered under
Bayesian learning relative to RLS. We now turn to this issue.

5 Dynamics

5.1 Approach and parameterization

To illustrate above �ndings we conduct numerical simulations based on a
version of an example taken from Evans and Honkapohja (2001, Section 8.5).
Our version is intended to illustrate di¤erences in the two systems as clearly
as possible. Accordingly, we consider again the model

yt = �+ �yt�1 + �0E
�
t�1yt + �1E

�
t�1yt+1 + vt; (58)

with parameter values � = 2, � = 0:3, �0 = 0:5, and �1 = �0:4. The two
AR(1) MSV solutions are (�a1;�b1) = (1:86; 0:44) and (�a2;�b2) = (8:97;�1:69).
Clearly, only the �rst solution is stationary and, in accordance with (57),
E-stable.
We compare transition paths generated by agents with three di¤erent

learning procedures. First, the recursive least squares case serves as a bench-
mark. Our second case is Bayesian learning. And, in order to isolate the
e¤ect of prior beliefs on the transition path in the Bayesian learning case we
also consider a third case, passive Bayesian estimation, in which estimates
are treated not as realizations of random variables but as constants, just as
in the standard recursive learning case. In addition, we consider alternative
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priors, each with a di¤erent precision, for both Bayesian learners and passive
Bayesian estimation agents.
The initial settings of parameters, in the case of recursive least squares,

and priors, in cases of Bayesian learning and passive Bayesian estimation, are
at the stationary solution (�a1;�b1). The lagged value of y is equal to uncondi-
tional mean of y. For each parameterization, we conduct 1; 000 simulations
and report the median realization to characterize the typical dynamics.

5.2 Bayesian learning dynamics can di¤er from RLS

We start with a comparison of the evolution of the RLS and Bayesian learning
systems. The theory predicts that even though the expectational stability
conditions are the same, the dynamics will be di¤erent. Figure 1 illustrates
this point. In the Figure, the horizontal dotted line represents the rational
expectations value of the parameter. Parameters estimated with both recur-
sive least squares and Bayesian learning converge to rational expectations
equilibrium.5 However, it is also evident that the dynamic paths of at and bt
di¤er� and that these di¤erences decrease over time. Figure 2 depicts �rst
100 periods from the same simulation. In this �gure the di¤erence between
the two learning procedures is more pronounced.
In both �gures, the estimates of Bayesian learners are closer to the ratio-

nal expectations values than the recursive least squares estimates.

5.3 Bayesian learning versus Bayesian estimation

As we mentioned earlier, there are two levels of Bayesian learning. One is
that the agents use the Bayesian estimator �a and �b; and the second is that
the agents treat the estimates as random variables, which gives rise to the
term �1�b;t
yt in equation (35). In order to distinguish between these two
versions we can compare recursive least squares and Bayesian learning to the
third case, passive Bayesian estimation.

5The relatively slow convergence is typical result for learning of AR(1) processes. See
the discussion in Evans and Honkapohja (2001).
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Figure 1: Bayesian learning vs RLS.
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Figure 2: Bayesian learning vs RLS, �rst 100 periods

In Figure 3, we have added the simulated median path of estimated para-
meters with the passive Bayesian estimation (PBE). One advantage of plot-
ting all three median trajectories is that we can decompose the Bayesian
learning e¤ect on learning dynamics into two components. The di¤erence
between PBE and RLS trajectories is the result of informative priors.6 The
alternative paths for Bayesian learning and PBE are the result, in turn, of
the additional variance-covariance term in the Bayesian learning expression,
stemming from (35).

6In the case of non-informative priors PBE and RLS are the same.
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Figure 3: Bayesian learning and Bayesian estimation.

The striking feature of Figure 3 is that PBE and BL median trajectories
are extremely close to one another, relative to the di¤erence between these
two trajectories and the trajectory of the recursive learning case. This sug-
gests that the e¤ects of priors are more signi�cant in these examples than
any contribution coming from the additional variance-covariance term.

5.4 E¤ects of priors

Bayesians have priors that may di¤er from an uninformative state, while stan-
dard recursive least squares does not. As Figure 3 illustrates, the precision
of prior beliefs can be relatively more important for transition paths. Figure
4 depicts alternative trajectories of at and bt for di¤erent prior variances.7

The priors here are always centered at rational expectations values.8 The
increase in the precision of prior beliefs decreases the variability of the tra-
jectory and moves it closer to rational expectations equilibrium. We stress,
however, that this pattern is the result of prior beliefs being centered at ra-
tional expectations values. If the priors were centered at any other point, the
increased precision of the prior would cause slower convergence to REE. We

7Since the variance is equal to inverse of precision, x = 4 indicates variance of prior
beliefs, �, equal 1=4.

8This removes a degree of freedom from the simulations. Since expectational stability
is a local concept, this seems reasonable.
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Figure 4: E¤ects of precision of priors.

think this point is well understood and we do not illustrate it here.

6 Conclusion

We have shown how to incorporate Bayesian learners into a standard lin-
ear recursive macroeconomic system, similar to ones studied by Evans and
Honkapohja (2001). In order to illustrate the nature of the di¤erences be-
tween Bayesian learning and a standard recursive least squares approach, we
included a lagged endogenous variable in the system as well as a two-step
ahead expectation. Without these features of the model, di¤erences with
RLS would not exist or would be more di¢ cult to see. The analysis here
is for an abstract linear scalar system, and it remains to be seen how these
results would translate into commonly-studied macroeconomic models with
microfoundations. Those systems would presumably have Bayesian decision-
making as well as Bayesian updating.
A key result is that the system under Bayesian learning has the same

expectational stability properties as the system under standard recursive
learning. That is, expectational stability conditions are una¤ected here by
the introduction of Bayesian versus classical econometricians. Systems like
this under Bayesian learning are just as likely or unlikely to meet expec-
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tational stability requirements as equivalent systems under recursive least
squares. Of the �two views�mentioned in the introduction, the suggestion
that Bayesian estimation is a close relative of recursive least squares turned
out to be the more prescient. Although agents here understand that they will
be updating again in the future, this does not alter expectational stability
�ndings.
However, we also show that the actual law of motion under Bayesian learn-

ing is in general not identical to the ALM under recursive least squares. This
means that actual transition dynamics will di¤er under the two assumptions.
This may be material for studies that wish to make quantitative statements
about learning dynamics. We illustrated a few of these di¤erences.
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