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ABSTRACT

The random coefficients, multinomial choice logit model has been widely used in empirical choice
analysis for the last 30 years. We are the first to prove that the distribution of random coefficients in
this model is nonparametrically identified. Our approach exploits the structure of the logit model, and
so requires no monotonicity assumptions and requires variation in product characteristics within only
an infinitesimally small open set. Our identification argument is constructive and may be applied to
other choice models with random coefficients.
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1 Introduction

In economics, it is common to observe that otherwise identical agents behave differently when
faced with identical choice environments, due to such factors as heterogeneity in preferences. A
growing econometric literature has addressed this problem by providing estimators that allow the
coefficients of the economic model to vary across agents. One of the most commonly used models
in applied choice analysis is the random coefficients logit model, which models the decision of a
consumer to choose between one of a finite number of competing alternatives. Hausman and Wise
(1978) introduced flexible specifications for discrete choice models, while Boyd and Mellman (1980)
as well as Cardell and Dunbar (1980) introduced the random coefficients logit model. Since then,
the random coefficients logit model has formed the basis for hundreds of empirical studies. The
book by Train (2003) calls the random coefficients logit the “mixed logit”. An expanded version of
the random coefficients logit that deals with aggregate demand shocks was introduced by Berry,
Levinsohn and Pakes (1995) and itself has been used in hundreds of studies, including Nevo (2001)
and Petrin (2002).

In the random coefficients logit, consumers can choose between j = 1, ..., J mutually exclusive
inside goods and one outside good. The exogenous variables for choice j are in the K × 1 vector
xj . In the example of demand estimation, xj might include the product characteristics of good j
and the demographics of the consumer. We shall let x = (x′1, ..., x

′
J)′ denote the stacked vector of

all the xj . Each consumer has a preference parameter β, which is a vector of K marginal utilities
that give the consumer’s preferences over the K product characteristics. The consumer’s utility for
choice j is equal to

ui = x′jβ + εj . (1)

The outside good has a utility of u0 = ε0. The logit model is defined when the errors εj are
i.i.d. across choices and each error has the Type I extreme value distribution, which has a CDF
of exp (− exp (−εj)).1 The random coefficients logit arises when β varies across the population,
with unknown density f (β). The object of identification is the density f . Under the standard
assumption that β is independent of x, choice probabilities are

Pr (j | x; f) =
∫ exp

(
x′jβ

)
1 +

∑J
h=1 exp

(
x′hβ

)f (β) dβ. (2)

1The Type I extreme value distribution gives the scale normalization for utility values. The outside good’s utility
gives the location normalization.
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This specification is popular with empirical researchers because the resulting choice probabilities
are relatively flexible. Let price be in xj . In terms of modeling own and cross-price elasticities,
the random coefficients logit model allows products with similar x’s to be closer substitutes, which
the logit model without random coefficients does not allow. McFadden and Train (2000) consider
a nonparametric choice of f and allow the linear index x′jβ to be a flexible polynomial in some
underlying product characteristics. They prove that this combination can flexibly approximate any
choice probabilities (using the same underlying product characteristics) that arise from a random
utility model. McFadden and Train do not study identification.

Previous empirical implementations have made functional form assumptions (often normal) on
f , so that f is known up to a finite vector of parameters. We are the first to explore whether the
distribution f is nonparametrically identified: whether variation in x is enough so that the true
f0 is the only f that solves (2) for some j and all x. In operator notation, (2) can be written as
Pj = Qj (f). The density f0 is nonparametrically identified if the choice probability operator Qj
is one-to-one: each density f gives a unique choice-probability (data) function Pj . For the true f0

and an alternative f1 6= f0, Qj being one-to-one is equivalent to saying there exists an x where
Pr
(
j | x; f0

)
6= Pr

(
j | x; f1

)
.2

Our identification theorem is constructive. We iteratively find all moments of β, and thus
identify the density f0 within the class of densities that are uniquely determined by all of their
moments. This class is the class of densities that satisfies Carleman’s condition, which we review
below. Our proof strategy is not unique to the logit: it could be applied to identify the density of
heterogeneity in many differentiable economic models. We outline the main theorem using generic
notation and verify its main condition for the multinomial logit model.

