
NBER WOR1NG PAPER SERIES

ROBUST NONLINEAR REGRESSION
USING THE DOGLEG ALGORITHM

Roy E. We1sch
Richard A. Becker*

brking Paper No. 76

COMPUTER RESEARCH CENTER FOR ECONOCS AND MANAGfl€NT SCIENCE
National Bureau of Economic Research, Inc.

575 Technology Square
Cambridge, Massachuset-ts 02139

March 1975

Preliminary: not for quotation

NBER r]dng papers are dis1'ibuted iriforlly arid in limited
numbers for comments only. They should not be quoted without
written penniss ion.

This report has not undergone the review accorded official NBER
publications; in particular, it has not yet been suhnit-ted for
approval by the Board of Directors.

*NBER Computer Research Center and Massachusetts Institute of
Technology, Sloan School of Management. Research supported in
part by National Science Foundation Grant G.J-1154X3 to the
National Bureau of Economic Research, Inc.

*Bel1 Telephone La.boratories. èsearch supported in part by
National Science Foundation Grt GJ_l15LX3 to the National
Bureau of Economic Research, Inc.

Abstract

What are the statistical and canputational problems associated with

robust nonlinear regression? This paper presents a number of possible

approaches to these problns and develops a particular algoritl-nn based

on the rk of Powell and Dennis.

Contents

Introduction

The Prob1n

What Can the Average Man t?

Nonlinear Reweighted Least-Squares

eating Specialized Algorithms

Robust Nonlinear Reession

Starting Values

Scale Computation

Confidence Regions

Elininating Secor1 Derivatives

Examples

Concluding Rnarks

..l
1

1

2

Table 1. Marketing !bdel Data 7

Table 2. Marketing bdel Results 8

Table 3. Test Function Results 8

1.

2.

3.

5.

6.

7.

8.

9.

10.

11.

12.

13. References .

Tables

1. ThTDUCrION

1)BUS NONLINEAR REGRESSION
USING THE E.OGLB3 ALGORITHM

In recent years the concepts of robust estimation
have lead to a rethinking of the ways we fit rredels
to data. Papers by Beaton and Tukey [1974] and
Mdrews [1974] have proposed algorithms for rdust
linear regression using iteratively reweighted
least-squares. This technique has proved to be
quite successful and has considerable intuitive
appeal because of its connection to weighted least-
squares regression.

In late 1973 the authors designed and izi1nented
a robust linear regression macro on the TROLL sys-
tem at the NBER Computer Research Center. It
makes use of reweighted least-squares, iterative
scaling, optional starts including least absolute
residuals, and provides a robust trace of the co-
efficients as a "robustness parameter" is varied.
After sane economists and management scientists
had worked with this macro, we received a number
of requests to provide similar facilities for non-
linear problems. In what follows we discuss
several possible approaches to robust nonlinear
regression, outline a few successful algorithms,
and discuss our experience with them.

2. THE PROBLBI

Assume that we are interested in fitting the nodel
f(e)(f1(o),.. . ,f (0)),0:(G ,... ,O } to the data

y:{y1,.. . ,y)'. e shall sek to d this by
from some start (O) towerd a local minintun (with

respect to 8) of /
n (y1—f(e)\

F5(O) il "c\ s)
wher.e p(S) is assumed to satisfy p(t) p(u
if Iticlul and is often viewed as a loss function
(which, in general, need not be independent of i

or symctric).

For nonlinear least-squares (o(t)=t2) we have
always faced the problem of specifying starting
values. For robust loss functions such as

Itlc
p (t) =ç 2 (2.2)c ct--. ft>

c2C1—cos(t/c)3 Itk en
p(t) 2 (2.3)

2c Jtf>

we not only need a starting value but, because
these loss functions are not scale invariant, we
also need a way to measure the scale (size is per-
haps a better word in this context) of the residuals,
r(e):y-f(o), at the beginning of the computation
and, in sane cases, to remeas'e it as the computa-
tion continues. We Tru.ist also choose c, the robust-
ness parameter, or at least provide ways to indicate
the effects of changing c.

