NBER WORKING PAPER SERIES

FALLING TRADE COSTS, HETEROGENEOUS FIRMS, AND INDUSTRY DYNAMICS

Andrew B. Bernard J. Bradford Jensen Peter K. Schott

Working Paper 9639 http://www.nber.org/papers/w9639

NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 April 2003

We thank Marc Melitz, Nina Pavcnik, Jim Tybout and participants at the 2002 Tuck Trade Summer Camp and ERWIT 2002 for helpful comments. The research in this paper was conducted at the Center for Economic Studies. Research results and conclusions expressed are those of the authors and do not necessarily indicate concurrence by the Bureau of the Census or by the National Bureau of Economic Research. The paper has not undergone the review the Census Bureau gives its official publications. It has been screened to insure that no confidential data are revealed. The views expressed herein are those of the authors and not necessarily those of the National Bureau of Economic Research.

©2003 by Andrew B. Bernard, J. Bradford Jensen and Peter K. Schott. All rights reserved. Short sections of text not to exceed two paragraphs, may be quoted without explicit permission provided that full credit including ©notice, is given to the source.

Falling Trade Costs, Heterogeneous Firms, and Industry Dynamics Andrew B. Bernard, J. Bradford Jensen and Peter K. Schott NBER Working Paper No. 9639 April 2003 JEL No. F1, L1, L6

ABSTRACT

This paper examines the response of industries and firms to changes in trade costs. Several new firm-level models of international trade with heterogeneous firms predict that industry productivity will rise as trade costs fall due to the reallocation of activity across plants within an industry. Using disaggregated U.S. import data, we create a new measure of trade costs over time and industries. As the models predict, productivity growth is faster in industries with falling trade costs. We also find evidence supporting the major hypotheses of the heterogenous-firm models. Plants in industries with falling trade costs are more likely to die or become exporters. Existing exporters increase their shipments abroad. The results do not apply equally across all sectors but are strongest for industries most likely to be producing horizontally-differentiated tradeable goods.

Andrew B. Bernard
Tuck School of Business
Dartmouth College
100 Tuck Hall
Hanover, NH 03755
and NBER
andrew.b.bernard@dartmouth.edu

J. Bradford Jensen Institute for International Economics 1750 Massachusetts Avenue Washington, DC 20036-1903 jbjensen@iie.com

Peter K. Schott School of Management Yale University 135 Prospect Street New Haven, CT 06520 and NBER peter.schott@yale.edu

1. Introduction

The inquiry into the relationship between countries' trade policy and their subsequent economic growth has two branches. The first seeks to relate cross-country differences in openness to cross-country variation in GDP growth. The second focuses on the microeconomic link between firm exporting and firm productivity. This paper uses several new firm-level models of international trade to explore a third channel, the evolution of industry productivity resulting from a reallocation of activity across firms in response to changes in trade costs.

An increase in aggregate industry productivity as a result of falling trade costs is a key feature of three heterogeneous-firm, general equilibrium trade models recently introduced by Bernard et al. (2000), Melitz (2002), and Yeaple (2002). These models emphasize productivity differences across firms operating in an imperfectly competitive industry consisting of horizontally differentiated varieties. In all three models, the existence of trade costs induces only the most productive firms to self-select into exporting. As trade costs fall, industry productivity rises due a reallocation of activity across firms: lower trade costs cause low productivity non-exporting firms to exit and high productivity non-exporters to increase their sales through exports, thereby increasing their weight in aggregate industry productivity. An important feature of these models is that the increase in aggregate productivity is not a result of faster firm productivity growth from exporting.¹

This paper provides the first empirical examination of the relationship among industry trade costs, firm reallocation, and industry productivity in the U.S.. A key contribution of our analysis is the connection of *plant-level* U.S. manufacturing data to *industry-level* measures of trade cost changes. We define trade costs as the sum of *ad valorem* tariff and transport costs, and construct them using U.S. product-level trade data. Trade costs are found to vary substantially across both industries and time.

We report two main results. First, we find that aggregate industry productivity rises as trade costs fall. Second, we find support for two of the four firm-level implications, and weak evidence for a third, that are

¹Clerides, Lach, and Tybout (1998), Bernard and Jensen (1999), and Aw, Chung, and Roberts (2000) find that firm productivity growth is not improved after entry into exporting.

integral to industry reallocation in the heterogeneous-firm models. The probability of plant death is higher in industries experiencing declining trade costs, as is the probability of successfully entering the export market. In addition, existing exporters' exports grow as industry trade costs decline. These results highlight the heterogeneity of firm outcomes within industries, calling attention to the fact that there are both winners and losers within industries as a result of trade liberalization.

The relationship between falling trade costs and faster productivity growth is not uniform across industries. We find that within-industry reallocation in response to changes in trade costs is strongest for industries where the U.S. has high levels of imports from, and exports to, other high income countries. These industries are more likely to encompass trading in horizontally differentiated varieties, and therefore provide a closer fit with theory.

Identifying a connection between declining trade costs, firm reallocation and aggregate industry productivity gains has important implications for the literature examining the effect of trade liberalization on economic growth. This literature has been conducted almost exclusively with aggregate cross-country data using various measures of openness to proxy for changes in trade costs. Though several studies, including Ben-David (1993), Sachs and Warner (1995) and Edwards (1998), offer evidence of a positive correlation between trade liberalization and GDP growth, the robustness of this evidence has been challenged by Rodriguez and Rodrik (2000). By examining more direct measures of trade liberalization, and linking them to the responses of individual firms within industries, we provide direct evidence on the extent to which trade liberalization may affect productivity and therefore GDP growth. Our results suggest that changes in openness over time matter for productivity growth but that all industries are not affected equally.

The analysis in this paper is related to a broad empirical literature examining the link between import competition and plant performance surveyed in Tybout (2001). The general consensus of this literature is that foreign competition both reduces the domestic market share of import-competing firms and reallocates domestic market share from inefficient to efficient firms, see Pavcnik (2002). Using explicit measures of trade costs at the industry level, we also find evidence of reallocation. Our results

suggest that the reallocation is driven by plant death and entry into exporting rather than through changing domestic market shares of surviving plants. Our findings are also consistent with studies examining the effects of changes to particular trading regimes. Using industry-level data, Head and Ries (1999) and Trefler (2001), for example, find that the Canada-U.S. Free Trade Agreement induced substantial rationalization of production and employment. We provide evidence on the exact nature of such within-industry rationalizations due to falling trade costs.

The remainder of the paper is organized as follows: the next section assembles the predictions from the theoretical models on the responses to lower trade costs. Section 3 summarizes our dataset and describes how we construct our measure of trade costs. Section 4 presents the empirical results. Section 5 concludes.

2. Theory: Heterogeneous Firms and Trade

Three recent papers by Bernard et al. (2000), Melitz (2002), and Yeaple (2002) – henceforth BEJK, MM, and SY, respectively – develop firm-level models of intra-industry trade that are designed to match a set of stylized facts about exporting firms. These facts reveal that relatively few firms export and that exporters are more productive, larger, and more likely to survive than non-exporting firms. An important contribution of the models is their demonstration that such differences can arise even if exporting does not itself enhance productivity, a robust empirical finding (Clerides, Lach and Tybout (1998), Bernard and Jensen (1999), and Aw, Chung and Roberts (2000)).

