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Abtract

Classical ectral techniques can provide sharp insights into the cyclical

patterns in a time series of econami data. Various problems iii the

application of classical spectral techniques, such as the cl-oices of oth-

ing routine and bandwidth and the appearance of end-effects, inhibit the

usefulness of spectral analysis. Alternatively, an autoregressive spectral

technique does not share these problems, but does present the difficulty

of the chDice of the order of the autoregression. This paper applies

classical and autoregressive spectral techniques to quarterly consumer

durables expenditure data, discusses tlr'ee approaches to the ctr±ce of the

order of the autoregression, and compares the results of the different

spectral techniques. Autoregressive spectral analysis provides a superior

representation for this time series.
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Introduction

Spectral analysis, used to show how the variance of a stochastic process

is distributed over cycle frequencies, has become a standard tool of econometricians.

It is especially helpful in the development of structural models with lags and

in the study of business cycles. However, the application of classical spectral

analysis techniques based on the Fourier transform of the autocovariance function

of a time series is by no means straight—forward. The researcher is typically

confronted by two types of problems in the use of spectral techniques. First,

which smoothing routine? Commonly used routines for smoothing are the Parzen,

Tu.key, Bartlett, rectangular, or triangular lag windows1. Second, which band-

width or range for the window? With each of these decisions there exists no
2

widely accepted optimality criterion . Furthermore, the resulting smoothed

periodograin is usually quite sensitive to these choices. The advantages of the

power spectrum curve over the autocovariance function are tempered by these

problems in the application of classical spectral techniques. This paper will

show the desirability of using an autoregressive spectral estimation technique

over the classical spectral techniques.

The autoregressive spectral analysis of quarterly consumer durables

expenditure data from 1951:1 to l973:IV in this paper follows the procedure

3 . ..outlined by Richard Jones . This paper divides into three sections. The first

section displays the results of using a classical spectral technique on a

stationary time series derived from the data. Some of the problems in the

application of the technique and in the interpretation of the results are

discussed. The second section deals with the estimation of the autoregression

equations and discusses the choice of the order of the autoregression under

three optimality criteria. The final section presents the results of the

autoregressive spectral analysis and compares these results to those of the

classical spectral technique. The basic findings is that, under the appropriate



choice of the autoregression, the autoregressive spectral technique can

provide a great deal of insight into the economic time series data and yields

a representation far superior to that derived under the classical spectral

technique.

I Results from a Classical Spectral Technique

Both classical and autoregressive spectral techniques require a stationary

time series as input. The consumer durables expenditure data and a detrended

quarterly first difference transformation of this series are shown in the appendix.

This filter is recommended by Green and Howrey5. To test the stationarity of

the filtered series in either the strict6 or wide7 sense, the autocorrelation

function, shown in the appendix, should be examined. The general damping found

for lags of one through thirty means that this filtered series is a close

approximation to a stationary stochastic process8:

In classical spectral techniques, the sample spectrum is simply the

Fourier transform of the sample autocovariance function:

(N-')
S(f) = A c(k) EXP(—i2irfkA) —l/2A < f < l/2

k=—(N-l)

with: S(f) = sample spectrum for requencr'f
c(k) = sample autocovariance functionóf filtered series
N = sample size
A = interval size

Various techniques have been proposed to smooth or reduce the variance of S(f).

These techniques focus on the choice of the function w(k) such that:

(N-l)

S(f) = A w(k) c(k) EXP(—i2rrfkA) —l/2A < f < l/2A
k=—N—l)

—

The lag window w(k) must satisfy:

Ci) w(O) = 1
(2) w(k) = w(—k)
(3) w(k) , IkkM, M <N

Condition (3), the truncation of the autocovariance function, allows covariances



to be computed only up to lag M. The value of M is called the bandwidth of

the estimation. Condition (2) makes s(f) an even function of frequency. It is

only necessary to compute the sample spectrum over the range 0 < f < l/2. It

is convenient to assume A1. The resulting form of the spectrum estimator is9:

M-l
S(f) = 2(c(0) + 2 w(k) c(k) cos(2irfk)) 0 < f < 1/2

k=l

One additional attribute of the lag window is that the bandwidth varies inversely

with the variance of the spectrum estimate, S(f). As the bandwidth increases,

more smoothing is performed and the variance of S(f) decreases.