We note that neither (2.2) nor (2.3) have a second
derivative ever#where. There are approxfrations to
these functions which do (e.g. the bisquare of
Beaton and Tukey (1974]) but having a second deriva-
tive everywhere has not proved to be practically
important for the algorithms we shall discuss.

3. WMTCANThEAVERAGEt'AND3?

(2.1) We have found that many people have .iccess to sorrn

form of general nonlinear optimization program ardf
or a special routine for nonlinear least-squares.
bst of the researchers interested in robust f it-

ting are not interested in extensively rrcdifying
these programs or writing new ones. So we discuss
first sane approaches to robust nonlinear regression

If we assume that a general nonlinear optimization
rutine is• available then it seems reasonable to
try to estiaatc the scale, s, by making it a part
of the optimization problem,

' +Slogs
fri direct analogy to the related meximum J.flelicod
problem. It is also imnediatelyclear that this
idea will fail for robust loss functions which are
bounded (such as (2.3)) because s will be forced
to .0. (There is no proper axirrtum likelilood todel
in this case.). However for loss functions of the
fonn (2.2) this is not true and (3.1) is viable.

The constant S2 can be chosen in a variety of ways,
one of which is the following. Differentiating
(3.1) with respect to s and setting it equal to 0
we obtain

S (rj(e)r1(e)n
1 S (3.2)

If the residuals were Gaussian then we might try to
choose S1 so that s would be asymptoticially unbi-
ased giving

(n-p)_L tp(t) d(t)

where •(t) denotes the standardized Gaussian dis-
tribution function.

Huber arid Dutter Cl9714] have suggested a related

idea. They propose replacing (3.1) by

n
mi.n (
e,si:1 C\ /

where

S2 (n—p) I tp(t)—p0(t)d(t)

pct is the Huber type, (2.2), then

tP(t)—p(t) (p(t))2/2

and the normal equation for s reduces to the scale
estimate proposed by Huber C1964, 1973]. This idea
also fails for bounded loss functions.

We have tried (3.1) and (3.3) using a general opti-
mization algorithm to be described later and found
that both work about equally well. Bath can be
implemented very quickly.

What about the bounded loss function case? It is
natural to consider a penalty function to keep s

positive. For example

(r.(e)\
+
B1 log s + B2/s. (3.4)

In effect, we have added the negative log likelod
of an inverted gaim prior distribution for the
scale parameter.

We must, of course, specify B and B . If there is
prior information abut the sale thin B1 arid B2
would be taken from that. Otherwise we would

(3 1) choose B1=S1 and B2 by penalty function considera-
tions such as those discussed by Bard [1974, p.l45].
Our experience with this method is limited and not
wholly satisfactory.

The above tlree methods provide ways for a person
with a general nonlinear optimizer to simply put in
an objective function different fran the one for
least-squares arid use his program as is. We do not
advise doing this blindly but it generally works
(especially the first two methods). It has draw-
backs. It is expensive because another parameter
Cs) must be estimated (with algorithms of order p2)
and the objective function is more complicated and
numerically less pleasing. When choice is available,
it does not seem reasonable to pay so much for the
privilege of iteratively modifying s.

There is another obvious approach. That is simply
to find an (°) (see section 7) arid then minimize
(2.1) with (°)• At the end of this computation
a new s, say s(1), is computed based on the current
values of 0, then left fixed until a new local
minimusn is found, etc. until s(U changes less
than, say, ten percent from 50c). This is simple,
but often proved to be as expensive as the earlier
approaches. It does, however, lead us to consider
ways to hardle iterative scaling without making use
of the objective function.

4. NONLINEAR RIWEIGHI'ED LFAST-SQUARES

For those with special nonlinear least-squares
algorithms available it is natural to attempt to
adapt the iteratively reweighted least-squares idea
mentioned earlier to the nonlinear problem. We now
discuss this method in more detail.

