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1 Introduction

Understanding the sources of volatility is an important quest in economics. In a seminal

paper, Lucas (1988) observed that, over long horizons, fluctuations in rates of growth are

likely to be more substantial in less developed countries, suggesting a link between a coun-

try’s level of economic development and its volatility. Indeed, as Figure 1 illustrates, the

negative relationship between a country’s level of development and aggregate volatility is

quite pronounced. Analyzing the sources of this differential aggregate volatility across coun-

tries, Koren and Tenreyro (2007) show that an important explanation for the higher output

volatility in developing countries is their production specialization in more volatile sectors.

Figure 2 depicts the weighted average volatility of the sectors in which a country specializes

against the level of development. More developed countries tend to specialize, on average,

in less volatile sectors.

At the same time, several recent empirical studies have suggested that openness to

international trade plays an important role in determining economic volatility (see, e.g.,

Rodrik 1998, Krebs, Krishna and Maloney 2008, di Giovanni and Levchenko 2007, di Gio-

vanni and Levchenko 2008). While the empirical literature has variously suggested links

between a country’s level of development, pattern of production specialization, trade, and

economic volatility, the reasons for these patterns are not well understood − that is, a

coherent theoretical explanation linking these factors is, as yet, lacking.

This paper develops a theoretical framework in which openness to international trade

leads to specialization in more volatile sectors in poorer countries − consistent with the

empirical findings of Koren and Tenreyro (2007) mentioned above. In our framework, the

central concept driving the linkage between trade openness, specialization, and volatility is

the complexity of goods being produced. Complexity is defined as the number of different

inputs required for the production of one unit of the good (as in Becker and Murphy 1992).

We show that sectoral output volatility depends on the complexity of goods produced in
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that sector. This is because when individual inputs to production are subject to shocks, the

volatility of output will depend on how many such inputs there are. In particular, the more

complex goods are less volatile, as the production in a sector that uses many inputs will

be less affected, on average, by shocks to any particular input (a point also emphasized by

Koren and Tenreyro 2008). By contrast, the volatility of a good that uses very few inputs

will be more affected by the shocks to each individual input.

Starting from this technological characterization of industries in terms of their product

complexity, we model two mechanisms through which less developed countries come to ex-

hibit comparative advantage in the less complex − and therefore more volatile − goods. The

first, following Blanchard and Kremer (1997) and Levchenko (2007), relies on differences in

the quality of contract enforcement. The more complex the production process, the greater

is the number of parties to production, and the greater is the number of contracts that it

requires. This implies that the relative loss of output due to imperfect contract enforce-

ment is greater in the more complex sectors in countries with worse institutions, generating

comparative advantage.

The second approach, following Costinot (2009), relies on the differences in human capital

endowments across countries and the optimal division of labor in production. In this second

mechanism, the scope of the division of labor in production is determined endogenously as

a function of the complexity of goods. Countries with higher levels of human capital per

worker have a comparative advantage in the more complex goods because higher human

capital allows each worker to learn more of the necessary production tasks (as we discuss in

detail below).

Thus, openness to international trade moves less developed countries towards the produc-

tion of less complex and more volatile goods. This is the main theoretical result obtained in

the paper. The relationship between economic development and volatility in our framework

is then driven by two mechanisms: the specialization in less complex goods by less developed
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countries and the greater volatility of goods with lower complexity. The first theoretical pre-

diction – that less developed economies will specialize in less complex goods – is supported

by several recent empirical studies. For instance, Levchenko (2007) has shown that countries

with worse institutions have relatively higher export shares in goods with low product com-

plexity − with complexity measured as the number of intermediates required for production

in each sector. Similarly, Costinot (2009) has found that less developed countries specialize

in less complex goods, with complexity measured as the average learning cost that a worker

must pay in each sector before becoming productive. Finally, Nunn (2007) has demonstrated

that less developed countries specialize in industries requiring less “relationship-specific” in-

vestments in their production – which could also be interpreted as industries with a lower

degree of product complexity. By way of illustration of these results, Figure 3 shows that

there is a pronounced positive relationship between the average complexity of a country’s

specialization pattern and the level of development: richer contries tend to specialize in more

complex goods.

The second theoretical mechanism on which our paper relies − that less complex goods

are characterized by greater volatility − has not previously been analyzed empirically in

the literature. In this paper, we provide evidence regarding this relationship. Using data

on sectoral production data from the NBER Productivity Database, we calculate industry-

level volatility measures for some 460 4-digit SIC87 sectors over the period 1970-1997. We

combine the volatility data with empirical measures of product complexity computed from

the U.S. Input-Output tables. Our results demonstrate that there is a strong negative

relationship between complexity and volatility, with complexity alone explaining some 18%

of the variation in the actual volatility found in the data. The results are robust to a number

of controls, such as factor intensity and sector-level elasticity of substition.

In sum, this paper contributes to the literature on economic development and inter-

national trade, by linking the patterns of comparative advantage with volatility. In our
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framework, production specialization in more volatile sectors takes place in poorer coun-

tries and emerges naturally from differences in complexity of goods and in the productivity

of input factors across countries. The theoretical predictions are consistent with stylized

empirical facts.