The application of the rectangular smoothing technique to the filtered series

will point out some of the problems with classical spectral techniques10. Under

the rectangular smoothing technique the lag window is:

1 IkHM
w(k) =

0 kI>M

Figures 1—14 show the resulting periodogram for bandwidths of 10, 20, 30, and

14Q. At this point in the paper we are only concerned with the solid curves.

The dashed curves will be compared to the solid curves in section three. Note

that the logs of the spectra were a&justed to be graphed on a uniform 0—5 scale.

Based on this illustration, two broad problems with classical spectral

techniques, beyond the choice of the spectral window, will be discussed. More

sophisticated techniques, such as the Parzen window applied by Howrey to filtered

consumer durables expenditure data, possess the same difficulties.

Bandwidth: The usual approach in the application of classical spectral

techniques is to present the spectrum estimates of a number of different band-

widths and then to leave to the reader's judgment the determination of which

portrays the most credible pattern and hence is the "best" periodograin.

The choice of bandwidth is crucial for two reasons. First, the bandwidth

affects the shape of the spectrum. Ideally, the bandwidth will correspond
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closely to the width of the peaks of the spectrum . In the case of economic

data, peaks will not all have the same width and may be quite diverse in widths.

The NBER technical report on spectral analysis states'3:

The use of a smoothing process is not without problems. Depending
on the range of the smoothing window and the variability of the
spectrum, smoothing may obscure spectral peaks, or it may not
average enough points to give a good estimate of the spectrum. In
the former case, the spectrum will be very smooth; in the latter
case, the spectrum may be very irregular. It is advisable to try
several ranges or bandwidths to determine their effect on the spectrum.

Jenkins and Watts also emphasize the role of bandwidth:

In general, to achieve high fidelity the bandwidth of the window
must be of the same order as the width of the narrowest important
detail in the spectrum.

There is always a trade—off of decreasing bandwidth and encountering irregular

detail against increasing bandwidth and smoothing over peaks. For example,

Figure 1 with bandwidth of 10 shows very narrow peaks and troughs and a very

jagged spectrum —— not acceptable as a representation of economic behavior.

On the other hand, Figure 14 with bandwidth of 14Q eliminates most of the variance

of the estimator and shows a very flat, unrevealing spectrum at mid-range

frequencies with no distinct peaks. Howrey encounters analogous difficulties

with bandwidths for the Parzen window.

Second, only peaks in the spectrum that are separated by a frequency

interval greater than the bandwidth are considered independent of each other.

Figures _14 indicate the bandwidth scale near the tops of the plots. The desire

to reveal independent peaks places a strong limit on the bandwidth choice and

hence on the smoothing of the estimator's variance in most applications.

End—Effects: Note that in Figures 1—14 the spectrum estimates seem to

indicate the domination of both very low and very high frequencies. Jenkins

and Watts provide this interpretation of spectral patterns15:

Smooth series are characterized by spectra which have most of
their power at low frequencies.. .Quickly oscillating series are
characterized by spectra which have most of their power at

high frequencies.



— 5-.

Do Figures l-.1 mean that the filtered quarterly consumer durables expenditure

series is both smooth and quickly oscillating? The explanation lies in the

inability of smoothing techniques based on lag windows to operate efficiently

near the endpoints of the spectrum. The bandwidth must be decreased to obtain

an equal number of values on each side of the frequency being estimated, leading

to a spectrum that often appears noisy near the endpoints. We see relatively

unsmoothed values of the spectrum near the endpoint frequencies. It would be

misleading to compare the spectrum values near the endpoints to those in the

mid—range frequencies. Therefore, the classical spectral techniques give

little indication of the comparative spectral power of very long and very short

cycles. Yet, these frequencies are typically quite important in economic

time series.