The gradient and Hessian of F5(e) are

- - J(0) (4.1)

n fr.(o)\ v2f.(e)
.H5(e) = il —pt

(\)

+ JT(0)

that allow the use of existing programs.

n
nu.n E
8,s i1

n
mm E
O,s i=1

(4 .2)

where J(0)[3f(0)/a9] is the Jacobian Tratrix,

v2f1(e)=t2f1/aekae], p'(r(0)/s)[p'(r1(o)/s),...,
p'(r(0)/s)]and p'T(r(O)/s) is an nxn diagonal matrix.
Now define a weight function w(t)p'(t)/t and an
approximate Hessian

H (0) I - w.r. V2f. + w
S SLj= ' -

DI
where wj:w(—),w is an nai diagonal matrix, and
o" (t) is appvxjmated by w(t). If we have start-
irig values (°) and s:s(O) then the first step of
reweighted least-squares is

+ ((O)) g3(e)

which In the linear case is

(O) + xTx_l xT (Y—xe°)

—3—

The whole procedure can, of course, be iterated.
Except for the fact that p"(t) has been approxinat-
ed by w(t) this is just the first Newton step for
the solution of (2.1) in the linear case. Using
w(t) makes H positive semi-definite and makes the
analogy to weighted least-squares obvious.

A word of caution is in order. Even if XX is well
conditioned, XTWX cay be very ill-conditioned arid
the first Newton step a very poor one. (This can
happen when there are low weights on observations
which contain all of the information about a para-
meter or infornation about how to separate the
effects of two carriers.) Even if XTwX is well
behaved at a local minijrn.izn a bad start can lead to
poor results. Often this problem is ignored in the
linear case because of the availability of robust,
scale invariant procedures, such as least absolute
residuals [Bar'rodale and Roberts (1973)] to provide
starting values. AU of the literature about
Newton-Raphson methods applies to this problem -
such methods are only reasonable in a neighborhood
of a local minirmsn. Good algorithms for robust
regression should contain some diagnostic studies of
the data matrix to determine potential high lever-
age observations. Varying the robustness parameterc can also be very useful. Ridge regression
techniques could also be employed.

In the nonlinear case we do not have such good
techniques for finding starting values and the
first term of the Hessian does not vanish. But
most nonlinear least-squares routines ignore the
first term of the Hessian and use a technique like
that of Marquardt (1963) to overcome the difficul-
ties of auss-Newton steps away from the local
minimum. Once in a region where the residuals are,
hopefully, small the first term of the Hessian can
be more safely ignored. Some work has been done
on the large residual least-squares problem, e.g.
Dennis (1973]. Robust loss functions help to
reduce the size of the first term of the Hessian
because p'(t)l<It for large residuals arid with
(2.3), p'(t) is eventually zero.

With the same caveats we have always had in using
Gauss-Msrquardt nonlinear least-squares routines
for very nonlinear problems, it is reasonable to
propose that (2 •1) be attacked by finding starting
values and forming the weights and
solving the least squares problem with pki y and/T f(e) as data and model, making the obvious
change if there is a weighted nonlinear least-
squares routine available.

We now ask - should we modify w and s as we go

along and if so how? Since starting values in non—
linear problems are generally not good, we feelthat w (0) and $ (° are crude and will need itermicn.
It is not at all clear how these changes at each
step will interact with a specialized algorithm
like that of Marquardt. Using this routine withits special start—up procedures to do each step
after computing new weights will not be verySuccessful. Direct intervention in the algorithmis required, it cannot just be called each tine.
Clearly such modifications can be made but we show
note that Chantbers [1973, p. 7) indicates that such
iterative procedures nay be inferior to generalOptimization methods.

5. CREATING SPECIALIZE) ALORITHIIS

If one is willing to intervene more directly in an
optimization algorithm then sane special things canbe done to acccrnodate reweighting and scaling. We
shall discuss our efforts in the context of a
particular algorithm.

