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The following paper discusses the analysis of some types of economic time

series using an altered time scale, or operational time. It is argued that

for some series, observations that are ordinarily thought of as equidistant in

time are actually irregularly spaced in a more natural time scale. Section A

discusses point or impulse sampling of related series and the estimation of

distributed lag relationships between them. Section B discusses time—aggregated

sampling. In Section C, operational—time methods are used to calculate the dis-

tributed lag relationship between starts and completions for single—family dwellings

in the United States. The results are statistically compared with those of ordinary

distributed lag methods.

A. Point—Sampled Time Series

Assume y(t) = b*x(t) + u(t) (1)
ro

where b*x(t) b(s) x (t—s) ds (2)

and E(u(t) x (s)) = 0, all t and s.

Not let y(t) and x(t) be sampled at discrete time intervals, according to

the impulse process:

+
s(t) tS(t_tn) (3)n —

where the numbers ..., t1, t0, t1, t2... form a stationary point process (SPP)1

independent of both x(t) and y(t), and cS(.) is the Dirac delta—function.

Let •(w), (w), (w)2 be the spectral densities for the processes y(t),

x(t), and 8(t). x(t) and y(t) are assumed to be covariance stationary.

1
See Beutier and Leneman[l] for a definition of an SSP.

2See Beutler and Leneman[2] for the method of calculating (w). 4 (w)
is a generalized function as is s(t); generalized functions will not be is—
tinguished from ordinary ones in notation.
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Let Y(t) s(t) y(t) and X(t) = s(t) x(t) be the sampled series. The

spectral densities for Y and X are then given by:

= 4 * 4(w); q(w) 4 *

If we define '(w) as the fourier transform of f(t), as the cross—

spectrum of y and x, and 4 as the spectrum of u (and assume all these exist),

d =b4
yx x

4 = jb4 +

If we define:

4* ( 4)
4*4S X

qu
= 4 * + * (b — IBI 4 *

Then 4)7 = IBI 4 + 4 and = B
Thus Y(t) = B * X (t) + U(t) (5)

where E[X(s) U(t)] = 0, all

The relationship between B and b has been examined in some detail by Sims [5]

for periodic sampling.

Note that (4) and (5) provide very little practical information when the

structure of the sample points {tn} is complicated or random. This Is because

estimates of ç. , and 4 will converge to the values represented above only

when the time scale is taken into account. A consistent estimation procedure when

{t) is Poisson (and the autocovarIance function R is continuous enough) would be

to divide the sample into lag Intervals, and calculate sample autocovariances in

these intervals. As the sample size increased, the number of lag intervals

3mis exposition is identical to Sims [5], but is more general. Periodic
sampling Is a particular stationary point process.
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could be increased more slowly and the width of the lag intervals decreased.

A sampling scheme of interest to economists is a periodic one, with period

larger than the distance between sample points. An example of this is quarterly

observations, with the operational time distance between every fourth observa-

tion a constant. Observations on the inventories of a commodity whose retail

sales are seasonal might be an example of this. Operational time could be con-

sidered to move slowly during quarters of low turnover, and faster during the

quarter of high turnover.4

For this sampling scheme, the relationship between B and b is identical

to that given by Sims [5], namely:

B(t) = b * R *
Rx (t) (6)

Sims' argument must be modified some; for instance, it is clear only that

the filter R *t) has the value 1 at t = 0 and 0 at t = 4, 8, 12

One would expect something like Sims' Proposition to still be valid; that is

if b is "smooth" and x has its power concentrated in the low frequencies, then

estimating B correctly gives values of B near b.

Again it must be mentioned that the above paragraph applies only when

operational time intervals are known, and are used in the estimation process.

It is interesting to ask what happens if operational time considerations are

ignored, and the quarterly observations are mistakenly treated as being equally

spaced in time. Some analysis of this problem for univariate time series auto—

covariance analysis is presented in Clark [4]. The central analytic result

presented there was that the incorrectly estimated autocovariance would converge

in probability to a weighted average of the true autocovariances. That is, if

41f the lead time for inventory replacement did not follow the same pattern,
this scheme would not be valid.

5Sims [5], page 552.
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F(t) is the distribution function of the operational time to the nth observa-

tion, given that there is an observation at t = 0, then6

plim (RT(n) X(s) X(s + ri)) = R (t) dF (t) (7)
T-= 'S=l J

x n

F(t) is pictured in Figure 1 for quarterly operational time intervals

.1, .2, .3, .4.

Least squares estimates (s) would converge to an average: 114[B1(s) +

B2(s) + B3(s) + B4(s)] where 131(s) is calculated by using only the observations

on y(t) at the end of the ith quarter. Since there are 4 possible patterns of

observation, occurring with equal frequency, it is intuitively appealing that

the estimated lag structure is an average of these.

