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pollution and lost work days is estimated. An important feature of the

procedure is control for city—specific effects. A major source of

ambiguity in interpreting the results of observational data on pollution

versus health status or death rates is that pollution in a city may be

correlated with other characteristics of that city that affect these

outcomes but are not controlled for in the analysis. Or, individual

attributes of residents may be correlated with pollution levels but not

accounted for in the analysis. Our results suggest a statistically

significant and quantitatively important effect of total suspended

particulates on work days lost. A standard deviation increase in total

suspended particulates is associated with approximately a ten percent

increase in work days lost. As a concomitant of our analysis, we also

find a substantial relationship between smoking by others in the

individual's household and work days lost by non-smokers.
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Analysis of the effects of air pollution on health must rely in

large part on observational survey data. While there is growing

evidence on the relationship between air pollution and health, the

observational studies perforce leave considerable doubt about the causal

effects of pollution. The lingering and important question is whether

attributes of individuals or their surroundings other than pollution,

that could have caused the observed relationship, have been adequately

controlled. What is the effect of left out variable bias? Two

advantages of our study we hope will reduce this range of uncertainty.

First, we use microdata that contain information on more individual

attributes than were available to other investigators, helping to reduce

excluded variable bias. Second, we use statistical techniques that

allow us to control for unmeasured site effects. Though the potential

effects of air pollution are manifold, we analyze work days lost to

are grateful to Reed Shuldiner for expert research assistance

and to very helpful comments from Jeff Harris and Will Manning.



focus attention on a direct economic cost of pollution. We niake no

attempt to compare the total costs and benefits of pollution reduction,

however.

Several previous studies have related pollution to mortality

rates. Possibly the most widely cited work is by Lave and Seskin

[19711 , who base their analysis on aggregate cross—section data for

standard metropolitan statistical areas. The major reservation about

their work has been the potential effect of unmeasured city

characteristics, a motivation for several subsequent studies that

addressed particular issues. Mendelsohn and Orcutt [1979] paid

particular attention to migration, Crocker et al., [1979] and Gregor

[19771 to medical care, and Lipfert [1980] to other socieoeconomic

characteristics. Nonetheless, the effect of unmeasured city

characteristics has rnained a mjor source of uncertainty. The

relationship of pollution to morbidity, which is closer to our work days

lost measure, was addressed by Crocker et al, [19791 using Michigan

Survey Research Center interview data, by Graves and Krunim [19811 who

analyzed Cook County, Illinois emergency room data, and by Seskin [1979]

who studied visits to health clinics in Washington, D.C. Other

researchers addressing the morbidity effects of pollution have monitored

individuals over relatively long periods of tiine. Lunn et al. [19671

found a significant relationship between respiratory illness and air

pollution among children in Sheffield, England and Ferris 119731 and



—3—

Bouhuys et al. [19T8] found pollution related to respiratory disease

symptoms among adults. The closest to ours is that of Ostro 119831 , who

analyzed the relationship between air pollut ion and work days lost using

the annual data described below, but using a more standard statistical

procedure that did not allow control for city effects.

In short, while the evidence for a relationship between

pollution and health is substantial judgments about the causal effect

are clouded by uncertainty about the effect of unmeasured city—specific

characteristics and the inability to control for differences among

individuals in the same area. For example, more polluted areas may have

more blue collar workers whose occupations are unusually dangerous, or

polluted areas may also have more firms that offer employee fringe

benefits like sick leave that encourage sick days. Studies that follow

the same individual over time have been restricted to possibly

unrepresentative samples. While the evidence from epidemiologic data

must by its very nature be circumstantial, we believe that by

statistical correction for city—specific effects and by better data on

individual attributes, we are able to reduce the range of uncertainty.

Our analysis addresses the relationship between work days lost

and atmospheric air pollution. Estimates are based on a series of

national surveys of individuals conducted weekly during 1976, a

time—series of cross—section surveys. In particular, survey respondents

were asked how many days of work they lost due to illness or injury
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during the prior two—week period. Because the number of work days lost

is most often zero and always a small integer count, statistical

estimation is based on the Poisson model. To allow for individual

differences, the Poisson (centrality) parameter is specified as a

function of individual attributes and environmental characteristics.

Because we have a number of observations for the same city at several

different times in the year, we are able to control for unobserved city

effects, based on procedures set forth in Griliches, Hall, and Hausman

[1981].

The statistical model is described in Section I. We begin with

a simple Poisson "regression" model and then extend it to account for

unobserved city effects. Parameter estimates are presented in Section

II. Simple Poisson estimates are presented first, followed by results

based on the fixed effect model. All model specifications indicate an

important effect of air pollution on work days lost. As a concomitant

of our analysis, and consistent with this result, we also find that

cigarette smoking by others in the household also bears a strong

relationship to work days lost by non—smokers in the household.

