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Consistent Simple Sum Aggregation Over Assets

I. Introduction

Recently, a number of empirical studies have sought to model the

portfolio behavior of selected investor groups by estimating their demands

for various types of assets.1 These demand equations reflect numerous

simplifying assumptions intended to render the specif-ication and estimation

tasks less formidable. One common simplification involves aggregating over

assets in order to reduce the dimensionality of the universe of assets to

be considered and, therefore, the number of parameters to be estimated

in the model. Quantity indices in these studies are usually taken to be

simple sum aggregates over assets.2

Implicitly, the justification for simple sum aggregation in these

studies involves decomposing the universe of assets into a tractable number

of mutually exclusive groups (e.g., common stocks, long—term corporate bonds,

mortgages, etc.) and then assuming that for the purposes of allocating funds

among these groups the investor treats each dollar invested in one of the

groups as if it is being invested in a single "composite asset't whose pro-

bability distribution of rate of return is some function of the joint distri-

bution of the rates of return of the assets in the group.3 Demand equations

for simple sum quantity aggregates of assets (e.g., the amounts of dollars

invested in long—term corporate bonds, equities, etc.) may then be formally

expressed as functions of the joint probability distribution of rate of

return indices for these aggregates.
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In this literature seldom is any attention given to the conditions

which must prevail in order for the above assumption to be valid for a

4
given simple sum aggregation scheme. That is, given a particular set of

asset groupings, when can one formulate the investor choice problem in terms

of simple sum "composite assets" in such a way that its solution generates

the same allocation of funds among asset groups as does the investor's

original choice problem formulated in terms of the individual assets?

Equivalently, when is it valid to "assume" that an investor treats each dollar

invested in one of the groups as a whole as if it is being invested in a single asset

whose rate of return depends only upon the joint probability distribution of the

rates of return of the members of the group? A related issue concerns how

the rate of return indices for these composite assets should be constructed.

The primary purpose of this paper is to provide answers to the above

questions. Briefly, the plan of the paper is as follows. In Section II the

expected utility maximization framework of this paper is reviewed and the

concepts of consistent simple sum aggregation and consistent rate of return

index are defined.

Two asset aggregation theorems analogous to the Hicks and Leontlef

aggregation theorem of consumer choice theory are presented in Section III.

Section IV concerns itself with the issues of consistent aggregation

and consistent rate of return indices within the mean—variance context of

Merton's (1973) continuous—time portfolio choice model. Therein, necessary

and sufficient conditions for consistent simple sum aggregation over assets within

this framework are presented. One implication of our results is that a group
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of assets need not be perfect substitutes in order for simple sum aggre-

gation over these assets to be consistent.5 Closed—form expressions for

consistent rate of return indices are also derived.

II. Consistent Simple Sum Aggregation and Consistent Rate of Return Indices

Consider a von Neu'mann—Morgenstern investor whose portfolio choice

problem consists of allocating wealth W among "k" assets at the beginning

of a period so as to maximize the expected utility of end—of—period wealth.

Mathematically, his task can be formulated as the following constrained

optimization problem:

(1) maximize k -

A EtU[E A R.]-
k

1=1 1

subject to: A. = W
i=l 1 0

where A = the amount of dollars inyested in the i' asset at

the beginning of the period,

E{.} the expectation operator,

U[.] = the investor's von Neumann—Morgenstern (v—M) utility

function (assumed to display nonsatiation and risk

aversion), and

= the gross real after—tax rate of return on the th asset

during the period.

If the joint probability distribution of the R is denoted by

P(Rl,...,Rk), then the solution to the portfolio choice problem (1) takes the

form:

(2) A1 = A[P(R1.. ,R.K); W; U] for 1=1,.. ,k.



—4—

The optimal allocation of funds depends upon the joint probability distribu-

tion of rates of return, the level of initial wealth and the form of the

investor's v—M utility function.

It will prove convenient below to rewrite (1) and (2) in vector notation:

(1') maximize E{u[ATR]}

subject to: 1TAW

(2') = A*[P(R);WU]

where an underscore L) denotes a vector quantity and 1 denotes an appro-

priately dimensioned column vector of ones.

In the real world the number of assets available to an investor, "k",

may be very large. Consequently, it is usually desirable to aggregate

over assets, creating a fewer number of composite assets, in order to reduce

the dimensionality of problem (1) and thereby make the empirical implementa-

tion of the theory more tractable.

