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Abstract

We analyze the e¤ects of social learning in a widely-studied mone-
tary policy context. Social learning might be viewed as more descrip-
tive of actual learning behavior in complex market economies. Ideas
about how best to forecast the economy�s state vector are initially
heterogeneous. Agents can copy better forecasting techniques and dis-
card those techniques which are less successful. We seek to understand
whether the economy will converge to a rational expectations equilib-
rium under this more realistic learning dynamic. A key result from
the literature in the version of the model we study is that the Taylor
Principle governs both the uniqueness and the expectational stability
of the rational expectations equilibrium when all agents learn homoge-
neously using recursive algorithms. We �nd that the Taylor Principle
is not necessary for convergence in a social learning context. We also
contribute to the use of genetic algorithm learning in stochastic envi-
ronments.
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1 Introduction

1.1 Overview

Recent research has emphasized how policy choices may in�uence the sta-

bility properties of rational expectations equilibrium. In a typical analysis,

a policymaker may commit to a particular policy rule, stating how adjust-

ments to a control variable will be made in response to disturbances to

the economy. The policy rule, together with optimizing private sector be-

havior, may imply that there is a unique rational expectations equilibrium

associated with the policy rule, and that the equilibrium has desirable wel-

fare properties. However, the equilibrium may or may not be robust to

small expectational errors. If the expectations of the players in the economy

are initially not rational, but deviate from rational expectations by a small

amount, behavior of the players in the economy will be changed. This will

then have e¤ects on the price and quantity outcomes in the economy, feeding

back into the learning process. Such a dynamic may or may not converge

to the rational expectations equilibrium which is the policymaker�s target.

When the process does converge, it is called an expectationally stable, or

learnable equilibrium.

We study learnability in a standard context, the model of monetary pol-

icy of Woodford (2003). A standard result, discussed in Woodford (2003)

and Bullard and Mitra (2002), is that in a simple version of the model,

the rational expectations equilibrium will be learnable provided the policy-

maker follows the Taylor Principle.1 This means that the policymaker must

react su¢ ciently aggressively to economic developments, such as deviations

of in�ation from target or the deviation of output from the �exible price, or

potential, level of output. Failure to do so will create a rational expectations

equilibrium which is unstable in the recursive learning dynamic. Such an

equilibrium is unlikely to be successfully implemented in actual policymak-

ing. Even small expectational errors would drive the economy away from

the intended equilibrium.

1For a discussion of the Taylor Principle, see Woodford (2001).
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The standard results are derived under the assumption of homogeneous

expectations which are updated via recursive algorithms. This is the ap-

proach discussed extensively in Evans and Honkapohja (2001). By assum-

ing homogeneous expectations and recursive algorithms, analytical results

can be obtained concerning the expectational stability properties of equilib-

ria across a wide variety of models. In this paper we study an alternative

approach to learning, one that can be viewed as more realistic in terms of

actual learning in complicated market economies. In it, agents are initially

heterogeneous with respect to the models they use to forecast the future.

Forecast rules are updated via genetic operators, meant to simulate the

process of learning from neighbors and others in the economy. Results are

not analytic but are based on computational experiments. We will call this

alternative approach social learning.

Social learning has been studied in a wide variety of contexts in eco-

nomics, but not in the standard New Keynesian model where many of the

other �ndings concerning learnability have been presented. One reason is

that the New Keynesian model is inherently stochastic, and the genetic algo-

rithm applications which are drawn from the arti�cial intelligence literature

are deterministic.2 The genetic algorithm is meant to �nd �good�solutions

to complicated problems with no known best solution. One purpose of this

paper is to understand how insights from the genetic algorithm learning

literature may be applied in a stochastic context.

1.2 Main �ndings

We conduct a series of computational experiments with social learning in

the setting studied by Bullard and Mitra (2002). Our main �nding is that

the Taylor Principle does not have to be met in order for agents to coor-

dinate on a rational expectations equilibrium of the model via the social

learning dynamic. This stands in marked contrast to the �ndings in the

recent learning literature.

2That is, the set of problems which have been considered are deterministic, although
the algorithm itself is necessarily stochastic.
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1.3 Recent related literature

Woodford (2003) contains the de�nitive statement of the nature of the New

Keynesian model of monetary policy. Bullard (2006) surveys some of the

literature on monetary policy and expectational stability, along with related

issues. Genetic algorithm learning in economic contexts has been surveyed

by Arifovic (2000).

Our paper is related to the recent literature on heterogenous learning.