In the past year, work at the NBER Computer Researc:-
Center has created a need for nonlinear optinizaticn
in such diverse areas as full information maxizin.
likelihood estimation, probit analysis, end pro-
jection pursuit (Friedman arid Thkey (1974)]. The
first algorithm implemented was 1LEGF, developed
by Chien and Dennis at Cornell. This algcrithm
only requires information about the function F and
is closely related to the MINFA algorithm of Powell
[1970] which, however, requires the gradient as
well as F. DCGLF was installed in the NB. TROLL
system as a function and is riot easily modified
except by experienced progranmers.

In the TROLL system we also had a snbolic differen-
tiator arid a proposed way to automatically ccmpile
F ,g, and H into very efficient code suitable for
repeated evaluation. We also have a macro language
that allows a user to glue together various TROLL
caimarids and functions in a way that cakes it easyto experiment with new algorithms. With these
ideas in mind one of us (RAB) in consultation with
John Dennis developed the DOGLDX algorithm and
macro. Since this algorithn formed the basis for
further researoh (by REW) on robust nonlinear
regression, we will describe it in detail.
rCGLEXX utilizes a combination of steepest-descentand Newton steps in the process of minimizing a
function. As long as gradient steps are relatively
large, they are used. However, since gradient steps
tend to perform poorly in valleys, Newton steps are
also used. Newton steps, however, are of doubtful
worth when taken from a point far removed fro.-n the
minimum. Hence, the algorithm uses a bound on the
maxiznun step size and provides a canpranise 'ogleg"
step which combines the gradient and Newton

steps.

As input ECGLEGX requires only the function (all
derivatives are computed symbolically), start ingvalues e (0), an initial radius (R) to provide zn
upper bound on step size (the default is zero
which makes the first step a gradient step), the
maximum number of iterations, and convergcnce tolcr'--
ances for the gradient and relative coefficient diar.c.

Initially the expressions for F, g, and H are
evaluated. H(0) is then forced to be positive
definite by the use of a Greenstadt modification.
This procedure is carried out whenever the second
derivative matrix is reevaluated.

At the beginning of each itéDation, there is a test
for convergence using both the gradient and the
relative change in 0 from the previous iteration.
The exact details will not be provided here.
Assuming that there were no convergence, the algo-
rithm investigates a step in the direction of the
gradient vector. Define

Ak(6)

where (a,b) denotes an inner product. The function
Ak(6) then i&a quadratic approximation to F(e()+)

based on the gradient vector and the Hessian.

Powell [1970] shows that Ak is minimized along the
gradient direction by a step of length

— ___________________________
G
—

(g(0(k)), H(O)g(e))

At this point, the step-bound limitation is checked.
If cR then a step in the gradient direction of
length R will be tried. Let 6 represent the
Newton step. If tG<R and 6N' R the Newton step

is attempted. If !<R and I6N I>R a. "dogleg" step

6 is attempted. The dogleg step 6D is defined as

the point on the line connecting 6, (the gradient
step) arid 6 which is at a distance R from 6(k).

At this point let () represent the step that the
algorithm decided to take (gradient, Newton, or
dogleg). If F(0(k)+dOc))<F(0(), the step is

accepted and we set o(k+1)O(k)+6, otherwise set
(k) halve the radius, R, and start a new

iteration.

One of the most powerful features of EOGLEGX in-

volves revision of the step bound R. If the step

is accepted, a test of the approximation Ak(6)
is performed. If the predicted reduction measured
by F(O (k))_Ak(6 (k)) is more than ten times the
actual reduction, F(0 (k))—F(O)+SOC)), the radius

is halved and a new iteration begins.

If this test is passed we perform further checks
to decide if the step bound should be increased.
In order to do this we look at the sca].ar product
S(A)(g(eO)+A6)),6). The term
defines a line from (k) in the direction (k)
S(X) measures the expected change in the objective
function starting at the point O(k)+X6(k) and tak-
ing a step (k) We would like this change to be
negative, decreasing the value of the objective

function.