Due to these problems with classical spectral techniques, we now turn to

an alternative spectral technique based on the coefficients of an autoregression

equation for the filtered series.

II Choice of the Order of the Autoregression

Jones uses the following procedure for the calculation of the autoregressive

i6spectrum in the scalar case based on an autoregression equation of order

(i) Compute the one step prediction variance:

v = s/(N—1—p)

with: S = sum of squared residuals for autoregression of order .

N length of data span

(2) Compute the spectral density function:

S(f) = v/il —

k=l
(2ikf)j2 0 < f < 1/2

with: ak = coefficient for lag of length k in autoregression
equation of order

The identification of the order of the autoregression to be used in auto—
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regressive spectral analysis is of comparable importance to the choice of

bandwidth for the classical spectral techniques. Here, though, there do exist

reasonable optimality criteria. Three criteria for the identification of the

optimal order of the autoregression will be discussed: (i) Akaike's Information

Criterion; (2) Stepwise Partial F—tests; and (3) Parzen's comparative whiteness

F—test. We will find that Parzen's criterion gives the most useful results.

Autoregression equations of orders one through thirty were estimated for

the filtered series using ordinary least squares with no constant term. Although

stopping the estimation at order thirty was somewhat arbitrary, we will see

later that further regressions would not have been helpful. Columns (2) and (3)

of Table 1 show the maximum log likelihood and the sum of squared residuals for

each autoregression equation.

Akaike's criterion is designed to minimize the average error for a one step

ahead prediction. Akaike first proposed the final prediction error criterion

17 .

(FPE) . For the scalar case, this criterion is:

Mm FPE =S (N+l+P)
p p N-i-p

Akaike later extended this model selection criterion to any maximum likelihood

model. This more general criterion is called Akaike's Information Criterion (AIC)18:

Mm AIC =-2L +2p
p p

with: L = maximum log likelihood for autoregression of order

Jones recommends the use of AIC in the selection of the order of the auto—

regression for autoregressive spectral analysis19.

The results of computing AIC for autoregressions of order one through

thirty are shown in Column (4) of Table 1. Note that although local minima are

found at p24 and p26, no value appears lower thanthat at the boundary of p3O.

However, in applications Akaike restricts the range of p, the optimal order,

with the following rule—of-thumb:



—7--

f N/5
Choose p* = Mm

I
corresponding to the global minimum of AIC

With 91 observations in the filtered series, the maximum order of the auto-

regression recommended by Akaike is 18. We conclude that, possibly because of

the relatively low number of observations, AIC does not identify an acceptable

order of the autoregressions on the filtered series. In section III of this

paper we shall compute the spectra corresponding to autoregressions of order 30

and of order less than 18 and find that there is strong evidence for the

acceptance of Akaike's upper limit of N/5 on the order.

We next use stepwise partial F—tests to try to identify the optimal order

of the autoregressions. A test comparing a restriction on the model (w) to a

maintained or accepted form of the model () which is distributed as the F—

statistic with (pa—p, nQ_P) degrees of freedom takes the form:

((n/n)S — S )/(p — p)
w

S /(n -p)

with: p,p = orders of autoregressions corresponding to and w respectively

S ,S = sum of squared residuals corresponding to autoregressions
Pc2 Pa of orders and p respectively
n ,n = numbers of observatins used in estimations of c2 and wc2w

respectively

Stepwise partial F—tests are commonly used in the testing of nested hypotheses.

In the case of the autoregression equations, p < F—tests using this

statistic starting with p030 were executed. However, the first F—test with

and p=29 yielded a value of 3.32, resulting in the rejection of the

restriction on the order of the autoregression (F(l,61)
90

= 2.79). We find that

the stepwise partial F—tests do not allow the acceptance of orders of the

autoregression lower than the boundary of 30.