In each paper, exporter superiority is shown to be the equilibrium outcome of more productive firms self-selecting into the export market. This selection is driven by the existence of trade costs, which only the most productive firms can absorb while still remaining profitable. All three papers relate reductions in trade costs to increases in aggregate industry productivity: as trade costs fall, lower productivity, non-exporting firms die, more productive non-exporters enter the export market, and the level of exports sold by the most productive firms increases. In this section, we summarize the foundation and intuition of these implications before taking them to a panel of plant-level data. Our discussion centers on MM and notes key

differences among MM, BEJK and SY.

2.1. Melitz (2002)

MM builds a dynamic industry model with heterogeneous firms producing a horizontally differentiated good with a single factor, adapting Hopenhayn's (1992) framework to monopolistic competition in a general equilibrium setting. The paper also extends Krugman's (1980) representative firm intra-industry trade model by allowing for variation in firm productivity. The coexistence of firms with different productivity levels in equilibrium is the result of uncertainty about productivity before an irreversible entry decision is made: though firms may earn positive profits conditional on entry, expected profits net of sunk entry costs are zero. Entry into the export market is also costly, but the decision to export occurs after firms observe their productivity. Firms produce a unique horizontal variety for the domestic market if their productivity is above some threshold, and export to a foreign market if their productivity is above a higher threshold. MM restricts the analysis to countries with symmetric attributes to focus solely on the relationship between trade costs and firm performance.

In equilibrium, declining variable trade costs mean greater profits for exporters, which are also the most productive firms, because of their increased access to external markets and lower per unit costs net of trade. Higher export profits pull higher productivity firms from the competitive fringe into the market, raising the productivity threshold for market entry and forcing the least productive non-exporters to shut down. Higher export profits also reduce the productivity threshold for exporting, increasing the number of firms which export. In addition, declining trade costs invite more foreign varieties into the market and reduce the domestic sales of all domestic firms. The increased exports of the most productive exporters more than compensate for this decline in domestic market share.² A decrease in the fixed cost of exporting has effects similar to a reduction in variable trade costs. One difference is that export sales do not increase at existing exporters. Rather, the increase in exports comes entirely from new entrants.

These dynamics provide the following five testable hypotheses:

²An increase in trading partners has similar effects except there are no new entrants into exporting.

Hypothesis 1 A decrease in variable trade costs leads to an aggregate industry productivity gain.

Hypothesis 2 A decrease in variable trade costs forces the least productive firms to exit.

Hypothesis 3 A decrease in variable trade costs increases the number of exporting firms; new exporters are drawn from the most productive non-exporters (or new entrants).

Hypothesis 4 A decrease in variable trade costs increases export sales at existing exporters.

Hypothesis 5 A decrease in variable trade costs reduces the domestic market share (and domestic revenue) of surviving firms.

2.2. Bernard et al. (2000)

BEJK construct a static Ricardian model of heterogeneous firms, imperfect (Bertrand) competition with incomplete markups, and international trade. Firms use identical bundles of inputs to produce differentiated products under monopolistic competition. Within a country without trade, only the most efficient producer actually supplies the domestic market for a given product.

With international trade and variable trade costs, a firm produces for the home market if it is the most efficient domestic producer of a particular variety and if no foreign producer is a lower cost supplier net of trade costs. A domestic firm will export if it produces for the domestic market and if, net of trade costs, it is the low cost producer for a foreign market. With positive trade costs, exporters are firms with higher than average productivity. BEJK use a simulation to demonstrate that as trade costs fall, aggregate productivity rises (Hypothesis 1) because high productivity plants expand (Hypothesis 3 and 4) at the expense of low productivity firms, which fail (Hypothesis 2).³

³Declining trade costs force low productivity plants to exit the market in both BEJK and MM, but the mechanism by which this occurs differs subtly. In BEJK, low productivity plants exit because of increased import competition from foreign varieties. In

2.3. Yeaple (2002)

SY is a static, one factor model of trade in differentiated products that differs from MM and BEJK in three respects. First, firms choose between producing a homogeneous non-tradeable or a differentiated variety. Second, workers vary in terms of skill. Finally, firm labor productivity is determined endogenously as two production techniques are available to produce differentiated goods, either low fixed/high unit cost or high fixed/low unit cost. With trade costs, firms with the highest productivity produce the differentiated good via the high fixed cost technique and export, while firms with the lowest productivity produce the homogenous good. Firms using the low fixed cost technology have intermediate productivity levels.

A reduction in trade costs increases the incentive for firms to adopt the high fixed cost production technique and export. As a result, a larger number of firms adopt this technology while the absolute number of "domestic" firms in the industry falls. Total employment falls and the least skilled workers leave the industry so that observed labor productivity rises. These relationships correspond to Hypotheses 1 through 3 above.

3. Data

3.1. U.S. Manufacturing Plants Across Industries and Time

U.S. manufacturing plant data are drawn from the Censuses of Manufactures (CM) of the Longitudinal Research Database (LRD) of the U.S. Bureau of the Census starting in 1987 and conducted every fifth year through 1997. Though CM data are available for earlier periods, we cannot use them in this study because comprehensive collection of export information

MM, countries' varieties do not overlap. As a result, an increase in imports raises the probability of death at all levels of productivity while the death of low productivity plants is actually driven by the entry into exporting of other domestic firms. In our empirical work, we will not be able to distinguish between these two competing sources of plant deaths.

⁴MM and BEJK model firms as differing in terms of exogenous total factor productivity (TFP). In SY, TFP is identical across firms, while labor productivity varies with choice of production technique. TFP and labor productivity are correlated in MM and BEJK due to the presence of fixed costs of production. As a result we avoid the complications of computing plant level productivity and focus instead on labor productivity in our empirical tests below.

did not begin until 1987. The sampling unit for the Census is a manufacturing establishment, or plant, and the sampling frame in each Census year includes detailed information on inputs and output on all establishments. Plant output is recorded at the four-digit Standard Industrial Classification level (SIC4).

The samples used in our econometric work below incorporate several modifications to the basic data. First, we exclude small plants (so-called Administrative records) due to a lack of information on exports. Second, we drop plants in any 'not elsewhere classified' industries, i.e. SIC4 industries ending in '9'. These modifications leave us with two panels of approximately 234,000 plants in 337 manufacturing industries.

3.2. Trade Costs Across Industries and Time

An important contribution of our analysis is the creation of a new set of industry-level trade costs that can be related to plant behavior over time. To most closely match the notion of trade costs in the theoretical models, we construct *ad valorem* trade costs that vary over time and across industries.

We define variable trade costs for industry i in year t ($Cost_{it}$) as the sum of ad valorem duty (d_{it}) and ad valorem freight and insurance (f_{it}) rates, $Cost_{it} = d_{it} + f_{it}$. We compute d_{it} and f_{it} from underlying product-level U.S. import data complied by Feenstra (1996). The rate for industry i is the weighted average rate across all products in i, using the import values from all source countries as weights.⁵ The ad valorem duty rate is therefore duties collected ($duties_{it}$) relative to the Free-On-Board customs value of imports (fob_{it}),

$$d_{it} = \frac{duties_{it}}{fob_{it}}.$$

Similarly, the *ad valorem* freight rate is the markup of the Customs-Insurance-Freight value (cif_{it}) over fob_{it} relative to fob_{it} ,

$$f_{it} = \frac{cif_{it}}{fob_{it}} - 1.$$

 $^{^5\}mathrm{We}$ use the concordance provided by Feenstra et al. (2002) to match products to SIC4 industries.

