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Abstract 

We explore the influence of city-level business cycle fluctuations on crime in 20 large 

cities in the United States.  Our monthly time-series analysis considers seven crimes over 

an approximately 20-year period: murder, rape, assault, robbery, burglary, larceny, and 

motor vehicle theft.  Short-run changes in economic conditions, as measured by changes 

in unemployment and wages, are found to have little effect on city crime across many 

cities, but property crimes are more likely to be influenced by changes in economic 

conditions than are more violent crimes.  Contrary to the deterrence hypothesis, we find 

strong evidence that in many cities more arrests follow an increase in crime rather than 

arrests leading to a decrease in crime.  This is true especially for the more visible crimes 

of robbery and vehicle theft and suggests that city officials desire to remove these crimes 

from the public’s view. 
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City Business Cycles and Crime 
 

I.  Introduction 

Crime is a community attribute - along with educational quality, infrastructure, 

and employment opportunity - that, in part, determines the attractiveness of a city or 

region.  Local governments and economic development officials, especially those in 

urban areas, are aware that increasing crime rates adversely affect residential and 

business immigration.  A city’s crime rate is thus considered a factor in the city’s 

economic success.  Much academic research examines the effects that of crime on the 

economic growth of local areas (Burhham et al., 2004; Greenbaum and Tita, 2004; Mauro 

and Carmeci, 2007).  This research generally finds that areas with higher crime rates 

experience lower rates of economic growth and development.   

 Economists explain an individual’s propensity to commit a crime by examining 

the expected costs and benefits from criminal activity (Becker, 1968).  Empirical research 

on crime models the direct cost to an individual as the probability of arrest and/or 

incarceration and the direct benefit as the value of the illegally acquired goods (Ehrlich, 

1996; Levitt, 1997).  Numerous studies estimate the effect of deterrence on crime, but 

with mixed results and no definitive conclusion (Grogger, 1991; Levitt, 1997, 1998; 

Cover and Thistle, 1988; Cornwall and Trumbull, 1994; Lee and McCrary, 2005).  In 

addition, Decker and Kohfeld (1985) suggest that arrests do not influence crime, but 

rather that arrests follow an increase in crime. 

Criminal behavior also depends on other cost comparisons, such as forgone wages 

and employment opportunities (Gould et al., 2002; Mocan and Bali, 2005; Corman and 

Mocan, 2000, 2005).  The reasoning is that higher wages and employment opportunities 
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decrease the attractiveness (by increasing the opportunity cost) of acquiring assets 

through criminal activity rather than through legal channels. 

 Much research focuses on the effects of unemployment on crime.1  Lee and 

Holoviak (2006) find evidence of a positive, long-run relationship between crime and 

unemployment in three Asian-Pacific countries.  Corman and Mocan (2000, 2005), using 

time-series data for New York City, find that property crimes increase in response to an 

increase in the unemployment rate and decrease in response to a greater police presence.2    

Mocan and Bali (2005) also find a direct relationship between unemployment and crime 

using a panel of data for U.S. states.   A direct relationship between unemployment and 

property crimes, and a weaker direct relationship between unemployment and violent 

crimes, was found by Raphael and Winter-Ember (2001) in their panel data analysis of 

U.S. states.3

 Several studies have also considered the effect of wages on criminal activity.  

Grogger (1998) uses individual level data from the National Longitudinal Survey of 

Youth to explore the relationship between property crimes and wages.  He finds evidence 

that falling wages partially explain rising youth crime during the 1970s and 1980s.  

Gould et al. (2002), using a sample of 705 U.S. counties over the period 1979 to 1997, 

  Less evidence of a relationship between unemployment and crime is a result 

in Imrohoroglu et al. (2004), who analyzed trends in U.S. property crimes.  Finally, 

Carmichael and Ward (2000), in their analysis of crime in England, find no evidence of a 

relationship between unemployment and robbery, burglary, and property crimes.   

                                                 
1 Numerous other studies have been conducted on the issue.  See Freeman (1999), Gould et al. (2002), and 
Corman and Mocan (2005) for additional surveys of the literature.   
2 The authors find that deterrence (as measured by arrests) is more important in explaining crime rates than 
are economic conditions.  For example, the authors find that a 10 percent increase in burglary arrest rates 
results in a 3.2 percent reduction in the growth of burglaries, whereas a 10 percent increase in 
unemployment growth increases burglary growth by 1.6 percent. 
3 The authors find that declining unemployment between 1992 and 1997 explained more than 40 percent of 
the decline in property crimes.   
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find that both unemployment and wages are related to crime, but the effect of wages is 

greater than that of unemployment.  Finally, Corman and Mocan (2005) find that changes 

in criminal activity are inversely related to changes in the real wage in New York City.4

 Although some general patterns emerge regarding the relationship between crime 

and economic activity (and deterrence, to some degree), it is fair to say that the results of 

past studies do not provide conclusive evidence.

   

5

 Much of the time-series modeling of crime has focused on the long-run 

relationships (e.g., 10- or 20-year trends) between crime and deterrence and crime and 

economic activity rather than on any short-run relationship, say, month to month or 

quarter to quarter.  In this paper, we determine whether city-level crime varies with 

changes in local economic conditions and deterrence.  We use monthly time-series data 

for 20 large U.S. cities to determine whether changes in seven separate criminal offenses 

can be explained by changes in unemployment and real wages, as well as changes in 

deterrence.  In addition, we empirically test the hypothesis that more arrests follow an 

increase in crime.  Because we examine month-to-month changes in crime, economic 

conditions, and deterrence rather than trends, our study is an analysis of the shorter-run 

  Certainly, the different units of 

observations, time periods, and empirical methodologies used in each study contribute to 

the difference in results.  In addition, the likely simultaneous relationship between crime 

and deterrence and between crime and economic conditions (Cullen and Levitt, 1996) 

and the various methods authors have used to control this simultaneity may also explain 

the divergent results.   

                                                 
4 The authors find that a 10 percent increase in the growth of wages reduced the growth of various crimes 
by 4 to 6 percent. 
5 Rather than using unemployment and wages to measure economic activity, Rosenfeld and Fornango 
(2007) explore how changes in consumer sentiment influenced crime rates in the United States over the 
period 1970 to 2003. 
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impact of arrests and economic conditions on crime.  The empirical framework we use is 

similar to that of Corman and Mocan (2000, 2005) who used monthly time-series data to 

estimate a model of crime for New York City.   

Our time-series study of multiple cities offers several advantages.  The high- 

frequency time-series data used in our models allow us to avoid (or, at least, better 

minimize) the complex simultaneity problem between crime and deterrence and between 

crime and economic conditions that has plagued studies using cross-sectional or panel 

data.  Our study also has the advantage that an identical empirical framework is used for 

each of the 20 cities, thus providing a more accurate comparison of results across cities.  

As noted by Levitt (2001), inferences made from aggregate time-series analysis regarding 

the unemployment and crime relationship may be misleading.  In addition, a comparison 

of results across cities should prove interesting, as Topel (1994) and Glaeser and 

Sacerdote (1999) have shown that crime rates and labor market conditions vary 

significantly across regions.  Also, the results from a county- or state-level analysis may 

mask the greater crime rates and variability in economic conditions in urban areas 

relative to those in rural areas (Smith, 1980; Weisheit et al., 1994).   

Our results show interesting differences in the effect of changing economic 

conditions on crime across cities, as well as differences in the responsiveness of city law 

enforcement to increases in different types of crimes.  Some of our results are consistent 

with those of previous works that have explored a long-run relationship between 

economic conditions and crime and between crime and deterrence.  Other results are 

quite different and provide a contrast in the conclusions from models of crime that 

consider the short run versus the long run.  In addition to revealing intercity differences 
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on the effects of economic conditions and deterrence on various categories of criminal 

activity, our results suggest intercity differences in the allocation of law enforcement 

resources and in the effectiveness of law enforcement, as well as possible economic 

development incentives pressuring city officials to reduce certain crimes but not others.      