Showing that the density f0 is nonparametrically identified is a necessary component for any
consistency proof for a nonparametric estimator of f . Indeed, we introduce a computationally
simple, nonparametric sieve estimator for f0 in Bajari, Fox, Kim and Ryan (2009) for general
mixtures models. This identification theorem therefore completes our proof of consistency for the
estimator of the random coefficients logit in Bajari et al. Identification does not rule out that the
operator Qj has a discontinuous inverse and that the estimation problem is ill-posed. Hence, we
use a sieve estimator to gain consistency under a potential ill-posed inverse problem. Alternative
nonparametric estimators include the Bayesian MCMC estimator in Rossi, Allenby, and McCulloch

2Our identification approach applies to differentiable, and hence continuous, functions Pr (j | x; f). Hence, if there
exists an x where Pr

`
j | x; f0

´
6= Pr

`
j | x; f1

´
, by continuity there will exist a continuum of x where Pr

`
j | x; f0

´
6=

Pr
`
j | x; f1

´
. If x has positive support on an open set in this continuum, there will exist a positive probability of

covariates where Pr
`
j | x; f0

´
6= Pr

`
j | x; f1

´
. This positive probability of x’s is necessary to prove the consistency

of extremum estimators.
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(2005) and the EM algorithm used in Train (2008). Neither work discusses consistency, ill-posedness,
or identification.

The proof of identification is also comforting to empirical researchers. Prior to our theorem,
it was not known whether variation in x was sufficient to identify the density f0. One possibility
was that the normality assumptions typically imposed on f0 were crucial to identification: without
restricting attention to a particular parametric functional form, two f ’s would indeed solve (2) for
all x, even with data on a continuum of x. We show that indeed the random coefficients logit
model is identified, which provides backing to its immensely large use in the empirical industrial
organization, marketing, transportation, environmental and engineering literatures.

2 Previous and Subsequent Literature

Previously, Ichimura and Thompson (1997) studied the case of binary choice: one inside good
(J = 1) and one outside good. The binary-choice restriction makes their method inapplicable for
most empirical applications to demand analysis. Ichimura and Thompson identify the CDF of,
in our notation, (β, ε1 − ε0). They use a theorem due to Cramér and Wold (1936) and do not
exploit the structure of the extreme value assumptions on the ε1 and ε0. Consequently, they need
stronger assumptions: a monotonicity assumption (sign restriction) on one of the K components of
β (βk > 0 for all consumers) and a full support assumption for all K elements of x1. In contrast, we
need only local variation in one xj within an infinitesimally small open set. Gautier and Kitamura
(2008) provide a computationally simpler estimator and some alternative identification arguments
(the results are equivalent) for the same binary choice model as Ichimura and Thompson.

The identification of the logit mixtures model occurs by varying the linear index x′jβ around a
neighborhood of 0. This is a very local form of identification, and is much weaker on the data than
identification arguments that rely on identification at infinity, such as Lewbel (2000). On the other
hand, Lewbel uses a large-support “special regressor” to avoid our assumption of the independence
of x and ε, does not require that all elements of xj be continuous, and does not use the logit, so
the two sets of assumptions are non-nested. Lewbel does not identify the distribution of random
coefficients, but the centrality parameters E [β] and the distribution M of the remaining errors,
M
(
x′jβ − x′jE [β] + εj | x

)
, which is not enough for some structural uses of demand systems, as

explained below in the Berry and Haile discussion.
Subsequent to the circulation of this theorem, Berry and Haile (2008) and Fox and Gandhi (2009)

introduced identification arguments for multinomial choice models without the Type I extreme
value distribution or additive errors. Like the analysis of binary choice in Ichimura and Thompson
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(1997), both Berry and Haile and Fox and Gandhi need a monotonicity assumption on one of
the K components of β (βk > 0 for all consumers) and (for full identification) a full support
assumption on the corresponding kth component xk,j , for all choices j ∈ J . By exploiting the
functional form assumption on the εj ’s, we do not need extreme values of covariates to induce
switching behaviour for consumers with very high values of εj . Berry and Haile identify only the
conditional-on-x distribution of utility values G (u0, u1, . . . , uJ | x) and not f (β). Knowledge of
the full structural model, in the logit case f (β), is necessary for welfare analysis, for example to
construct the distribution of welfare gains between choice situations x1 and x2, or H