The rest of the paper is organized as follows. Section 2 describes the theoretical framework

and derives the main results. Section 3 provides empirical evidence on the complexity-

volatility link. Section 4 concludes.

2 Modeling Complexity, Volatility, and Comparative

Advantage

We present below two theoretical mechanisms through which less developed countries come

to exhibit comparative advantage in the less complex − and therefore more volatile − goods.

The first, following Blanchard and Kremer (1997) and Levchenko (2007), relies on differences

in the quality of contract enforcement. The second approach, following Costinot (2009), relies

on the differences in human capital endowments across countries and the optimal division of

labor. We now consider each of these mechanisms in turn.

2.1 Intermediate Inputs and the Contracting Environment

Consider an economy with a large number of industries, each characterized by the number

of intermediates z required for production, z ∈ (0, z]. For simplicity, we assume that the

final output in industry z is produced with a Leontief production function

qz = min(q(1), .., q(s), .., q(z)), (1)

where q(s) is the quantity of intermediate good s that goes into production of the final good,

s = 1, ..., z. There is one factor of production, L, and a large number of ex-ante identical

potential intermediate goods producers. These hire labor to produce intermediates with a
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linear production function q(s) = l. Both the intermediate and the final goods sectors are

competitive.

Final good producers in a sector requiring z inputs contract with z intermediate goods

producers to deliver the inputs. The country’s contracting environment is imperfect. In

particular, after the intermediates have been contracted for by the final goods producer,

each intermediates producer reneges on the project with some probability 1− ρ. When this

happens, the entire project yields the output of zero. The value of ρ captures the level of

institutional quality in the country. The higher it is, the more unlikely an intermediate input

producer is to renege. As a result, for a given level of investment into each intermediate good

production, the final output is given by

min (l(1), ..., l(z)) . (2)

with probability ρz, and zero with probability 1− ρz.

Since all intermediate goods producers are ex ante identical and enter symmetrically into

the production function, the final goods producer contracts for the same level of invest-

ment/employment for each intermediate. Therefore, the expected final output per worker

is given by ρz

z
in industry z. Thus, output per worker depends on the complexity, z, of the

good, and the quality of institutions ρ. Note that expected output per worker decreases in

z at any level of institutional quality ρ. This is a result in the spirit of the O-ring theory

of Kremer (1993) and the complementarity model of Jones (2008): the more steps the good

requires, the higher is the chance that something will go wrong. If the inputs are “essential”

as they are with a Leontief production function, the lower is the expected output. Note that

in a model with multiple goods, this also implies that more complex goods command higher

prices. While we are not aware of empirical studies of such a relationship in the data, the

prediction appears prima facie sensible and intuitive.1

1It is well documented that more developed countries export goods with higher unit values. Since both
in the theoretical model and in the data more developed countries export the more complex goods, in this
respect the model appears consistent with the data.
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In this setting, less complex goods – that is, goods with lower z – are more volatile. The

overall output per worker is 1
z

with probability ρz and zero with probability 1−ρz. Therefore,

the variance of output per worker is given by 1
z2
ρz (1− ρz). We state the following Lemma,

proved formally in Appendix B:

Lemma 1 (Complexity and Volatility in the Imperfect Contracting Model) The

variance of output per worker decreases in z: d
dz
V ar

(
ρz

z

)
< 0.

This result is intuitive: as complexity of the good increases, the higher is the chance that

output will be zero, and the lower will be output per worker if it is positive.2 The two effects

combine to deliver the negative relationship that we formalize in the Lemma.3

2.2 Imperfect Contracting and Comparative Advantage

Now suppose there are two countries, North and South. While we do not model contract

enforcement explicitly, we assume that a better contracting environment in a country implies

that the probability that someone reneges (1− ρ) is lower there. Without loss of generality,

let us assume that the North has a more efficient contracting environment. Thus, ρN > ρS.

We can map this setting into the Ricardian model of Dornbusch, Fischer and Samuelson

(1977). Denote by aN(z) = z
ρz

N
the unit labor requirement for good z in the North, and

similarly in the South. Then, the relative unit labor requirement for good z in the two

countries is:

A(z) =
aS(z)

aN(z)
=

(
ρN
ρS

)z
. (3)

2Note that the assumption of zero output in case of default is not important for the results. Alternatively,
we could assume that even when the supplier reneges successfully, the final goods producer can force it to
deliver a fraction δ of the contracted quantity of the intermediate good. In that case, the total output per
worker is δ

z when no supplier defaults, and the variance of output is simply 1
z2 ρ

z (1− ρz) (1− δ)2. It is clear
that all the results carry over to this case.