At this point we compute g(O .+dl'J) so that we
have S(O) and 5(1) available. If we assume S(A)
is linear, these two points define a line and we

let X" be the point where S(A)0 i.e.

S(0)—

If the slope of this line is negative, then A*<0.
If the slope is positive, A>0. When X'<0 or X�2
a step of twice the length of 6 (k) would still have
decreased the value of the objective function if
S(A) really were linear. In these cases R is
doubled.

If OA'<2 one more check is performed. The pre-
dicted gradient at
is compared with the actual gradient g(o (k) +6(k))

and if

I 1g(8(k)+6(k))_g(Ø(k))_M(e(k))6(k)
2

.25
2

the step bound, R, is doubled. In a.ll other eases
the step bound remains the same for the next itera-
tion. Iterations continue until convergence is
reached or the limit on the number of iterations is

exceeded.

EXDGLEGX was used for testing the ideas developed in
section 3. It is an algorithm that invites tinker-
ing (ellipsoids instead of spheres for the step

bounding, quadruple instead of double the radius,
etc.) arid the macro (interpretive) form has permit-
ted this kind of modification, often for specialized

purposes. In particular it permitted us to experi-
ment with a number of ideas for robust nonlinear
regression.

6. ROBUST NCNLINE.R REGRESSION

Since EOGLEGX canputes the true Hessian we had r.o
need (at this point) for reweightirig as a way to
solve our problem. We did however have to consider
rescaling arid the LXJGLEGXS macro was developed by
one of us (REW) to accomplish this.

LOGLEOX is complicated by the fact that after it
has found an acceptable step it looks ahead at the
new gradient to see if it should increase the step
bound radius for -the next iteration. The question
arises - if we are changing the scale, at what
point in a step do we change it? Our discussion
of this problem is meant to be indicative of the
kind of problems that can arise in modifying non-
linear optimization algorithms for specialized
applications like robust regression.

In DGLEGXS we use to compute a scale

0) = median (Irj(0()I)/.67t45i
Sections 7 and 8 contain a discussion of starting

values and other ways to compute S. The algorithm

proceeds as in EOGLEGX yntil 60 s been deter—

mined. Still using sP(1 (0(k)+6(/) is evaluated
and checked to see if is an acceptable step.

If the step is rot accepted If it is
accepted we do not yet change s. The test of the
approxinution A'(6) is performed as before.
Thus in cases where the radius can be reduced we

do not change s before performing these tests.

This costs us an extra evaluation of F (we shall

n
E w.r.(O*)i=l 1 1

—5—

have to eventually evaluate it with a new s) but it
is conservative in the sense that chinging s here
Cs generally decreases) would cause us to more
often reduce the radius. Reducing the radius is
costly because to increase it again we must compute
a new g and H, but if a step is not acceptable, no
new g and H are necessary to reduce the radius.

If the step has been acepted, we now compute
5(Jc#1) and proceed to see if the radius should be
increaed assuming, of course, that the test using

was passed (i.e. the radius was not
reduced).

The tests for radius increase are thç sane as
before but thern new gradient at 0 (1hj is conputed
with A number of tests run using s
instead of (k#1)]-ere gave indication of being
better or worse, but were irnich sore expensive
since the gradient had to be evaluated twice (with
s (k) and s (k+2)). The next iteration begins using
00C42) and (h1

7. STAR'rflG VALUES

How to start a robust nonlinear regression is not
an easy problem. A scale free start would be nice
but least-squares is the only readily available
one and, of course, requires a start itself.
(Perhaps an L ,lcpc2, start would work, but we have
not tried it. We could also linearize the

problem at the supplied starting values and then
use least absolute residuals to get a revised start.