The final criterion used for the identification of the optimal order of the

autoregressions is Parzen's comparative whiteness F—test20. Parzen addressed
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the problem of how to reduce the number of terms in an autoregressive moving

average (ARMA) model. Starting with an ARMA model with a white noise error

term, we seek a nested form w with the fewest non—zero coefficients of the ABMA

model such that the error term under w is not significantly different than the

white noise error term of 2. Modifying Parzen's test statistic for the case

of choosing an optimal.order of autoregression equations, we have an F—test

distributed with (pa, n—p) degrees of freedom:

S n.

F— p— (--- - 1)! ( -
pw c c

The results of the application of the above :test statistic are shown in Column (5)

of Table 1. This test, based on Parzen's comparative whiteness F—test and using

the .90 level of significance recommended by Parzen, show2 that all orders of

autoregression down to and including 11 are acceptable restrictions on the

autoregression of order 30, which was taken as the model. Recall that PJth.ike's

rule—of—thumb led to the need to identify an order less than or equal to 18. The

order of the autoregression identified by Parzen's comparative whiteness F—test

satisfies this condition.

In the next section two autoregressive spectra will be computed, based on

orders thirty and eleven. The results confirm the need to be very careful in

the identification of the order of the autoregression whose parameters are to

be used as input to the autoregressive spectral analysis. The parameter values

for orders thirty and eleven are shown in Table 2.

III Application of Autoregressive Spectral Analysis

The autoregressive spectral density function was evaluated at 61 frequencies

between 0 and 0.5, spaced at even intervals of 0.007813 cycles/quarter. Figure

5 shows the autoregressive spectrum based on p3O. Figure 6 shows the auto-

regressive spectrum based on p=ll. For. ease of comparison, the solid line in
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Figure 5 corresponds to the spectrum of p=30 and the dashed line in that figure

corresponds to the spectrum of p=ll.

The autoregressive spectrum corresponding to p=30 shows many signs of

instability. The peaks and troughs are often far too narrow to be a valid

representation of economic phenomena. Also, the spectrum shows a high variance,

indicative, of the presence of too much detail. For example, the difference

between the peak and trough about 0.33 cycles/quarter is extremely sharp,

unacceptably so. In the terms of classical spectral analysis, the spectrum

appears to require additional smoothing.

On the other hand, the autoregressive spectrum corresponding to p11 appears

perfectly: acceptable. The peaks and troughs are of credible widths and the

spectral pattern is quite smooth. Although there is 'a strong emphasis on the

very high frequencies, the spectrum does not show high power at the very low

frequencies21. There does not exist the same concern over end—effects that

pertained to the spectra obtained by the rectangular smoothing window or the

autoregressive spectrum of p=3O. Finally, the pattern of peaks closely corresponds

to empirical observations about the behavior of business cycles22. The high

power of the spectrum at the very high frequencies indicates a strongly

oscillating series, very short cycles or fluctuations. The next highest

concentration of power occurs at about an eleven quarter cycle. Much of the

empirical literature emphasizes the three year cycle as a dominant force in

business cycles. Other major peaks corresDond to eight, four, three, and two

and one—half quarter cycles.

If one accepts the autoregressive spectrum based on pll as a true

representation, it is quite easy to see why classical spectral techniques may

yield very poor results on this filtered series. Returning to the problem of

finding a bandwidth which closely corresponds to the widths of the peaks of

the spectrum, note there is a wide diversity of peak widths in the autoregressive
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spectrum based on p=ll. Narrow peaks occur at about 0.06 and 0.14 cycles/quarter

and rather wide peaks occur at frequencies of 0.25 and 0.31 cycles/quarter. Note

also the very wide trough at 0.2 cycles/quarter. This diversity of widths makes

the choice of bandwidth' under classical spectral techniques extremely difficult.