3Notice that the only shock, and thus the only volatility in this model comes from the possibility that an
input supplier reneges on the delivery of the good. This assumption is not crucial: the result above extends
to the case in which there is both a reneging shock and a genuine productivity shock, as long as the two are
uncorrelated for each supplier.
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Does an efficient contracting environment create comparative advantage? That is, is the

North relatively more productive in goods with higher z? The derivative of this ratio of

productivities with respect to z is:(
ρN
ρS

)z
log

(
ρN
ρS

)
> 0. (4)

We have just proved the following result:

Lemma 2 (Comparative Advantage in the Imperfect Contracting Model) The

North has comparative advantage in goods with higher z: dA(z)
dz

> 0.

The North is indeed relatively more productive in high-z goods. Though we imposed a

Leontief production function at the outset, notice that this comparative advantage result

does not depend on the functional form of the production function qz.
4

The preceding theoretical framework, while admittedly highly stylized, serves to illus-

trate two key ideas. First, output volatility is driven by product complexity. And second,

better (worse) contracting environments can therefore generate comparative advantage in

less (more) volatile goods. If we expect the efficiency of the contracting environment to

improve with development, we obtain specialization in more volatile goods in less developed

countries – consistent with the empirical findings of Koren and Tenreyro (2007) discussed

above.

2.3 Human Capital and the Division of Labor

Our second modeling approach, based on Costinot (2009), relies on the differences in human

capital endowments across countries and the optimal division of labor in the production of

final goods. As in the previous section, more complex final goods require a larger number of

intermediate inputs to be supplied or, as interpreted here, a larger number of different tasks

to be performed. It is assumed that each of the tasks necessary for the production of the

4This is of course notwithstanding the issue that our modeling approach to the contracting frictions has
a strong “Leontief” flavor.
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final good requires some fixed labor costs to be incurred. As in Costinot (2009), dividing up

the tasks among a larger number of workers generates gains from specialization – fewer tasks

taken on by a single worker implies lower fixed costs incurred per worker, thereby raising

output per worker. On the other hand, since workers are subject to random productivity

shocks, complementarity in production implies that expected level of output is lower with

a larger number of workers.5 In the analysis that follows, we see how the trade-off between

these two forces determines optimal team size used in production (and thus unit production

costs) as a function of complexity. Then we will examine how, in this context, countries with

high human capital workers have comparative advantage in the production of more complex

goods.

Once again, consider an economy with many goods indexed by z ∈ (0, z̄]. Each good is

produced with a Leontief technology requiring z tasks to be performed. Let s ∈ (0, z] denote

a particular task that must be performed in order to produce good z, and let q(s) be the

quantity of task s. Then, the total output of good z, qz, is given by

qz = min
s∈(0,z)

q(s). (5)

The economy is populated by L workers, each with productivity h. There are fixed costs

associated with performing each task s. In particular, a worker must first spend 1 unit of

labor learning to perform each task. Let N be the team size that characterizes production of

a good with complexity z. The first question we ask is what is the team size that maximizes

output per worker in sector z.

With a team of size N , each team member specializes in z
N

tasks, and allocates her

endowment of labor equally to each of them. Therefore, after paying the fixed cost to learn

these tasks, each worker has h− z
N

units of labor to spend on production. Hence, each worker

is able to dedicate
h− z

N
z
N

units of labor to each task.

5This point has been emphasized recently by Jones (2008).
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After paying the fixed costs, each worker receives a productivity shock ε, affecting her

performance of each task equally. Therefore, the worker’s actual output is

q(s) =

(
hN

z
− 1

)
ε (6)

of each task s. Plugging equation (6) into (5), it is immediate that the total output of this

team is qz =
(
hN
z
− 1
)

minn=1,...,N εn, while the output per worker is

qz
N

=

(
h

z
− 1

N

)
min

n=1,...,N
εn. (7)

Note that, holding team size fixed, output per worker is higher, the greater the human

capital level h and the lower the complexity of the good being produced z. This is as is

expected. Furthermore, output per worker is a function of the random productivity shocks

faced by workers. What is the team size that maximizes output per worker in this setting?

Assume that the shocks are uncorrelated across workers. The expected output per worker is

then equal to

E
(qz
N

)
=

(
h

z
− 1

N

)
E(ε(1)), (8)

where ε(1) ≡ minn=1,...,N εn is the first order statistic associated with the sample of N out-

comes of a random variable εn across the workers in a team (see Appendix A).

For the sake of tractability, assume for now that the shocks to workers are distributed

ε ∼Uniform(0, 1). This assumption has the advantage of leading to a simple closed-form

solution for the optimal team size. In particular, the expected output per worker with team

size N is equal to (see eq. A.4):
(
h
z
− 1

N

)
1

N+1
. Following Costinot (2009), this expression

can be used to find the optimal team size Nz in a sector with complexity z:

Nz = argmaxN

(
h

z
− 1

N

)
1

N + 1
. (9)

The first-order condition is given by:

1

N2

1

N + 1
+

(
h

z
− 1

N

)(
1

(N + 1)2

)
= 0. (10)
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Straightforward manipulation gives the optimal team size in sector z of:

Nz =
z

h

(
1 +

√
1 +

h

z

)
. (11)

The optimal team size increases in the complexity of the good, z, and decreases in the

worker productivity h. Optimal team size increases with complexity due to the gains from

specialization that are obtained when the necessary tasks are divided up among a larger

number of workers. The higher is the level of human capital, the costlier a low productivity

draw becomes, and thus optimal team size falls in h. As we will see, the relationship we have

established between optimal team size, complexity and human capital will be important in

determining the pattern of comparative advantage.