 

II. Data and Methodology 

Data 

 Our city-level crime data are from the Federal Bureau of Investigation’s Uniform 

Crime Reports (UCR).6  We obtained the monthly number of offenses and arrests for 

seven categories of crime: murder, rape, assault, robbery, burglary, larceny, and motor 

vehicle theft.7

                                                 
6 The agency-level UCR data were retrieved from the National Archive of Criminal Justice Data via the 
Inter-University Consortium for Political and Social Research at the University of Michigan at 
http://www.icpsr.umich.edu/NACJD/ucr.html.  We use agency-level data rather than incident-level or 
county-level data.  Doing so provides a list of all criminal offenses and arrests for each city’s police 
department.   

  Although the UCR is the most widely used source of crime data, the fact 

that these data are self-reported by cities raises some possible problems (Ehrlich, 1996).  

These include underreporting of crime by local police departments and differences in the 

collection and reporting of criminal activity across cities.  Because we estimate crime 

models for each city (and each crime), cross-city contamination by variation in reporting 

methods is not a concern.  Similarly, bias resulting from the underreporting of crime 

would be minimized in our time-series analysis if the underreporting were consistent over 

the sample period. 

7 Murder includes nonnegligent manslaughter.  Robbery is the taking or attempting to take anything of 
value from a person by use of force.  Burglary is the unlawful entering of a property with the intent to 
commit a felony or theft.  Larceny is the unlawful taking of property from an individual (no use of force).   
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 Crime data were obtained from the 20 largest U.S. cities based on 1990 

population for which sufficient crime data were available.8  Our sample period for the 

majority of cities covers the period December 1983 to December 2004.  The failure of 

cities to report crime data for several months or several years early or late in the sample 

period has shortened the sample for several cities.  For some cities, the absence of offense 

statistics for certain crimes over an extended period midsample led us to omit the crime 

from the list of seven crime equations estimated.  In addition, appropriate steps were 

taken to handle the occasional monthly missing observation to preserve the sample for 

estimation purposes (Maltz, 1999, p. 28).9

[Table 1] 

  Table 1 lists the cities in the analysis, the 

sample period for each city, and notes on data editing. 

 Our models of crime assume that criminal activity is a function of deterrence and 

economic conditions.  As in many previous studies, we use the number of crime-specific 

arrests as our measure of deterrence.10  Changes in economic conditions are captured by 

the city-level unemployment rate (seasonally adjusted) and changes in the real minimum 

wage (Gould et al., 2002; Corman and Mocan, 2005).11

                                                 
8 We chose the 1990 population as the basis for our samples because it is roughly the midpoint of each 
sample period.  Cities in the top 20 that were not considered here because of a lack of data include New 
York City, Chicago, Jacksonville, and Washington, DC.  Corman and Mocan (2005) obtained their New 
York City crime data from the New York City Police Department. 

  Although the unemployment rate 

9 This is true of the arrest data as well. 
10 As in Corman and Mocan (2005), we do not normalize the number of crimes or arrests by city population 
because population changes very little month to month and data are available only at Census dates. 
11 The monthly unemployment rate for each city was obtained from the Bureau of Labor Statistics (BLS).  
The city unemployment rates from the BLS were seasonally adjusted using the U.S. Census Bureau’s X-12-
ARIMA Seasonal Adjustment Program.  The minimum wage in each city was obtained from January issues 
of the Monthly Labor Review published by the BLS.  We deflated the nominal minimum wage by the CPI.  
For each city, we used the highest minimum wage set by law (local, state, or federal).  When a state’s 
minimum wage changed from one year to the next (if it was higher than the federal minimum wage), we 
contacted the state’s labor department or found documentation online (from local newspapers) that listed 
the month of the year that the new minimum wage went into effect.  For the majority of cities, the federal 
minimum wage always trumped the state’s minimum wage.  The Tax Policy Center provides an annual 
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captures the employment situation for the average city resident, the minimum wage is 

more likely to capture the financial situation of young, single men, as this group generally 

constitutes the greatest percentage of all minimum-wage workers.12

 

  This demographic 

group is also the most likely to commit property-related crimes (Grogger, 1998). 

Model and Hypotheses 

 Our objective is to determine whether changes in deterrence and economic 

conditions influence monthly changes in crime.  We estimate the following crime 

equation for each of seven crimes in each of the 20 cities: 

            

 

The number of criminal offenses is denoted by Ct and the number of arrests for the 

respective crime is denoted by ARr.  UNr and MWr denote the city unemployment rate 

and the city real minimum wage, respectively.  Because we are interested in month-to-

month changes, all variables are transformed into percent changes before estimation.  

Monthly dummy variables (S) are included to account for any seasonality in crime. 

 In addition to estimating regressions for each of the 20 cities, we pool the data and 

estimate our crime model using panel data methods.  Our (unbalanced) panel contains the 

same variables as in equation (1), but we also include city and year fixed effects to 

capture unobserved heterogeneity across cities and time.  Pooling the data not only 

provides for a greater number of cross-sectional observations, it also allows us to assess 

how the city-specific results compare with the results from pooled data for the 20 cities.  

                                                                                                                                                 
summary of state and federal minimum wages.  These data can be accessed at 
http://www.taxpolicycenter.org/taxfacts/content/PDF/state_min_wage.pdf. 
12 See Characteristics of Minimum Wage Workers, 2007;  Bureau of Labor Statistics. 

r r r r

t r r r r r r r r t
1 1 0 0

C C AR UN MW S (1)α β δ φ γ ε= + + + + + ∑ τ +          ∑ ∑ ∑ ∑

http://www.taxpolicycenter.org/taxfacts/content/PDF/state_min_wage.pdf�
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Differences in the city-specific and pooled results can provide further evidence that crime 

and labor markets vary across cities and regions (Topel, 1994; Glaeser and Sacerdote, 

1999).       

 Because the effects of deterrence and economic conditions on crime may extend 

over several months, we include lags of arrests, unemployment, and the minimum wage.  

The number of lags (r) captures the degree to which each variable’s effect on crime 

persists.  As in Corman and Mocan (2005), no contemporaneous value of arrests is 

included in the empirical models to minimize any simultaneity between arrests and crime.  

The model does include a contemporaneous value for both economic variables.  Lag 

length for each variable in each regression equation was determined by the Akaike 

information criterion (AIC) following the methodology of Burnham and Anderson (2002, 

p. 71).  We used Newey-West standard errors to correct for heteroskedasticity and serial 

correlation.13

 The total effect of each variable on changes in crime is determined by summing 

the lagged coefficients for each variable.  We assess the magnitude of each variable’s 

effect on crime by calculating an elasticity using the sum of the coefficients 

(contemporaneous and lagged) and the means of the respective variables.

  Finally, each empirical model includes an error-correction term to account 

for any long-run equilibrium relationship between crime and the explanatory variables. 

14

                                                 
13 We used the following formula to determine the number of lags for the Newey-West standard errors:  
4(n/100)^(2/9), where n is the number of observations.  The integer portion of the result was then taken as 
the number of Newey-West lags.  See Wooldridge (2003, p. 412) for further details. 

  The 

14 Let Ω be a sum of coefficients.  The elasticity (η) is computed as η = Ω · (X/Y) , where Y is the 

dependent variable and X is the independent variable.  The variance of the elasticity is calculated as Var(η) 

= 2(X/Y) ∙ Var(Ω), where Var(Ω) is calculated using the standard formula for the variance of a sum - 
summing the variances of each individual coefficient and the covariance between each coefficient pair.   
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elasticities are interpreted as the effect of a percentage change in the growth rate of the 

independent variable on the percentage change in the growth rate of crime.      