Concluding discussion is in Section III.
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I. The Statistical Model

The data to be described more fully below pertain to

individuals j in city I in time period t. We analyze the number of' work

days lost, in city i in period t by individual j. The period is

the two weeks prior to the survey. For ease of exposition, we shall

suppress the index j. Subsequent reference to suxnnEtion over values of

t should be taken to imply suinnEtion over j as well. A simple Poisson

specification is described first and then the fixed effect version of

it.

A. A Simple Poisson Model

The likelihood that n1 days will be lost in city i in period t

(by individual j) is described by

—A n
1 fn. )=e 'A. +n. !

it it it

The expected value of Alt, is alla,ied to vary among individuals

according to the specification

x.
(2) At = e

with a vector of parameters and X a vector of individual attributes

and city characteristics. In this specification, the Poisson parameter

A is a deterministic function of X. The randomness in the outcome n is

captured only through the Poisson specification and does not depend on
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unobserved determinants of A. The regression nature of the model is

reflected in the Poisson property that E(nt) = = eXjt8. In this

case the variance V(nft) = Alt as well. Tests of this aspect of the

model are presented in the next section.

From equation (1), the log—likelihood function is

x.
T. V ( y — _ it

— 1

a 'itit "it '

The derivative with respect to is given by

x.it-ZE X1tn1t_e

In general, we obtain estimates of using a maximum likelihood

procedure. But equation (it) suggests that equivalent estimates could be

obtained by an iterative non—linear weighted least squares procedure as

x.twell, with the residual given by lt — e . This observation

motivates some of the specification analysis in the next section.

B. A Fixed Effect Specification

One of the major problems of drawing conclusions based on city

pollution variables is that unmeasured city characteristics that are

correlated with pollution may also affect health, or persons that live

in a city may have common unmeasured attributes that determine their

health status, or, more specificaLly for our purposes, the likelihood

that they will miss work days. A variance components specification is a

common way to address this problem in regression analysis. The fixed
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effect version of this specification is often implemented by considering

the deviation of individual observations fran their group (e.g. city)

means. The idea is to explain differences within the group, having

abstracted from differences among the groups. We use an analogous

procedure here, conditioning on the total number of work days lost in

each city.2 We thus analyze individual outcomes conditional on the

total for the group, analogous to the mean for the group in the

regression variance components model.

The parameter A is nc parameterized as

(5) in = + u
where u is a city—specific effect with mean zero across all cities.

The variance component, u, may be thought of as an unknown parameter,

that could be correlated with X. To develop the likelihood of the

individual outcomes for a city conditional on their sum, recall that if

the are independently distributed Poisson variables, then is

also distributed Poisson with parameter A. = E Aft• The conditional
:1 t

likelihood of the in city i is given by

2See Andersen 11970, 1972].



—8-.

(6) L1 = f(n1, ri12, ••• 1iTI
= Pr(n.1, •••' IT + Pr(E

eltiiAjtfl ft

llnt! (Enjt)! Ait it
____________ = .ll( )

eAit(EXjt)Erhjt I1njt!

(Znjt)!

with

A. Ui Xft
(7)

ite e e
I Ex x. u. X. it

It it 3. itEe e Ee

The UI terms cancel out.3 Therefore possible correlation between the

and the unobserved city effects, which is the major shortcoming of

previous work, is e1iminated)

It can also be seen that this is a multinomial distribution

with parameters since their sum is 1. And our specification of the

A yields a logit functional form for the probabibilities P15 Given

3Because of the incidental parameter problem, unconditional maximum
likelihood estimates of individual u parameters need not be consistent.
See, for example, Neyrnann and Scott [19148], Andersen [1973] , and
Haberman [1977].

14See Mundlak [1978], Hausman [19781, Hausma n—Taylor [1981], and
Chamberlain [19821 for discussion of similar situations.

5See McFadden I1972].
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that there is a work day lost in city j, P1 can be interpreted as the

probability that it is incurred by individual j in time period t. Then

is the likelihood of the observed proportions of work days lost in

each time period, given the total number of days lost in city i. It

explains differences among people and time periods in the same city.

The observations for the cities are pooled in estimation of course

through the assumption that the functional relationship between

attributes X and work days lost is the same in each city; the vector

is the same.

In this case, the log—likelihood function is of the form

L = E lnL.
1

1

(8) = z { z + -
niti

- X1t)

Again, it is maximized with respect to the vector .
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II. Empirical Results

We begin with a discussion of the data and then present

estimates based on the simple Poisson model. The first estimates are

based on annual average pollution levels. Presumably these averages are

the best indication of typical polJiition in a city. Estimates based on

average pollution levels over two—week periods are also presented. The

two—week ,readings allow comparison of the relationships between work

days lost and alternative past levels of pollution, and as we explain

below provide a base for comparison with the fixed effect estimates.6

Before presenting the fixed effect estimates, however, we test the

sensitivity of our results to the Poisson restriction that given X the

variance of n is equal to its expected value. To do this we present

non—linear least squares estimates that are ccnsistent, although not

efficient, under rather general assumptions on the variance structure.

Having concluded that our results are not unduely affected by the

Poisson variance restriction, we next present the fixed effect results.