Though the model of the division of labor and team size follows Costinot (2009), the

key tension that pins down the optimal team size is different in our paper. In Costinot

(2009), the tension is between greater division of labor and the resulting higher per worker

productivity on the one hand, and imperfect contract enforcement: the more workers are in

a team, the greater is the probability that at least one of them reneges. In our setup, the

tension is between division of labor and the greater possibility of an adverse productivity

shock that an individual worker may experience, in a production setting characterized by

strong complementarities, a mechanism inspired by Jones (2008). Note also that though we

choose to follow Costinot’s terminology and call the team members “workers,” the model

will not change if we think of N as intermediate inputs suppliers instead.

The first result we would like to establish is that in this setting more complex goods are

also less volatile. Going back to the expression for output per worker (7), it is immediate

that the volatility of output per worker is given by:

V ar
(qz
N

)
=

(
h

z
− 1

N

)2

V ar(ε(1)). (12)

We state the counterpart of Lemma 1 for this model:
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Lemma 3 (Complexity and Volatility in the Division of Labor Model) The vari-

ance of output per worker decreases in z: d
dz
V ar

(
qz
N

)
< 0.

The proof is provided in Appendix B. We should note that the result in Lemma 3 depends in

an important way on the property that the variance of the first order statistic (the minimum

of a random sample) decreases in the sample size. Though this property appears intuitive,

there are no finite sample general results in statistics about how the variance of the first

order statistic behaves as the sample size increases. However, it can be confirmed using

direct calculation that this variance indeed decreases in the sample size for some important

distributions such as the uniform (as in this paper), exponential, Pareto, and Fréchet. This

gives us some confidence that our main results are not excessively driven by the particular

distributional assumptions that we adopt.

A related result is that in each sector z, a country with lower productivity of workers

experiences lower volatility. This is because higher productivity implies lower team size,

which in turn increases the volatility of output.

2.4 Human Capital Differences and Comparative Advantage

Suppose now that there are two countries, North and South. The only difference between

them is that the North’s workers are more productive: hN > hS. Following Costinot (2009),

we map this model into the Ricardian framework of Dornbusch et al. (1977), by consider-

ing the unit labor requirements in each good z in the two countries. The average labor

requirement of a unit of the good z in the North is:

aN(z) =
hN(

hN

z
− 1

NN
z

)
1

NN
z +1

=
zhNNN

z (NN
z + 1)

(hNN
z − z)

, (13)

and similarly in the South. Therefore, the ratio of relative unit labor requirements is given

by:

A(z) =
aS(z)

aN(z)
=

hSNS
z (NS

z + 1)(hNN
z − z)

hNNN
z (NN

z + 1)(hNS
z − z)

. (14)
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In order to establish the direction of comparative advantage, we must ascertain whether

the schedule A(z) is increasing or decreasing. Taking the derivative with respect to z, and

applying the envelope theorem, we obtain:

A′(z) =
∂aS

∂z
aN − aS ∂aN

∂z

(aN)2 . (15)

Evaluating the partial derivatives with respect to z based on equation (13) and simplifying,

A′(z) becomes:

A′(z) =
hSNS(NS + 1)

(hSNS − z)2hNNN(NN + 1)

(
hNNN − hSNS

)
. (16)

Therefore, the sign of this derivative is the same as the sign of
(
hNNN − hSNS

)
. Using

equation (11), it is immediate that
(
hNNN − hSNS

)
> 0, and therefore the North has a

comparative advantage in the more complex goods, as expected. We summarize the discus-

sion above in the following Lemma:

Lemma 4 (Comparative Advantage in the Division of Labor Model) The North

has comparative advantage in goods with higher z: dA(z)
dz

> 0.

The intuition for this result is straightforward: When workers have higher human capital,

they spend a smaller fraction of their time learning, and so unit labor requirements are

lower. Importantly, this reduction is not uniform across goods. In the more complex sectors,

learning costs are more important and the decrease in unit labor requirements is larger. As

a result, the country with workers with greater human capital is relatively more efficient in

the more complex industries.

2.5 Trade Equilibrium

We now specified the pattern of comparative advantage A(z) in two ways: by relying on

contract enforcement (equation 3), and human capital differences (equation 14). In order to

close the model, we must specify agents’ preferences. Assume, following Dornbusch et al.
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(1977), that all agents have identical Cobb-Douglas preferences, so that each good receives a

constant share of expenditure. Let ω = wN

wS be the relative wage between the two countries.

There exists a cutoff z̃, such that

ω = A(z̃). (17)

Let S(z̃) be the share of income spent on Southern goods. Then, the trade balance condition

is given by

ω =
hSLS [1− S(z̃)]

hNLNS(z̃)
. (18)

The equilibrium specialization pattern is illustrated in Figure 4. Equations (17) and (18)

jointly determine the equilibrium pair (ω, z̃). It is immediate that the South produces goods

(0, z̃), while the North produces goods (z̃, z̄). As such, the South ends up in the less complex

industries in which production is the most volatile for each firm.