To this end, partition the universe of assets into, say, "S" mutually

exclusive and exhaustive groups of assets where s<k. Conformably partition

and re-order the elements of A and R so that

(3) A (AT AT)T and Ri(R...,R)T.

We shall say that,relative to the above aggregation scheme, simple sum

aggregation is consistent if we can find a set of rate of return indices

for i—l,.. . ,s and a v—N utility function U*[.] such that

T* *
(4) 1A[P(R...,R;W;U] = c.[P(41,..,4 );W ;U I fori=1,..,s
where the . are the solutions to the foiLlcwlng surrogate portFolio choice pro1cr

expressed in terms of simple sum composite assets:
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* S —

(5) maximize E[U [iiai+i]
a1..

S
subject to: •Z a = W

1=1 i. 0

If conditions (4) and (5) hold, then the 4 are said to be consistent

rate of return indices for this aggregation scheme.

In words, a particular simple sum aggregation scheme is consistent if the

investor acts as if his allocations to the various asset groups are being

generated by his solving a portfolio choice problemin terms of simple sum

composite assets. The joint probability distribution of these composite assets

is given by P(c1,...,4)) where each 4) is a function of B.. parameterized by

the marginal probability distribution of B.., P(R). We do not require the

utility function in the surrogate (composite asset) choice problem, U , to

be the same as in the original problem, U.

When a simple sum aggregation scheme is consistent each asset group

as a whole can be treated as a single asset for the purposes of modelling

the investor's allocation of funds among asset groups. The appropriate rate

of return index is given by the random variable while the quantity index for

the group is simply the amount of dollars invested in the group as a whole.

If a particular aggregation scheme is not consistent in the above

sense then the paradigm of portfolio behavior discussed in the introduction

is an invalid characterization of the portfolio allocation process. Hence,

if a proposed simple sum aggregation scheme consisting of equities, bonds

and mortgages is not consistent then, in a strict sense, it is meaningless

to talk of the investor's demand for equities vis-a-vis bonds and mortgages.

Equivalently, in the absence of consistent simple sum aggregation a system

of demand equations for these composite assets derivable from expected utility

maximization will not exist.
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III. The Hicks and Leontief Asset Aggregation Theorems

For general v—M expected utility maximizers two asset aggregation

theorems may be proved which are analogous to the Hicks and Leontief aggre-

gation theorems of consumer choice theory:

Theorem 1: (Hicks Aggregation Theorem) If short sales are pre-

cluded6 and a limited liability asset exists then the 1th group of

assets admit consistent simple sum aggregation if they are character-

ized by constant relative rates of return (i.e., if R = d R for some—1 — I
constant positive vector d and scalar random variable R ). In this

I

instance, the consistent rate of return index for this group, is

d where d is the largest element of vector d.max max —

th
Theorem 2: (Leontief Aggregation Theorem) The I group of assets

admit consistent simple sum aggregation if the investor is constrained to

*
hold these assets in constant relative proportions (i.e., if A. Is—1

*
constrained to be of the form A. = for some vector z.

-—1_ 1

satisfying 1Tg=1) In this instance, the consistent rate of return

index for this group is given by 4 gT

Proofs may be found in the appendix.

To the author's knowledge, no major investor class is legally, mor-

ally or otherwise constrained to hold any group of assets in fixed relative

proportions. Hence, the Leontief Aggregation Theorem is unlikely to have

any practical relevence.

The Hicks Aggregation Theorem, on the other hand, Is potentially

quite useful and is implicitly invoked in many empirical asset
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demand studies. For example, an aggregation scheme which treats all

long—term corporate bonds as a single homogeneous asset may be "approxi-

mately" consistent to the extent that the holding period returns on all

such bonds are thought by market participants to be highly correlated.

A more subtle application of the Hicks Theorem is found in a

7
recent structural study of the U.S. equity market by the author. Therein

it is argued that it is the policy of most institutional investors to

hold well diversified portfolios of equities. In well diversified port-

folios, moreover, most of the risk is likely to be systematic: the actual

return on such a portfolio will mimic that of the market equity portfolio

up to a factor of proportionality given by the portfolio's "Beta" coeff i—

dent. The returns for all feasible portfolios, then, are likely to be

highly correlated with that of the market in a subjective ex ante sense.

Hence, the conditions of the Hicks Theorem are likely tl be "approximately"

fulfilled and simple sum aggregation over equities is approximately consistent.