Because these estimates address a major concern inherent in all analysis

based on observational data of this sort, we believe them to be the most

reliable, with the limitation however, that only two-week pollution

levels can be used, Thus we also present fixed effect estimates using

several lagged values of pollution, under the assumption that the sum of

the coefficients on past pollution levels provides a reasonable

6Whether average or more recent pollution is more important is
likely to be specific to particular effects of pollution and is likely
to vary among individuals depending on health status. We have not
attempted to pursue the details of potential mechanisms.
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indication of the effect of average annual pollution. In addition to

the effect of pollution on work days lost, the estimated relationship

between work days lost and other individual attributes is also of

interest. We discuss these relationships within the context of the

fixed effect specification.

Estimation is based on individual data collected through the

1976 Health Interview Survey (HIS) conducted by the National Center for

Health Statistics. These data were nrged with 1976 Enviromnental

Protection Agency- (EPA) data on ambient pollution and, with National

Oceanic and Atmoseric Administration (NOAA) data on weather

conditions, and with Census Bureau data on other urban characteristics.

The HIS is a stratified randan survey of 50,000 households

comprising about 120,000 individuals. Information is obtained on

economic and demographic attributes of respondents, acute and chronic

Illnesses (identified by dIagnosis), days of medical disability, work

days missed because of illness, cigarette consumption, family income,

occupation, education, and other individual attributes. All respondents

living in 85 medium sized cities were selected for this analysis. The

cities, most with populations between 100 and 600 thousand, provide

geographic distribution and pollut ion levels that span the entire range

among U.S. cities, although they do not represent a random sample of

pollution levels. Our analysis also pertains to men aged 18 to 65 who

are employed, and who do not smoke. About 5500 observations are

included in the analysis.
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The EPA pollution data (SAROAD) provide measures on ambient

levels of several pollutants in these cities, including total suspended

particulates (TSP), sulfur dioxide (so2), and sulfates (son). We use

the particulates measure. Pollutant measurements are based on

recordings from 2k—hour hi—vol samplers intended to measure outdoor

pollution in residential areas. Marr cities have only one

"population—oriented" monitor. Others have more. Where there is more

than one, an average of monitor observations is used. In addition,

central city residents were matched with central city monitors and those

in suburban locations were matched with monitors in those areas.

In addition to pollution, we suppose that work days lost may be

affected by personal attributes such as age, health status, family

income, race, occupation and by environmental characteristics such as

temperature. The variables used are defined as follows:

Pollution Annual: Average annual ambient TSP level over the year in the

city of residence, in ug per cubic meter.

onj: Average ambient TSP level over the two-week period

ending n weeks before the time of the interview (e.g. Pollution Lag 1

pertains to the 5th and. 6th weeks before the interview), in ug per cubic

meter.

In years.

Familr Income: Annual income in 1000's.



—13—

Married: One if married (and living with a spouse), zero otherwise.

Sjouse Works: One if man's wife works, zero otherwise.

Blue Collar Job: One if the person has a blue collar job, zero otherwise.

Industry Sick Leave: The proportion of workers nationwide in the

industry in which the individual works who are covered by sick leave

provisions.

Non—White: One if non—white, zero otherwise.

Chronic Conditions: One if the person has a chronic health condition,

zero otherwise.

Household Cigarettes: Total number of cigarettes smoked per day by

others living in the household in which the individual lives.

Population Density: Population (1977) per square mile in the

individual's city of residence, in thousands.

Average Temperature: Average annaal temperature in the city of

residence.

Minimum Temperature: Minimum temperature in the city of residence

during the two—week period prior to the interview.

January—March: One if the two—week period is in January, February, or

March, zero otherwise.
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April—June: Analogous to above.

July—September: Analogous to above.

The means and standard deviations of the variables are shown in

Table l. Recall that our sample includes non—smokers only, so that

household cigarettes are those smoked by other people in the house in

which the individual lives.

B. Poisson Parameter Estimates

Estimates based on the simple Poisson model are shown in Table

2. Average annual pollution is used in the first two specifications.

The second includes seasonal variables, while the first does not. As

shall be explained below, we cannot estimate (two—week) period—specific

effects and still estimate a pollution effect for that period, although

we shall correct for city—specific effects. The seasonal variables can

be thought of as more aggregated period—specific effects. Comparison of

specification 1 with 2 reveals that including the seasonal variables has

little effect on the other estimates. In particular the estimated

pollution coefficient does not change appreciably when the seasonal

variables are added.

The estimated coefficient on annual pollution based in

specification 2 is 0.0071 and is measured very precisely, with a

Tme sample sizes vary somewhat with alternative specifications. The
means reported pertain to the specifications in Table 2.