 Several points regarding the elasticity estimates are worth mentioning.  

Importantly, comparisons of elasticities across cities may reflect different time spans 

depending on the lag length of each variable.  In addition, the size of an elasticity 

estimate depends not only on the sum of the coefficients (and thus the number of lags), 

but also the magnitude of the respective variables’ means.  Because we are looking at 

percentage changes in growth rates rather than changes in the levels of each variable (the 

former is a much smaller number than the latter), small changes in growth rates can 

translate into large percentage changes (i.e., large elasticity estimates). 

 It is useful to discuss, based on previous research, the possible effects that arrests, 

unemployment, and wages might have on crime.  First, consider changes in arrests.  A 

positive relationship between arrests and crime would lend support for the deterrence 

model of crime.  Although some authors (Levitt, 1998) strongly argue that deterrence is a 

significant factor in explaining crime, there are several reasons why we might find no 

significant relationship between arrests and crime.  First, it is possible that the causality is 

from crime to arrests rather than arrests to crime - an increase in crime causes a 

reallocation of police resources to combat the increase in crime.  In their study of 

homicide, robbery, and burglary in St. Louis, Decker and Kohfeld (1985) find evidence 

that arrests follow crimes.  Second, one would expect deterrence to be effective only if 

potential criminals were aware that their probability of being arrested had significantly 

increased.  Wilson and Herrnstein (1985) and Lee and McCrary (2005) suggest that 
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potential offenders are quite myopic when considering the consequences of their 

activities.  This may be especially true in the short run. 

 We expect unemployment to have a positive effect on crime and wages to have a 

negative effect on crime.  However, these effects are likely dependent on specific crimes.  

For example, it seems much more reasonable that crimes involving the taking of property 

would occur more frequently during economic slowdowns than violent crimes such as 

murder and rape.  Thus, we might expect more significant relationships between 

economic conditions and property crimes (robbery, burglary, larceny, vehicle theft) than 

for the most violent crimes.  Finally, it is also possible that initial or temporary changes in 

an individual’s employment situation are not as likely to induce criminal behavior as 

would an unfavorable long-term unemployment situation.  This situation would suggest 

no short-run relationship between unemployment rates and crime, as individuals may 

resort to crime only after an extended period of economic distress. 

 A negative relationship between changes in the minimum wage and crime is 

expected, as the opportunity cost of committing a crime (forgone wage) increases as the 

real minimum wage increases.  What about the relative importance of unemployment 

versus wages in explaining crime rates?  Gould et al. (2002) find evidence that wages 

played a greater role in county-level crime trends than did the unemployment rate over 

the period 1979 to 1997.  The reasonable argument made by the authors is that 

unemployment is a temporary situation whereas low or stagnant wages is more of a long- 

term situation, and it is the latter than creates a greater incentive for individuals to 

commit crimes.  Because we are studying changes in wages and unemployment, it is less 

clear that we would expect to find that changes in wages to have a greater effect on crime 
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than a change in unemployment.  However, using monthly crime data for New York City, 

Corman and Mocan (2005) did find that the wage elasticities for certain crimes were 

greater than unemployment elasticities. 

  

III. Empirical Results   

 The empirical results are presented in Tables 2 through 8; each table contains the 

elasticities of arrests, unemployment, and wages on the respective crime for each of the 

20 cities.  Recall that the elasticities are interpreted as the effect of a percentage change in 

the growth rate of the independent variable on the percentage change in the growth rate 

of the crime.  Missing values in a table indicate a lack of available crime data for the city.   

  For the most violent crimes of murder and rape (Tables 2 and 3), the evidence 

suggests that changes in deterrence and economic conditions have a significant influence 

on the growth of murders and rapes in only a few cities and not in the full sample.  In 

New Orleans, the arrest elasticity for murder is -5.5, suggesting that a 10 percent increase 

in the growth of murder arrests resulted in a 55 percent decrease in the growth of 

murders.  Real minimum wage growth resulted in lower growth in the number of rapes in 

New Orleans and San Diego.  Growth in unemployment resulted in a higher growth in 

rapes in Cleveland.  In general, there is little evidence that short-run changes in arrests 

and economic conditions influence the number of murders and rapes in our sample of 

cities. 

[Table 2] 

[Table 3] 
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 As with murder and rape, the regression results for assault (Table 4) show few 

significant relationships between economic conditions and crime and between arrests and 

crime.  In addition, about half of the significant elasticities are of the wrong sign.  For 

elasticities with the correct sign, the unemployment elasticities for assault are generally 

larger (in absolute value) than the minimum wage elasticities for assault.   

[Table 4] 

 The elasticities for robberies are shown in Table 5.   Unlike for the crimes of 

murder and rape, changes in arrests and economic conditions significantly influence the 

growth in robberies in a larger number of U.S. cities.  The arrest elasticity for robbery 

ranges from -0.04 in New Orleans to -0.66 in El Paso.  The arrest elasticity in the pooled 

sample is -0.07 and is statistically significant.  Unemployment growth caused an increase 

in robberies in Baltimore, Houston, Indianapolis, Milwaukee, and San Diego, with 

elasticities ranging from roughly 0.10 in Milwaukee to 1.87 in Indianapolis.  Real 

minimum wage growth resulted in lower growth in the number of robberies for four cities 

– Baltimore, Cleveland, Columbus, and San Diego.  In Baltimore and San Diego, robbery 

growth is influenced by both changes in the unemployment rate and wage growth.  A 

visual comparison across cities suggests that the unemployment elasticities for robbery 

are slightly higher (in absolute value), on average, than the minimum wage elasticities for 

robbery. 

 [Table 5] 

 The results for burglary, larceny, and motor vehicle theft reveal more significant 

elasticities (all of the correct sign) than the more violent crimes of robbery, murder, rape, 

and assault.   Consider the burglary results shown in Table 6.  The arrest elasticity for 
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burglary is negative and significant for five cities and ranges from -0.03 (Los Angeles) to 

-0.43 (Phoenix).  Growth in unemployment increased the growth in burglaries in six 

cities, with elasticities ranging from 0.04 (Los Angeles) to 0.23 (Boston).  Minimum 

wage growth reduced the growth of burglaries in four cities – El Paso, Los Angeles, 

Milwaukee, and Seattle.  The minimum wage elasticities for burglary are slightly higher 

(in absolute value) than the unemployment elasticities for burglary.  All of the 

coefficients in the pooled burglary model have the predicted sign, but none are 

statistically significant. 

[Table 6] 

 The larceny elasticities are presented in Table 7.  The arrest elasticity for larceny 

is negative and significant for seven cities.  These elasticities are, on average, slightly 

higher than those for robbery, ranging from -0.07 (Baltimore) to -2.65 (Milwaukee).  The 

unemployment elasticity for larceny is positive and significant for four cities (range of 

0.02 to 0.14), and each is of similar value to the unemployment elasticity for burglary 

shown in Table 6, although for a different set of cities.  The minimum wage elasticity for 

larceny is negative and significant for four cities (range of -0.19 to -3.57) as well as for 

the pooled model (-0.29).  The elasticities are generally larger than the minimum wage 

elasticities for burglary shown in Table 6.   

[Table 7] 

 The results for motor vehicle theft are shown in Table 8.  Changes in arrests have 

a negative influence on motor vehicle thefts in three cities, with the elasticities ranging 

from -0.04 to -0.34.  The unemployment elasticity for motor vehicle theft is positive and 

significant for six cities.  Increases in the real minimum wage lead to lower motor vehicle 



 15 

thefts in five cities and in the pooled sample of cities.  Changes in both the 

unemployment rate and the real minimum wage influence motor vehicle thefts in both 

Milwaukee and Detroit.  As for many of the other crimes, no clear difference emerges 

regarding the effects of changes in unemployment and wages on crime. 