IV. Consistent Simple Sum Aggregation in a Mean-Variance Model

Less restrictive simple sum aggregation conditions than the embodied

in the Hicks and Leontief Theorems can be obtained within the framework of

Merton's (1973) continuous-time consumption-saving-portfolio choice model.

If the instantaneous vector of rates of return follows a Gaussian diffusion

process with instantaneous mean vector r and variance-covariance matrix

Q, and if security trading is costless and permitted to take place contin-

uously in time, then the investor's portfolio choice problem at each instant
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essentially involves solving the following mean-variance problem for the

vector of portfolio shares h (A):8

(6) maximize hr — (p/2) hTh

subject to:

where "p" is the investor's coefficient of relative risk aversion. Below, for

simplicity, we shall assume that the investor displays constant relative risk

aversion and that is nonsingular.

As Friend, Landskronner and Losq (1976) and Friedman and Roley

(1980) have shown, problem (6) can also be motivated by assuming that trading

takes place discretely provided that holding periods are sufficiently short.

Jones (1979) has also shown that Lintner's (1972) lognormal securities market

model of investor behavior essentially reduces to (6).

*
Solving problem (6), the optimal share vector, h , is found to be:

* 1—
(7) h =—Br+b

where B = — (1/1Tç_l1)ç_l11T_lJ and b (1/1T_l1)_i1

Turning our attention now to the issue of consistent simple sum

aggregation within this model, partition the set of assets into two groups

and also partition h, r and 0 conformably. Thus,

(8) h (hThT)T • (jT T)T and

(oii 012)12 22

We seek to know when the first subgroup of assets admit consistent aggregation.
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The answer to this question is revealed in the following theorem

which is proved in the appendix:9

Theorem 3: A necessary and sufficient condition for the first

group of assets to admit consistent simple sum aggregation is

that the covariance matrix ci12 is of the form:

p12= L! +

for some fixed vectors and c2. In this case, the unique con-

sistent rate of return index for the first group of assets is given

by:

(10) 1
= (iTG•/(1TG1)

T T 10
where G1 = I11L1! —

Notice that the conditions for consistent aggregation pertain only

to the structure of the covariance matrix and are independent of the

structure of r1, r2, ' 22 and p. Moreover, the unique consistent rate

of return index for the first group is a linear comb±nation of the rates

of return of the assets in the group with weights depending on the van—

ance—covariance matrix of the first group, , and one of the vectors para—

11
ineterizing the covariance matrix ç12, L1•

When the aggregation restriction (9) obtains the optimal vector of

composite asset demands is given by:
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T*
(11) h*l l•+
where B — (1/1T_1) —l 11T—l =

and and are the mean vector and variance—covariance matrix associated

with the composite asset yield vector r (1r2). This system, then, has

the same general form as (7). Thus, when consistent simple sum aggregation

obtains, the investor allocates funds among the first group as a whole and

the remaining assets individually as if each dollar allocated to an asset

in the first group is being invested in a single asset with yield 4.

The above theorem also refutes the claim that simple sum aggregation

presumes that the assets of the group to be aggregated are perfect sub-

stitutes. It is clear that a covariance matrix of the form given in (9)

does not imply that the assets in the first group are perfect substitutes

for one another provided that is nonsingular.

The conditions for consistent aggregation embodied in (9) are quite

restrictive. One model of asset returns, however, which generates this

structure is the following variance—components or factor—model:

= iil+_ll + +

(12)
2

= 2l + £22 12

where l' 2' 11 and 12
are independently distributed scalar and vector

random variables with zero means and variance—covariance matrices given by

' ll and 22 respectively. Assets of the first and second groups

share two common factors or forcing elements. One of these forcing ele-

ments affects all rates of return in the first group identically and the
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other element affects all rates of return in the second group identically

as well. Under these assumptions the covariance matrix between and £2

is of the form given in (9) and simple sum aggregation over the first

group of assets is consistent.