Again, in this case, if b is "smooth,' X(t) has its power at low frequencies,

and the variation of operational time between quarters is small compared to the

total length of b(s), then the estimated B(s) should be close to b(s). The

averaging here should further complicate the problem of estimating the detailed

structure of b(s) when it is not smooth.

B. Time—Aggregated Sampling

Section A discussed the instantaneous measurement of a stochastic economic

variable. This is the measurement of a point in time, rather than a flow during

an Interval of time. The money supply of U.S. population on December 29, 1973

would be an example of such an observation. Monthly retail sales or quarterly

housing starts are most naturally considered as a flow accumulated over a period

6Clark [4], page 3. This formula must be modifIed if x does not have zero
mean.
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of time.7 If the operational time for the particular system being studied varies

between observations, and the flow variable Is positive, a seasonally varying

pattern of observations should be produced. Operational time, then, can be an

alternative method for dealing with seasonal variation. In the context of dis-

tributed lag estimation, operational time will be most useful when the whole

system evolves more slowly at some times than at others. Then the different

distributed lags explaining the dependent variable at different points in the

seasonal cycle will be "squashed in" or "stretched out" versions of the dis-

tributed lag for other seasons.

Mathematically, one operational time hypothesis is as follows:

Let y(t) = b * x(t) + u(t); E(x(t) u(s)) = 0 all t,s.
Observations Y(l), Y(2), Y(3)

X(l), X(2), X(3)

are generated:

tti

X(l) = x(u)du; x(j)
—j

x(u)du

li_i

cTl (%Tj

Y(j) =j
T T0 i—i

7As Sims has pointed out to me, his article [5] deals to some extent with
processes that are "unit—averaged" and then "point—sampled." Note that in when
sampling is at equal intervals, this is equivalent to time—aggregated sampling.
In a system where operational time intervals vary, the original series must be
considered as filtered through a time—dependent averaging process before "point—
sampling" and "time—aggregated sampling" are equivalent.



—7—

11, 12, T3... are the operational times ending the observation (sum) of y

and x. Thus X(2), the number of housing starts in February, is the sum of all

the housing starts during the operational time which elapsed during February,

namely 12 — Ii.
One possible alternative is a model in which the distributed lag changes

with the season:

Y(t) b(s,t) X(t—s) + u(t)

çi p
and Y(j) = y(u)du; X(j) = X(u)du

j—i j—l

In discrete time, one must estimate a distributed lag for each different

season. This may be difficult due to data limitations.

Another alternative is that the underlying model relates seasonally

adjusted flows:

(t) = Ib(s)i(t—s) +

(t) = Y(t) a(t) (t) = X(t) c(t)
N N

Y(j) \ y(u)du X(j) \ x(u)du
'-'i—i

a(t) and c(t) are seasonal flow adjustment factors. This model implies that

the Y and X series should be seasonally adjusted, and then the distributed lag

estimated. Predictions of Y would be made by predicting seasonally adjusted

Y, and then dividing by the appropriate constant to seasonally unadjust it.

C. Applications of Various Techniques to Housing Starts and Completions Data

As a practical test of the use of the operational time concept, the start—

to—completion lag for privately owned single—family dwellings in the United

States was estimated using monthly data from January 1968 (the beginning date



—8—

for the completions series) to December 1972.8 Six additional months of data

(Jan.—June 1973) were used as a specification test for the models. Mean—square

prediction error was calculated with this data, which was not used in estimation.

As well as the possible seasonal variation models mentioned above, a model with

no allowance for seasonal variation was estimated. In allmodels, since lag

length was long enough to make unrestricted least squares estimates impractical,

the lag distributions were restricted to lie in a family of connected broken

line distributions. This restriction still yields linear regressions, but is

closer to the present author's a priori notions than Lagrange polynomials.

Since it takes some time tocomplete a house, the distributions were also

restricted to be zero at both the start and end. A possible distribution of

the start—to—completion lag Is given in Figure 2.

0

FiQure 2

ItBrk j ' Lp itrjbutjo with One_Corner

8
Sources for this data were [9] and [10].

I: (J)

3 12.



—9—

The more corners that are allowed, the more independent variables appear

in the regressions. A further restriction was imposed: b(t) > 0.

C.l. No seasonal adjustment

Ignoring the seasonal variation in both V(t) and X(t) leads to results

which are better than one might have expected in explaining a seasonal dependent

variable. This is because the seasonality in starts explains some seasonality

in completions. The results are poor compared with those obtained with more

complicated techniques, as we will see in later sections. The model was as

follows:

—12

Y(t) -2. b(s) X(t—s) + U(t)
s=o

Y(t) single family privately owned houses completed in
month t.

X(t) = single family privately owned houses started in
month t.

The lag distribution in Figure 3 was found using a 3—cornered lag distri-

bution and ordinary least squares after the position of the corners was shif ted9

to obtain the best fit.