Table 1. Sumrrmry Statistics on VariIes

Variable Mean Standard Deviation Minimum Maximum

Work Days Lost 0.24 1.30 0.00 14.0

Age 38.68 12.99 18.00 65.0

Education 13.90 2.28 0.00 17.0

Family lncoie 18.71 9.43 0.75 35.0

Married 0.78 0.42 0.00 1.0

Spouse Works 0.70 0.46 0.00 1.0

Biue Collar Job 0.54 0.50 0.00 1.0

Industry Sick Leave 0.51 0.22 0.00 0.98

Non—White 1.09 0.29 1.00 2.0

Chronic Cond. 0.10 0.31 0.00 1.0

Household Cigarettes 5.34 11.59 0.00 100.0

Population Density 6.61 3.42 0.73 14.1

Ave Temp in City 52.30 5.30 38.00 68.0

Mm Temperature 33.54 17.81 —22.00 69.0

January—March 0.18 0.38 0.00 1.0

April—June 0.27 0.45 0.00 1.0

July—September 0.28 0.45 0.00 1.0

Pollution Annual 68.36 16.54 39.54 133.09

Pollution Lag 2* 72.09 30.56 19.00 292.0

Pollution Lag 4 70.62 28.98 16.58 203.5

Pollution Lag 6* 70.53 27.77 13.00 203.4

* fran 4048 sample (Col. 4, Table 2); the rest are fran 4234 sample (Col. 3,
Table 2). The Lag 4 pollution mean for the 4048 sample is 71.28.



Table 2. SImple Poisson Model Parameter Estlmetes

Variable

i-arameter Estimate Standard Error)
(1) (2) (3) (4)

—2.304
(0.141)

0.0188
(0.0010)

—O •00867
(0.00601)

0 • 00329
(0.00152)

—0.224
(0.031)

—0.281
(0.030)

—0,163
(0.028)

0.580
(0.063)

—0.307
(0.055)

1 •068
(0.029)

0.01 17

(0.0010 5)

0. 02 09

(0.0044)

—2.512
(0.149)

0.0195
(0.0010)

—0.01 11

(0.0064)

0.0027
(0.0016)

—0.19 8

(0.033)

—0.3 10

(0.031)

—0.116
(0.030)

0. 589

(0.0 64)

—0.229
(0.0 56)

1.016
(0.031)

0.0 136
(0.0011)

0. 0134

(0.0046)

Constant —3.346
(0.192)

—3.195
(0.198)

Age 0.0183
(0.000987)

0.0182
(0.0010)

Education —0.00573
(0.00578)

—0.0066
(0.0059)

Family Income 0.00334
(0.00147)

0.00253
(0.00151)

Married —0.225
(0.031)

—0.208
(0.031)

Spouse Works —0.282
(0.029)

—0.278
(0.030)

Blue Collar Job —0.179
(0.028)

—0.168
(0.028)

Industry Sick Leave 0.593
(0.063)

0.596
(0.064)

Non-White —0.336
(0.055)

—0.329
(0.055)

Chronic Cond. 1.0915
(0.0292)

1.0831
(0.0296)

Household CIgarettes 0.01 14
(0.0010)

0.01 13
(0.0011)

Population Density 0.0234
(0.0045)

0.0234
(0.0046)

Ave Temp in City 0.0148
(0.0026)

0.0138
(0.0026)

Mm Temperature —0.00275
(0.001 07)

—0.00124
(0.00116)

January—March 0.0699
(0.0399)

0.0961
(0.0399)

0.110
(0.045)

April—June —0.245
(0.037)

—0.184
(0.043)

—0.232
(0.045)

July—Septenter —0.195
(0.035)

—0.129
(0.047)

—0.180
(0.050)

Pollution Annual 0.00706
(0.000)

0.00708
(0.00082)

Pot lution Lag 2 0.00232
(0.0007 1)

Pot tutlon Lag 4 0.00523
(0.00046)

0.00353
(0.00063)

Pot tution Lag 6 0.001 09
(0.00054)

Number of observations
Log—I ikel I hood

4234
—3040.35

4234
—3032.57

4234
—3029.12

4048
—2909.59
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standard error of about 0.0008. Since mA = X, this specification

3
implies that a unit (ug/m ) increase in annual average TSP would

increase the expected number of work days lost 0.7 percent. The mean

of the annual pollution variable is 68.36, with a standard deviation of

16.1; its minimum is 39.5 and its maximum 133.1. Thus a two—standard—

deviation reduction in pollution would reduce expected days lost by

approximately 23 percent, almost one and a half days per year evaluated

at the nan of days lost. The mean of work days lost per two—week

interval is 0.24, or 6.24 per year. Thus according to these estimates,

ambient TSP bears a quantitatively important relation to work days

lost.

If outdoor suspended particulate pollution is associated with

morbidity, one might expect a similar association with indoor air

pollution to which cigarette smoke may be an important contributor.8

The estimated coefficient of .011 on cigarettes smoked by others in the

household implies that an increase of 20 cigarettes per day, a pack, is

associated with a 22 percent increase in work days lost by non—smokers.

An increase of two standard deviations is associated with a 26 percent

increase in days lost by non—smokers. Of course, not all cigarettes

smoked by others in the liousehold are smoked in the house when the non-

smoker is present.