We define the change in trade costs for census year t as the annualized change in tariff and freight costs over the preceding five years,

$$\Delta Cost_{it-5} = \frac{Cost_{it} - Cost_{i,t-5}}{5} = \frac{[d_{it} + f_{it}] - [d_{i,t-5} + f_{i,t-5}]}{5}.$$
 (1)

In the empirical work below, we relate changes in trade costs between years t-5 to t ($\Delta Cost_i^{t-5:t}$) to plant survival, plant export decisions, and changes in the plant's domestic market share between t to t+5. The five-year spacing between time periods corresponds to the interval between Censuses.

Table 1 reports average tariff, freight and total trade costs across two-digit SIC industries for five-year intervals from 1982-1997 using the import values of underlying SIC4 industries as weights. Costs are averaged over the five years preceding the year at the top of the column. Table 1 reveals that ad valorem tariff rates vary substantially and are highest in labor-intensive Apparel and lowest in capital-intensive Paper. Tariff rates decline across a broad range of industries over time. Indeed, over the entire period, tariffs decline by more than one quarter in thirteen of twenty industries. The pace of tariff declines, however, varies substantially across industries.⁶ Freight costs are highest among industries producing goods with a low value-to-weight ratio, including Stone, Lumber, Furniture, and Food. Freight costs also generally decline with time, though the pattern of declines is decidedly more mixed than it is with tariffs.

Four-digit industries show an even greater dispersion in trade cost changes. Figure 1 displays the total change in trade costs from 1982 to 1992 relative to 1982 levels. As indicated in the figure, there is substantial variation in changes across four-digit industries, with the trade costs of most industries declining between 1982 and 1992. The average SIC4 industry saw trade costs fall 0.19 percentage points per year from 1982-92. Of the 337 SIC4 industries, we find that 82% experienced declines in tariff rates from 1982

⁶The median percentage point reduction in product-level *ad valorem* tariff rates between 1989 and 1997 is 0.6%. Twenty five percent of products experience reductions greater than 1.5 percentage points. These differences do not account for changes in product codes during this interval or for changes in the non *ad valorem* component of tariffs, which varies across industries (Irwin 1998). A similar change cannot be computed for a longer interval because a change in the coding of imports in 1989 precludes direct product comparison with years after 1989.

⁷Data on the tariff and freight measures for all 337 (SIC4) industries and years is available at http://www.som.yale.edu/faculty/pks4/sub_international.htm.

to 1987, while 53% experienced declines from 1987 to 1992. For freight costs, 44% of the industries experienced declines from 1982 to 1987, while 66% experienced declines from 1987 to 1992⁸ In terms of overall trade costs, 79% of SIC4 industries saw trade costs decline between 1982 and 87, while 62% had declining trade costs between 1987 and 1992.

In addition to being a good match to the theory, the trade costs constructed here have several advantages. They are the first to incorporate information about both trade policy and transportation costs. In addition, they vary across industries and time. Finally, they are derived directly from product-level trade data collected at the border.

Even with these advantages, two caveats should be noted. First, changes in the composition of products or importers within industries can induce variation in d_{it} and f_{it} even if actual statutory tariffs and market transportation costs remain constant. Shifts in U.S. consumption away from imports subject to high tariffs, or towards trading partners located closer to the U.S., for example, can decrease the measures of trade costs even if actual costs are unchanged.⁹ This concern about the trade cost data is mitigated to some extent by our focus on the relationship between trade costs and firm outcomes. For this paper, the composition of competition (i.e. near or far importers, this product or that one) may be just as relevant as changes in actual costs in inducing a U.S. response.

A second caveat is that our trade cost measure is constructed from U.S. import data. Each of the theoretical models described above contemplates symmetric reductions in trade costs across countries. To the extent that U.S. trade policy or transportation rates diverges from that of other countries, measured changes in trade costs may over- or underestimate the changes implemented by other countries. This problem is likely to be more severe for trade policy than for transportation rates. Unfortunately, be-

⁸Using a different methodology, Hummels (1999) reports a similar decline in aggregate freight costs during the same period.

⁹One way to avoid this problem is to aggregate product-level changes rather than levels up to SIC4 industries. In principle, one could compute the change in tariff and freight rates across country-product pairs and then average across these changes for industry observations. In practice, however, such a procedure encounters a number of problems. Most importantly, the U.S. changed import product categorization systems between 1988 and 1989, i.e. in the middle of our sample. In addition, the set of countries importing a given product can vary substantially from year to year, yielding numerous zeros for product-level tariff changes.

cause disaggregate tariff rates and freight costs are unavailable for U.S. export destinations during the period in question, we cannot construct a direct measure of outbound trade costs.¹⁰

3.3. Identifying Industries With Relatively High Varieties Trade

Each of the three models discussed in Section 2 is based upon international trade in horizontally differentiated varieties. In addition to examining trends across all manufacturing industries, we attempt to align the data more closely with the theory by also reporting results for a subset of industries most likely to capture trade in horizontally differentiated varieties. Starting from the assumption that trade between the U.S. and the OECD is the most likely to be characterized by a taste for variety, we select SIC4 industries using U.S. import and export penetration ratios vis a vis the OECD.¹¹

For industry i, we define the OECD import and export penetration ratios for the U.S., n_i^m and n_i^x respectively, as

$$n_i^m = \frac{fob_i^{OECD}}{fob_i + q_i - x_i}$$

$$n_i^x = \frac{x_i^{OECD}}{q_i}$$
(2)

$$n_i^x = \frac{x_i^{OECD}}{q_i} \tag{3}$$

where fob_i^{OECD} and x_i^{OECD} are the value of U.S. imports from and exports to the OECD in industry i, fob_i and x_i are total U.S. imports and exports in industry i, and q_i is the total value of U.S. production in i. Though n_i^m and n_i^x vary substantially across industries, they are relatively stable across time. We use values for 1987, the midpoint of our two panels, to construct our industry subsample. We refer to industries with import and

 $^{^{10}}$ To check the appropriateness of using import data for both inward and outward U.S. trade costs, we compare U.S. and European Union tariffs changes across industries from 1992-1997 (after the end of our sample) using the TRAINS database compiled by the United Nations Conference on Trade and Development. This database tracks productlevel tariffs for a limited, but growing, set of countries starting in 1990. Using these data, we find that the correlation of U.S. and EU ad valorem tariff rate changes across SIC4 industries is positive and significant at the 1% level.

¹¹Rauch (1999) divides two-digit SITC industries into differentiated and homogenous categories. The difficulties associated with concording these categories to four-digit SIC industries preclude their use here.

export penetration greater than the 67th percentile as high bilateral OECD trade industries (or high-OECD).¹² The sixty-seven industries above these cutoffs are reported in Table 2. Two thirds of the industries in this sample come from SIC 35 to 38, precisely the sectors (Industrial Machinery, Electronics, Transportation and Instruments) that are most likely to contain differentiated products.

4. Empirical results

In this section, we examine the relationships between trade costs and industry- and plant-level outcomes described in Section 2.