[Table 8] 

 The volume of empirical results presented thus far warrants a brief summary.  For 

many cities, we found no significant short-run relationship between arrests and crime and 

between economic conditions and crime.  We did find, however, that changes in 

economic conditions explain nonviolent crimes such as larceny, burglary, and motor 

vehicle theft to a greater degree than the more violent crimes of murder and rape.  

Although the number of cities in which a statistically significant relationship exists is 

small, the relative importance of economic conditions in explaining property crimes 

rather than violent crimes supports previous empirical work (Raphael and Winter-Ember, 

2001).  Another finding is that no consistent difference in the magnitude of the elasticities 

appears across crimes or cities.  This suggests that determining whether crime is 

influenced more by changes in economic conditions or by changes in deterrence must be 

made on a city-by-city basis.  More discussion of these empirical results is reserved for 

the final section of the paper. 

 

IV. Do Arrests Follow Crime? 

 The previous section of this paper explored the effect of deterrence, as measured 

by arrests, on criminal activity.  The hypothesis is that criminals adjust their activity in 

response to increases or decreases in the likelihood of arrest.  A causal relationship from 
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1 1

SAR C AR (2)α β δ ε= + ∑ τ ++ +                           ∑ ∑

arrests to crime, however, depends on two key factors.  The first is that arrests are a 

suitable measure of deterrence and the second is that criminals have perfect, or at least 

semi-perfect, knowledge of increased police activity to deter crime.   

 Although there has been debate in the literature regarding the degree to which 

arrests are a suitable measure of deterrence (Fisher and Nagin, 1978), most research, 

including the present study, has captured deterrence through arrests given the lack of a 

more reasonable alternative.  However, the notion that criminals do not possess good 

information on increased police activity seems reasonable and, combined with evidence 

that suggests that criminals are quite myopic when considering the costs and benefits of 

criminal activity (Wilson and Herrnstein, 1985; and Lee and McCrary, 2005), questions 

any significant linkage from arrests to criminal activity, especially in the short run.   

 Decker and Kohfeld (1985) argue that, for the aforementioned reasons, one 

should not expect arrests to cause crime, but rather crime is more likely to cause arrests; 

thus suggesting an increase in crime causes an increase in arrests for that crime.  The 

underlying idea is that police resources are adjusted in response to increases in criminal 

activity (Benson et al., 1994).  In this section, we use our sample of 20 cities to test the 

hypothesis that arrests follow crime.  We estimate the following regression for each of the 

seven crimes for each of the 20 cities and for the pooled sample cities (including fixed 

effects): 

 

 

 As in equation (1), the number of criminal offenses (lagged) is denoted by Cr, the 

number of arrests for the respective crime is denoted by ARt, and monthly dummy 
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variables (S) account for any seasonality in crime.  Lags of crime are included to assess 

the degree to which the effect of crime on arrests persists.  We assess the magnitude of 

crime’s effect on (own) arrests by calculating an elasticity using the sum of the lagged 

crime coefficients and the means of the respective variables.  As in equation (1), an error-

correction term was included in equation (2); variable lag length was determined by the 

AIC following the methodology of Burnham and Anderson (2002, p. 71), and Newey-

West standard errors were used to correct for heteroskedasticity and serial correlation.  

 The elasticities shown in Table 9 provide evidence for the hypothesis that arrests 

follow crime.  Unlike earlier tests of the deterrence hypothesis, which revealed relatively 

little statistical evidence that arrests influence crime, the effect of crime on arrests is 

positive and statistically significant for a greater number of cities and crimes.  Of the 

seven crime categories, an increase in the less-violent crimes leads to greater arrests for 

these crimes, especially robbery and motor vehicle theft.  A positive and significant 

relationship from robbery to robbery arrests was found for 15 of the 20 cities and a 

positive and significant relationship from motor vehicle theft to vehicle theft arrests was 

found for 12 of the 20 cities.  This is an interesting finding in that it may reflect the 

reasonable idea that law enforcement makes a greater effort to reduce an increase in 

crimes that are more visible to residents, as well as to businesses and tourists.   

 Six of the seven elasticities from the pooled sample of cities are positive and 

statistically significant.  Robbery and burglary have the largest elasticities (0.42 and 0.35, 

respectively), whereas rape and larceny have the lowest (0.19 and 0.02, respectively).  

The elasticity for assault is not statistically significant.  These results, combined with the 

city-specific results, provide strong evidence that arrests follow crime.  As in the previous 
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crime results (see Tables 3 through 8), the results in Table 9 highlight the difference in 

city-specific elasticities compared with those obtained with the pooled sample of cities.   

 There appears to be no consistent difference in the magnitude of the crime 

elasticities across crimes or cities.  Although many of the elasticities are less than one, 

some elasticities are large by conventional standards ( e.g., the larceny elasticity for 

Phoenix is 66.7).  It is important to keep in mind that the elasticities capture percentage 

changes in growth rates and not levels, with the former much smaller numbers than the 

latter.  In addition, the size of the elasticity is a function of the sum of coefficients (longer 

lag length generally equates to a greater sum of coefficients) and the relative size of the 

variable means.  An inspection of the raw data and regression results reveal that the large 

elasticities are a result of 1) a very small average monthly arrest growth rate compared 

with the average monthly crime growth rate and 2) a larger sum of coefficients due to 

longer lag length than those variables with smaller elasticities.15

 [Table 9] 

  

V. Discussion and Summary 

 The majority of past work on the effects of economic conditions and deterrence of 

crime has focused on the long-run relationship between these variables and has frequently 

used data at the county, state, or national level.  The use of high-frequency time-series 
                                                 
15 For example, consider the difference in the larceny elasticities for Phoenix (66.7) and for Houston 
(0.099).  The average monthly percent change in larceny for Houston is 0.0012 and 0.0013 for Phoenix, 
two very similar numbers.  However, the monthly percentage change in larceny arrests for Houston is 
0.0021, whereas the monthly percentage change in larceny arrests for Phoenix is much smaller: 0.000023.  
Thus, the ratio of variable means is much greater for Phoenix (0.0013/0.000023 = 56.5) than for Houston 
(0.0011/0.0021 = 0.571).  The average monthly larceny growth rate in Phoenix is nearly 57 times greater 
than the city’s monthly larceny arrest growth rate, whereas the average monthly larceny growth rate in 
Houston is about half of the city’s monthly larceny arrest growth rate.  In addition to this large difference in 
the ratio of variable means for Houston and Phoenix, the sum of coefficients for Phoenix is nearly 7 times 
that of Houston: 1.18 for Phoenix and 0.174 for Houston.   Thus, the large elasticity estimate for Phoenix 
(66.7 = 1.18 · 56.5) relative to Houston (0.099 = 0.174 · 0.571) is predominately the result of a much 
greater average monthly growth in larcenies compared with the average monthly growth in larceny arrests. 
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data for individual cities allows empirical modeling that reduces the potential for 

simultaneity between crime and deterrence.  In addition, the use of city-level data for 

multiple cities rather than more aggregated data reduces potential contamination of the 

key relationships that may exist given that crime and labor markets are different across 

cities and rural and urban areas.   

 Using monthly data for 20 large U.S. cities, we determined whether short-run 

changes in economic conditions and deterrence caused changes in seven major crimes.  

We find weak evidence across U.S. cities that changes in economic conditions 

significantly influence short-run changes in crime.  This suggests that short-run changes 

in economic conditions do not induce individuals to commit crimes.  Although we find 

no significant relationships between short-run economic conditions and crime in many 

cities, we do find that short-run changes in economic conditions influence property 

crimes in a greater number of cities.  This likely reflects the fact that nonviolent property 

crimes are more likely to result in financial gain than more violent crimes.   Many of our 

significant elasticities are similar in magnitude to those of Corman and Mocan (2005) in 

their study of New York City.  Although it seems reasonable that wages rather than 

unemployment would have a greater influence on crime in the long run, this is less clear 

in the short run.     