3 Empirical Evidence

There are two crucial pieces of evidence that we must bring to bear to support the theory

proposed above. The first is that poorer countries do indeed specialize in less complex goods.

This result has been established recently in a series of studies. Levchenko (2007) shows that

countries with worse institutions – which are essentially the less developed countries – have

relatively higher export shares in goods with low product complexity. In that study, mea-

sures of product complexity at sector level are constructed using the Input-Output tables

for the United States, and by examining how many intermediates each sector requires to

produce. Costinot (2009) provides similar results using an alternative measure, which is the

average learning cost that a worker must pay in each sector before she becomes produc-

tive. Finally, Nunn (2007) constructs a measure of contract intensity by combining the U.S.

Input-Output table data with a classification of intermediate goods industries into those that

require relationship-specific investments and those that do not. Nunn finds that less devel-

oped countries specialize in industries that do not rely on relationship-specific investments,
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which could be another way of capturing industries with a low z in the model above.

The second crucial element is the negative relationship between complexity and volatility

at sector level. On this score, we are not aware of any existing empirical evidence. In this

section, we use data on the actual complexity and volatility of the U.S. manufacturing sectors

to demonstrate that complexity is a robust and highly significant predictor of volatility.

3.1 Data

Industry-level data on volatility come from the NBER Productivity Database that reports

information on 459 manufacturing sectors at the 4-digit SIC87 classification. We compute

output per worker using data on total shipments and employment in each sector. Total

output is deflated using sector-specific deflators provided in the database, ensuring that we

capture the volatility of quantities. Because the level of real output per worker exhibits a

trend, we compute the time series of the growth rate of sales per worker for each sector, and

take the standard deviation over time for the period 1970-1997. Taking growth rates is the

simplest way of detrending the data. To check robustness of the results, we also HP-filter

the output per worker series in each sector, and compute the volatility of the deviations

from the HP-filtered trend. Following the recommendation of Ravn and Uhlig (2002), we

set the HP filter parameter to 6.25, since the data are at the annual frequency. Output per

worker data may be contaminated by the time variation in the use of inputs or other factors

of production. Thus, we compute the volatility of two alternative series: value added per

worker, and Total Factor Productivity (TFP). The sector-specific TFP series is available in

the same database. For both of these, we compute the standard deviation of the growth rate

of the series, though the HP-filtering procedure delivers the same results.

Data on product complexity come from the U.S. Input-Output Tables for 1992, and have

been previously used by Cowan and Neut (2007) and Levchenko (2007). In particular, in

this exercise we use the total number of intermediates in production as a proxy for product
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complexity z in the model above. It turns out that the number of intermediates ranges from

16 to 160, a tenfold difference. Table 1 reports the summary statistics for both complexity

and the actual volatility (standard deviation of output per worker growth) of the sectors in

our data. Table 2 reports the top 10 most and least complex sectors, according to the total

number of intermediates used.

Using the variation in actual product complexity in place of z in the model, we can

compute the optimal team size N from equation (11), and as a result the volatility in each

sector from equation (B.2). The resulting standard deviation of output as a function of

product complexity z is depicted in Figure 5. Volatility is decreasing in complexity.6

Is the standard deviation of a sector as implied by its complexity a robust predictor of the

actual volatility in that sector? Figure 6 presents the scatter plot of the standard deviation

of output per worker growth against the implied volatility of output per worker constructed

based on our model. There is a robust positive relationship between the two variables.

Table 3 presents the regression results. All throughout, we report the standardized beta

coefficients, obtained by first demeaning all the variables and normalizing each to have

a standard deviation of 1. Thus, the regression coefficients correspond to the number of

standard deviations change in the left-hand side variable that would be due to a one standard

deviation change in the corresponding independent variable. The four panels differ only in

the measure of actual volatility used on the left-hand side. Panel A uses standard deviation

of output per worker growth; Panel B, the volatility of deviations from HP trend; Panel C,

volatility of value added per worker; Panel D, standard deviation of TFP growth. Column

1 reports the results of a bivariate regression of the actual on the implied volatility. The

6The relationship between complexity and volatility would be similar if we instead computed implied
volatility using the imperfect contracting model of section 2.1. All of the results are virtually unchanged
under this alternative approach, so we do not report them to avoid unnecessary repetition. To compute the
variance, we choose the value of h = 20. We checked the robustness using all values of h between 1 and 200,
and while h affects the level of the implied variance of output, the statistical significance of the results is
unchanged.
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positive relationship is very pronounced: with the exception of the deviations from the HP

trend series, the t-statistics on the coefficient on the implied volatility are in the range of

5-7, and the R2’s of the bivariate regressions are as high as 0.18.