(
∆u | x1, x2

)
,

where
∆u = max

j∈J∪{0}
uj
(
x1
)
− max
j∈J∪{0}

uj
(
x2
)
,

where uj
(
x1
)
is just the realized utility value (1) for x1 =

(
x1

1, . . . , x
1
J

)
. Fox and Gandhi do identify

the full structural model, in that they identify a distribution D over J utility functions (not utility
values) of x, as in D (u1 (x) , . . . , uJ (x)), where uj (x) is a complete function that describes utility
values for choice j at all x. Again, like Berry and Haile, Fox and Gandhi rely on monotonicity and
large support assumptions on a single regressor, if the true model has additive errors εj in it. Fox
and Gandhi work in the class of multinomial distributions with unknown numbers and identities
of support points, which is non-nested with our class of distributions, those that admit a density
satisfying Carleman’s condition.3

Our paper focuses on continuous covariates in x. All arguments can be made conditional on
the values of discrete covariates, but no paper has explored identifying a distribution of random
coefficients on discrete covariates in a discrete choice setting.

3 Main Theorem

When stating the main theorem, we shall consider a more general model which includes the random
coefficients logit as a special case. In the next section we verify the key condition for the multinomial
logit. The econometrician observes covariates x and the probability of some binary outcome, P (x).
For a model with a more complex outcome (including a continuous outcome y), we can always
consider whether some event (y < 1

2 say) happened or did not happen. P (x) is the probability
of the event happening. x is independent of β. Let g (x, β) be the probability of an agent with

3Lewbel, Berry and Haile and Fox and Gandhi all discuss using instrumental variables for identification when
some regressors are not independent of unobservables. We do not discuss endogenous regressors here, in concert with
many empirical applications of the multinomial logit model.
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characteristics β taking the action. Our goal is to identify the density function f in the equation

P (x) =
∫
g (x, β) f (β) dβ. (3)

Identification means that a unique f solves this equation for all x.4

Here we propose to identify the density of f by finding its moments when g is differentiable
and satisfies the single-index condition g (x, β) = g (x′β). A probability measure f satisfying the
Carleman condition is uniquely determined by its moments (Shohat and Tamarkin 1943, p. 19).
The Carleman condition is weaker than requiring the moment generating function to exist.

Assumption 3.1

• The absolute moments of f , given by ml =
∫
‖β‖l f (β) dβ, are finite for l ≥ 1 and satisfy the

Carleman condition: Σl≥1m
−1/l
l =∞.

The Carleman condition gives uniqueness for distributions with unrestricted support. If the
support of β is known and compact, uniqueness follows without the Carleman condition. The
component function g (x′β) does not have to be a distribution function. We mainly require that
g (x′β) be continuously differentiable. We do heavily exploit the linear index x′β.

Assumption 3.2

• g (x′β) ∈ C∞ (infinitely continuously differentiable) in a neighborhood of x = 0.

• g(l)(0) is nonzero and finite for all l ≥ 1 where g(l)(·) denotes the lth derivative of g(·).

Assumption 3.2 restricts the class of g (x′β). Some classes of functions satisfy the condition but
others do not. For example, if g (w) = C ·exp (w), then Assumption 3.2 is trivially satisfied, because
g(l)(0) = C for all l. If g (x′β) is a polynomial function of any finite degree, g does not satisfy the
condition because its derivative becomes zero at a certain point. For polynomials, we identify the
density f up to the vth moment, where v is the order of the polynomial function. Because of our
focus on differentiability, we require covariates with continuous support, but not at all wide support.