 We find little evidence to support the deterrence hypothesis in the short run, as 

changes in deterrence are found to have no influence on crime in many U.S. cities.  It 

may be that arrests are not the best measure of deterrence, and thus our lack of a large 

number of significant relationships between arrests and criminal activity reflects this fact.  

But we are not too concerned given the wide use of arrests as a measure of deterrence in 
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past studies and several plausible economic explanations for our findings.  For example, 

our findings support the suggestion by previous authors (Wilson and Herrnstein, 1985; 

Lee and McCrary, 2005) that criminals are myopic with regard to changing probabilities 

of arrest and thus do not consider the likelihood of the negative consequences of 

committing a crime.  Similarly, our results may reflect the reasonable possibility that 

criminals do not have perfect information regarding changes in deterrence and thus are 

not able to adjust their criminal activity accordingly.  Both of these economic 

explanations seem particularly reasonable in the short run. 

 The hypothesis that arrests respond to increases in crime was also empirically 

tested.  We find much stronger evidence that, in many U.S. cities, an increase in the 

growth rate of crime results in an increase in the growth of arrests for that crime.  In other 

words, arrests follow crimes.  This supports the notion that law enforcement reallocates 

its resources in response to increases in crime.  One interesting finding was that the 

causal relationship from robbery to robbery arrests was statistically significant for 15 of 

the 20 cities and the relationship from vehicle thefts to vehicle theft arrests was 

statistically significant for 12 of the 20 cities in our sample.   

 It is reasonable to expect that, over time, an increase in all types of crime would 

garner an increased response from law enforcement, especially the more violent crimes of 

murder and rape.  Several factors explain our finding that increases in less-violent crimes 

garner a law enforcement response in the short run while increases in the most violent 

crimes do not.  First, violent crimes are committed with less forethought than property 

crimes and are often part of an overall increase in criminal activity, such as drugs and 

gangs, which may require years of law enforcement planning and strategy via task forces 
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and interagency cooperation to reduce.16

 The degree to which the effect of crime on arrests persists over time is quite 

different across cities.  For example, robbery arrests are a result of the change in 

robberies from only the prior month in some cities to the last 10 months in other cities.   

Longer lag length may indicate a greater severity of crime waves in terms of duration.  

Similarly, lag length may reflect differences in the effectiveness of law enforcement 

across cities to respond to crime; that is, shorter lag lengths on changes in crime suggest 

law enforcement is more effective at reallocating resources and responding to increases in 

crime.  This second point is especially interesting if one considers two cities, each with 

different crime elasticities but each based on the same lag length.  For example, the 

estimated robbery elasticities are 4.58 and 0.13 for El Paso and Philadelphia, 

respectively, each based on a two-month lag of robberies.  This suggests that, over a two- 

  Second, preventing less violent crimes may also 

reduce the number of more violent crimes, as suggested by the broken-windows 

hypothesis of law enforcement (Wilson and Keeling, 1982; Corman and Mocan, 2005).  

Thus, combating a rise in less-violent crimes is relatively less costly in terms of law 

enforcement resources and may, in fact, reduce the number of violent crimes.  Finally, it 

seems reasonable that crimes that are more visible to businesses and tourists – such as 

robbery, vehicle theft, and assault – are likely to result in greater attention by law 

enforcement in the short run, possibly through a relatively inexpensive increase in police 

presence.  Therefore, from a citywide public relations and economic development 

perspective, as well as from an effective means of overall crime reduction, increases in 

visible crimes are more likely to attract greater police resources in the short run. 

                                                 
16 A classic example is New York City in the 1980s. 
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month period, the responsiveness of law enforcement in El Paso to changes in robberies 

is much greater than in Philadelphia.   

 Two points should be considered, however, when attempting to infer the 

effectiveness of law enforcement.  First, the initial level of crime and arrests is an 

important factor in evaluating the effectiveness of changes in law enforcement.  For a city 

that is already allocating a large percentage of its law enforcement resources to combat 

robberies, for example, the opportunity cost of allocating further resources to robberies is 

much higher than it would be in cities with a lower level of initial law enforcement 

resources allocated to combat robberies (Benson et al., 1994).  Thus, cities already 

allocating a relatively large percentage of their resources to combat robberies may be 

unwilling (or unable) in the short run to allocate additional resources to combat a further 

increase in robberies.  Second, this partial equilibrium analysis does not consider the 

optimal allocation of law enforcement resources to combat other crimes.17

 Several final thoughts and directions for future research are worth mentioning.  

First, it can be argued that an individual’s cost-benefit calculation more often favors 

crime when his or her longer-run economic situation is considered, thus suggesting that 

changing economic conditions and deterrence levels may have a greater influence on city 

crime over long time horizons.  An interesting research question is how long a time 

  Clearly zero 

crime in a city is not an optimal level of crime given the nearly infinite resources it would 

require to achieve this objective, if it could be achieved at all.  The optimal level of each 

crime and the desired level of resources to combat each crime certainly differ across 

cities; these factors are based on the preferences of the citizenry, public officials, and law 

enforcement, as well as different law enforcement strategies (Miceli, 2007). 

                                                 
17 See Garoupa (1997) for a survey of the literature on optimal law enforcement. 
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horizon?  At what point, both in duration and severity, do worsening economic conditions 

induce criminal activity?  Second, it may serve future research to obtain city-level 

unemployment rates and wage data for young males in each city rather than overall 

unemployment rates and minimum wage data because many property crimes are 

committed by young males (Grogger, 1998).  Third, the high-frequency time-series data 

used here could be used to further explore the deterrence versus incapacitation 

hypotheses as described in Levitt (1998).  It would be interesting to see whether temporal 

differences exist in the relationship between arrests for one crime and the occurrence of 

other crimes.   Finally, our results reveal that relationships between economic conditions 

and crime and between deterrence and crime are not likely to be the same across cities or 

regions and thus suggest the importance of local analyses using more disaggregated data 

to implement effective public policy at the local level. 
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Table 1: Cities, Sample Periods, and Data Notes 

City Sample Period Sample 
Size Data Notesa 

Baltimore 1983:12 to 1998:12 181 The August 1997 missing value for murders was replaced with the 
August 1996 value. 

Boston 1989:5 to 2004:12 188 ------- 

Cleveland 1983:12 to 1998:9 178 ------- 

Columbus 1983:12 to 2002:12 229 
The October 1991 and 1998 missing values for rape arrests were 
replaced with the October 1990 and October 1997 values, 
respectively. The October 1998 missing value for robbery arrests 
was replaced with the October 1997 value. 

Dallas 1983:12 to 2004:12 253 The August 1997 missing value for murders was replaced with the 
August 1996 value. 

Detroit 1983:12 to 2004:12 253 The August 1997 missing value for murders was replaced with the 
August 1996 value. 

El Paso 1983:12 to 2004:12 253 ------- 

Houston 1983:12 to 2004:12 253 The August 1997 missing value for murders was replaced with the 
August 1996 value. 

Indianapolis 1996:1 to 2004:12 108 ------- 

Los Angeles 1983:12 to 2004:12 253 The August 1997 missing value for murders was replaced with the 
August 1996 value. 

Memphis 1985:1 to 2004:12 240 The December 1994 missing values for arrests for all crimes were 
replaced with December 1993 values. 

Milwaukee 1983:12 to 2004:12 253 
The August 1997 missing value for murders was replaced with the 
August 1996 value. The March 1986 missing values for all arrests 
were replaced with March 1985 values. The July 2002 missing 
value for rape arrests was replaced with the July 2001 value. 