Column 2 controls for other sector characteristics, such as raw materials intensity, capital

intensity, and skill intensity, constructed based on Romalis (2004). As we can see, after

controlling for other sector characteristics, the coefficient of interest in Panel B goes from

being insignificant to significant at the 1% level, while the rest of the results are virtually

unchanged. Finally, column 3 removes the outliers in terms of actual volatility, and still

finds that the relationship of interest is quite strong and statistically significant.7 Finally, it

may be that what we are picking up are differences in the elasticity of substitution across

goods. For instance, Kraay and Ventura (2007) argue that developing countries are more

volatile because they specialize in goods that have a higher elasticity of substitution. We use

data from Broda and Weinstein (2006) to check whether sectoral volatility is systematically

correlated with elasticity. Column 4 in each panel reports the results. Because the Broda-

Weinstein data are in a different industrial classification, we lose 10 of the the sectors due

to an imperfect concordance. Controlling for it the elasticity of substitution leaves the main

results completely unchanged. The coefficient on the elasticity of substition is positive,

and significant in two out of four specifications. Plausibly, sectors with higher elasticity of

substitution are also more volatile.

Rather than use the data on the number of intermediate inputs to compute sectoral

volatility as implied by the model, we can also assess whether actual volatility is posi-

tively correlated with measures of product complexity directly. Table 4 presents the results

of estimating the relationship between actual volatility and various indicators of product

complexity. Following Cowan and Neut (2007) and Levchenko (2007), we use a number

of variables, all constructed using the 1992 Benchmark Input-Output Table for the United

7More precisely, we drop the top 5% most volatile sectors, according to each corresponding measure of
volatility.
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States. Column 1 regresses volatility on the number of intermediates used in production.

Column 2 used the Herfindahl index of intermediate goods shares; Column 3, the Gini coef-

ficient of intermediate use, columns 4 and 5 the shares of the 10 and 20 largest intermediate

inputs in the total input use. Note that complexity increases in the number of intermediates,

but decreases in all the other indicators. Thus, in columns 2 through 5 we should expect

positive coefficients. We can see that with the exception of column 2, all the coefficients are

significant at the 1% level. The coefficient on the Herfindahl index is not significant, but

nonetheless enters with the expected sign.

We conclude that in a large sample of sectors, variation in complexity does play a signif-

icant role in explaining sectoral volatility, which is a key building block of our theory.

4 Conclusion

Recent literature has made important advances in understanding the patterns of macroeco-

nomic volatility across countries. It is well known that poorer countries experience higher

volatility. Koren and Tenreyro (2007) demonstrate that part of the higher volatility in de-

veloping countries can be accounted for by the fact that they produce on average in more

volatile sectors.

How can we explain this puzzling observation? In this paper, we argue that international

trade plays an important role. In particular, recent literature emphasized that poorer coun-

tries tend to export goods that are less complex (Levchenko 2007, Costinot 2009). Since

these goods use fewer intermediates, shocks to each intermediate input are more important

for production (a point also emphasized by Koren and Tenreyro 2008). Therefore, less com-

plex goods tend to be more volatile. Comparative advantage in less complex goods, that

could arise from institutional quality or productivity differences, drives specialization in more

volatile industries by developing countries.

There is one aspect of our argument for which no empirical evidence currently exists.
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Namely, it has not been demonstrated previously that less complex goods are indeed more

volatile. In the last section of the paper we use data on the actual complexity of sectors

in the United States to construct the volatility of each industry based on our model. We

then relate this implied volatility to the actual volatilities of sectors observed in the data,

and show that there is a robustly significant relationship: less complex industries are indeed

more volatile.
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Appendix A Order statistics

Suppose that ε1, ..., εN is a random sample of size N drawn from a distribution with pdf

fε and cdf Fε. The first order statistic is defined as ε(1) ≡ minn=1,...,N εn, that is, it is the

minimum value in this random sample. The distribution of ε(1) can be derived as follows.

The cdf of this variable is given by:

Fε(1)(x) = P ( min
n=1,...,N

εn < x) = 1− P ( min
n=1,...,N

εn > x) = 1− (1− Fε(x))N . (A.1)

Correspondingly, the pdf of ε(1) is obtained by differentiating the cdf:

fε(1)(x) = N(1− Fε(x))N−1fε(x). (A.2)

As an example, suppose that ε ∼Uniform(0, 1). The pdf of ε is fε(x) = 1, and the cdf is

Fε(x) = x. Then, the pdf of the first order statistic is

fε(1)(x) = N(1− x)N−1. (A.3)

Using integration by parts, it is straightforward to establish that in this case, the expectation

and the variance of ε(1) are given by:

E(ε(1)) =
1

N + 1
(A.4)

V ar(ε(1)) =
N

(N + 1)2(N + 2)
. (A.5)

These results will be useful in the main text.

Appendix B Proofs

B.1 Proof of Lemma 1

Proof: Taking this derivative directly,

d

dz
V ar

(
1

z
ε(1)

)
= − 2

z3
ρz (1− ρz) + ρz (1− 2ρz) ln ρ

1

z2

=
ρz

z2

[
ln ρ (1− 2ρz)− 2

z
(1− ρz)

]
.
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Rearranging, the Proposition holds if and only if:

1− 2ρz

1− ρz
ln ρz < 2.