Above we have assumed that all assets are risky. While this is the

most realistic assumption in a world with uncertain inflation and no indexed

bonds it may be of interest to determine the conditions for consistent

simple sum aggregation when a riskless asset exists. In this case, let
rf

denote the real rate of return on the riskiess asset and , r and Q the

portfolio share vector, mean vector and variance-covariance matrix for the

risky assets respectively. The portfolio choice problem in the presence

of a riskiess asset is then

(11) maximize hf.rf + 11T
-. (/2) hTQh

hf, h

subject to: hf ÷ iTh = 1

As before, partition the risky assets into two non-empty mutually exclu-

sive groups and also partition h, r and Q comformably as in (8). Then

12
we may prove the following result:

Theorem 4: A necessary and sufficient condition for the first

subgroup or risky assets to admit consistent simple sum aggregation

is that the covariance matrix Il2 takes the special form:13
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(12) Q12 = 1

for some fixed vector In this case, the unique consistent

rate of return index for the first subgroup of assets is

(13) 4' = (1TQ_l )/(1TQ_l 1)15

Again, the aggregation conditions are independent of the structure of p,

-'.2' and 22 Moreover, it is evident from Theorem 4 that aggregation

across risky assets requires more stringent conditions on the covariance

matrix Cl12 when a riskless asset exists than when one does not exist.

If the restriction that the second group of assets is non-empty is

relaxed then we obtain the following related result:

Theorem 5: If a riskiess asset exists then all risky assets admit

consistent simple sum aggregation and the unique consistent rate

of return index for this aggregate is given by:

(14) =

which is, incidentally, induced by the minimum variance portfolio

consisting of risky assets)6

This result is essentially equivalent to the well known separation theorem

of mean-variance analysis when a riskless asset exists. However, unlike

Theorem 5, the standard separation result does not instruct us how to con-

struct or interpret a consistent rate of return index for the risky assets.

V. Summary

Above we have set forth conditions on the probability distribution

of rates of return which justify simple sum aggregation over sets of assets.
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These conditions tend to be rather stringent: a group of assets admit

consistent simple sum aggregation if their rates of return are perfectly

correlated or, in a continuous-time trading environment, if the covari-

ances between the rates of return of assets inside and outside the group

assume a specific structure. In this latter case we have demonstrated

that perfect substitutability between assets is not a necessary condition

for simple sum aggregation to be consistent. We have also described the

construction of consistent rate of return indices when a simple sum aggre-

gation scheme is consistent.



Footnotes

1. See Friedman (1977), Jones (1979) and Roley (1977).

2. That is, the quantity index for a group of assets is taken
to be the amount of dollars invested in the group as a whole.

3. This is essentially equivalent to the efficiency of two-stage
budgeting in the theory of commodity aggregation. See Blackorky
et al. (1975) and Green (1964).

4. Superficial discussions of this issue may be found in Leijonhufvud

(1968) and Tobin (1961).

5. Barnett (1979) suggests that perfect substitutability is necessary
if simple sum aggregation is to be consistent.

6. Unless short sales are precluded the investor will perceive that

unlimited profit opportunities through arbitrage exist.

7. See Jones (1979).

8. The validity of this formulation of the investor choice problem
does not require r and 1 to be constant over time. Both parameters
may, in fact, be generated by their own diffusion processes pro-
vided that the forecast errors in predicting instantaneous changes
in r are uncorrelated with instantaneous forecast errors associated with
predicting actual rates of return. See section 5 of Merton (1973).

9. Notice that the following aggregation theorem is symmetric in
terms of the first and second asset groups. Hence, if the first
group admits consistent aggregation then so too does the second

group.

10. An intuitive explanation of Theorem 3 is as follows. From the theory
of consumer choice, a group of commodities admit consistent aggre-
gation if and only if the utility function is groupwise separable.
Similarly, in terms of problem (6) consistent aggregation obtains
if and only if the expected utility function hT —(p12) hTTh is
separable in terms of h1 and h2. It is shown in the appendix that
this type of separability obtains if and only l2 takes the

form given in (9).

ii. It is interesting, and important, to note that the portfolio1share
vector which induces the rate of return index

,g1=(l/iTG i)G111,
does not correspond to the optimal allocation ot relative shares
among assets of the first group. That is, the opimal allocation
of funds among assets of the first group is not W1 •g1 where W1
is the optimal allocation of funds to the first group as a whole.
Rather, the optimal relative share vector for the first group is

readily shown to be:

= I * Qlll'l
p.W1 1w)

where Q1 = [G_(l/iTG1l)G1_l]iT cl].



12. This result is proven in the appendix.

13. Notice that this restriction, unlike that in Theorem 3, is not
symmetric with respect to the first and second groups of assets.
Thus, if a riskless asset exists, even if the first group of
assets admit consistent aggregation the second group may not.

14. It follows from (12), then, that if the second group of assets
contains only one asset then the first group admits consistent

aggregation.

15. The portfolio share vector which induces (i.e.,

is interestingly the minimum variance portfolio constructed only
of assets from the first group.