New Orleans 1983:12 to 2004:12 253 The August 1997 missing value for murders was replaced with the 
August 1996 value. 

Philadelphia 1983:12 to 2004:12 253 
The August 1997 missing value for murders was replaced with the 
August 1996 value. The November 1988 missing values for arrests 
for all crimes were replaced with the November 1987 values. 

Phoenix 1983:12 to 2004:11 252 ------- 

San Antonio 1983:12 to 2004:12 253 ------- 

San Diego 1983:12 to 2004:12 253 ------- 

San Francisco 1983:12 to 2004:12 253 ------- 

San Jose 1983:12 to 2001:8 213 ------- 

Seattle 1983:12 to 1997:12 169 
The May 1986 and June 1992 missing values for arrests for all 
crimes were replaced with the May 1985 and June 1991 values, 
respectively. 

a The method used to impute missing UCR crime and arrest data for individual jurisdictions is based on 
Maltz (1999, p. 28).  
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Table 2:  Murder - Deterrence and Business Cycle Elasticities for U.S. Cities 

 
 Arrests Unemployment Wages 

 Elasticity St. Error Lags Elasticity St. Error Lags Elasticity St. Error Lags 

Baltimore 0.199 0.271 1-2 0.038 0.051 0-1 -0.159 0.151 0-1 

Boston -- -- -- -- -- -- -- -- -- 

Cleveland -- -- -- -- -- -- -- -- -- 

Columbus -- -- -- -- -- -- -- -- -- 

Dallas -0.039 0.225 1-3 0.541 1.109 0-1 0.387 0.860 0 

Detroit -0.267 0.380 1 -0.208 0.188 0 -0.753 1.391 0 

El Paso -- -- -- -- -- -- -- -- -- 

Houston -0.449 0.598 1-4 0.061 0.101 0 0.398 0.802 0-7 

Indianapolis -- -- -- -- -- -- -- -- -- 

Los Angeles -0.006 0.106 1-2 0.039 0.152 0-1 -0.142 0.121 0-1 

Memphis -- -- -- -- -- -- -- -- -- 

Milwaukee 0.002 0.007 1 0.000 0.037 0 -0.045 0.176 0 

New Orleans -5.502** 1.538 1-7 -4.176* 1.965 0-4 1.240 1.288 0 

Philadelphia 0.006 0.060 1 -0.221 0.210 0 1.087 1.164 0-2 

Phoenix -- -- -- -- -- -- -- -- -- 

San Antonio -- -- -- -- -- -- -- -- -- 

San Diego -- -- -- -- -- -- -- -- -- 

San Francisco -- -- -- -- -- -- -- -- -- 

San Jose -- -- -- -- -- -- -- -- -- 

Seattle -- -- -- -- -- -- -- -- -- 

Pooled Cities -0.557 0.403 1-3 -0.340 0.284 0-1 1.148 1.217 0-1 
Note:  Elasticities are calculated from the sum of coefficients in equation (1).  + denotes significance at 10 percent, * at 5 percent, and ** 
at 1 percent.  Missing values indicate zero-value observations for respective city.  Elasticities reveal the percentage change in the growth 
rate of murders resulting from a percentage increase in the growth rate of murder arrests, unemployment, and the real minimum wage. 
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Table 3:  Rape - Deterrence and Business Cycle Elasticities for U.S. Cities 
 

 Arrests Unemployment Wages 

 Elasticity St. Error Lags Elasticity St. Error Lags Elasticity St. Error Lags 

Baltimore 0.543 0.345 1-2 0.041 0.048 0-1 0.009 0.123 0 

Boston 0.002 0.036 1 0.000 0.102 0 0.161 0.106 0 

Cleveland -1.577 1.118 1-7 3.885+ 2.119 0-2 0.255 0.201 0 

Columbus -0.040 0.072 1 0.113 0.179 0 -0.046 0.234 0 

Dallas 0.010 0.017 1 0.102 0.258 0 0.356 0.268 0 

Detroit -- -- -- -- -- -- -- -- -- 

El Paso 0.002 0.104 1 -0.370 0.902 0 0.693 1.942 0 

Houston 0.643 0.559 1 0.277 0.789 0-3 -0.678 1.29 0 

Indianapolis -0.167 0.145 1 -0.143 0.622 0 0.188 0.290 0-9 

Los Angeles 0.003 0.005 1 0.058 0.048 0 0.006 0.023 0 

Memphis 0.002 0.015 1-9 0.010 0.187 0-3 -0.080 0.346 0 

Milwaukee -0.085 0.089 1 0.143 0.295 0-3 1.017 1.128 0 

New Orleans -0.018 0.016 1-2 -0.002 0.224 0 -0.849* 0.350 0-2 

Philadelphia -0.006 0.014 1 0.190 0.323 0-6 -2.849 2.266 0-4 

Phoenix 0.055 1.322 1-5 0.239 0.152 0-1 4.804 3.553 0-1 

San Antonio -- -- -- -- -- -- -- -- -- 

San Diego 0.192 0.569 1 2.452 5.177 0-4 -2.307** 0.795 0-1 

San Francisco -- -- -- -- -- -- -- -- -- 

San Jose -0.061 0.073 1-2 0.054 0.165 0-6 0.316 0.210 0-9 

Seattle 0.022 0.119 1-2 -0.383 0.459 0 -0.008 0.039 0 

Pooled Cities -0.037 0.024 1-2 0.277 0.253 1-2 -0.331 0.237 1-2 
Note:  Elasticities are calculated from the sum of coefficients in equation (1).  + denotes significance at 10 percent, * at 5 percent, and ** 
at 1 percent.  Missing values indicate zero-value observations for respective city.  Elasticities reveal the percentage change in the growth 
rate of rape resulting from a percentage increase in the growth rate of rape arrests, unemployment, and the real minimum wage. 
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Table 4:  Assault - Deterrence and Business Cycle Elasticities for U.S. Cities 

 
 Arrests Unemployment Wages 

 Elasticity St. Error Lags Elasticity St. Error Lags Elasticity St. Error Lags 

Baltimore -0.017 0.010 1 -0.009 0.008 0-1 -0.007 0.025 0 

Boston 0.000 0.007 1 0.050 0.090 0 0.053 0.110 0-3 

Cleveland -0.214 0.203 1 0.041 0.036 0 0.012 0.009 0 

Columbus 0.004 0.008 1-3 -0.234+ 0.138 0-8 -0.014 0.058 0 

Dallas 0.766* 0.321 1-11 0.053+ 0.029 0 0.027 0.020 0-2 

Detroit 0.994* 0.406 1-5 -0.014 0.009 0 0.624* 0.299 0-4 

El Paso 0.0921 0.066 1 -0.013 0.025 0 -0.067 0.112 0-3 

Houston -0.050 0.048 1 0.020+ 0.012 0-1 -0.042 0.043 0-1 

Indianapolis 0.422 0.461 1-3 0.070 0.275 0 0.088+ 0.049 0-1 

Los Angeles 0.074 0.009 1 0.146 0.131 0-1 -0.005 0.034 0-1 

Memphis -0.368+ 0.205 1-9 -0.002 0.017 0 0.066 0.051 0 

Milwaukee 0.364 0.334 1-2 0.039 0.089 0-3 -0.009 0.234 0 

New Orleans -0.017 0.096 1 0.181 0.279 0 -0.082 0.198 0 

Philadelphia 0.004 0.005 1 -0.003 0.052 0-2 0.922 0.590 0-8 

Phoenix -0.138 0.103 1 0.003 0.008 0-4 0.006 0.184 0-9 

San Antonio -0.005 0.008 1 0.000 0.000 0 0.130 0.079 0 

San Diego 0.026 0.023 1 0.090 0.178 0-12 -0.039** 0.014 0 

San Francisco -0.871* 0.377 1-4 0.091 0.061 0-1 -0.049 0.056 0 

San Jose -0.161* 0.071 1-2 -0.018 0.052 0-5 -0.136** 0.034 0-3 

Seattle 0.014 0.010 1 -0.907* 0.446 0-1 0.145** 0.049 0-3 

Pooled Cities -0.006 0.045 1-3 -0.061 0.074 0-2 0.074 0.048 0-2 
Note:  Elasticities are calculated from the sum of coefficients in equation (1).  + denotes significance at 10 percent, * at 5 percent, and ** 
at 1 percent.  Elasticities reveal the percentage change in the growth rate of assault resulting from a percentage increase in the growth rate 
of assault arrests, unemployment, and the real minimum wage. 
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Table 5:  Robbery - Deterrence and Business Cycle Elasticities for U.S. Cities 