The value of the prediction sum of squares may be compared to that for a

naive estimator, Y(t) Y(t—l). The prediction sum of squares for this estimator

is 411.9.

9The statistical properties of such a procedure are not obvious.
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R2 = .9936
Durbjn—Watson (D—W) = 1.56
Prediction Sum of Squares (Jan.—June 1973) = 155.6

Figure 3

Start—to—completion Lag for Privately Owned Single Family Houses, 1968—72.
No Seasonal Adjustment.

(f)
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C.2. Both Series Seasonally Adjusted

Let '(t) and i(t) be seasonally adjusted monthly values for the housing

as in C.l. The seasonal adjustments for housing starts were calculated using

1959—67 housing start data. Since completions data for earlier than 1968 is

unavailable, seasonal adjustment coefficients are calculated from the 1968—72

data.

12
"IY(t) b(s) X(t—s) + u(t) (8)

80

The Durbin—Watson statistic indicates that the seasonal adjustment of

both series has not been at all beneficial. It seems like the seasonal flow

model (9) which relates relative rates of starts and completions is less well

specified than one that relates actual starts and coiap1etion The increased

sum of squared prediction errors (our specification test) verifies this.

Also note that this model does not have the clear interpretation that

C.l. does. In C.l., b(s) may be interpreted as the density function for a

housing completion in month s, given that there is a housing start in month 0.

After seasonal adjustment, such an interpretation is not valid until b(s) has

been multiplied by the relevant ratio of seasonal weights. Thus an estimation

technique which imposes "smoothness" on b(s) does not impose "smoothness" on

the conditional probability of a completion given a start. The poor results

may also be caused by the seasonal filter for Y(t) which was constructed with

the data that were used in regression.



— 12 —

R2 = .9946
D—W = .6433
Prediction Sum of Squares = 191.1

Figure 4

Start—to—Completion Lag for Single—Family Privately Owned Houses, 1968—1972,
Seasonaly Adjusted Data

b
'3

•1

0 1
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C.3.Time—Varying Lags

12

Y(t) =, b(s,t) X(t) + u(t) (10)
8=0

b(s,t) B(s,t + 12), all t.

The above scheme allows separate lag structures for different months. The

sensibility of such a model is clear; if a house was completed in October, the

probability that it was started three months earlier might be different than

the same probability for a house completed in March. Note that any ttsmoothnessu

restriction used in estimating the lag of completions on starts is a restriction

on the proportion of starts in previous months that will be completed in a given

mànth. Since the lag distribution varies from month to month, this smoothness

may not imply smoothness in the distribution of completions, conditional on the

number of starts in a given month. If b(s) is stationary, smoothness in one

sense implies smoothness In the other.

It seems like this latter type of smoothness would be more reasonable in

this case. Such smoothness could be incorporated In an estimation procedure

which estimated all 12 lags at once, with restrictions on the coefficients.

A further reasonable restriction might be that the sum of weights to completion

for starts in any given month would be constant over all months. Thus the like-

lihood of an unfinished house would be the same for all months. Such restricted

regressions were not attempted.

The results for (10) are presented in Table 1. Since there are only 4 data

points for each regression, the estimated lag is restricted to start and end at

value zero, rising linearly to a single peak. Estimation can be accomplished

with univariate regressions. The month of the peak and the month of the end point

were chosen by minimizing squared residuals. An a priori restriction that the end

point should be between six and twelve months was used
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Table 1

Separate Monthly Completion/Start Lags

Month
Months
to Peak

Months
End of

to

Lag
Height

Peak at
of

Lag

Sum of

Lag Weights

January 8 9 .1593 .7169

February 4 10 .1558 .7800

March 5 7 .2538 .8883

April 1 6 .3365 1.0095

May 1 12 .1647 .9882

June 9 10 .2211 1.1055

July 1 12 .1586 .9516

August 1 12 .1717 1.0302

September 2 6 .2939 .8817

October 1 8 .2423 .8481

November 1 8 .2161 .7567

December 1 10 .1918 .9590

DW = .43
R2 = .9967

Prediction Sum of Squares = 81.40
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Although some evidence of the shortening of the lag appears in the early

months of the year, the most evident feature Is the unreliability of using

four data points even In univariate regressions. Many more observations are

necessary to estimate the variable lag well. Despite the erratic jumps in the

lag structure, this formulation does well on our specification test, cutting

the sum of squared prediction errors for January—June completions by 50%, and

the sum of squared residuals by 50%, also. The Durbin—Watson is even worse for

this model, indicating some unexplainable autocovariance in the errors. Clearly

the lag does vary from month to month.