16. Again, it is important to point out that the portfolio share

vector which induces 4 (i.e., g = (1/1TQ1)Q1) is not the
optimal share vector of risky assets obtained by solving the

portfolio choice problem (11).



Appendix

Proof of Theorem 1:

Step 1: Let us rewrite the portfolio choice problem as

(Al) maximize E(U[(Ad) R1 + AR21)

subject to: + < W; l' 2 � 0

where the first group of assets are those to be aggregated.

Step 2: Let da be the largest element of the vector d and let "j" be

the corresponding position index. It is clear that if a limited liability

asset exists then investors will invest a positive amount in the Itjtt asset

of the first group and nothing in the remaining elements of the group,

Hence, if a1 is the amount invested in the jth asset then (Al) is equivalent

to the problem

(A2) maximize E[U[a.1(R1.d ) + A2R2])
a.1, —2

subject to: a,1 + < W; l' 2 � 0

Visual inspection reveals that the optimal A2 is the same in both problems.

Therefore, the first group of assets admit consistent simple sum aggregation

and the consistent rate of return index for this group is R d
1 max

Proof of Theorem 2:

Step 1: The investor's choice problem is

(A3) maximize E[U[AR1 +

l' 2

subject to: 1TA + 1TA <W; = £ for some a1

where the first group of assets are those to be aggregated.
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Step 2: Problem (A3) may be rewritten in the equivalent form:

(A4) maximize E[U(cL1 (aT1) + A2T2])
a1, 2

subject to: a + 1TA < W

where a 1T1 Visual inspection of (A3) and (A4) reveals that the optimal

values of A2 in both problems are identical. Hence, simple sum aggregation

over the first group of assets is consistent and the rate of return index

for this group is 4 £TR

Proof of Theorem 3:

Necessity

Step 1: Temporarily assume that Qis fixed and that aggregation obtains

for all r. Then the equilibrium portfolio shares take the form:

=
(B11 B12 ( \\ (l

(A5) * T — +
I

B12 B22) \2 ) \2
where

1B11 B12
(A6) B ( = (çf1 - (l/1TQ_li)Q_1uTQ_ll

\B B22 )

and

(Al) b (ki = (1/1TQl1)Ql1

\2 )
The important point to note about (A5) is that B is independent of r.

Hence, a necessary condition for the first group of assets to admit aggre-



A-3

*.

gation with respect to j' (the class of random rate of return vectors hav-

ing a fixed variance-covariance matrix ) is that B12 and B11 satisfy

T T
(A8) B12 = G1

B11

for some matrix G. This is because otherwise we would not be able to

T* *write ]. h and Ii in the form

T* — —

(A9) = f[g(1), £21

= q[g(1), £21

for some functions f, g, and q.

Step 2: It may be verified from the wealth constraint that (A8) implies

that B12 takes the form

(AlO) B1 = dT

for some vectors e and d with the normalization dTi = 1. Substituting

this result into (A5) we solve for:

(All) h = (l/)[e(dT) + B22•2] + 2

Step 3: From the fact that 1TB = OTwe know that

(A12) e =
-B22.1

Substituting this expression for e into (All) we find that

(Al3) =
(l/p).[_B22.(dTr1)l+ B22r2] +

=
(1/p).[B22.(2

- (dTi)l)] + 2
This relation implies that any perturbation of r1 by the amount

(A14) [ - (l/dTd)ddT]



A -4

for any vector x leaves h2 unchanged.

Step 4: Rewrite problem (6) in the form

(A15) maximize 22 - (p/2).(hQ11h1 + 2h\2h2 +
—1' —2

subject to: + iTh2 = 1

and note that the first-order conditions are

(Al6) 2. = - pc2h. - - for i,j = 1,2

o iTh+iTh -1

where ). is the Lagrangian multiplier associated with the wealth constraint.