Assumption 3.3

• The covariates in the vector x take on support in an open set containing x = 0.
4This is the definition used in the statistics literature, see Teicher (1963).
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We observe P (x) in the population data and know the function g. We wish to identify the
density f . The general identification argument can be illustrated for the special case where K = 2
and so x′β = x1β1 + x2β2. At x1 = x2 = 0,

∂P (x)
∂x1

∣∣∣∣
x=0

= g(1) (0)
∫
β1f (β) dβ = g(1) (0)E [β1] ,

where β1 arises from the chain rule and the expression identifies the mean of β1, because P (x)
is data and g(1) (0) is a known constant that does not depend on β.5 Likewise, ∂P (x)

∂x2

∣∣∣
x=0

/g(1) (0)

equals E [β2], ∂2P (x)
∂x1∂x2

∣∣∣
x=0

/g(2) (0) equals E [β1β2], and ∂2P (x)
∂2x1

∣∣∣
x=0

/g(2) (0) equals E
[
β2

1

]
. Additional

derivatives will identify the other moments of β = (β1, β2).

Theorem 3.1

• Suppose Assumptions 3.1, 3.2 and 3.3 hold. Then the true f0 is identified.

• Assume the lth derivative of g (z) is nonzero when evaluated evaluated at z = 0. Then under
Assumption 3.3, all moments of order l (including cross moments) of the elements of the
vector β are identified.

The proof is in the appendix. Note the approach’s simplicity: we need only to check for non-
zero derivatives of g (z) at z = 0. This technique can be applied to show identification of many
differentiable economic models. The approach is also constructive: if g2 (0) 6= 0, we can identify all
own second derivatives and all cross-partial derivatives between two random coefficients. If only the
first 100 derivatives of g (z) at z = 0 are nonzero, then we identify at least the first 100 moments of
the random coefficients.

The problem of identifying a distribution uniquely from the first Lmoments of the corresponding
random variable is known as the determinacy (unique solution) of the truncated Hamburger moment
problem (Akhiezer 1965, Krein and Nudel’man 1973). Truncated moment problems are a well
studied topic in probability theory. A key tool is a Hankel matrix, which is formed from the first L
moments. If the Hankel matrix has a zero determinant, a unique distribution has these particular L
moments. Extensions of these results exist for multidimensional random variables (Akhiezer 1965).
What is important here is that results on the truncated moments problem exist and are not related
to the type of economic model in which the unobserved heterogeneity enters.

5Assumption 3.2 allows us to exchange differentiation and integration, via Leibniz’s integral rule.
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4 Identification of The Logit Model

We can fit the random coefficients logit model into the mixtures framework by defining the logit
choice probabilities for some particular choice j as

g (x, β) =
exp

(
x′jβ

)
1 +

∑J
h=1 exp

(
x′hβ

) .
To highlight our main result, we state as a theorem that the logit model is identified. Surprisingly,
identification in the random coefficients logit model has never been proved despite its 30 years of
use.

Theorem 4.1

• Let Assumptions 3.1 and 3.3 hold. Let g (·) be the random coefficients logit model with J ≥ 2
inside goods and one outside good. Then the true f0 is identified.

The proof in the appendix uses Theorem 3.1; the proof consists largely of verifying Assumption
3.2. The key idea in the proof is the use of the “rational zero test”, which allows us to focus on the
integer solutions to polynomials that arise in the expressions for the derivatives of the logit choice
probabilities.

For the case of one inside good (J = 1), algebra (for a known order of derivatives) shows that
g(l)(0) 6= 0 when l is odd and g(l)(0) = 0 when l is even. The zero derivatives mean that we will need
to impose that the true density of β generates statistically independent random variables. In other
words, we show the logit mixtures model with f (β) =

∏K
k=1 fk (βk) (an independent multivariate

distribution) that also satisfies Assumptions 3.1 and 3.3 is identified. We identify the odd moments
of β using Theorem 3.1, but because f (β) =

∏K
k=1 fk (βk), we also identify any even moments. To

see this for an example, from Theorem 3.1 we can obtain two odd moments such as E
[
β1β

2
2

]
and

E [β1]. As β1 and β2 are independent, we also obtain the even moment E
[
β2

2

]
= E

[
β1β

2
2

]
/E [β1].

5 Conclusions

The random coefficients logit model has been used in empirical studies for over 30 years. We
are the first to show that the density of random coefficients is nonparametrically identified. This
allows complete proofs for the consistency of nonparametric estimators of the density of random
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coefficients. We also confirm to empirical researchers that identification of the density of preferences
relies on variation in covariates and not only on functional form assumptions for the density.