4.1. Industry Productivity Growth

The most important implication of all three models presented above is that lower trade costs increase aggregate productivity (Hypothesis 1). As the models are all single factor models, they do not differentiate between labor productivity and total factor productivity. Here we report results for both, but in subsequent sections we concentrate on labor productivity.¹³ We estimate a simple regression of the change in SIC4 industry productivity on the decline in industry trade costs in the previous five years,

$$\Delta Productivity_{it} = c_t + \beta^1 \Delta Cost_{it-5} + \delta_i + \delta_t + \varepsilon_{it}, \tag{4}$$

where $\Delta Productivity_{it}$ is the average annual percent change in industry productivity, either real value added per worker or TFP, from year t to year t+5, $\Delta Cost_{it-5}$ is the annualized percent change in total trade costs between years t-5 and t, and δ_i and δ_t are sets of industry and year fixed effects. Data on real value added per worker and five-factor total factor productivity are drawn from Bartelsman et al. (2000). Our use of prior changes in trade costs to predict subsequent behavior is helpful for two reasons. First, it biases the empirical work against Hypotheses 1 to 5

 $^{^{12}\}mbox{Varying the cutoff percentile}$ around 67 does not materially affect the results reported below.

¹³Constructing plant level total factor productivity levels and changes over time is especially difficult given the small number of periods in our data and the five-year interval between observations.

by excluding contemporaneous reallocation. Second, it helps to mitigate problems of endogeneity and omitted variables.

One feature of all three models is that they are designed to focus on within-industry reallocation, rather than differences *across* industries. However, the theories are silent on the appropriate empirical scope of an industry. We estimate all our specifications with both two-digit and four digit fixed effects. The inclusion of two-digit industry fixed effects (SIC2) allows for potential substitution across 4-digit industries within a sector. Fixed effects at the four-digit level (SIC4) restrict the analysis to within-industry changes in trade costs over time.

The results with SIC2 industry fixed effects are reported in columns 1 (all industries) and 2 (high-OECD industries) of Table 3 with robust standard errors adjusted for clustering on four-digit industries. Consistent with the three models, both TFP and labor productivity are negatively associated with changes in trade costs, i.e. falling trade costs are followed by more rapid industry productivity growth. For the all-industry sample, the coefficients are relatively small and only significant at the 10% level for TFP.

For the sample of high-OECD industries, the coefficients are large and significant at the 1% level, suggesting a one percentage point annual decline in trade costs is associated with annual productivity growth rates 1.0 to 1.6 percentage points higher.

Results using SIC4 industry fixed effects are reported in columns 3 and 4 of Table 3. The same pattern of results holds. the coefficients on the change in trade costs for the all-industry sample are not significant for either TFP or labor productivity. However, in the high-OECD sample, both coefficients are again large, negative and significant.

The industry regressions suggest that falling trade costs are associated with faster industry productivity growth but this relationship is strongest for a sample of industries with high bilateral trade levels with OECD countries. We now turn to the specific within-industry predictions of the models (Hypotheses 2 through 5).

4.2. Plant Deaths

To examine the effect of changing trade costs on plant survival, we estimate a probit with levels and interactions of plant productivity, export

status and the change in trade costs. The probability of death for a plant in industry i between year t and year t + 5 is given by

$$\Pr(D_{pt+5} = 1 | X_{pt}, Z_{it}) = \Phi\left(c_t + \beta^1 \operatorname{RP}_{pt} + \beta^2 \Delta Cost_{it-5} + \beta^3 \operatorname{E}_{pt}\right) + \beta^4 \left[\operatorname{E}_{pt} \times \Delta Cost_{it-5}\right] + \beta^5 \left[\operatorname{RP}_{pt} \times \Delta Cost_{it-5}\right] + \beta^6 \left[\operatorname{E}_{pt} \times \operatorname{RP}_{pt} \times \Delta Cost_{it-5}\right] + \delta_i + \delta_t$$
(5)

where RP_{pt} (relative productivity) is percentage difference in plant labor productivity from that of the mean plant in the SIC4 industry in year t, $\Delta Cost_{it-5}$ is the annual average change in industry trade costs in the preceding 5 years, and E_{pt} is a dummy variable indicating whether the plant is an exporter in year t. As above, we report results with SIC2 and SIC4 industry fixed effects while allowing for robust standard errors and clustering in four-digit industries.

All three models predict that low productivity, non-exporters should be more likely to fail, and that a decline in trade costs should raise the probability of death (Hypothesis 2). Since all the plant-level empirical specifications include either SIC2 and SIC4 industry fixed effects, the implicit null hypothesis is that deviations from the average industry change in trade costs are correlated with plant outcomes.

Columns 1 and 2 in Table 4 report the results for plants in the all-industry and high-OECD samples respectively, controlling for SIC2 fixed effects. Plant labor productivity and plant export status have large, negative, and significant coefficients. As expected, low productivity plants are more likely to die and exporters are substantially less likely to fail. As predicted by the models, declines in industry trade costs also increase the probability of death. While the coefficient on the change in industry trade costs is negative in both specifications, it is only significant (at the 1% level) for the industries with high OECD bilateral trade, i.e. the industries most likely to be characterized by the theoretical models.

The signs of the coefficients on the interaction terms suggest that exporters are less likely to die as trade costs fall and that higher productivity among exporters reduces the probability of failure as trade costs fall. For non-exporters the probability of death rises more for high productivity

¹⁴ All coefficients reported in the table are changes in the marginal probability evaluated at the mean of the regressors.

plants as trade costs fall, significantly so for plants in the preferred sample of industries with high OECD trade. This latter coefficient is surprising, as the theory (and common sense) suggests that high productivity non-exporting plants should not face a higher probability of shutdown in the face of declining trade costs.

Columns 3 and 4 in Table 4 contain analogous specifications controlling for SIC4 fixed effects. For the all-industry sample, the coefficient on the trade cost variable has an unexpected positive, although insignificant, coefficient. Falling trade costs are not associated with an increased probability of death in the wide sample of industries. However, for the sample of high-OECD industries, declines in industry trade costs significantly increase the probability of death.

The estimates from the OECD sample with SIC4 fixed effects suggest that the economic magnitude of the change in trade costs on the probability of death is substantial. For a plant with average productivity, a reduction in trade costs of 0.9 percentage points per year (equivalent to a one standard deviation change) leads to a 3.7 percentage point increase in the probability of death for a non-exporter and a 0.2 percentage point increase in the probability of death for an exporter. The average probability of death in the sample is 26.8%.

As with the industry productivity regressions, here we find that the predictions of the theoretical models are strongest for the high-OECD sample: falling trade costs lead to higher probabilities of death.

4.3. New Exporters

In addition to increasing the probability of plant deaths, all three models also predict that high productivity non-exporters start exporting as trade costs fall (Hypothesis 3). We estimate the probability that a non-exporter becomes an exporter as a function of plant labor productivity, the change in industry trade costs, and their interaction for the sample of non-exporters.¹⁵

¹⁵A more complete specification on the decision to export would include an estimate of the sunk costs of exporting and include the entire panel of plants (for example, see Roberts and Tybout 1997 or Bernard and Jensen 2001). Here, we are interested in the change in the probability of exporting for non-exporters as trade costs fall.

The probit is given by

$$\Pr\left(\mathbf{E}_{pt+5} = 1 \middle| \mathbf{E}_{pt} = 0, X_{pt}, Z_{it}\right) = \Phi\left(c_t + \beta^1 \mathbf{R} \mathbf{P}_{pt} + \beta^2 \Delta Cost_{it-5}\right) + \beta^3 \left[\mathbf{R} \mathbf{P}_{pt} \times \Delta Cost_{it-5}\right] + \delta_i + \delta_t\right).$$

The results reported in Table 5 again yield support for the predictions of the model, especially for the high-OECD industries. ¹⁶ Plant labor productivity is strongly positively associated with entering the export market. Declines in industry trade costs significantly increase the probability of becoming an exporter for the high-OECD industries. For the all-industry sample, the effect is not significant and has the wrong sign with SIC4 fixed effects. The interaction between plant productivity and the change in trade costs also has the expected sign, although significant only for broad sample. High productivity non-exporters are even more likely to become exporters when trade costs decline.