When ρ ∈ (0, 1) and z ≥ 1, it is always the case that ρz ∈ (0, 1). Therefore, the result

nesessary for the proposition obtains if

1− 2ρ

1− ρ
ln ρ < 2 ∀ρ ∈ (0, 1) .

We now show that this is condition holds by proceeding in two steps. First, we show that

the function f(ρ) = 1−2ρ
1−ρ ln ρ is monotonically increasing throughout the interval ρ ∈ (0, 1).

And second, we show that the supremum of this function, which obtains when ρ→ 1 is less

than 2, satisfying this required condition.

Differentiating f(ρ):

d

dρ

[
1− 2ρ

1− ρ
ln ρ

]
=

1− 2ρ

1− ρ
1

ρ
+ ln ρ

[
−2(1− ρ)− (−1)(1− ρ)

(1− ρ)2

]
=

1− 2ρ

1− ρ
1

ρ
+

ln ρ

(1− ρ)2

=
(1− 2ρ)(1− ρ)− ρ ln ρ

(1− ρ)2ρ

=
(1− ρ)2 − ρ(1− ρ)− ρ ln ρ

(1− ρ)2ρ

=
1

ρ
− (1− ρ) + ln ρ

(1− ρ)2
.

Thus, this derivative is positive if (1−ρ)+ln ρ < 0. It is immediate that limρ→0 (1− ρ+ ln ρ) =

−∞ and limρ→1 (1− ρ+ ln ρ) = 0. Therefore, if this function is monotonic for ρ ∈ (0, 1), it

is everywhere less than 0, as required. Taking the derivative of this function,

d

dρ
[1− ρ+ ln ρ] = −1 +

1

ρ
> 0 ∀ρ ∈ (0, 1).

This establishes that f(ρ) = 1−2ρ
1−ρ ln ρ is monotonically increasing in the interval (0, 1). We

now show that its supremum is less than 2. The supremum obtains as ρ→ 1.

lim
ρ→1

[
1− 2ρ

1− ρ
ln ρ

]
= lim

ρ→1
(1− 2ρ) lim

ρ→1

[
ln ρ

1− ρ

]
= (−1) lim

ρ→1

ln ρ

1− ρ
= − lim

ρ→1

1
ρ

−1
= 1 < 2,
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where the last equality comes from applying l’Hôpital’s Rule. This completes the proof.

B.2 Proof of Lemma 3

Proof: Using the optimal value of N in equation (11), the term in parentheses simplifies to:(
h

z
− 1

N

)2

=
1 + h

z

N2
. (B.1)

Using equation (A.5) from the Appendix, the variance becomes:

V ar
(qz
N

)
=

(
1 +

h

z

)
1

N(N + 1)2(N + 2)
. (B.2)

To establish that the variance decreases in good complexity z, evaluate its derivative with

respect to z:

d

dz
V ar

(qz
N

)
=

∂

∂z
V ar

(qz
N

)
+

∂

∂N
V ar

(qz
N

) dN
dz

. (B.3)

Evaluating each of these subcomponents separately, it is indeed the case that d
dz
V ar

(
qz
N

)
< 0.
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Figure 1. Volatility and Development, 1970-2000

USAGBRAUTBELDNK

FRA
DEU

ITA

LUX

NLDNOR

SWE

CHE
CAN

JPN

FINGRC
ISL

IRL

MLT

PRT

ESP

TUR

AUS

NZL
ZAF

ARG

BOL

BRA

CHL

COL

CRI
DOM

ECU

SLV

GTM

HTI

HND
MEX

NIC
PAN

PRY

PER
URYVEN

ATG

BRB
BMU

DMA

GRD

BLZ

JAM
ANTPRI

KNALCA

VCT

SUR

TTOCYP

IRN

IRQ

ISR

JOR

LBN

OMN

SAU

SYR

EGY

YEM

AFG

BGD

BTNKHM

LKA TWN

HKG

IND

IDN KOR

LAO

MACMYS

MDV

NPL
PAK

PLW

PHL
SGPTHA

VNM

DJI

DZABWA

BDI

CMR
CPV

CAF

TCD

COM

COG

ZAR

BEN

GNQ

ERIETH

GAB

GMB

GHA

GNB

GIN

CIV

KEN

LSO

LBR

MDG

MWIMLI
MRT

MUS

MAR

MOZ
NER
NGA

ZWE

RWA

STP

SEN
SLE

SOM

NAM
SDN SWZ

TZA

TGO

TUN

UGA

BFA

ZMB
SLB

FJI

KIR

VUT

PNG

WSM

TON

FSM

−4
−3

−2
−1

Lo
g(

St
. D

ev
 o

f G
DP

 G
ro

wt
h)

6 7 8 9 10
Log(PPP Per Capita Income)

Notes: This figure displays the relationship between per capita income and the standard deviation
of per capita GDP growth, in natural logs. Source: Penn World Tables.