8See Repace and Lowry [19811.
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The coefficients on the other variables are also of interest

and we shall discuss them with reference to the estimates below that

correct for city—specific effects. Although the orders of magnitude of

the estimates are righly the same as these, some of the estimates

change noticeably. Since the later estimates should be preferred, we

shall emphasize them.9

The remaining specifications in Table 2 use average pollution

levels over two—week periods, with alternative time lags. These results

provide a base with which to canpare the fixed effects results presented

below. With this canparison in mind, the population density and average

temperature variables have been deleted and the two—week minimum tem-

perature variable has been added. City variables that do not change

over time cancelled out of the analysis along with the unmeasured city

specific effect and thus it is impossible to estimate parameters

associated with them. The alternative time lags are motivated by the

possibility that pollution in the past may contribute to illness in the

future. We know of no theoretical rationale for a particular lag

structure, however. Thus we experimented with several. Two are

reported.

While the coefficient on any individual two—week value is

considerably lower than the estimated effect of annual pollution, the

sum of the lagged coefficients in specification 1 is close to the annual

9Work days lost in a two—week period is bounded by 10 (or i4) days.
Maximum likelihood estimates accounting for the truncation at this bound
yield estimates not appreciably different from those in Table 2.
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effect in specification 2 (.0069 versus .0071). The estimated

coefficient as the single n—week lag (entered by itself in column 3) is

.0052. The estimated coefficient on a 2—week lag pollution variable in

an otherwise like specification was .003.

Although we believe that unmeasured city effects could be a

potential major source of bias in these results, the Poisson model

itself implies functional form restrictions that also could affect the

results. In particular, the variance of work days lost, given X, is

presumed to be equal to the expected value of days lost. Therefore,

before we proceed we shall test the sensitivity of our results to this
constraint, using specification 2 in Table 2 as a base for comparison.

C. Sensitivity to the Poisson Specification

While the Poisson model is in some ways ideally suited to these

data, it also imposes restrictions on the estimates. Given X, the

variance of the outcome is assumed to be equal to its mean. To test the

sensitivity of our estimated pollution effect to this restriction, we

present estimates based on alternative specifications that are not

restricted by this assumption.

To motivate the approach, recall that equation (14) implies that

estimates of the Poisson model could be obtained by maximum likelihood,

as we have done, or by a non—linear weighted least squares procedure.

In particular, suppose that the basic model is specified as
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X. 8I it +t
it8

where Var = e • Then weighted non—linear least squares with the

weight w = / exp(X1t8) is equivalent to our maximum likelihood estimates.

It gives relatively more weight in estimation to observations with small

expected values. We relax the variance assuzrrption in two directions,

relying on non—linear least squares (NLIS) estimation.

First, assume that the variance does not grow with the mean but

is constant so that the weight = 1. This NLLS specification gives

equal weight to all observations, while the Poisson assumption gives

greater weight to observations with small expected values, thus on

average giving relatively greater weight to observations with zero work

days lost. Non—linear least squares estimates under this assumption are

shown in column 3 of Table 3. The estimates rnain consistent under the

null hypothesis that the Poisson specification holds, but they are no

longer asymptotically efficient. The nonlinear least squares estimates

can be compared to the Poisson estimates in column 1 of Table 3 which

are estimated on an enlarged data set of 5392 observations. The NLLS

estimated coefficient on average annual air pollution is 0.0096, compared

to 0.0080 based on the Poisson specification. The least squares estimate

however, is much less efficient than the Poisson estimate, and thus the

101n calculating the test statistic, the asymptotic standard errors
for the = 1 specification are calculated allowing for the presence
of heteroscedasticity. The linear formulae of White [1980] are adapted
for the nonlinear case.



Table 3. hon—Linear Least Squares Parameter Estimetes

Variable

Parameter Estimete
(Standard Error>

w = 'eta + a2e2Xlt w = 1w
j.t it it

Constant —3.283 —3.887 —5.550
(.1729) (1.029) (.558)

Age .0175 .0188 .0449
(.0009) (.0061) (.0095)

Education .0004 —.0028 —.0018
(.0053) (.0289) (.0485)

Family Incane —.0030 —.0013 .0040
(.0014) (.00) (.0147)

Married —.2357 —.2117 —.1210
(.0290) (.1642) (.2819)

Spouse Works —.2482 —.2415 —.0559
(.0274) (.1580) (.3064)

Blue Collar Job —.1454 —.1353 .0129
(.0265) (.1589) (.2492)

Industry Sick Leave .5412 .5442 .7625
(.0591) (.3698) (.5818)

Non—White —.1548 —.3093 —1.169
(.0463) (.1606) (.539)

Chronic Coritions 1.035 1.102 1.434
(.0273) (.1968) (.2178)

Household Cigarettes .0108 .0136 .0252
(.0009) (.0069) (.0053)

Population DensIty .0093 .0105 .0289
(.0034) (.0196) (.0270)

Average Temperature .0140 .0161 .0362
(.0024) (.0145) (.0233)

Pollution Annual .0080 .0079 .0096
(.0007) (.0042) (.0077)

January—March .0179 —.1037 —.7442
(.0343) (.2182) (.2858)

AprIl—June —0.2798 —.4203
(.0348) (.2496) (.3811)

July—September —.2621 —.3535 —1.226
(.0340) (.2154) (•3934)

2
0. .6487

Number of otervations 5392 5392 5392
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standard error is much larger. Given that the Poisson specification is

correct, though, the two estimates have the same probability limit. A

large sanle test, based on the difference of the coefficient estimates

divided by the standard deviation of the estimated difference, yields a

test statistic of 0.53, which is far below standard significance

levels.11 However, some of the other coefficients——such as the effect of

cigaretteshave changed markedly, although again the NLLS estimates are

much less precise than those based on the Poisson assumption.