We have often found that the original starting
values specified by an intelligent uodel builder
can be used directly in a robust loss function
with c chosen so that the asnptotic efficiency at
the Gaussian is say, .8, i.e.

jL o(t) d(t)]

2

I [p(t)]2 d(t)

(See Huber (1973) for a discussion of asymptotic
efficiency.) For (2.2) this means c is about .67
and for ç2.3) about 1. Too low a value of c can
throw away a lot of data (low weights) if the
start is poor and too high a c does not downweight
large residuals enough. We see little reason to

perform a least-squares analysis first, although
we may want to do this at sane point in studying
the data.

8. SCALE COMPUTATION

We have used a median absolute deviation (LAD)
scaling adjusted so that it will be unbiased for
independent Caussian residuals. In order to allow
for a rwe asyrs.etric set of residuals, reduce the
"granularity" of the median, and reiove from the
scale computation very large residuals we also tried

w.r?o0i:11 1

)ii 1

It has performed satisfactorily but requires some
form of nonweighted starting scale becaue
is not defined. All of the results reported below
use the MAD scale.

9. CONFIDENCE REGIONS

Since there is not yet general agreement about how
to compute covariances for the estinated coe.ffi—
cients in robust linear regression, we cannot hope
to give very definitive results for the r.cnlinear
case. Gross (1973) has proposed a way to find
confidence intervals for robust location estimates.
A partially completed Monte Carlo study by Paul
Holland, David Hoaglin, and Roy Welsch indicates
that a reasonable covariance estimate for robust
linear regression would be

w. r?(0)(XTwX) (9.1)
n—p i1 1 1

where the w. are the weights used to obtain 0 in
the final ieration of reweighted least-squares.
The associated t-statistics would probably be
based on an equivalent number of degrees of freedom

like.1 wi-p.
An obvious extension to the nonlinear problem is

. w1 r(0) (JTWJ)l (9.2)

where J and w were used to obtain 0. This, of
course, has been used in nost weighted nonlinear

least-squares programs where the weights are
assumed to be fixed.

It is useful to see what type of covariar.ce forsla
arises if we attack the nonlinear problem directly.
To do this we follow Bard (1974, p. 176) and argue
that we want to examine the effect on the solution
O of perturbations in the residuals at e'. Eard
gives the approximate covariance (in our notation)
as

v0 j j (9.3)

where V is the "coyarianc&' matrix of the residuals
at ea a&L we have replaced p" by w. One estirrute
of Vr would be r(0)rT(0*). Various other formulas
arc possible and some have been explored by Thkey
(1973). Until sore information is available, we
prefer to take the approach that (9.3) is ccnditior.ed
on the weights, set Vr2w1 and estimate 2 by

(9.4)

In cases where we ignore the first term of the
Hessian, (9.3) would then reduce to (9.2). We have
mainly relied on (9.2) especially because robust
loss functions tend to reduce the size of the first
term of the Hessian (cf. section 4).

10. ININATn.G SECOND DIVATIVES

Computing the exact Hessian is expensive even in
sophisticated systems. After the above algorithms
were developed using DOGLEGX as a base we replaced
the exact Hessian by JrwJ, i.e. we used a type of
reweighted least-squares within the context of the
IX)GLEGX algorithm with scaling. (Call this
algorithm IX)GLflW.)

However, as one might expect, this modified algo-.
rithrn does not work well on some types of highlynonlinear problems. A compromje algorithm
(DOGLH) is now being tested by Dennis and Welsch.
In it, each of the two parts of the Hessian is
treated separately. The second part is always
catuted exactly (except for the fact that w
replaces p"). The first part is approxijtated and
updated using methods developed by Broyden Csee
Dennis,:(1973)Jto update the entire Hessian in
general optimization algorithms. This can be
accomplished in a way that keeps the Hessian
positive definite, removing the need for the
'eenstadt modification in IY)GLEGX.

II. ALS
The above algorithms have been tested on a number'
of standard problems, but we present here an
example from marketing which arose in joint work
with John Little. The model we are trying to
calibrate is

SALES(t) :
R0.STREND(t). PROM.MOD(t). ADV.MOD(t)

srRnlD(t) SESON(t).TREND(t)

PROM.ZD(t) =
i+B1.PROM(t)_B2.ppjM(t_)

I C2(K.ADV(t—j+].))