These equations may be solved to obtain

* — * T T-l -l
(A17) h2 = (l/p)•B2r2

-
B2c12h1 + [(ih2)(ic2i)]c2i

where

B2 = - (1/1Tçl1)çlflTç2;l]

Substituting for equation (All) becomes

(A18) h (l/p).B2r2 - B2d2.[(1/p).B11 -
B1c12h

+ [(1 - iTh*),(iTQli)Qli+ [(iTh*)/(iTi)cli

Step 5: From Steps 3 and 4 we conclude that it must be true that

(A19) B2d2B1.[I - (l/dT)ddT] 9.

for all x or more Simply

(A20) B22B1•[I - (l/dTd)ddTJ = o
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Step 6: We also note from (A16) that given r2, iTh* uniquely determines

X. Now, solving (A16) for 1 we get

(A21) iTh* (liP) 1
- h* - ç[/) (1TQ_ll)x*

From Step 3 we know that replacing r1 by

+ [ I - (l/dTd)ddT]
T* * *for any x should leave (1 h1), h2 and ). unchanged. Hence, from (A20) we

conclude that

(A22) 1TQ_l[1 - (l/dT)ddT] 0

or

(A23) = (1/1TQl1)çl1

Therefore

(A24) r - (l/dT.) T1 = - (1/1T 1 )Q1T
]

so that (A20) implies that

(A25) V1•B1•Q12•B2 = 0 .

Step 7: Relation (A25) may be rewritten

(A26) Q12•B2 = 0

Also, since the dimensionality of the null space of V1 is unity this space

is spanned by Q1. Hence, it must be true that

-l -l T
(A27) 002.B2 =
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for some vector C2 or equivalently

(A28) Q12.B2 = lc
for some vector c2. By the structure of B2, however, this implies that

has the form

(A29) = +

for some vectors and c2.

Step 8: The proof of necessity is completed upon noting that the class

of all random return vectors having unrestricted ,
Q11

and includes

'Y (defined in Step 1) as a subset.

Sufficiency

Step 1: When (A29) obtains note that problem (A15) may be rewritten in the

form:

(A30) maximize h1(r1 - + 22 - -
(p/2)h'(c11

- 1c
—1' —2

- ciT)h - (p/2)h •(c222
- ciT)h

subject to: + iTh = 1

The first-order conditions for this problem are

(A31) 0 = l -
pc1)

-
p.(c21

- 3T - ciT)h - D. ,

(A32) = - - p.(c)22 - T - ciT)h - ,

(A33) 0 = + iTh - 1.

Let us define C by

T TG. = - ic. - c,l1 11 —1 —1—
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for i = 1,2 and let

Q. = [C:1 - (l/1TG1)GlllTGl]

for i = 1,2.

The first-order conditions (A31) - (A33) may be solved for

* — T* T-l -l
(A34) i = Q1•

-
P2.1)

+ [(1 h1) / (1 G1 1)] G1 1

Step 2: Substituting expression (A34) into (A30) and simplifying yields

T * *
(1 k1) = h1 and 2 as the solution to the "composite assett' portfolio choice

problem:

(A35) maximize h1.[(lTG.(r1 - c))/(iTcli)] + -

h1, 2
- (p/2).(h)/(iTG1li)

-
(p/2).hG2h2

subject to: h1 + iTh = 1

But problem (A35) is equivalent to optimizing over the holdings of 2 and

a single risky asset with rate of return

(A36) = (]•TG_L)/(1TG_li)

where is clearly linear homogeneous in i. Hence, we conclude that if

condition (A29) obtains then the first group of assets may be aggregated

with the associated rate of return index given in (A36).



Proof of Theorem 4:

Necessity

Step 1:______ The vector of asset demands is

* -1 -1
/ii

(A37) ( \= (l/p).1*
\hF

(A3 9)

for some vector

T 11

Step 2: Using the formula for the inverse of a partitioned matrix we

compute that

(A40) 2l = 22c212(Q11 - = _Q22Q12Q

Step 3: Combining (A39) and (A40) yields

(A4 1)
Tl2 =

for some vector £2 as was to be shown.

Sufficiency

Step 1: Proof of sufficiency is exactly analogous to the proof of sufficiency in

Theorem 1 with = 0 and will be omitted here.

A-8

to

\l
Write

(Qll Q12

(A38) 0_i = (
\ 21 22

0 0

If a consistent yield index for the first group exists then 21 must be

of the form:



A-9

Proof of Theorem 5:

Step 1: From (A37)

/ iTh* \ / 1T-l 1T0-11\ /
(A42) 1 = i( \ I +

h 1Tl 1TQ_ll) (t\ rF )
i

Step 2: Suppose that the investor has only two assets in which to invest.

The riskiess asset and one with yield • as defined in the statement of

the theorem. Then it is easily verified that the optimal portfolio

proportions are:

(A43)
( h\ = (

i, +

\ h) \_i/ci2 i/a2 ,1 \\rf I

where c and 2 are the mean and variance respectively of . The reader

may verify that the hf* In (A42) and (A43) are identical.
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