For example, Giannitsarou (2003) as well as Honkapohja and Mitra (2005,

2006) distinguish the following forms of heterogeneity in learning: di¤erent

initial perceptions, di¤erent learning rules, and di¤erent degrees of inertia

in updating in the same learning rule. Giannitsarou (2003) �nds that when

agents use least squares learning, E-stability implies learnability in the case

of di¤erent initial perceptions. But for the other types of heterogeneity,

the stability under homogenous learning does not necessarily imply stability

under heterogenous learning. Our social learning approach encompasses a

greater degree of heterogeneity than previous studies in this area, as a �nite

number of agents each have a di¤erent model within a given class of models.

Honkapohja and Mitra (2006) add structural heterogeneity to their analy-

sis (agents respond di¤erently to their forecasts), and study how transient

and persistent heterogeneity in learning a¤ects the learnability of the funda-

mental (MSV) solution. They �nd that transient heterogeneity in learning

does not change the convergence conditions even in the presence of structural

heterogeneity. But in case of persistent heterogeneity in learning, E-stability

conditions do not in general imply learnability in structurally homogeneous

and heterogeneous economies. Honkapohja and Mitra (2005) study the per-

formance of interest rate rules in the presence of heterogeneous forecasts by

the private sector and the central bank in New Keynesian model. They �nd

that E-stability conditions are necessary but not su¢ cient for learnability

with heterogeneity in learning.

Negroni (2003) studies heterogeneity in adaptive expectations. He con-

siders two sources: heterogeneity of expectations (di¤erent gains) and het-
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erogeneity of fundamentals. He �nds that in the presence of heterogeneity,

the conditions for convergence of heterogeneous adaptive beliefs to the sta-

tionary REE are not the same as for homogeneous beliefs.

Our agents have the same form of the learning rule but di¤erent initial

beliefs about the values of the coe¢ cients in the perceived law of motion.

They update their beliefs at the same rate, so the economy is structurally

homogeneous. Our agents are able to learn from the other agents (social

learning), whereas in all the models with heterogenous learning mentioned

above agents proceed to update their beliefs without knowing what and

how well the rest of the agents are doing. Our results suggest that the social

aspect is important for learning the rational expectations equilibrium.

Branch and Evans (2004) show that heterogeneity can arise under certain

conditions as an endogenous outcome when agents choose between misspec-

i�ed models. In our study, agents have the correct speci�cation of the REE

model, although they start with di¤erent beliefs about the coe¢ cients in the

correct speci�cation. Our question is whether agents are able to learn the

fundamental (MSV) values of the coe¢ cients.

1.4 Organization

In the next section we discuss the New Keynesian model that we wish to

study in this paper. Much has been written about this model, but here

we only provide the reader with a minimal outline of the key equations,

as the model itself is not the focus of this analysis. We then turn to a

discussion of the social learning dynamic as we have implemented it in the

New Keynesian model. Our main �ndings are the results of computational

experiments, which we compare to standard results from the literature. The

concluding section summarizes our �ndings and suggests a few directions for

future research.
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2 Environment

2.1 Overview

We study the simple version of the New Keynesian model employed by

Bullard and Mitra (2002) and Woodford (2003). The economy is populated

by a continuum of in�nitely-lived household-�rms that maximize utility and

pro�ts. Household-�rms consume all goods but produce only one good on

the continuum. Firms are monopolistically competitive and face a Calvo-

style sticky price friction when determining their price. The model consists

of three equations along with an exogenously speci�ed stochastic process.

The �rst equation is the linearized version of the �rst order condition for

household utility maximization. The second equation is the linearized ver-

sion of the �rst order condition for �rm maximization of pro�ts. The third

equation is a Taylor-type interest rate feedback rule that describes the be-

havior of the monetary authority.3 The system is given by

zt = zet+1 � ��1[rt � �et+1] + ��1rnt (1)

�t = �zt + ��
e
t+1 (2)

where zt is the output gap, �t is the deviation of the in�ation rate from a

prespeci�ed target, rt is the deviation of the short-term nominal interest rate

from the value that would hold in a steady state with the level of in�ation at

target and output at the level consistent with fully �exible prices. A super-

script e denotes a subjective expectation that can initially be di¤erent from

a rational expectation. All variables are expressed in percentage point terms

and the steady state is represented by the point (zt; �t; rt) = (0; 0; 0) : The

parameter � 2 (0; 1) is the discount factor of the representative household,
� > 0 controls the intertemporal elasticity of substitution of the house-

hold, and � > 0 relates to the degree of price stickiness in the economy. A

standard calibration suggested by Woodford (2003) and widely used in the

literature sets (�; �; �) = (0:99; 0:157; 0:024) : The natural rate of interest,

3Optimal policy and learnability can also be studied� see Evans and Honkapohja
(2003).
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rnt ; is a stochastic term which follows the process

rnt = �r
n
t�1 + �t; (3)

where �t is i:i:d: noise with variance �2� , and 0 � � < 1 is a serial correlation
parameter. The interest rate feedback rule of the monetary authority is

given by

rt = '��t + 'zzt; (4)

where '� and 'z are policy parameters taken to be strictly positive. The

policymaker is committed to this rule and does not deviate from it. Substi-

tuting (4) into (1), we obtain

zt = z
e
t+1 � ��1['��t + 'zzt � �et+1] + ��1rnt : (5)