In fact, this diversity almost guarantees a substantial amount of bias in the

application of classical spectral techniques with any bandwidth.

Comparison of the dashed lines, corresponding to the autoregressive

spectrum with p=1l, to the solid lines of the rectangular smoothing window in-

Figures 1—14 shows that none of the classical spectra is highly correlated with

the autoregressive spectrum. The spectra of the lower bandwidths are far too

irregular and the spectra of the higher bandwidths are too flat. Furthermore,

all of the classical spectra show a concentration of power at the very low

frequencies while the autoregressive spectrum shows a trough there.

In conclusion, this analysis has found that the autoregressive spectrum

estimation technique, using the order identified by Parzen's comparative

whiteness F—test, provides a great deal of insight into the filtered series of

quarterly consumer durables expenditure data. Additionally, the autoregressive

spectrum estimation technique was found far superior to the classical technique

in the correspondence between the spectral representation and empirical under-

standing of the economic behavior. The autoregressive spectrum estimation

technique also avoids many of the complications and pitfalls of the classical

spectrum techniques, specifically dealing with bandwidths and end—effects.

Jones makes the following generalization about the use of the auto-

regressive spectrum estimation technique23:

Experience gained from analyzing large amounts of data from the
biological and physical sciences has indicated that using both
autoregressive spectrum estimation and classical spectrum and
superimposing the plots gives a much stronger feeling for the
shape of the true spectrum being estimated.
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The experience of this research using economic data leads to the conclusion that

whereas the autoregressive technique revealed much about the data, the classical

techniques had many serious problems and yielded no simple, clear interpretation

of the data. Firthermore, superimposing the plots did not supplement the

understanding gained from the autoregressive spectrum estimate.
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Table 1

Identifying the Optimal Order of the Autoregressions

(1) (2) (3) (14) (5)

Order of Maximum Log Sum of Squared AIC F—Par.en

Autoregression Likelihood Residuals (F(30,61) .9O18)

1 —213.6 6oi.o 1429.2 1.71
2 —210.3 5714.3 14214.6 1.58

3 —208.9 5714.1 1423.8 1.62

14 —207.5 573.14 1423.0 1.66

5 —205.8 568.3 1421.6 1.67
6 —203.5 555.6 1419.0 1.63

7 —201.1 5141.14 1416.2 1.58
8 —198.7 527.6 1413.14 1.53

9 —197.2 5214.14 1412.14 1.55
10 —195.4 srr.7 1410.8 1.514
11 —191.3 1482.14 14014.6 1.35
12 —187.14 14o.14 398.8 i.i6

13 —186.0 14148.0 398.0 1.18

114 —i814.8 14147.6 397.6 1.22
15 —181.3 1420.9 392.6 1.07
16 —177.5 393.0 387.0 0.91

17 —175.9 386.9 385.8 0.89
18 —l72.2 360.7 380.14 0.714

19 —170.7 355.8 379.14 0.714

20 —167.9 338.5 375.8 0.614

21 —166.14 333.2 3714.8 o.614

22 —165.2 330.14 3714.14 0.65

23 —162.5 313.3 371.0 0.55
214 —158.2 283.1 3614.141 0.314

25 —157.2 281.14 3614.143 0.36
26 —155.7 2714.7 363.3 0.314

27 —155.0 2714.7 363.9 0.37
28 —151.0 2147.1 357.9 0.17

29 —1149.1 237.1 356.2 0.11

30 —1146.5 221.1 352.9



Table 2

Parameters of Autoregressions of Orders 30 and 11

Length of lag

1
2

3
14

5

7
8

9
10
11
12
13
114

15
16

17
18

19
20
21
22

23
214

25
26

27
28

29
30

Order 30
•

Coefficient Standard Error

.01459 .17143

.11465 .1727
.O5OO .1656
.0082 .1860

—.1563 .1839
.0071 .1905

—.0130 .i8oi

.1701 .17147
— .22514 .1777
.0803 .1782

—.12014 • .18514
.5657 .2196
.22814 .21457

—.17143 .2525
.1955 .21413

.28145 .21410

.16814 .214214

.07714 .21478

—.17714 .21476

.2958 .21468

.1569 .2555.