The magnitude of the effect of falling trade costs is substantial. For a non-exporter with average productivity, a one standard deviation reduction in trade costs increases the probability of exporting by 5.8 percentage points. The average probability of becoming an exporter in the high-OECD sample is 27%.

These results, coupled with the increased probability of death as trade costs fall, offer support for the two major predictions of the models. In particular, they highlight the heterogeneity of outcomes across plants that vary in terms of their export status and labor productivity. In response to falling trade costs, some plants, typically low productivity non-exporters, are more likely to die, while higher productivity non-exporters take advantage of the lower trade costs and begin exporting. It is important to note that the results are only hold for the set of industries that have high bilateral flows with the OECD.

¹⁶ All coefficients reported in the table are changes in the marginal probability evaluated at the mean of the regressors.

4.4. Export Growth

BEJK and MM offer specific predictions that exports will increase at current exporters as trade costs decline (Hypothesis 4).¹⁷ We estimate the percentage change in exports for current exporters as a function of the change in industry trade costs,

$$\%\Delta \text{EXP}_{pt} = c_t + \beta^1 \Delta Cost_{it-5} + \delta_i + \delta_t + \varepsilon_{pit}$$
 (7)

where
$$\%\Delta \text{EXP}_{pt} = \frac{\text{EXP}_{pt+5} - \text{EXP}_{pt}}{2(\text{EXP}_{pt+5} + \text{EXP}_{pt})}.$$
¹⁸

The results, shown in Table 6, provide some support for the prediction that exports increase more rapidly for plants in industries with falling trade costs. The trade cost measure is negative in all specifications, although for high OECD trade industries it is not significant when SIC4 fixed effects are included. As current exporters are higher productivity plants, this expansion of export sales serves to increase the reallocation effect of falling trade costs and boost aggregate industry productivity.

4.5. Domestic Market Share

The models offer a variety of predictions about output and employment growth across plants as trade costs decline. MM has the clearest predictions: domestic market share should fall for all surviving plants (and, of course, for plants that close) while the expansion in exports more than offsets the declining domestic shipments for all current exporters and some new exporters (Hypothesis 5). In the models output and employment covary perfectly at the plant level since there is no feedback from exporting to labor productivity; consequently we limit our attention to changes in domestic sales.

To test Hypothesis 5 from MM, we consider the change in market share

¹⁷While SY does not offer a specific prediction on the response of exports at existing exporters, it does have plant exports rising with a decline in trade costs.

¹⁸This growth rate is bounded between 2 and -2. Plants that stop exporting have a growth rate of -2.

from t to t + 5 for surviving plants, ¹⁹

$$\Delta \left(\frac{\mathbf{D}_{pt}}{\mathbf{D}_{it} + \mathbf{M}_{it}} \right) = c_i + \beta^1 \mathbf{RP}_{pt} + \beta^2 \Delta Cost_{it-5} + \beta^3 \mathbf{E}_{pt}$$

$$+ \beta^4 \left[\mathbf{E}_{pt} \times \Delta Cost_{it-5} \right] + \beta^5 \left[\mathbf{RP}_{pt} \times \Delta Cost_{it-5} \right]$$

$$+ \beta^6 \left[\mathbf{E}_{pt} \times \mathbf{RP}_{pt} \times \Delta Cost_{it-5} \right]$$

$$+ mills_{pt} + \delta_i + \delta_t + \varepsilon_{pit}.$$
(9)

where D_{pt} is the value of domestic sales by the plant and $D_{it}+M_{it}$ is the sum of domestic industry sales and imports in the industry and $mills_{pt}$ is a Mills ratio to account for the probability of death.²⁰ The dependent variable is the change in domestic market share of the plant.

The predictions of the MM model about domestic shipments are not confirmed by the results in Table 7. Trade costs have no relationship to changes in domestic market share except at exporting plants. Exporters experience (significant) declines in domestic market share as trade costs fall. These results suggest that there is a dichotomy between failure and performance in the domestic market as trade costs fall. Plant failure increases but survivors do not grow more slowly.

We have presented results testing a series of predictions from the new round of trade models. The results confirm the general predictions and provide evidence that falls in trade costs will have asymmetric effects on different firms within the same industry. An important caveat is that the models are not designed to explain the responses of firms in every industry to changes in trade costs but rather focus on trade with similar countries in differentiated products. Our results are systematically strongest for the sample of industries that have high bilateral trade with the OECD, i.e. the industries most likely to be characterized by 'new' trade models with heterogeneous firms.

4.6. Robustness

In this section, we check the robustness of the results for the high-OECD sample in two ways. First we add the relative capital intensity of the plant

¹⁹The use of market share, rather than the change in domestic sales, accounts for differential growth at the industry level due to other factors.

²⁰The specification for the probability of plant failure used to calculate the Mills ratio is given by Bernard and Jensen (2002) Table 4, column 1.

to the specification for plant deaths and entry into exporting. Second we split the trade cost measure into its separate tariff and freight components.

Table 8 reports the specification for the high-OECD sample including relative capital intensity and its interactions.²¹ None of the effects of trade costs changes with the addition of capital intensity. The coefficient on the trade cost measure actually increases in magnitude in both specifications. Finally in Table 9, we split the trade cost measure into its constituent parts for both the plant death and export entry. Tariffs and freight costs have the expected negative signs in both specifications.

5. Conclusions

In this paper, we examine the response of industries and plants to changes in tariff and transport costs. Using three recent models of international trade with heterogeneous firms, we develop testable predictions on the reallocation of activity across plants within industries as a result of changes in trade costs. To test the hypotheses, we create a new dataset of trade costs by industry over a twenty year period and link the measures to plant-level data on the entire U.S. manufacturing sector.

We identify an important new channel of reallocation by which trade policy can affect the performance of domestic industries in the U.S.. We find broad support for the predictions of the recent heterogeneous-firm trade models. Industries with falling trade costs have higher subsequent productivity growth. The higher productivity growth is driven by three concurrent processes within the industry. First, lower trade costs increase the probability of plant death, especially for lower productivity, non-exporting plants. Second, surviving high productivity, non-exporters are more likely to enter the export market, thus expanding their sales. Third, existing exporters, already the largest and most productive establishments, see their exports grow more quickly as trade costs fall. The aggregate industry productivity response to falling trade costs reflects the reallocation of activity across firms, away from low productivity non-exporters towards high-productivity exporters.

²¹The relative capital intensity measure is defined as the percentage difference of the capital intensity of the plant relative to that in the mean plant in the industry in that year. Capital is measured as the sum of the book value of machinery, equipment and structures.

The results in this paper provide a new round of evidence in favor of trade models designed to understand high bilateral trade flows between similar countries. In particular, the models perform best when we consider precisely those industries that are characterized by bilateral trade between countries at similar income levels.

The results suggest that symmetric reductions in trade costs with similar partners are indeed associated with faster industry productivity. These effects are limited to industries most likely to be characterized by trade in varieties. Alternative theories, perhaps emphasizing comparative advantage, may be needed to explain the responses of firms in other industries to changes in trade costs.