[Cl+

—
1+ (K ADV(t—i+1))Tj

.46 K .0041

a2
.32 : .88

.22 C2 : .24

and starting values of what we want to estimate

R0=538 Bi=i
2 B2 = .2

Al]. estimation was dome on the first twenty-fota'
observations of the data in Table 1.

Using the loss function of type (2.3) and JX)GLEGXS
we started the series of computations with c:l us-
ing the given starting values, and then used the
results at c:l to start the computation for c:.8
and c:i.5 corresponding to asymptotic efficienciesof about 50 percent and 95 percent at the Cussian.
The standard errors (using 9.2) are given below the
coefficient estimates in Table 2. Also listed are

the final value of the (adjusted) MD scale (s),
the weighted least-squares scale (ws) as given in
(9.4), the number of evaluations of F g, and H,
the "corrected" degrees of freedom (wi-p) and the
regular degrees of freedom (n-p).

We note that y is highly sensitive to changes in c
and further investigation is called for, including,
perhaps, a change in model formulation. The least-
squares results are not listed because the algorithn
forced y to infinity (machine overflow) in that case.
A more detailed discussion of the mode], is contained
in Little and Welsch (1975].

In order to show how the IX)GLEGXS algorithm per—
formed on synthetic data we used the function
(see Chambers (1973)]

—01x —6,xy:e —e +erDor
where 01 arid 02 had tnie values of 1 and 10, ten
observations were taken for x.l(.l)l, and the error'
was contarithiated ussian with 75% fran J(0,.l) arid
25% from N(0,l). The convergence criterion consisted
of having the length of the gradient less than .1 and
the maximum relative coefficient change less than
.001.

All canputatior5 i'e started at Oo and 02:0. Theresults are listed in Table 3.

12. CONCUJDThG RU'tR1

We hope that the above discussion will stimulate
statisticians to consider' the types of algorithms
they would like to see developed for a flexible non-
linear fitting package which would include robust
loss functions. We also hope that numerical analysts
will consider the problems that arise in this area,
including large residuals, weights, and the role of
special parameters such as scale.

13. RflICES
1. Andrews, D.F. (1974). A Robust Method for

Multiple Linear Regression. Technometrics 16,
.523—531.

2. Bard, Y. (1974). Nonlinear Parameter Estj'riation.
Academic Press, New York.

3. Barrodale, I. arid F.D.K. Roberts (1973). An
Improved Algorithm for Discrete L1 Approd.mation.
SIAN J. Numer. Anal. 10, 839-848.

4. Beaton, A.E. arid J.W. Tukey (1974). The Fitting
of Power Series, Meaning Polynomials, Illustratedon Band-Spectroscopic Data. Techriometric 16,
147—192.

5. Chambers, J.M. (1973). Fittin Nonlinear Models:
Numerical Techniques. Biometrika 60 1-13.

6. Dennis, J.E. (1973). Some Canputaticnal
Techniques for the Nonlinear Least Squares
Problem, in Bryne and Hall, eds. Numerical
Solutions of Systems of Nonlinear A]gbraicuations. Academic Press, New York, 157-183.

7. Cross, A.M. (1973). A Robust Confidence 1ntcrvl
for Location for Symnctric Long-tailed Distribu-
tions. Proc. Nat. Aced. Scj. 70, 1995—1997

—6—

ADV.MOD(t) = a.
i=i i

with

—7—

8. Friedman, J.H. and J.W. Thkey (1974). A
Projection Pursuit Algorithm for Exploratory TABLE 1
Data Analysis. IEEE Transactions on Computers

MAR1ING MODEL DATA2i.! 881—890.