2.2 Determinacy and learnability

Equations (2),(3), and (5) can be written as:

yt = �+By
e
t+1 + �r

n
t (6)

where � = 0, yt = [zt; �t]
0 ;

B =
1

� + 'z + �'�

�
� 1� �'�
�� �+ �(� + 'z)

�
; (7)

and

� =
1

� + 'z + �'�

�
1
�

�
: (8)

In order to analyze the e¤ects of homogeneous recursive learning in this

environment, Bullard and Mitra (2002) proceeded as follows. Assume that

all agents have the following perceived law of motion (PLM)4

yt = a+ cr
n
t ; (9)

4The assignment of the PLM is not arbitrary but corresponds to the equilibrium law
of motion of the economy.
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which describes their belief concerning the equilibrium law of motion of the

economy. With this perceived law of motion, they form expectations as

Etyt+1 = a+ c�r
n
t =

�
zet+1
�et+1

�
: (10)

The actual law of motion (ALM) is then found by substituting (10) into (6)

yt = Ba+ (Bc�+ �)r
n
t : (11)

The minimal state variable (MSV) solution is

yt = �a+ �cr
n
t (12)

where �a = 0 and �c = [I � �B]�1�. At (�a; �c) ; the actual law of motion coin-
cides with the perceived law of motion and rational expectations equilibrium

has been attained. If the actual law of motion has dynamics which tend to

this �xed point, we say that the equilibrium is learnable.

Bullard and Mitra (2002) determine the necessary and su¢ cient condi-

tion for a rational expectations equilibrium to be determinate in the sense

of Blanchard and Kahn (1980) as

�('� � 1) + (1� �)'z > 0: (13)

Bullard and Mitra (2002) also show that this same condition is necessary and

su¢ cient for the expectational stability of rational expectations equilibrium.

Inequality (13) is a statement of the Taylor Principle. In particular, consider

the simpli�ed condition 'z = 0; so that the central bank does not respond

to deviations of output from potential when setting its nominal interest rate

target. Since � > 0; the condition requires '� > 1; which is to say that the

nominal interest rate must be adjusted more than one-for-one in response

to deviations of in�ation from target.

Bullard and Mitra (2002) concluded that condition (13) governs both

uniqueness of rational expectations equilibrium as well as expectational sta-

bility of that equilibrium in this simple model.5 Expectational stability is a
5The relationship between determinacy and learnability is less clear in more compli-

cated settings.
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notional time concept, but Evans and Honkapohja (2001) show that it gov-

erns the stability of the real time system formed when agents estimate the

coe¢ cients in (9) using recursive algorithms such as least squares. We now

turn to examine the robustness of this �nding when homogenous recursive

learning is replaced with social learning.

3 Social learning

3.1 Overview

We study the behavior of evolutionary learning agents. Agents are initially

heterogeneous with respect to their perceived law of motion (9), in the sense

that each agent has a separate and possibly di¤erent set of coe¢ cients. Thus

each agent initially has a di¤erent forecasting model. The coe¢ cients are

updated using social evolutionary learning instead of least squares learning.

Our objective is to see whether MSV solutions are learnable by evolutionary

learning agents.

3.2 Initialization

We introduce heterogeneity as follows. There are N agents in the private

sector. Each agent, i = 1; ::N has a perceived law of motion (PLM)

zt = a1;i;t + c1;i;tr
n
t (14)

�t = a2;i;t + c2;i;tr
n
t (15)

We stress that rn is a stochastic term, and that �nding equilibrium values

of a and c will depend on evaluating how well each forecast rule works

even though there is noise in the system. This is not a typical feature of

evolutionary learning environments. It is true that the genetic operators we

discuss below are inherently stochastic, but the �tness calculation does not

normally have to contend with exogenous stochastic terms.

The initial values for the coe¢ cients are each randomly generated from

a normal distribution with mean equal to the respective MSV value. The
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standard deviation for coe¢ cients c1 and c2 is equal the largest of the ab-

solute values of the MSV values of these coe¢ cients. We used a smaller

initial standard deviation for the coe¢ cients a1 and a2. The MSV values for

these coe¢ cients are 0 and are smaller than MSV values for the coe¢ cients

c1 and c2. Therefore, we used initial standard deviation for coe¢ cients a

half as large as for the coe¢ cients c. When setting the values of initial stan-

dard deviations we have pursued several objectives� namely, starting with

a diverse population of rules, injecting diverse new rules through mutation,

and keeping the diversity of new rules commensurate with the MSV values.