References

- Aw, Bee Yan, Sukyun Chung, and Mark J. Roberts. 2000. Productivity and Turnover in the Export Market: Micro-Level Evidence from the Republic of Korea and Taiwan (China). World Bank Economic Review 14, 65-90.
- Bartelsman, Eric J., Randy A. Becker, and Wayne B. Gray. 2000. The NBER-CES Manufacturing Industry Database. NBER Technical Working Paper 205.
- Ben-David, Dan (1993). Equalizing Exchange: Trade Liberalization and Income Convergence. *Quarterly Journal of Economics*, Vol. 108, pp. 653-679.
- Bernard, Andrew B. and J. Bradford Jensen. 1999. Exceptional Exporter Performance: Cause, Effect, or Both? *Journal of International Economics* Vol. 47, No.1, 1-26.
- Bernard, Andrew B. and J. Bradford Jensen. 2001. Why Some Firms Export. NBER Working Paper 8394.
- Bernard, Andrew B. and J. Bradford Jensen. 2002. The Deaths of Manufacturing Plants. NBER Working Paper 9026.
- Bernard, Andrew B., Jonathan Eaton, J. Bradford Jensen, and Samuel S. Kortum. 2000. Plants and Productivity in International Trade. NBER Working Paper 7688.
- Clerides, Sofronis, Saul Lach and James Tybout. 1998. Is "Learning-by-Exporting" Important? Quarterly Journal of Economics, August, 903-948.
- Edwards, Sebastian. 1998. Openness, Productivity and Growth: What Do We Really Know? *Economic Journal* 108(March) 383-398.
- Feenstra, Robert C. 1996. U.S. Imports, 1972-1994: Data and Concordances. NBER Working Paper 5515.

- Feenstra, Robert C, John Romalis, and Peter K. Schott. 2002. NBER Working Paper 9387.
- Head, Keith and John Ries. 1999. Rationalization Effects of Tariff Reductions. *Journal of International Economics* 47(2):295–320, April.
- Hopenhayn, Hugo. 1992. Entry, Exit, and Firm Dynamics in Long Run Equilibrium. *Econometrica*, 60(5), 1127-1150.
- Hummels, David. 1999. Have International Transportation Costs Declined? University of Chicago mimeo.
- Krugman, Paul R. 1980. Scale Economies, Product Differentiation, and the Pattern of Trade. *American Economic Review* 70:950-959.
- Irwin, Douglas A. 1998. Changes in US Tariffs: The Role of Import Prices and Commercial Policies. *American Economic Review* 88:1015-1026
- Melitz, Marc J. 2002. The Impact of Trade on Intra-Industry Reallocations and Aggregate Industry Productivity. NBER Working Paper 8881.
- Pavcnik, Nina. 2002 Trade Liberalization, Exit, and Productivity Improvement: Evidence from Chilean Plants. *Review of Economic Studies*, vol. 69, no. 1, pp. 245-76
- Rauch, James E. 1999. Networks Versus Markets in International Trade. *Journal of International Economics* 48:7-35.
- Roberts, Mark and James Tybout. (1997). "An Empirical Model of Sunk Costs and the Decision to Export." *American Economic Review* v87, n4: 545-64.
- Rodriguez, Francisco, and Dani Rodrik. 2000. Trade Policy and Economic Growth: A Skeptic's Guide to the Cross-National Evidence. *NBER Macroeconomics Annual*, 2000.
- Sachs, Jeffrey, and Andrew Warner. 1995. Economic Reform and the Process of Global Integration. *Brookings Papers on Economic Activity*, No 1, 1-95, Washington DC.

- Trefler, Daniel. 2001. The Long and Short of the Canada-U.S. Free Trade Agreement. NBER Working Paper 8293.
- Tybout, James. 2001. Plant- and Firm-Level Evidence on "New" Trade Theories. NBER Working Paper 8418.
- Yeaple, Stephen R. 2002. A Simple Model of Firm Heterogeneity, International Trade and Wages. University of Pennsylvania mimeo.

	Ad Valor	em Tariff C	Costs (d_{it})	Ad Valore	m Freight	Costs (f_{it})	Total Co	osts (Cost _{it=}	$d_{it}+f_{it}$
		(Percent)		(Percent)			(Percent)		
Two-Digit SIC Industry	1982	1987	1992	1982	1987	1992	1982	1987	1992
20 Food	5.7	5.1	4.4	10.2	9.7	8.9	15.9	14.8	13.4
21 Tobacco	10.4	14.1	16.7	5.9	5.2	2.9	16.3	19.3	19.5
22 Textile	17.0	13.2	11.2	6.0	6.4	5.4	23.1	19.6	16.6
23 Apparel	23.3	20.7	16.9	8.6	7.6	6.3	31.8	28.3	23.2
24 Lumber	3.2	2.3	1.7	11.1	6.5	7.5	14.2	8.8	9.2
25 Furniture	5.9	4.1	4.1	9.4	8.6	8.5	15.3	12.8	12.6
26 Paper	0.9	0.8	0.6	3.9	3.1	4.4	4.7	4.0	4.9
27 Printing	1.7	1.2	1.1	5.9	5.5	5.1	7.5	6.6	6.2
28 Chemicals	3.8	4.3	4.4	6.4	4.8	4.5	10.1	9.1	9.0
29 Petroleum	0.4	0.5	0.9	5.2	5.1	8.3	5.6	5.5	9.3
30 Rubber	7.4	7.9	11.3	7.5	6.8	6.9	14.9	14.7	18.2
31 Leather	9.0	10.7	11.2	8.3	7.2	5.5	17.3	17.8	16.7
32 Stone	8.9	6.4	6.5	12.0	11.1	9.6	20.9	17.5	16.1
33 Primary Metal	4.6	3.8	3.4	6.9	6.3	6.0	11.5	10.1	9.4
34 Fabricated Metal	6.6	5.1	4.3	6.8	5.9	5.0	13.4	11.0	9.3
35 Industrial Machinery	4.2	3.9	2.4	4.0	4.0	2.9	8.2	7.9	5.3
36 Electronic	5.0	4.6	3.3	3.4	3.1	2.4	8.3	7.6	5.6
37 Transportation	1.9	1.6	2.3	4.5	2.5	3.1	6.4	4.1	5.4
38 Instruments	6.8	5.2	4.3	2.7	2.8	2.5	9.5	8.0	6.8
39 Miscellaneous	9.6	5.7	5.2	5.0	4.9	3.6	14.6	10.6	8.8
Average	4.8	4.4	4.2	5.6	4.4	4.1	10.4	8.8	8.3

Notes: Table summarizes *ad valorem* tariff, freight and total trade costs across two-digit SIC industries. Costs for each two-digit industry are weighted averages of the underlying four-digit industries employed in our empirical analysis, using U.S. import values as weights. Figures for each year are the average for the five years preceding the year noted (e.g. the costs for 1982 are the average of costs from 1977 to 1981). The final row is the weighted average of all manufacturing industries included in our analysis.