Thus, as another test of our specification we compare jointly

all of the coefficient estimates in the Poisson and NLLS models. Under

the null hypothesis the statistic

(io) m — )' (V(NL) — v()) NLLS
—

2 12is distributed as central x with 17 degrees of freedom. The test

statistic is based on the idea that under the correct specification the

coefficient estimates should not change much with different weights.

An asymptotically equivalent statistic to m can be calculated by

treating the Poisson model as a weighted NLLS specification arid by then

including the additional terms which arise from the NLLS specification.

A joint test of the significance of the additional terms is thcn made.

The relevant statistic is estimated to be i8., only slightly more than

See Hausman [19781.

12See Hausman [19781 and White 11981].
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its expected value of 1T.0 under the null hypothesis.13 Thus based on

this test we find no evidence that our Poisson model suffers from

serious misspecification.

The Poisson specification also assuns that the expected value

of is determined, given X; there are no unmeasured determinants of

A. It is often the case that empirically observed variances are

greater than this Poisson assumption would imply. This is sometimes

referred to as the over—dispersion problem. We relax the Poisson

assumptions and allow for greater dispersion by assuming that

= eXjtB
+t = eXjtB As long as XjtB includes a constant

term, we can normalize by setting E(e1t) = 1. Let Var(et) =

Within the framework of the regression specification we now have

X. B ii.(ii) n. = e e + . , with
it it

2 2X.tB X.tB 2
Var(n. lx. )ci e +e =e (i+c, e )it it

nEintaining the Poisson variance assumption for c but adding variance

due to unmeasured determinants of A. Notice that this specification

implies that the variance of increases with its expected value, but

at a faster rate than the basic Poisson variance. In this case, the

The analogous F test with 17 and 5375 degrees of freedom is
estimated to be 1.08.
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nonlinear least scluares regression weight is = I eit8 + a2e2XitB.

Thus our two alternative specifications "bracket" the Poisson assumption

The first gives relatively less weight than the Poisson model to

observation with low expected value, while the second gives more.

If were assumed to have a gamma distribution, then

integrating over the Poisson distribution conditional on r, yields a

negative binomial distribution from which a likelihood function may be

formed. Instead of following this method, however, we adopt the pseudo

maximum likelihood procedure suggested by Gourieroux, Monfort, and

Trognon [19811 , that yields consistent estimates of under very general

assumptions on the distribution of y. Some details of this weighted

non—linear least squares procedure as well as the equal variance

estimation procedure are provided in the appendix.

Estimates based on this specification are shown in column 2 of

Table 3. The estimated coefficient on annual pollution in this case is

0.0079, as compared with the Poisson estimate of 0.0080. Thus the

pollution estimates seem to be reasonably stable with respect to the

variance assumption, although again all parameters are measured with much

less precision than when the Poisson distribution is assumed. When we

compare the difference of the estimated coefficients for pollution divided

ll4See, for example, Gilbert 11919] or Griliches, Hall, and Hausman
[1981].
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by the standard deviation of their difference, the statistic is .025 which

is not significant as expected; the coefficient estimates are almost

identical. In general the pseudo maximum likelihood estimates are quite

close to the Poisson estimates, although again the Poisson estimates are

considerably more precise. A test of coefficient difference, like that

of equation (10), yields in this case a test statistic of 21.8 which is

near its expected value (17.0) under the null hypothesis and far below

conventional significance levels.15 Thus in comparing either of the NLLS

specifications to the Poisson model we find that neither a test based on

the estimated pollution coefficients alone nor a test based on all of

the coefficient estimates leads to a rejection of the Poisson

specification. We conclude that the Poisson assuution is not a serious

rnisspecification and that the variance restriction is not unduly

affecting our results. We now turn to the fixed effects estimates that

address an issue that we believe is potentially much rre important.

D. Fixed Effect Poisson Parameter Estimates

Estimates based on the fixed effect specification are shown in

Table 14• The estimates in column 3 may be compared with those in column

'5The analogous F statistic with 17 and 5375 degrees is 1.29.