 
 Arrests Unemployment Wages 

 Elasticity St. Error Lags Elasticity St. Error Lags Elasticity St. Error Lags 

Baltimore 0.001 0.111 1 0.180* 0.086 0-5 -0.560* 0.266 0-3 

Boston -0.004 0.070 1 0.059 0.117 0 0.088 0.097 0 

Cleveland -0.446 0.336 1-6 0.261 0.181 0 -0.328+ 0.188 0-9 

Columbus -0.170 0.170 1-3 0.250 0.227 0 -0.582+ 0.304 0 

Dallas -0.113** 0.039 1 0.159 0.136 0 -0.477 0.495 0-7 

Detroit 0.017 0.034 1 -0.012 0.012 0 0.063 0.059 0 

El Paso -0.762** 0.247 1-6 -0.203 0.163 0-1 0.000 0.270 0 

Houston -0.041 0.031 1 0.230** 0.075 0 -0.175 0.195 0 

Indianapolis -0.171 0.206 1 1.869+ 1.008 0-7 0.019 0.082 0-2 

Los Angeles -0.366 0.235 1-9 0.179 0.122 0-6 -0.003 0.029 0 

Memphis -0.026 0.060 1 -0.348 0.280 0 -1.171 0.967 0 

Milwaukee -0.020 0.084 1-2 0.096+ 0.057 0 1.343** 0.280 0 

New Orleans -0.041* 0.017 1-2 -0.020 0.104 0 -0.139 0.111 0 

Philadelphia -0.379* 0.192 1 -0.109 0.338 0-2 -0.190 1.187 0-1 

Phoenix 0.004 0.031 1-2 0.002 0.007 0 0.101 0.089 0 

San Antonio 0.048 0.076 1-2 0.001 0.001 0 -0.014 0.542 0 

San Diego -0.011 0.237 1-7 0.430+ 0.129 0 -0.084** 0.034 0 

San Francisco 0.003 0.030 1 0.027 0.052 0 -0.091 0.075 0-9 

San Jose 0.010 0.007 1-2 0.070 0.043 0-1 -0.007 0.047 0 

Seattle -0.063 0.056 1 -6.930 8.393 0-1 -0.403 0.570 0 

Pooled Cities -0.070* 0.033 1-3 -0.034 0.113 0-1 -0.162 0.115 0-2 
Note:  Elasticities are calculated from the sum of coefficients in equation (1).  + denotes significance at 10 percent, * at 5 percent, and ** 
at 1 percent.  Elasticities reveal the percentage change in the growth rate of robbery resulting from a percentage increase in the growth rate 
of robbery arrests, unemployment, and the real minimum wage. 
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Table 6:  Burglary - Deterrence and Business Cycle Elasticities for U.S. Cities 

 
 Arrests Unemployment Wages 

 Elasticity St. Error Lags Elasticity St. Error Lags Elasticity St. Error Lags 

Baltimore 0.040 0.077 1 0.089 0.061 0-1 0.079 0.105 0 

Boston -0.039 0.033 1 0.234** 0.064 0 0.098 0.063 0-1 

Cleveland -0.013 0.025 1 -0.218 0.183 0-1 0.0023 0.022 0 

Columbus 0.395 0.433 1-10 0.138 0.139 0 -0.443 0.309 0-1 

Dallas -0.229+ 0.123 1 0.105 0.192 0 -0.039 0.277 0 

Detroit 0.007 0.090 1-3 -0.003 0.012 0-1 -0.071 0.121 0-1 

El Paso -0.005 0.012 1-3 0.020 0.032 0 -0.106* 0.042 0 

Houston -0.185* 0.081 1-2 0.092* 0.043 0-1 -0.027 0.102 0 

Indianapolis 0.203 0.682 1-8 0.015 0.247 0 0.011 0.018 0 

Los Angeles -0.029+ 0.016 1 0.041+ 0.022 0 -0.024** 0.009 0-1 

Memphis -0.008 0.020 1 0.190+ 0.111 0 -0.545 0.467 0-1 

Milwaukee 0.005 0.036 1 0.044 0.033 0 -0.464* 0.209 0 

New Orleans -0.034 0.023 1-3 0.038 0.080 0 0.037 0.062 0 

Philadelphia -0.030 0.047 1 -0.085 0.086 0-5 0.289 0.322 0-5 

Phoenix -0.432** 0.155 1-3 0.001 0.014 0 0.109 0.144 0-1 

San Antonio 0.006 0.040 1-6 0.000 0.000 0 -0.527 0.954 0-7 

San Diego -0.011 0.023 1 0.114 0.085 0 -0.032 0.027 0 

San Francisco -0.039+ 0.021 1 0.098* 0.049 0-1 0.009 0.027 0 

San Jose 0.003 0.009 1-4 0.059* 0.026 0-1 0.018 0.015 0 

Seattle -0.026 0.028 1 -0.398 0.254 0 -0.114** 0.039 0-2 

Pooled Cities -0.009 0.017 1-2 0.125 0.092 0-1 -0.097 0.087 0-1 
Note:  Elasticities are calculated from the sum of coefficients in equation (1).  + denotes significance at 10 percent, * at 5 percent, and ** 
at 1 percent.  Elasticities reveal the percentage change in the growth rate of burglary resulting from a percentage increase in the growth 
rate of burglary arrests, unemployment, and the real minimum wage. 
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Table 7:  Larceny - Deterrence and Business Cycle Elasticities for U.S. Cities 
 