Table 1: Trade Costs by Two-Digit SIC Industry and Year

			T
SIC	Industry	SIC	Industry
2091	Canned and cured fish and seafoods	3567	Industrial furnaces and ovens
2371	Fur goods	3571	Electronic computers
2421	Sawmills and planing mills, general	3572	Computer storage devices
2435	Hardwood veneer and plywood	3578	Calculating and accounting equipment
2611	Pulp mills	3593	Fluid power cylinders + actuators
2812	Alkalies and chlorine	3596	Scales and balances, exc. laboratory
2816	Inorganic pigments	3621	Motors and generators
2822	Synthetic rubber	3624	Carbon and graphite products
2833	Medicinals and botanicals	3652	Prerecorded records and tapes
2865	Cyclic crudes and intermediates	3672	Printed circuit boards
3111	Leather tanning and finishing	3674	Semiconductors and related devices
3211	Flat glass	3675	Electronic capacitors
3292	Asbestos products	3676	Electronic resistors
3297	Nonclay refractories	3678	Electronic connectors
3313	Electrometallurgical products	3692	Primary batteries, dry and wet
3334	Primary aluminum	3694	Engine electrical equipment
3341	Secondary nonferrous metals	3713	Truck and bus bodies
3425	Saw blades and handsaws	3714	Motor vehicle parts and accessories
3492	Fluid power valves + hose fittings	3724	Aircraft engines and engine parts
3511	Turbines and turbine generator sets	3743	Railroad equipment
3523	Farm machinery and equipment		Motorcycles, bicycles, and parts
3532	Mining machinery	3822	Environmental controls
3533	Oil and gas field machinery	3823	Process control instruments
3541	Machine tools, metal cutting types	3825	Instruments to measure electricity
3542	Machine tools, metal forming types	3827	Optical instruments and lenses
3546	Power-driven handtools	3844	X-ray apparatus and tubes
3547	Rolling mill machinery	3845	Electromedical equipment
3552	Textile machinery	3851	Ophthalmic goods
3553	Woodworking machinery	3861	Photographic equipment and supplies
	Paper industries machinery	3914	Silverware and plated ware
3555	Printing trades machinery	3915	Jewelers' materials + lapidary work
3556	Food products machinery	3931	Musical instruments
3562	Ball and roller bearings	3951	Pens and mechanical pencils
3563	Air and gas compressors		

Notes: This figure lists four-digit SIC industries where the U.S. has high OECD import and export penetration (i.e. greater than the 67th percentile) in 1987. Industries are sorted by SIC code. OECD import penetration is U.S. import value from OECD countries divided by U.S. consumption. OECD export penetration is U.S. export value to OECD countries divided by U.S. production.

Table 2: Industries with High Bilateral OECD Trade

Regressor	ΔLabor Productivity	ΔLabor Productivity	ΔLabor Productivity	ΔLabor Productivity
ΔCost	-0.134 (0.122)	-1.594 *** (0.527)	-0.164 (0.174)	-1.456 ** (0.645)
\mathbb{R}^2	0.21	0.18	0.52	0.58
	İ			
Regressor	ΔTFP	ΔTFP	ΔTFP	ΔTFP
ΔCost	-0.098 * (0.058)	-1.047 *** (0.354)	-0.127 (0.095)	-0.880 ** (0.422)
\mathbb{R}^2	0.07	0.09	0.42	0.49
Industry Fixed Effects	SIC2	SIC2	SIC4	SIC4
Year Fixed Effects	Yes	Yes	Yes	Yes
High OECD Penetration Industries Only	No	Yes	No	Yes
Observations	1,004	203	1,004	203

Notes: Industry-level OLS regression results. Robust standard errors adjusted for clustering at the four-digit SIC industry level are in parentheses. ΔLabor Productivity is average annualized change in value added per worker from years t+1 to t+5. Value added and total employment for each SIC4 industry are from Bartelsman, Becker and Gray (2000). ΔTFP is the average annualized change in Bartelsman, Becker and Gray (2000) five-factor total factor productivity from years t+1 to t+5. ΔCost is the change in total trade costs between years t-5 and t. Regressions cover the years 1982 to 1997. ***Significant at the 1% level; **Significant at the 5% level; *Significant at the 10% level. Coefficients for the regression constant and dummy variables are suppressed.

Table 3: Industry Productivity Growth, 1982-97

	Probit	Probit	Probit	Probit
Regressor	Plant Death	Plant Death	Plant Death	Plant Death
ΔCost	-0.793	-5.233 ***	0.595	-3.358 **
	(0.678)	(1.681)	(0.541)	(1.622)
Relative Productivity	-0.043 ***	-0.023 ***	-0.043 ***	-0.024 ***
	(1.492)	(0.008)	(0.004)	(0.007)
x ΔCost	-0.204	-5.662 ***	-0.117	-5.606 ***
	(0.416)	(1.409)	(0.479)	(1.326)
Exporter	-0.119 ***	-0.139 ***	-0.121 ***	-0.134 ***
	(0.006)	(0.009)	(0.004)	(0.009)
x ΔCost	0.648	2.786	0.159	3.203
	(0.795)	(2.271)	(0.621)	(2.194)
x ΔCost x Relative Productivity	0.533	5.024 ***	0.726	4.969 **
	(0.733)	(2.208)	(0.786)	(2.079)
Industry Fixed Effects	SIC2	SIC2	SIC4	SIC4
Year Fixed Effects	Yes	Yes	Yes	Yes
Industry Sample	All	High Bilateral OECD Trade	All	High Bilateral OECD Trade
Observations	235,790	30,447	235,790	30,447
Log likelihood	-133461	-17235	-131096	-17009

Notes: Plant-level probit regression results where the reported coefficients represent the change the marginal probability of plant death at the mean of the regressors. Robust standard errors adjusted for clustering at the four-digit SIC industry level are in parentheses. Dependent variable indicates plant death between years t and t+5. ΔCost is the change in total trade costs between years t-5 and t. Relative Productivity is plant's labor productivity relative to its' industry's mean. Exporter is an indicator variable equalling unity if plant is an exporter in year t. Regressions cover two panels: 1982 to 1987 and 1987 to 1992. ***Significant at the 1% level; **Significant at the 5% level; *Significant at the 10% level. Coefficients for the regression constant and dummy variables are suppressed.

Table 4: Probability of Death, 1987-97

	Probit	Probit	Probit	Probit
Regressor	Export Next	Export Next	Export Next	Export Next
ΔCost	-0.670	-7.928 ***	0.311	-5.192 ***
	(0.467)	(2.438)	(0.309)	(1.727)
Relative Productivity	0.028 ***	0.070 ***	0.031 ***	0.073 ***
	(0.004)	(0.009)	(0.003)	(0.009)
x ΔCost	-0.472 *	-0.434	-0.527 *	-0.324
	(0.277)	(1.548)	(0.305)	(1.628)
Industry Fixed Effects	SIC2	SIC2	SIC4	SIC4
Year Fixed Effects	Yes	Yes	Yes	Yes
Industry Sample	All	High Bilateral OECD Trade	All	High Bilateral OECD Trade
Observations	109,699	10,429	109,699	10,429
Log likelihood	-42663	-5758	-39294	-5622

Notes: Plant-level probit regression results where the reported coefficients represent the change the marginal probability of exporting at the mean of the regressors. Robust standard errors adjusted for clustering at the four-digit SIC industry level are in parentheses. Dependent variable indicates plant becomes an exporter between years t and t+5. ΔCost is the change in total trade costs between years t-5 and t. Relative Productivity is plant's labor productivity relative to its' industry's mean. Regressions cover two panels: 1982 to 1987 and 1987 to 1992. ***Significant at the 1% level; **Significant at the 5% level; *Significant at the 10% level. Coefficients for the regression constant and dummy variables are suppressed.