—.3299 .21473
— .5922 .2529
.5099 .26214

—.0171 .21499
.0066 .25148

—.31469 .2657
—.0956 .2835
.3897 .2850

—.26149
•

.2378

Order 11
Coefficient Standard Error

.0367 .1260

.21405 .1265

.1016 .1296
—.0639 .13147

—.1699 .1336
—.0513 .1338
—.0833 .13140

• .161414 .13514

—.0707 .1362

.0207, .1361

—.2857 .1301



Figure 5
Autoregressive Spectrum: p=3O
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1'iguro 6

Autoregressive Spectrum: pll
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Appendix

Autocorrelation Function for FilteredSerjes
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Appetictix

Consumer Durables Expcnditure Data and Filtered Series

Quarterly Consumer Durables
Expenditure Data ($ billions, nominal) Filtered Series
quarter
1951—I

data
33.6
28.6

quarter
1963—I

data

52.14

53.2

number
1
2

value

—1.5

number
147

148

value

0.3
28.1 514.5 3 —0.8 149 —0.2

28.3 55..6 14 —0.5 50 0.3

1952—I 28.8 19614—I 57.9 5 —0.7 51 0.1

29.1 59.6 6 —2.6 52 1.3

27.5
32.0

6o.'r
58.7

7
8 •

3.5
0.5

53
514

07
0.1

1953—I 33.5
33.5

1965—I 65.14
614.14

9
10.

—1.0
—1.1

55
56

—3.0
5.7

33.14 66.5 11 —1.8 57 —2.0

19514I
32.6
32.0 1966—I

68.9
71.2

• 12
13

—1.6
—0.5

58
59

1.1
1.14

32.5 68.5 114 —1.0 60 1.3

1955—I

1956—I

32.5
314.2
37.14
39.6
141.14

140,1

38.5
38.6
38.14

1967—I

1968—I

71.3
71.9
69.8
73.6
73.7
75.3
8o.14
82.14
86.3

15
16
17
18
19
20
21
22
23

0.7
2.2
1.2
0.8
—2.3
—2.6
—0.9
—1.2
0.8

61
62
63
614

65
66

67
68
69

—37
1.8
o.14
—3.1
2.8
—0.9
o.6
14.i

1.0

140.2 87.0 224 0.2 70 2.9

1957—I 141.14

140.9

14o.6

140.2.

1969—I 90.2
91.0
90.6
91.14

•

25
26

27
28

—1.5
—1.3
1.14

—3.3

71
72
73
714

—0.3
2.2

—0.2
—1.14

1958—I 37.9 1970—I 90.9 29 —2.1 75 —0.2

1959—I

36.8
37.7T:
39.1
142.8 1971—I

92.8
93.14

88.1
100.6

30
31
32
33

—0.1
0.24

2.7
1.2.

76
77
78
79

—1.5
0.9

—0.14

—6.3

14.o 102.1 314 —0.2 80 11.5

145.8 105.6
.

35 —3.2 , 81 0.5

1960—I
143.6
145.9
146.1

:1972—I
107.14
-112.1
116.2

36
37
38

1.3
—0.8
—1.8

82
83
814

2.5
0.8

3.7
.

1961—I

1962—I

145.3
143.8
141.9
143.14

14148
146.6

148.s

1973—I

121.2
1214.3

132.14

132.1
132.14

1214.3

39
140

141

142

143

1414

14
146

—2.5
—2.9
0.5
0.14

0.8
0.9
L.0
o.6

8
86
87
88

89
90
9:),

3.1
14.o

2.1

7.1
—1.3
—0.7
—9.1

50.1
51.1

I

.
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