Table 4: Fixed Effects Poisson Model Parameter Estimates

VarIable (1) (2) (3) (4) (5)

Age 0.0191 0.0190 0.0186 0.0181 0.0193
(0.0010) (0.0010) (0.0013) (0.0010) (0.0014)

Education —0.0144 —0.0124 —0.0177 —0.0171 —0.0208
(0.0057) (0.0056) (0.0062) (0.0063) (0.0072)

Family Income 0.00337 0.0034 0.00371 0.00340 0.00436
(0.00146) (0.0014) (0.00153) (0.00152) (0,00173)

Married —0.235 —0.250 —0,229 —0.228 —0.206
(0.037) (0.035) (0.041) (0.040) (0.042)

Spouse Works —0.291 —0.286 —0.280 —0.271 —0.291
(0.0306) (0.029) (0,034) (0.032) (0,037)

Blue Collar Job —0,184 —0.198 —0.181 —0,186 —0.135
(0,042) (0.041) (0.048) (0.047) (0.058)

Industry Sick Leave 0.584 0.603 0.583 0.594 0.607
(0,095) (0,090) (0,101) (0,100) (0,114)

Non—WhIte —0,428 —0.370 —0,414 —0,356 —0,336
(0.078) (0.071) (0.082) (0,073) (0.083)

Chronic Cond. 1,110 1.124 1.114 1,131 1,050
(0,035) (0,034) (0.035) (0.035) (0.041)

Household Cigarettes 0.0118 0.0115 0.0115 0,0111 0.0132
(0,0018) (0,0018) (0.0018) (0,0018) (0,0039)

Mm Temperature —0,0078 —— —0.0027 —— —0.00176
(0,0008) (0,0020) (0,00234)

January—March
—— 0.139 0,0986 0,124

(0.053) (0.0498) (0,064)

April—June — —— —0.238 —0,304 —0,256
(0,072) (0,045) (0,825)

Ju)y—September —— —— —0,137 —0,215 —0,172
(0,082) (0.050) (0,086)

Pollution Lag 2 — —— —— —— 0.00236
(0,00301)

Pollution Lag 4 0.0057 —— 0,00586 —— 0,00405
(0.0006) (0,00068) (0.00076)

Pollution Lag 6 0.00243
(0,00094)

Number of observations 4234 4234 4234 4234 4048

Log—Likeflhood —4447.51 —4462,78 —4442,90 —4451,62 —4170.36
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3 of Table 2. The coefficient on pollution 14 weeks earlier is now .059,

with a standard error of .007, as compared with .0052 in the simple

Poisson mndel. The specification in column 5 uses three lagged values

of pollution. All are statistically different from zero by standard

criteria. Their sum is .0088, close to the annual pollution coefficient

of .0071 in column 2 of Table 1.

Thus it seems reasonable to conclude that our estimates suggest

that a standard deviation increase in pollution is associated with

approximately a 10 percent increase in work days lost.

As in the simple Poisson model, the results here also suggest a

substantial effect of cigarettes smoked by others in the household on

work days lost. The coefficient in column 3 of Table 14 is 0.0115, with

a standard error of (0.0018). This estimate indicates that 20 more

cigarettes are associated with approximately a 23 percent increase in

days missed. While the effect of smoking has not been the focus of our

analysis here, this result seems to support other evidence that the

effect of cigarette smoking is not limited to the smoker. Recent

literature has suggested a significant health impact from the breathing

of air polluted with tobacco smoke [Repace, 19811. This air, called

passive smoke, is believed to be chemically identical to mainstream

smoke and generally more concentrated [Hoegg, 19721. Past research has

also indicated that passive smoke is associated with greater incidence

of respiratory problems in children [Spiezer et al., 1980; Bonham and
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Wilson, 1981; Tager et al., 19791 and greater risk of respiratory

conditions and cancer among non—smoking spouses [Hirayarna, 1981; and

Kauffman, 19801.

The estimates in column 3 also indicate that married men miss

23 percent fewer days than the unmarried. Married men whose wives work

miss 28 percent fewer days than those whose wives do not work. Blue

collar workers miss 18 percent fewer days on average than those in other

occupations. Not surprisingly, those with a chronic health condition

miss about twice as maay days as those who report no such condition.

Non—whites miss about -o percent fewer days than whites. Some of these

differences, of course, may be due to differences in the types of job

held by different groups. The larger the fraction of workers in the

person's industry that are covered by sick leave provisions, the greater

the number of work days lost. Older workers miss more days than younger

ones.

E. Some Additional Results

In addition to the analysis reported in the paper, we also made

preliminary comparisons using alternative samples and pollution

definitions. For a sample of 763 smokers, we estimated the same

specification as in Table 2, column 1. The estimated coefficient on

annual pollution was 0.0125 (with a standard error of 0.0032), compared

to the comparable estimate of 0.0071 for non—smokers. This result is
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consistent with the hypothesis that pollution has a greater adverse

affect on smokers than on non—smokers. Medical evidence suggests that

smoking damages the body filters that would otherwise filter out some

ambiant particulate pollution. On the other hand, one might hypothesize

that if an individual smokes himself, the additional effect of the

cigarette smoke from others in the household may not be substantial.