3.3 Expectations and the actual law of motion

Agents form their expectations of the output gap and deviation of in�ation

from target using (3), (14), (15) as

zei;t+1 = a1;i;t + c1;i;t�r
n
t ; (16)

�ei;t+1 = a2;i;t + c2;i;t�r
n
t : (17)

The average expectations of the output gap and the deviation of in�ation

from target are computed as

zet+1 =
1

N

NX
i=1

zei;t+1; (18)

�et+1 =
1

N

NX
i=1

�ei;t+1: (19)

The actual values of the output gap and deviation of in�ation from target

are obtained from

yt = �+B

�
zet+1
�et+1

�
+ �rnt : (20)

3.4 Forecast rule performance

Agents assess the performance, or �tness, of their forecasting model us-

ing mean squared forecast error as a criterion. Agents compute the mean

squared forecast error for the output gap and the deviation of in�ation over
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all periods following an initial history. We stress that it is important not

to base the performance on only the most recent forecast error because the

environment is stochastic.6

The �tness is computed as

Fi;t = �
1

t

tX
k=1

(zk � zfi;k)
2 � w1

t

tX
k=1

(�k � �fi;k)
2 (21)

where zfk is the forecast value of z for period k, and �
f
k is the forecast value

of � for period k, and w is the relative weight on the MSE for in�ation.

An agent is characterized by a set of coe¢ cients (a1;i;t, a2;i;t , c1;i;t, c2;i;t) at

each date t. The terms zfk and �
f
k are the forecasts of the output gap and

the deviation of in�ation from target that agent i could have computed in

period k, if he had used the current, date t, set of coe¢ cients (a1;i;t, a2;i;t,

c1;i;t, c2;i;t). The forecasts z
f
k , �

f
k are computed by agent i as

zfi;k = a1;i;t + c1;i;t�r
n
k�1 (22)

�fi;k = a2;i;t + c2;i;t�r
n
k�1 (23)

The weight w is used to give equal importance to the prediction error

for the output gap and the deviation of in�ation from target as the values of

the MSE for these two variables can di¤er in order of magnitude. Without

reasonable weighting, the �tness measure puts insu¢ cient emphasis on the

�rst or the second term in (21), leading to drift in coe¢ cients away from

MSV values.

First, we considered simulations with weight w = 1, implying output

forecast error volatility and in�ation forecast error volatility have the same

weight in the assessment of forecast rules.7 From these simulations, we

collected the data on �tness and its composition: the �rst and the second

6Branch and Evans (2004, p. 3) assume that �... agents make their choices based on
unconditional mean payo¤s rather than on the most recent period�s realized payo¤. This
is more appropriate in our stochastic environment since otherwise agents would frequently
be misled by single period anomalies.�

7The genetic operators used in these simulations are described below. Here, we simply
wanted to discuss the �tness criterion.
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summation terms in (21). This data indicated that the MSE for z was

several orders of magnitude larger than the MSE for �, and therefore, agents

e¤ectively did not care very much about the accuracy of their prediction for

� when assessing their forecast rule. As a result, the coe¢ cients diverged

away from MSV values (see quantitative details in section (5.4)).

The source of the di¤erence in magnitudes of the MSE for the output

gap and the MSE for the in�ation deviation can be explained. From the

time series of z and �, we observed that the output gap assumes larger val-

ues than in�ation deviations. This comes from the values of the coe¢ cients

in equation (20) for the computation of the actual output gap, z, and in-

�ation deviation, �. At the standard calibration we use, the coe¢ cients for

the computation of z are several times larger than the coe¢ cients for the

computation of �. This makes values of z larger than values of �, and so the

squared prediction error for z larger than for �. In turn, this implies that

in the �tness calculation, the �rst summation term in (21) is considerably

larger than the second summation term (most frequently by a factor of 100).

We used the weight w to adjust for this asymmetry. In particular, we set

w such that the �rst and second summation terms in (21) are of the same

order of magnitude. We use weight equal 100 for the simulations reported

in this paper.

The criterion (21) with zfk set to zero is a version of the objective function

for the central bank that is often employed in models of optimal monetary

policy. In studies of this type, w would represent the central bank�s rela-

tive preference for in�ation versus output volatility. This objective is also

often rationalized as an approximation to the utility of the representative

household in this economy, as suggested by Woodford (2003). In the optimal

policy literature, w takes on a relatively large value. There the weight on

in�ation stabilization is typically set to one, and the weight on output stabi-

lization is close to zero, so that the relative weight on in�ation stabilization

is quite large. In the present paper, the agents are concerned with the fore-

casting performance of their forecasting model, and so forecast performance

matters and zfk as well as �
f
k are non-zero. However, the relatively large
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value of w that delivers the best performance of the social learning model is

similar.