Table 5: Probability of Entering the Export Market, 1987-97

	OLS	OLS	OLS	OLS
Regressor	ΔExports	ΔExports	ΔExports	ΔExports
ΔCost	-1.410 **	-4.331 **	-1.051 *	-0.787
	(0.608)	(1.920)	(0.549)	(2.378)
Industry Fixed Effects	SIC2	SIC2	SIC4	SIC4
Year Fixed Effects	Yes	Yes	Yes	Yes
Industry Sample	All	High Bilateral OECD Trade	All	High Bilateral OECD Trade
Observations	35,099	8,068	35,099	8,068
\mathbb{R}^2	0.02	0.02	0.05	0.03

Notes: Plant-level OLS regression results. Robust standard errors adjusted for clustering at the four-digit SIC industry level are in parentheses. Dependent variable is plant's normalized real export growth between years t and t+5. (See text for description of normalization.) Δ Cost is the change in total trade costs between years t-5 and t. Relative Productivity is plant's labor productivity relative to its' industry's mean. Regressions cover two panels: 1982 to 1987 and 1987 to 1992. ***Significant at the 1% level; **Significant at the 5% level; *Significant at the 10% level. Coefficients for the regression constant and dummy variables are suppressed.

Table 6: Growth of Exports, 1987-97

	OLS	OLS	OLS	OLS
Regressor	∆Market Share	∆Market Share	∆Market Share	∆Market Share
ΔCost	-0.0010	0.0134	-0.0037	-0.0195
	(0.0032)	(0.0276)	(0.0046)	(0.0370)
Relative Productivity	-0.0005 ***	-0.0009 ***	-0.0005 ***	-0.0090 ***
	(0.0001)	(0.0003)	(0.0001)	(0.0003)
x ∆Cost	0.0022	0.0661	0.0024	0.0631
	(0.0064)	(0.0615)	(0.0065)	(0.0638)
Exporter	-0.0001	0.0004 **	0.0001	0.0004 **
	(0.0001)	(0.0002)	(0.0001)	(0.0002)
x ΔCost	0.0214 **	0.0600 *	0.0220 **	0.0525 *
	(0.0099)	(0.0329)	(0.0110)	(0.0298)
x ΔCost x Relative Productivity	0.0384 *	0.0791	0.0391 *	0.0959
	(0.0207)	(0.1095)	(0.0206)	(0.1119)
Mills Ratio	-0.0011 ***	-0.0029 ***	-0.0015 ***	-0.0033 ***
	(0.0002)	(0.0007)	(0.0002)	(0.0009)
Industry Fixed Effects	SIC2	SIC2	SIC4	SIC4
Year Fixed Effects	Yes	Yes	Yes	Yes
Industry Sample	All	High Bilateral OECD Trade	All	High Bilateral OECD Trade
Observations	144,723	18,903	144,723	18,903
R^2	0.05	0.02	0.05	0.06

Notes: Plant-level OLS regression results. Robust standard errors adjusted for clustering at the four-digit SIC industry level are in parentheses. Dependent variable is change in plant's domestic market share between years t and t+5. ΔCost is the change in total trade costs between years t-5 and t. Relative Productivity is plant's labor productivity relative to its' industry's mean. Exporter is an indicator variable equalling unity if plant is an exporter in year t. Mills Ratio controls for plant survival. Regressions cover two panels: 1982 to 1987 and 1987 to 1992. ***Significant at the 1% level; **Significant at the 5% level; *Significant at the 10% level. Coefficients for the regression constant and dummy variables are suppressed.

Table 7: Change in Domestic Market Share, 1987-97

	Probit	Probit
Regressor	Plant Death	Export Next
ΔCost	-5.706 ***	-8.621 ***
	(1.844)	(2.966)
Relative Productivity	-0.018 **	0.062 ***
	(0.007)	(0.009)
x ΔCost	-5.793 ***	-1.723
	(1.353)	(1.785)
Relative K/L	-0.008 **	0.015 **
	(0.004)	(0.007)
x ΔCost	0.248	2.518
	(1.407)	(1.554)
Exporter	-0.138 ***	
	(0.009)	
x ΔCost	3.152	
	(2.302)	
x ΔCost x Relative Productivity	5.221 **	
	(2.292)	
x ΔCost x Relative K/L	-0.197	
	(2.338)	
Industry Fixed Effects	SIC4	SIC4
Year Fixed Effects	Yes	Yes
Industry Sample	High Bilateral	High Bilateral
	OECD Trade	OECD Trade
Observations	30,477	10,429
Log likelihood	-17,245	-5,768

Notes: Plant-level probit regression results where the reported coefficients represent the change the marginal probability at the mean of the regressors. Robust standard errors adjusted for clustering at the four-digit SIC industry level are in parentheses. Dependent variables are plant death and becomming an exporter between years t and t+5. DCost is the change in total trade costs between years t-5 and t. Relative productivity and relative K/L are plant's labor productivity and capital-labor ratio relative to its' industry's mean. Exporter is an indicator variable equalling unity if plant is an exporter in year t. Regressions cover two panels: 1982 to 1987 and 1987 to 1992. ***Significant at the 1% level; **Significant at the 5% level; *Significant at the 10% level. Coefficients for the regression constant and dummy variables are suppressed.

Table 8: Robustness: Capital Intensity, 1987-97

	Probit	Probit
Regressor	Plant Death	Export Next
ΔTariff	-1.432	-10.500 ***
	(3.065)	(3.533)
∆Freight	-3.406 **	-4.635 **
	(1.447)	(2.007)
Relative Productivity	-0.022 ***	0.070 ***
	(0.007)	(0.011)
x ΔTariff	-4.663 *	-2.420
	(2.487)	(3.148)
x ΔFreight	-6.202 ***	0.861
	(1.176)	(2.566)
Exporter	-0.133 ***	, ,
	(0.011)	
x ΔTariff	4.009	
	(4.243)	
x ΔFreight	2.358	
	(2.345)	
x ΔTariff x Relative Productivity	6.013 *	
	(3.517)	
x ΔFreight x Relative Productivity	3.450	
	(2.976)	
Industry Fixed Effects	SIC4	SIC4
Year Fixed Effects	Yes	Yes
Industry Comple	High Bilateral	High Bilateral
Industry Sample	OECD Trade	OECD Trade
Observations	30,447	10,429
Log likelihood	-17,007	-5,620

Notes: Plant-level probit regression results where the reported coefficients represent the change the marginal probability of plant death at the mean of the regressors. Robust standard errors adjusted for clustering at the four-digit SIC industry level are in parentheses. Dependent variables are plant death and becomming an exporter between years t and t+5. Δ Tariff and Δ Freight are the change in tariff and freight costs between years t-5 and t. Relative Productivity is plant's labor productivity relative to its' industry's mean. Exporter is an indicator variable equalling unity if plant is an exporter in year t. Regressions cover two panels: 1982 to 1987 and 1987 to 1992. ***Significant at the 1% level; **Significant at the 5% level; *Significant at the 10% level. Coefficients for the regression constant and dummy variables are suppressed.

Table 9: Robustness: Separate Tariff and Freight Costs, 1987-97

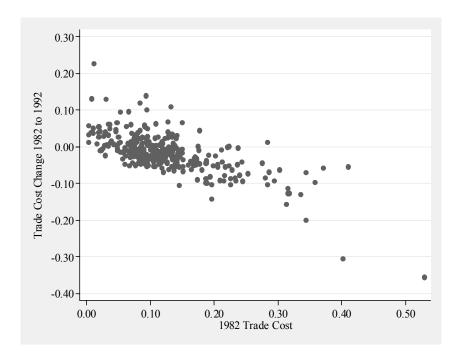


Figure 1: Changes in Trade Costs for Four-Digit SIC Industries, $1982\ {\rm to}\ 1992$