9. Huber, P.J. (1964). Robust Estimation of a ROW - SALES PROM ADV STREND
Location Parameter. Ann. Math. Statist. 35, 1 677.475 1. 750.12 0.95285
73—101. 2 407.716 0. 118.44 0.999951

3 676.695 0. 507.60 1.0150510. Huber, P.J. (1973). Robust Regression:
'4 418.784 0. 90.24 1. 01806Asymptotics, Conjectures, arid bnte Carlo.

529.228 0. 81.78 1.03375Annals of Statistics 1, 799—821.
6 960.094 1. 902.4(1.13322

11. Iluber, P.J. and R. Dutter (1974). Numerical 7 450.273 0. 98.70 1.10791
Solution of Robust Regression Problems. 8 508.651 0. 177.66 1.08965
Research Report No. 3. Fachgruppe Fuer 9 872.330 1. 454.02 1.09695
Statistik. . 10 354.248 0. 14.10 1.05676

11 406.859 0. 45.12 0.89700512. Little, J.D.C. and R.E. Welsch (1975). Robust
12 403.507 0. 177.66 0.83928Calibration of Nonlinear Marketing ?'bdels.
13 673.500 0.66 397.62 0.99085Unpublished manuscript. Sloan School of
14 483.164 0.34 115.62 1.03967Management, M.I.T. Cambridge, Mass.
15 518.784 0. 138.18 1.05525

13. }tarquardt, D.W. (1963). An Algorithm for Least— 16 437.880 0. 129.72 1.05826
Squares Estimation of Nonlinear Parameters. 17 554.404 0. 394.80 1.09082J. Soc. Indust. Appi. Math. 11, 431—441. 18 861.341 1. 640.14 1.17766

19 468.277 0. 149.46 1.1512314. Powell, M.J.D. (1970). A New Algorithm for
20 568.979 0. 200.22 1.13209Unconstrained Optimization. J.B. Rosen, 21 800.701 1. 239.70 1.13955O.L. Mangasarian, and K. Ritter Eds., Nonlinear
22 404.365 0. 0.001 1.09768Prograinning, Academic Press, New York, 31—65.
23 '418.706 0. 81.78 0.931605

15. TROLL Experimental Programs, Robust arid Ridge 24 394.388 0. 0.001 0.87156
Regression, NBER Computer Research Center 25 903.819 1. 530.16 1.02885
Documentation Series D0070. 26 391.426 0. 121.26 1.07939

27 488.230 0. 290.46 1.0954516. Tukey, J.W. (1973). A Way Forward for Robust
28 522.915 0. 177.66 1.09846Regression. Unpublished menrandum., Bell 29 974.980 1. 679.62 1.13210Laratories (Murray Hill).
30 450.896 0. 245.34 1.22210
31 589.634 0. 104.34 1.19455
32 561.029 0. 112.80 1.17453
33 592.673 0. U5.62 1.18215
34 896.882 1. 121.26 1.13860
35 379.735 0. 138.18 0.966205
36 414.965 0. 5.64 0.90384

—8—

TABLE 2

MKEI'ING MODEL RESULTS

C .8 1. 1.5

1.29 .96 6.81
(1.23) (1.34) (9.88)

.44 .53 .48
(.06) (.07) (.06)

B2
.22 .21 .23

(.03) (0'3) (.04)

R0 '499. '491. 514.

S '40.8 48.3 39.6

us 27.2 37.5 '44.5

13. 24. 16.

#GH 13. 20. 16.

c.d.f. 12.5 14.6 15.6

d.f. 18. 18. 18.

TABLE 3

TEST flJNCTION RESULTS

c .8 1. 1.5 IS

O .75 .76 .84 2.16
1 (08) (.09) (.19) (1.19)

82
8.17 8.02 6.78 18.49

(1.17) (2.65) (2.09) (28.85)

s .15 .15 .21 .52

ws .06 .07 .114 .95

12. 18. 11. 16.

#GH 12. 17. 10. 16.

c.d.f. 3.6 3.8 4.68 8.

d.f. 8. 8. 8. 8.