3.5 Genetic operators

A hallmark of the evolutionary learning literature is that agents update their

current state using genetic operators. These operators are meant to simulate

the exchange of information in a large, complex economy, and are based

on the principles of population genetics. Agents can meet other agents,

exchange information concerning their current forecast rule, and possibly

copy the partner�s forecast rule, either in whole or in part. This process is

implemented as described below.

We follow the literature in this area and use three genetic operators,

namely crossover, mutation, and tournament selection. Our genetic system

is real-valued. Crossover is implemented �rst. Two agents in the set of

N agents are randomly matched without replacement. With probability of

crossover mcross, their sets of coe¢ cients can be subjected to crossover: If

a random draw from a uniform distribution is less than or equal mcross,

the agents exchange each type of coe¢ cient with probability 0:5:

Mutation is implemented following crossover. An agent changes each

coe¢ cient with probability of mutation mprob in the following way

new = old+ random �mutdeviation; (24)

where random is a random number drawn from a standard normal distri-

bution, old is the current value of the coe¢ cient, and mutdeviation is the

standard deviation used for mutation. We setmutdeviation to be decreasing

over time according to

mutdeviation = deviation � (1� decrease � t=T ) (25)

where deviation is the standard deviation used to generate initial set of

rules, t is current date, T is the total number of periods in the simulation,

and decrease is a coe¢ cient. We set decrease equal 0:95, it is intended

to allow non-zero mutation standard deviation even in the last period of
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the simulation. Mutation can be very destructive late in a simulation when

the N forecast rules may be very close to optimal, REE forecast rules, be-

cause a random choice of a new coe¢ cient will cause a new round of genetic

variation. The term (25) is meant to control this e¤ect.

After mutation, agents compute the �tness of their coe¢ cients according

to (21).

The �nal genetic operator is tournament selection. Agents are randomly

selected in pairs with replacement N times. For each pair of agents, the

�tness values of the forecast rules are compared. The agent with the higher

�tness value is copied into the next generation of agents. This creates a

new generation of N agents. After this update is �nished, agents go to the

next period of the simulation. Tournament selection will provide most of

the selection pressure in this evolutionary learning environment, as weaker

forecasting rules are systematically discarded during this process.

4 Computational experiments

4.1 Overview

We conduct a set of computational experiments in order to understand the

behavior of the economy under social learning. We begin our simulations

by generating an initial history for the system at the rational expectations

equilibrium, that is, using the MSV values for the coe¢ cients a and c. We

then conduct simulations that last for 3000 periods, and we set the length

of the initial history to 100 periods. We use the parameter values from

Woodford (2003), namely, � = 0:157, � = 0:024, � = 0:99, and � = 0:35.

The standard deviation of rn is 3:72. We consider a range of values for

the parameters in the Taylor-type monetary policy rule. For values of the

coe¢ cient on the output gap, we use 'z 2 [0:2; 1:1]. For the coe¢ cient on
in�ation, we use '� 2 [0:5; 2]. At these parameter values, condition (13)
is met for some policy parameter pairs but not for others, and is governed

primarily by the value of '�.

We use the following parameter values in the genetic algorithm. The
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probability of mutation is 0:1 and the probability of crossover is 0:5. The

number of agents is 30. The value of w in the �tness criterion is 100.

4.2 Main �ndings

We found that agents are able to learn MSV values of coe¢ cients for most

of the policy parameter pairs ('z; '�), both in the determinate and E-stable

region as well as in the indeterminate and E-unstable region. A series of

four �gures shows our main results.

A typical simulation result for the policy rule characterized by '� = 2:0

and 'z = 0:2 is given in Figure 1, and for the policy rule '� = 1:5 and

'z = 0:5 in Figure 2. These policy rules are associated with a determinate

rational expectations equilibrium and expectational stability. The �gures

show the time series of the deviation of each of the four coe¢ cients from

their MSV values averaged across all agents. The �gure also shows �1 stan-
dard deviation for each coe¢ cient�s deviation from MSV values, showing

the extent of the dispersion in coe¢ cients in use at date t in the population

of agents. Figures 1 and 2, along with other simulations using policy rules

consistent with determinacy and learnability, suggest that long-run predic-

tions from analyses using recursive learning and analyses using evolutionary

learning are similar. In particular, both approaches predict convergence to

the rational expectations equilibrium. This result breaks down when we

consider other policy rules, however.