Compared to previous and subsequent identification results in the literature for binary and
multinomial choice, we exploit the type I extreme value distribution on the additive errors. Thus,
we remove the need to consider the monotonicity and large support assumptions needed in the
literature.

A Proofs of the Theorems

A.1 Proof of Theorem 3.1

First we introduce some notation for gradients of arbitrary order, which we need because f (β) has
a vector of K arguments, β. Let w be a vector of length W . For a function h (w), we denote the
1×Kv block vector of υth order derivatives as ∇υh (w). ∇υh (w) is defined recursively so that the
kth block of ∇υh (w) is the 1×W vector hυk (w) = ∂hυ−1

k (θ)/∂w′, where hυ−1
k is the kth element of

∇υ−1h (w). Using a Kronecker product ⊗, we can write ∇υh (w) = ∂υh(w)

∂w′ ⊗ ∂w′ ⊗ . . .⊗ ∂w′︸ ︷︷ ︸
υ Kronecker product of ∂w′

.

Take the derivatives with respect to the covariates x of both sides of P (x) =
∫
g (x′β) f (β) dβ

and evaluate the derivatives at x = 0. By Assumption 3.2, for any v = 1, 2, . . . and the chain rule
repeatedly applied to the linear index x′β,

∇υP (x)|x=0 =
∫
g(v)

(
x′β
)∣∣∣
x=0

{
β′ ⊗ β′ ⊗ · · · ⊗ β′

}
f (β) dβ (4)

= g(v) (0)
∫ {

β′ ⊗ β′ ⊗ · · · ⊗ β′
}
f (β) dβ.

For each v there are Kv equations. Recall g is a known function. Therefore, as long as g(v)(0) is
nonzero and finite for all v = 1, 2, . . .., we obtain the vth moments of f for all v ≥ 1. Now by
Assumption 3.1, f satisfies the Carleman condition. Therefore, f is identified since a probability
measure satisfying the Carleman condition is uniquely determined by its moments.

A.2 Proof of Theorem 4.1

Identification arises from identifying all moments, as in Theorem 3.1. The main condition to verify
is Assumption 3.2: all derivatives are nonzero when evaluated at 0. Let xh = 0 for all h 6= j. With
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one outside good and J inside goods, the choice probability of alternative j given β is

gj
(
x′1β, . . . , x

′
jβ, . . . , x

′
Jβ
)

= gj
(
0, . . . , x′jβ, . . . , 0

)
=

exp
(
x′jβ

)
1 + (J − 1) + exp

(
x′jβ

) =
exp

(
x′jβ

)
J + exp

(
x′jβ

) .
Define gJ(a) = ea

J+ea and let Dp
a denote the derivative operator of order p with respect to a. We

wish to show
Dp
agJ(a)|a=0 6= 0 for all integer J ≥ 2 and for all p.

We obtain

DagJ(a) =
1

(J + ea)2
Jea, D2

agJ(a) =
1

(J + ea)3
(
J2ea − Je2a

)
D3
agJ(a) =

1
(J + ea)4

(
J3ea − 4J2e2a + Je3a

)
D4
agJ(a) =

1
(J + ea)5

(
J4ea − 11J3e2a + 11J2e3a − Je4a

)
D5
agJ(a) =

1
(J + ea)6

(
J5ea − 26J4e2a + 66J3e3a − 26J2e4a + Je5a

)
...

For p ≥ 3, now we denote the (p− 1)th derivative as

Dp−1
a gJ(a) =

1
(J + ea)p

p−1∑
j=1

θ
(p)
p−jJ

p−jeja.

Then, we can write the p-th derivative as
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Dp
agJ(a)

=

 1
(J + ea)p+1

p∑
j=1

θ
(p+1)
p+1−jJ

p+1−jeja

 (5)

= DaD
p−1
a gJ(a)