Figure 2. Level of Development and Specialization in Volatile Sectors, 1970-2000
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Notes: This figure displays the relationship between per capita income and the weighted average
variance of the specialization pattern constructed following the methodology of Koren and Tenreyro
(2007), in natural logs. Source: Penn World Tables and UNIDO.
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Figure 3. Level of Development and Specialization in Complex Sectors, 1970-2000
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Notes: This figure displays the relationship between per capita income and the weighted average
number of intermediates used in production, with the weights equal to output shares. Source: Penn
World Tables and UNIDO.

Figure 4. Pattern of Production and Trade
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Figure 5. Volatility as a Function of Product Complexity: Model
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Notes: This figure displays the relationship between the number of intermediate inputs in production
(z) and volatility of output per worker, as implied by theory. Actual Complexity is the number of
intermediate inputs used in a 4-digit SIC sector, calculated from the 1992 U.S. Input-Output Tables.
It ranges from 16 to 160.

Figure 6. Actual Volatility and Volatility Implied by Product Complexity

−2
0

2
4

6
Ac

tu
al

 V
ol

at
ilit

y

0 2 4 6 8
Volatility Implied by Complexity

Notes: Actual Volatility is the standard deviation of output per worker growth of a 4-digit SIC
manufacturing sector in the United States over the period 1970-1997, sourced from the NBER
Productivity database. Volatility Implied by Complexity is the standard deviation of output per
worker implied by the theory, given the number of intermediate inputs used in that sector. The
number of intermediates used in each 4-digit SIC sector is computed using the 1992 U.S. Input-
Output Tables.
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Table 1: Summary Statistics 
Variable Mean Std. Dev. Min Max Obs. 
      
Complexity (z)  77.0 25.2 16 160 459 
Actual volatility  0.080 0.040 0.027 0.339 459 
            

Notes: Complexity is the number of intermediates used in production, calculated based on the US I-O matrix. Actual 
volatility is the standard deviation of real output per worker growth, 1970-1997, calculated based on the NBER 
Productivity Database. 

 
 

Table 2: Most and Least Complex Sectors 

SIC Code Sector Name 
Number of 

Intermediates 
      

Least Complex Sectors 
2429 Special product sawmills, n.e.c. 16 
3263 Semivitreous table and kitchenware 17 
3151 Leather gloves and mittens 17 
3131 Footwear cut stock 21 
3292 Asbestos products 22 
3142 House slippers 24 
2397 Schiffli machine embroideries 24 
3259 Structural clay products, n.e.c. 28 
2441 Nailed wood boxes and shook 29 
2121 Cigars 29 

   
Most Complex Sectors 

3088 Plastics plumbing fixtures 139 
3089 Plastics products, n.e.c. 139 
3081 Unsupported plastics film and sheet 139 
3086 Plastics foam products 139 

3087 
Custom compounding of purchased plastics 
resins 139 

3083 
Laminated plastics plate, sheet, and profile 
shapes 139 

3084 Plastics pipe 139 
3082 Unsupported plastics profile shapes 139 
3714 Motor vehicle parts and accessories 148 
3711 Motor vehicles and car bodies 160 

      
Notes: Complexity is the number of intermediates used in production, calculated based on the US I-O matrix. Actual 
volatility is the standard deviation of real output per worker growth, 1970-1997, calculated based on the NBER 
Productivity Database. 
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Table 3: Actual and Implied Volatility 

 
Notes: Standardized beta coefficients reported throughout. Robust standard errors in parentheses; * significant at 10%; ** significant at 5%; *** significant at 
1%. The dependent variables are standard deviations computed over the period 1970-1997. Implied Volatility is the standard deviation of a sector implied by its 
complexity as in equation (12), where complexity is measured as the number of intermediates used by a sector, from the US Input-Output matrix. raw material 
intensity=(value of raw material inputs)/(value of raw material inputs+value added); capital intensity=[1-(total compensation)/(value added)]*(1-raw material 
intensity); skill intensity=[(nonproduction workers)/(total employment)]*(1-capital intensity)*(1-raw material intensity), all computed based on the NBER 
Productivity Database. Elasticity is the elasticity of substitution between varieties in a given SIC sector (source: Broda and Weinstein, 2006). 
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Table 4: Alternative Measures of Complexity 

 
Notes: Standardized beta coefficients reported throughout. Robust standard errors in parentheses; * significant at 10%; ** significant at 5%; *** significant at 
1%. The dependent variable is the standard deviation of output per worker growth computed over the period 1970-1997. Number of Intermediates is the number 
of intermediates used in production; Herfindahl Index is the Herfindahl index of intermediate input use; Gini Coefficient is the Gini coefficient of the 
intermediate input use. Share of 10 and 20 Largest Intermediates are shares in of the top 10 or 20 intermediate inputs in the total intermediate input use. raw 
material intensity=(value of raw material inputs)/(value of raw material inputs+value added); capital intensity=[1-(total compensation)/(value added)]*(1-raw 
material intensity); skill intensity=[(nonproduction workers)/(total employment)]*(1-capital intensity)*(1-raw material intensity), all computed based on the 
NBER Productivity Database. 
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