Figures 3 and 4 show typical simulation results for '� = 0:5 and 'z = 0:5

or 'z = 0:3; respectively. These policy rules are associated with indetermi-

nacy and expectational instability. The �gures again show the time series

of the deviation of each of the four coe¢ cients from their MSV values aver-

aged across all agents, and �1 standard deviation. Here, the evolutionary
learning dynamic converges to the MSV solution once again, even though

an analysis based on least squares learning would predict instability in the

learning dynamics. These �ndings suggest that, provided one is willing to

take an evolutionary learning perspective, the less aggressive policy rules

are not as disturbing as they may have appeared to be.
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In order to provide more details concerning these results, we performed

1000 simulations for di¤erent policy rules ('�; 'z) and collected data for the

deviations of coe¢ cients from their MSV values for each simulation. Dur-

ing each simulation, for each coe¢ cient, we computed the average value of

deviation from the MSV value for each period. Then we computed average

value of the average deviations during the last 100 periods of simulation.8

We also compute average of absolute values of deviations from MSV values

during last 100 periods. In addition we collected data on percentage devi-

ations from MSV values for coe¢ cients c1 and c2 and computed average of

(absolute) percentage deviations during last 100 periods of the simulations.

(We cannot compute percentage deviations for coe¢ cients a1 and a2 as their

MSV values are zero). For each policy rule ('�; 'z), we perform 1000 simu-

lations, collect the above described statistics for each simulation, and report

means and standard deviations for each statistic over 1000 simulations.

Table 1 reports means and standard deviations for average deviations

from MSV values for a variety of �xed policy rules. The policy rules pre-

sented in this table include some that induce a determinate and E-stable

rational expectations equilibrium, as well as others that induce indetermi-

nacy and expectational instability. The policy rules that induce determinacy

and learnability according to condition (13) will have larger values of '� and

'z, which tend to be located toward the northeast part of the table. Rel-

atively small values for '� and 'z are associated with indeterminacy and

expectational instability, and tend to be located in the southwest portion of

the table.

We can make the following observations from Table 1. Perhaps most

importantly, for the policy rules considered, regardless of whether they are

consistent with determinacy and learnability or not, the population coe¢ -

cients are quite close to their MSV values. The genetic algorithm we have

implemented allows mutation up to date T in the simulation and so does

not attempt to eliminate variation entirely, yet the table indicates that the

8The results are not qualitatively di¤erent for data computed for last 100-period, last
10-period and last 1-period; therefore, we only report results for last 100-period data.
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population is quite close to the one that would use MSV values exclusively

(all values in the table are very close to zero). To the extent there are di¤er-

ences from MSV values, the deviations for the constant coe¢ cients a1 and

a2 can be somewhat higher than those for the slope coe¢ cients c1 and c2.

Standard deviations indicate that there is some variety in the population

even during the last 100 periods of the simulation, but the extent of the

variety is not very large.

Table 2 presents means and standard deviations for absolute values of

the deviations from the MSV values. This table also presents the percentage

absolute deviation for the slope coe¢ cients c1 and c2: These percentages for

the absolute deviations range from about 3:0 to 11:0, and do not seem to

vary systematically with the policy rule.

The previous tables illustrate convergence of each individual coe¢ cient.

We would also like to present a measure of convergence for a complete set of

coe¢ cients� how close all coe¢ cients are to MSV values at the same time.

Table 3 reports the number of simulations out of 1000 that satisfy speci�c

convergence criteria based on averages of absolute deviations over last 100

periods of simulation. As di¤erent coe¢ cients deviate from MSV values by

di¤erent amounts, we present results of the application of two criteria for

convergence. Criterion 1 requires that absolute deviations from MSV values

for all coe¢ cients are less than or equal 0:2. Criterion 2 requires that the

absolute deviation from the MSV value for a1 is less than or equal 0:5, and

that the absolute deviations from the MSV values for a2, c1, and c2 are less

than or equal to 0:3.9

Table 3 perhaps indicates a result more in conformity with previous

�ndings in the learning literature: The number of simulations out of 1; 000

satisfying either convergence criterion clearly tends to decline as one moves

toward the southwest in Table 3, that is, as one moves toward the region of

the parameter space that is associated with indeterminacy and expectational

9The number of simulations satisfying criterion 2 is very close to the number of sim-
ulations satisfying a criterion which requires that the absolute value of the deviation of
coe¢ cient c2 from its MSV value is less than 0.03, and the rest of the coe¢ cients satisfy
criterion 2.
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instability. This is perhaps clearest when comparing the most northeasterly

cell in the table with the cell in the southwest corner. The former is as-

sociated with determinacy and expectational stability, while the latter is

not. In the northeast corner we observe values of 963 and 995, respectively,

for the two convergence criteria, while in the southwest corner we observe

values of 145 and 403: This would seem to be a clear indication that it is

somehow �more di¢ cult� for the social learning system to converge upon

the MSV solution when expectational stability and determinacy conditions

fail. However, we do not wish to press this point too hard. The cell asso-

ciated with '� = 1:0 and 'z = 0:2 has values of 208 and 578 for the two

convergence criteria, respectively, not very di¤erent from the results for the

cell in the southwest corner. Yet these parameter values satisfy condition

(13); rational expectations equilibrium here is unique and expectationally

stable. Furthermore, Tables 1 and 2 indicated that whatever failure to con-

verge may exist, actual values are not very di¤erent from MSV values, and

would probably not be meaningful in economic terms.