For smokers, we obtain an estimated coefficient on cigarettes smoked by

others that is not significantly different from zero (—.0014, with a

standard error of .00514, versus .011, with a standard error of .0010 for

non—smokers).

We also estimated the specification of Table 2, column 1 for

persons who reported at least one respiratory condition. For this

group, the coefficient on annual pollution was 0.010 (with a standard

error of .ooi14), compared with 0.007 for the whole group.l6 If work days

lost is defined to include only days missed due to illness, and not

injuries, the coefficient on annual pollution is .008 (with a standard

error of .0008).

Because of the number and location of pollution irnitors, our

data for total particulates is much more reliable than the data for

other pollulants or for 'components of the total. Nonetheless, we

distinguished sulfates from the rest of TSP, and for central cities

l6The coefficient on chronic condition also increased substantially
for this group.
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estimated separate coefficients for each. In our data, sulfates

comprise about 13 percent of TSP. The coefficient on TSP in this

specification remained large and significant (O.Oi with a standard

error of O.OOi1), but the coefficient on sulfates was not significantly

different from zero. Further work remains to be done using better data

on individual poiiutants.'T

F. Conclusion

We have estimated a Poisson specification of the relationship

between atmospheric pollution and lost work days. An important feature

of our procedure is control for city specific effects. A major source

of ambiguity in interpreting the results of observational data on

pollution versus health status or death rates is that pollution in a

city may be correlated with other characteristics of that city that

affect these outcomes but are not controlled for in the analysis. Or,

individual attributes of residents may be correlated with pollution

levels but not accounted for in the analysis. Our data set allows us to

control explicitly for many more individual attributes than were

available to st previous researchers in this area. But in addition we

have controlled for othei unmeasured city specific effects that could be

correlated with pollution levels. Thus we believe that our analysis

reduces substantially the uncertainty attendant on standard analysis of

the effects of pollution based on observational data.

lTMonjtor readings of course measure only with error the actual
exposure experienced by any individual. Estimation for samples that we
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Our results suggest a statistically significant and

quantitatively important effect of total suspended particulates on work

days lost. A standard deviation increase in TSP is associated with

approximately a 10 percent increase in work days lost. According to

these results if, in areas where pollution is very high, say two

standard deviations above the mean, pollution were reduced to the mean,

work days lost would be reduced by over 20 percent. As a concomittant

of our analysis, we also found a substantial relationship between

smoking by others in the individuals household and work days lost by

non—smokers. Finally, the effect of atmospheric pollution on smokers

appears to be greater than on non—smokers according to our results.

thought more closely matched individuals to monitors typically yielded
higher estimated pollution effects, as errors in variable seasoning
would suggest.
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Appendix

The Poisson model can be considered as a weighted nonlinear

least squares model with

(Al) = e6 + Elt , E(c.t) = 0, and V(c.) e1t

Both the functional form assumption and the variance assumption can be

tested by considering different weights in estimatiop.18

Therefore instead of the Poisson weights wit = / exp(XjB) we first

consider the weights w = 1. The nonlinear least squares estimates of

equation (Al) continue to be consistent under the null bypothesis of the

Poisson model. The alternative estimates can be used to form a

specification test for the original Poisson specification. Note that

under the Poisson null hypothesis the asymptotic covariance matrix for

the non—linear least squares estimation is

(A2) v() = (GG)- (GWG) (G G)

xitwhere the elements of G are the derivatives of e with respect to the

elements of , and W is a diagonal matrix with the Poisson weights as the

entries.

A more general specification which accounts for the

"overdispersion" problem often present in Poisson models is

l8ijj [1981] considers tests of specification for nonlinear models
from this viewpoint.



—29—

i 2
(A3) = e

1 1
+ = 0, E(e it) 0, V(e t) =

X.t 2 x1tBand V¼nt Xt,;
= e il + a e ).

The assumption that is gamma distributed yields the well known negative

binomial model. Recently, Gourieroux, Monfort, and Trognon [GMI(l98l)]

proposed an estimation method which is consistent for r a member of the

exponential family. GMT prove strong consistency and asymptotic normality

of their estimator. We apply their quasi—generalized pseudo I(QML)

estimator. Given the expression for the conditional variance, we have

X.tB 2 X.tB 2 2X.t$
(A1) (n — e

1 — e
1 = a e

1
+ u. Eu. = 0.

Therefore a consistent estimator of
2

is the expression

(A5)
..2 = (fljt — — et) e2t8 /

where the B is estimated from the nonlinear least squares model with

Wjt = 1. Then the quasi ML estimator is given by a nonlinear weighted

least squares regression of equation (Al) with weights

(A6) Vjt = /et + 2 e2X1t

Note that for ;2 > 0 the variance grows faster than the expected value

which is a solution to the overdispersion problem. Also, the weights given

in equation (A6) provide an alternative check on the specification of
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equation (Al). To the extent that the estimated coefficients are similar

across the three alternative veights schemes, Poisson, least squares, and

QML, the possibility of functional form misspecification is decreased. We

apply the Hausman (1978) specification test to evaluate the possibility

of niisspecification.
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