 Arrests Unemployment Wages 

 Elasticity St. Error Lags Elasticity St. Error Lags Elasticity St. Error Lags 

Baltimore -0.070** 0.022 1-2 0.023+ 0.012 0-1 -0.194+ 0.100 0 

Boston -0.038 0.098 1-2 0.121 0.099 0-2 0.008 0.097 0 

Cleveland 0.435 0.327 1 -0.379 0.420 0 0.036 0.128 0 

Columbus -0.038 0.044 1-8 -1.050** 0.387 0-9 -0.232 0.808 0-3 

Dallas -0.497** 0.159 1-2 0.003 0.197 0 -0.127 0.202 0 

Detroit 0.799* 0.395 1-6 -0.006 0.013 0-1 -0.072 0.141 0-1 

El Paso -0.116+ 0.067 1-3 -0.329 0.287 0 -0.967 0.876 0 

Houston 0.006 0.077 1-3 0.075 0.080 0 -0.426** 0.132 0 

Indianapolis 0.557 0.767 1-11 0.213 0.176 0-2 0.000 0.050 0-2 

Los Angeles -0.895 0.580 1-11 0.125+ 0.074 0-1 -0.030 0.024 0-1 

Memphis -0.129** 0.020 1 0.008 0.023 0 -0.657+ 0.337 0-10 

Milwaukee -2.645** 0.782 1 -0.491 0.540 0 2.980 2.878 0 

New Orleans -0.012 0.028 1 -0.107 0.138 0-1 -0.098 0.090 0 

Philadelphia 2.273 2.650 1-4 -1.830** 0.683 0-4 -3.574* 1.820 0-1 

Phoenix -0.079** 0.028 1-2 0.018+ 0.010 0 0.129 0.170 0-1 

San Antonio 0.015 0.036 1 0.000 0.000 0 -0.290 0.262 0-2 

San Diego 0.759 1.05 1-8 -0.558 0.430 0-5 -0.042 0.060 0 

San Francisco -0.007 0.089 1 0.139+ 0.081 0-3 -0.017 0.037 0-1 

San Jose -0.245* 0.105 1-4 0.034 0.022 0-1 0.027 0.017 0 

Seattle 0.066 0.175 1 -0.851 0.856 0 -0.053 0.093 0 

Pooled Cities -0.175 0.112 1-4 0.185 0.228 0-2 -0.288+ 0.156 0-1 
Note:  Elasticities are calculated from the sum of coefficients in equation (1).  + denotes significance at 10 percent, * at 5 percent, and ** 
at 1 percent.  Elasticities reveal the percentage change in the growth rate of larceny resulting from a percentage increase in the growth rate 
of larceny arrests, unemployment, and the real minimum wage. 
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Table 8:  Vehicle Theft - Deterrence and Business Cycle Elasticities for U.S. Cities 
 

 Arrests Unemployment Wages 

 Elasticity St. Error Lags Elasticity St. Error Lags Elasticity St. Error Lags 

Baltimore -0.060 0.052 1 0.061* 0.028 0-2 -0.108 0.116 0-4 

Boston -0.035 0.098 1-4 0.022 0.097 0 0.118 0.080 0 

Cleveland -0.018 0.023 1 -0.028 0.099 0 -0.045 0.031 0 

Columbus -0.006 0.047 1-3 0.013 0.030 0 -0.244** 0.094 0-3 

Dallas -0.012 0.012 1 0.047 0.070 0 -0.120 0.132 0 

Detroit -0.177** 0.038 1-4 0.020** 0.006 0 -0.238+ 0.143 0-4 

El Paso -0.018 0.025 1 1.332+ 0.689 0-2 -0.625 0.586 0 

Houston -0.340** 0.123 1-3 0.005 0.022 0 -0.037 0.146 0-1 

Indianapolis -0.082 0.078 1-11 0.276 0.353 0 0.003 0.091 0-5 

 Los Angeles 0.022 0.027 1 0.155** 0.050 0 -0.034 0.061 0-1 

Memphis -0.039+ 0.022 1 0.236+ 0.129 0-2 -0.390 0.419 0-1 

Milwaukee 0.078 0.200 1 0.614** 0.072 0 -8.272** 1.406 0 

New Orleans -0.131 0.121 1 1.445 1.454 0 -1.408 2.067 0 

Philadelphia -0.038 0.130 1-9 -0.120 0.092 0 -0.338 0.526 0 

Phoenix 0.043* 0.021 1 0.004 0.004 0 -0.167** 0.060 0-1 

San Antonio -0.000 0.019 1 0.000 0.000 0 -0.194 0.274 0-1 

San Diego 1.148 1.230 1-13 -0.649 0.456 0-4 -0.374* 0.179 0-5 

San Francisco 0.035 0.033 1 0.012 0.080 0-2 -0.026 0.034 0 

San Jose -0.175 0.189 1 -0.559 0.832 0 -1.903 1.813 0-2 

Seattle 0.046 0.037 1 0.065 0.135 0 -0.005 0.008 0 

Pooled Cities -0.002 0.024 1-3 0.123 0.091 0-1 -0.233** 0.084 0-1 
Note:  Elasticities are calculated from the sum of coefficients in equation (1).  + denotes significance at 10 percent, * at 5 percent, and ** 
at 1 percent.  Elasticities reveal the percentage change in the growth rate of motor vehicle theft resulting from a percentage increase in the 
growth rate of motor vehicle arrests, unemployment, and the real minimum wage. 

 
 
 
 
 
 
 
 
 



 
Table 9:  Do Arrests Follow Crime?  Elasticity Estimates 

 
 Murder Rape Assault Robbery Burglary Larceny Vehicle Theft 

City Elasticity Lags Elasticity Lags Elasticity Lags Elasticity Lags Elasticity Lags Elasticity Lags Elasticity Lags 

Baltimore 0.009 1-2 -0.117* 1 0.028 1 6.262* 1-2 -0.149 1-5 -0.388 1-5 0.043+ 1 

Boston -- -- -2.338 1 0.328 1 0.940+ 1-5 0.187+ 1-2 0.127 1-2 0.127 1 

Cleveland -- -- 0.231 1-5 0.128 1 1.847** 1-7 0.522** 1-3 0.428 1 2.676** 1-4 

Columbus -- -- 0.933** 1 18.229** 1-12 0.210 1 0.291 1 29.486** 1-9 10.415* 1 

Dallas 0.721** 1-5 0.012 1 0.504** 1 13.598** 1-4 0.013 1 0.168** 1-2 2.829** 1-8 

Detroit 0.045 1 -- -- -2.057** 1-8 -3.893* 1-4 -0.452+ 1 -0.505+ 1-2 0.140 1 

El Paso -- -- 0.212 1-3 0.269* 1-2 4.582* 1-2 2.229 1-5 0.052 1 0.024 1 

Houston 25.098** 1-7 5.443** 1-7 0.132 1 1.108** 1-7 0.905** 1-9 0.099+ 1 1.915** 1-4 

Indianapolis -- -- 0.134* 1-2 -0.015 1 0.161 1 0.284 1-2 0.211 1 0.234 1 

Los Angeles 0.066 1 0.905 1-3 1.014** 1-4 10.442+ 1-8 0.087 1-3 -0.255 1-3 0.705 1-3 

Memphis -- -- 0.016 1 0.968** 1 0.139** 1-2 -0.177 1-4 0.185 1 5.505** 1-3 

Milwaukee 0.035+ 1 -0.131+ 1 0.174+ 1 0.049+ 1 0.071 1-2 0.001 1 -0.138+ 1 

New Orleans 0.265 1-3 0.030 1 0.179 1 0.142 1-2 0.202 1 -0.048 1 0.175+ 1 

Philadelphia 4.519** 1-8 0.075 1-4 -3.212 1-4 0.126** 1-2 0.184+ 1-2 0.032 1-3 8.185** 1-4 

Phoenix -- -- -0.004 1 0.154 1 2.965** 1-9 0.084 1-2 66.717** 1-4 2.035+ 1-13 

San Antonio -- -- -- -- -3.804 1 0.617* 1-4 0.079* 1 0.520 1 0.035 1 

San Diego -- -- 3.632** 1-8 0.874** 1-4 13.511* 1-3 -0.604 1-2 14.992* 1-4 0.781* 1-4 

San Francisco -- -- -- -- 0.021 1 0.109* 1 0.596** 1-3 0.001 1 0.132 1-2 

San Jose -- -- 0.033* 1-5 1.058 1 0.165+ 1 -0.093 1 0.851 1-5 0.040** 1-2 

Seattle -- -- 0.003 1 6.617 1-3 -0.008 1 -0.849* 1-3  -0.126 1 0.094** 1-4 

Pooled Cities 0.304** 1-4 0.192** 1-3 0.148 1-3 0.347** 1-3 0.416** 1-3 0.022* 1-2 0.290** 1-3 

Note: Elasticities are calculated from the sum of coefficients in equation (2).  + denotes significance at 10 percent, * at 5 percent, and ** at 1 percent.  Elasticities reveal the 
percentage change in the growth rate of arrests resulting from a percentage increase in the (lagged) growth rate of crime. 

 