In some simulations, we can observe deviations of average values of co-

e¢ cients a1 and a2 from their MSV counterparts, even though agents are

always able to learn MSV values of c1 and c2 quite closely. Again considering

Table 2, to the extent that agents are inaccurate in learning MSV values, it

is due to the coe¢ cients a1 and a2, as the deviation of these coe¢ cients from

MSV is the largest among all coe¢ cients. In the least squares learning model

of Bullard and Mitra (2002), as pointed by Woodford (2003, pp. 271-272),

�... it is in fact the possible instability of the dynamics of estimates of the

constant terms �0 in the forecasting model that is the relevant threat; and

whether this occurs or not is determined by whether or not the Taylor prin-

ciple is adhered to ....�In our notation, �0 corresponds to the coe¢ cients a1
and a2. Similarly, Honkapohja and Mitra (2004) point out that �In Bullard

and Mitra (2002, p. 1757), the constant term was the key to E-stability

of the MSV solution .... �However, our simulations show that the system

under evolutionary learning behaves somewhat di¤erently. While the values

of a1 and a2 may not be as close to their MSV values as the values of c1 and
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c2; this e¤ect occurs whether or not the Taylor principle holds.

5 Modi�cations and robustness

5.1 Overview

We performed several modi�cations of the simulations described above.

These included using di¤erent �tness criterion and not using crossover. We

now turn to a description of these modi�cations and their e¤ects on the

results.

5.2 Alternative performance evaluation

As we stressed earlier, the weighting of the two dimensions in the �tness

criterion is essential to convergence of the social learning systems we study.

Without reasonable weighting, the �tness measure puts insu¢ cient emphasis

on one dimension or the other, leading to drift in coe¢ cients away from MSV

values. The modi�cation considered in this section has each agent compute

the mean squared error for forecasting the deviation of in�ation from target

and the output gap separately, and simply consider them separately without

combining them into one �tness measure. In particular, agent i computes

mean squared errors for the output gap and in�ation as

F zi;t = �1
t

tX
k=1

(zk � zfi;k)
2; (26)

F �i;t = �1
t

tX
k=1

(�k � �fi;k)
2; (27)

where zfi;k, �
f
i;k are computed as in (22) and (23).

The change in performance criterion also has a¤ects on the tournament

selection operator. We modi�ed the operator as follows. Again, N pairs of

agents are randomly selected from the current generation with replacement,

and �tness is compared for each pair. A new member of the next generation

adopts the coe¢ cients for forecasting output gap from the agent with higher
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F zi;t (lower mean squared error for forecasting the output gap) and the co-

e¢ cients for forecasting the deviation of in�ation from the target from the

agent with higher F �i;t (lower mean squared error for forecasting in�ation).

In this way the next generation of agents is created, and more �t forecast-

ing rules are systematically selected while weaker rules are systematically

discarded.

The results of these simulations are reported in Table 4. This table

reports the same data as Table 2 for the baseline simulations. The results

are qualitatively the same as for the baseline simulations. Table 5 reports

the number of simulations that satisfy convergence criteria. We �nd similar

e¤ects when moving from northeast to southwest in this table as we did in

Table 3.

5.3 Simulations without crossover

Crossover is considered a powerful operator in the genetic algorithm litera-

ture. One is taking �building blocks of good solutions�and combining them

to create new possible solutions. This is thought to be a much faster way

to �nd a good solution to a di¢ cult problem than to merely rely on a mu-

tation process. Especially for our real-valued, multidimensional problem, it

can take a long time for mutation alone to �nd the best solution. In this

subsection, we show that crossover is essential to our �ndings. To do this,

we consider systems in which crossover has been discarded completely from

the genetic algorithm. These simulations are done in the same way as the

baseline simulations described above, with the sole modi�cation that there

is no crossover. Table 6 reports the some of the same data for simulations

without crossover as Table 2 for the baseline simulations. The simulations

without crossover have the following results. The constant coe¢ cients, a1
and a2, approach the MSV values of zero. However, the slope coe¢ cients,

c1 and c2, deviate from the MSV values by 96 to 99 percent. We conclude

that crossover is an important GA operator for learning the MSV solution

in this model.
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5.4 Relative weight equal to unity

For completeness, we also report results of the simulations in which the

weight w was simply set equal to one. As we have indicated, the convergence

properties are not as good for this parameterization. The results are shown

in Table 7 where the coe¢ cients tend to be farther from MSV values at the

end of the simulation as compared to the baseline simulation. Table 8 shows

that the convergence criteria are met less often as well.