= Da

 1
(J + ea)p

p−1∑
j=1

θ
(p)
p−jJ

p−jeja


=

1
(J + ea)p

p−1∑
j=1

jθ
(p)
p−jJ

p−jeja − 1
(J + ea)p+1

p

p−1∑
j=1

θ
(p)
p−jJ

p−je(j+1)a

=
1

(J + ea)p+1

(J + ea)
p−1∑
j=1

jθ
(p)
p−jJ

p−jeja −
p−1∑
j=1

pθ
(p)
p−jJ

p−je(j+1)a


=

1
(J + ea)p+1

p−1∑
j=1

jθ
(p)
p−jJ

p+1−jeja +
p−1∑
j=1

jθ
(p)
p−jJ

p−je(j+1)a −
p−1∑
j=1

pθ
(p)
p−jJ

p−je(j+1)a


=

1
(J + ea)p+1

(
θ
(p)
p−1J

pea +
∑p−1

j′=2 j
′θ

(p)
p−j′J

p+1−j′ej
′a +

∑p−1
j=1 jθ

(p)
p−jJ

p−je(j+1)a

−
∑p−1

j=1 pθ
(p)
p−jJ

p−je(j+1)a

)
(6)

=
1

(J + ea)p+1

(
θ
(p)
p−1J

pea +
∑p−2

j=1(j + 1)θ(p)
p−j−1J

p−je(j+1)a +
∑p−1

j=1 jθ
(p)
p−jJ

p−je(j+1)a

−
∑p−1

j=1 pθ
(p)
p−jJ

p−je(j+1)a

)
(7)

=
1

(J + ea)p+1

θ(p)
p−1J

pea +
p−2∑
j=1

{(j + 1)θ(p)
p−j−1 + jθ

(p)
p−j − pθ

(p)
p−j}J

p−je(j+1)a − θ(p)
1 J1epa

(8)

where in (6) and (7), we take out the first element in the first sum and change the index j′ to j+ 1.
(8) is obtained by rearranging terms and collecting coefficients on Jp−je(j+1)a for j = 1 to p− 2.

To fix the undetermined coefficients θ(p)
p−j ’s, we compare the coefficients from (5) and (8) and
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obtain

p∑
j=1

θ
(p+1)
p+1−jJ

p+1−jeja = θ(p+1)
p Jpea +

p−1∑
j=2

θ
(p+1)
p+1−jJ

p+1−jeja + θ
(p+1)
1 J1epa

= θ(p+1)
p Jpea +

p−2∑
j=1

θ
(p+1)
p−j Jp−je(j+1)a + θ

(p+1)
1 J1epa

= θ
(p)
p−1J

pea +
p−2∑
j=1

{
(j + 1) θ(p)

p−j−1 + jθ
(p)
p−j − pθ

(p)
p−j

}
Jp−je(j+1)a − θ(p)

1 J1epa.

We find

θ(p+1)
p = θ

(p)
p−1 (9)

θ
(p+1)
p−j = (j + 1) θ(p)

p−j−1 + jθ
(p)
p−j − pθ

(p)
p−j for p ≥ 3

θ
(p+1)
1 = −θ(p)

1 . (10)

This system generates the coefficients for all p ≥ 1. For the initial value, we obtain θ(2)
1 = 1. When

p = 2, we find

θ
(3)
2 = θ

(2)
1 = 1

θ
(3)
1 = −θ(2)

1 = −1

and when p = 3, we find

θ
(4)
3 = θ

(3)
2 = 1

θ
(4)
2 = 2θ(3)

1 + θ
(3)
2 − 3θ(3)

2 = −4

θ
(4)
1 = −θ(3)

1 = 1.

Now we examine whether Dp
agJ(a)|a=0 can take the value of zero for some p and some J . For

this purpose, we evaluate the derivatives at a = 0 and obtain equations with respect to J for the
pth order derivative as

Dp
agJ(a)|a=0 =

1
Jp+1

p∑
j=1

θ
(p+1)
p+1−jJ

p+1−j = 0

12



for all p ≥ 1. This is equivalent to solving

p∑
j=1

θ
(p+1)
p+1−jJ

p−j = 0. (11)

Now note that the coefficient on Jp−1 (the highest order term in the equation) in (11) is equal to

θ(p+1)
p = 1

for all p. Also note that the constant term (the coefficient on J0 in (11)), θ(p+1)
1 , is equal to 1 when

p is odd and is equal to −1 when p is even. By the well-known “rational zero test”, this implies that
the only possible positive integer solution in (11) is J = 1. A positive integer greater than 1 cannot
be the solution of (11) for any p. This concludes our claim.
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