6 Conclusion

A key �nding in the literature on learning in New Keynesian models of

monetary policy is that nominal interest rate feedback policies which are

too close to an interest rate peg tend to be associated with indeterminacy

and instability in the recursive learning dynamics. The policymaker must

react su¢ ciently aggressively to economic developments in order to assure

determinacy of rational expectations equilibrium and expectational stability

of that equilibrium. This has been promoted as an important reason to

discard policy rules which are insu¢ ciently aggressive,10 and this idea has

gained widespread acceptance in monetary policy discussions.

We have investigated whether this result is robust to the substitution of

an evolutionary learning dynamic for the recursive learning dynamic. Our

main �nding is that the evolutionary learning dynamic does not put a pre-

mium on policy rules which obey the Taylor Principle. Instead, evolutionary

learning converges to a small neighborhood of the MSV solution whether or

not the policymaker obeys that principle.

When the Taylor Principle is violated, equilibrium is indeterminate. It

is well-known that sunspot equilibria exist in a neighborhood of an indeter-

minate rational expectations equilibrium. This is another important reason

why insu¢ ciently aggressive policy rules may be considered poor policy. In

the recursive learning literature, it has generally been di¢ cult to obtain ex-

10See, for instance, Woodford (2001, 2003).
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pectational stability of sunspot equilibria.11 An interesting extension of our

analysis would be to analyze the stability of sunspot equilibria under the

evolutionary learning dynamic.
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Table 3.

Parameter '� 0.5 1.0 1.5 2.0
'z Criterion

1.1 1 950 960 964 963
2 990 992 994 995

1.0 1 933 947 955 957
2 982 990 989 991

0.9 1 901 931 945 935
2 973 981 989 991

0.8 1 866 911 921 902
2 967 972 979 987

0.7 1 810 863 880 860
2 952 962 971 974

0.6 1 725 801 822 807
2 932 945 961 966

0.5 1 604 694 739 717
2 901 925 944 938

0.4 1 453 554 607 619
2 830 888 919 889

0.3 1 280 379 467 490
2 668 800 847 815

0.2 1 145 208 275 306
2 403 578 677 690

Table 3: The number of simulations for which each of the criteria is satis�ed,
the total number of simulations is 1000. Criterion 1 means that absolute
deviations from MSV values for all coe¢ cients are less than or equal 0.2.
Criterion 2 means that absolute deviations from MSV value for a1 is less
than or equal 0.5 and that absolute deviations from MSV values for a2, c1,
and c2 are less than or equal to 0.3.
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Table 5.

Parameter '� 0.5 1.0 1.5 2.0
'z Criterion

1.1 1 921 941 952 949
2 975 980 984 987

0.8 1 828 874 893 869
2 946 959 968 974

0.5 1 553 669 710 682
2 861 898 924 920

0.2 1 127 193 267 275
2 371 549 620 619

Table 5: The number of simulations for which each of the criteria is satis�ed
for simulations with separate �tness, the total number of simulations is
1000. Criterion 1 means that absolute deviations from MSV values for all
coe¢ cients are less than or equal 0.2. Criterion 2 means that absolute
deviations from MSV value for a1 is less than or equal 0.5 and that absolute
deviations from MSV values for a2, c1, and c2 are less than or equal to 0.3.
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Table 8.

Parameter '� 0.5 1.0 1.5 2.0
'z Criterion

1.1 1 850 881 881 850
2 934 953 953 955

1.0 1 819 858 861 845
2 921 941 940 946

0.9 1 781 826 840 802
2 908 921 929 936

0.8 1 741 793 802 739
2 878 907 915 928

0.7 1 662 734 749 682
2 853 874 889 905

0.6 1 569 676 674 596
2 806 847 867 876

0.5 1 447 556 579 514
2 759 805 838 822

0.4 1 299 418 422 399
2 663 751 791 733

0.3 1 201 261 308 269
2 507 633 677 608

0.2 1 78 137 157 163
2 276 418 484 452

Table 8: The number of simulations for which each of the criteria is satis�ed,
the total number of simulations is 1000, weight=1. Criterion 1 means that
absolute deviations from MSV values for all coe¢ cients are less than or equal
0.2. Criterion 2 means that absolute deviations from MSV value for a1 is
less than or equal 0.5 and that absolute deviations from MSV values for a2,
c1, and c2 are less than or equal to 0.3.
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Figure 1: Simulation for determinate and E-stable region: �� = 2, �z = 0:2.

Figure 2: Simulation for determinate and E-stable region: �� = 1:5, �z =
0:5.
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Figure 3: Simulation for indeterminate and E-unstable region: �� = 0:5,
�z = 0:3.

Figure 4: Simulation for indeterminate and E-unstable region: �� = 0:5,
�z = 0:5.
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