C.4. Tinsley Variable Lag Distribution

Tinsley [7] has proposed a method for estimation of a variable distributed

lag, and it is reasonable to ask how such a lag scheme would work in this present

situation. Here we are placing restrictions on the lag coefficient estimates

in C3; if these restrictions are true (or approximately so), improved estimates

and predictions should be the result.

Tinsley's method consists of allowing the lag distribution to vary linearly

with another exogenous variable, say Z(t), in such a way that the timing of the

reaction of Y(t) to changes in X(t) varies, but the overall reaction does not.

The lag distribution changes while the sum of the lag weights remains constant.

The distributed lag model for housing completions and starts becomes:

v.— 12

Y(t) " b(s,t) X(t—s) + U(t)
s=o

b(s,t) = b(s) + c(s) Z(t—s)

c.— 12

) c(s)=0
s=o
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Z(t) for this model might reasonably be temperature, or Z(t) = cos((t + 4)/6),

where is chosen to make Z(t) smallest in January and largest in July. Other

values (= 1,2,..,6) were also tried, primarily because it was found that there

was a "delayed reaction' to temperatures in the operational time estimations in

C.5. Again, "broken line" distributions were fit for both b(s) and c(s), with

both constrained to zero at s=O and s12. b(s) was allowed three corners, with

c(s) allowed two, which leaves four coefficients to be estimated in a linear

regression when the constraint on c(s) is used. Table 2 gives the estimates of

b(s,t) after some experimentation with phase shifts and corner placement.

Notice that the lag distribution is distinctly bimodal, possibly indicating

that tract and prefabricated houses are put up quickly, while "custom built"

homes are completed over a longer, more uncertain period. This result could also

mean that some builders announce a "start' only when a house is complete or

almost complete.

If the distribution is really bimodal, the low Durbin—Watson statistic in

C.3 can be at least partially explained; our specification did not allow for

anything but unimodal distributions. It is also worthwhile to note that the

results here were best when the "temperature cosine" was allowed to have its

minimum in February rather than January. An "ad hoc" explanation for this will

be given in the next section.

C.5. _A Completion/Start Lag Incorporating Operational Time

An alternative set of restrictions on the separate monthly lags in C.3 is

given by the "operational time" hypothesis discussed in sections A and B. The

speed of evolution for y(t), x(t), and u(t) processes within months varies from

month to month. This will allow the completion/start lag to shrink in the
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Table 2

Tinsley Variable Completion/Start Lags

R—squared .9937

Durbin—Watson — 1.74

Prediction Sum of Squares = 75.2

-
1 2 3 4 5

lag_index_(s)
6 7 8 9 10 11 12

January .301 .172 .029 .033 .048 .065 .057 .048 .038 .026 .013 0

February .290 .164 .028 .037 .049 .064 .054 .045 .036 .025 .013 0

March .286 .158 .027 .043 .053 .065 .053 .043 .034 .024 .013 0

April .290 .156 .026 .048 .057 .068 .054 .043 .033 .023 .012 0

May .301 .158 .025 .052 .062 .072 .057 .043 .032 .022 .011 0

June .315 .164 .026 .053 .065 .076 .060 .045 .033 .021 .011 0

July .330 .172 .027 .052 .067 .079 .063 .048 .034 .022 .011 0

August .341 .180 .028 .048 .065 .080 .066 .051 .036 .023 .011 0

September .345 .185 .029 .043 .062 .079 .067 .053 .038 .024 .011 0

October .341 .188 .030 .037 .057 .076 .066 .053 .040 .025 .012 0

November .330 .185 .031 .033 .053 .072 .063 .053 .040 .026 .013 0

December .315 .180
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summer months when construction costs are lower due to good weather, and

lengthen in the winter when costs are higher)0

To use the operational time hypothesis, two problems must be dealt with.

First, an operational time scale must be constructed. This is again the

"temperature cosine"; operational time r is given by

T = t(t + acos ((ut + q)/6).

The coefficient awas found by nonlinear least squares, while 4was expected to

be chosen so that January gave —1 for the value of the cosine. Some experimenting

showed that a February minimum gave better results. This is possibly due to a

lagged response of contractors to true temperature conditions. It is also possible

that true "operational time" might include a measure of precipitation or Snow accu-

mulation, both of which would move the minimum operational time toward February.

The second problem is the interpolation of continuous flow values for starts

and completions when monthly accumulations are given as data. This problem was

solved in a very simple (and almost surely suboptimal) way by assuming constant

flows over each month. The flow value can then be calculated by dividing the

accumulation of starts and completions during each month by the operational time

difference f or that month. Thus the accumulation of these flows over the opera-

tional time during each month would give the observed values for monthly starts

and completions. Thus, the model is as follows:

y(t) = b(s) x (t — s) + u(t)
Jo

y(t) = flow of completions at operational time t.

10This is a statement about costs for a given rate of output. Presumably
more workers and/or overtime would be used in the summer so that costs of con-
struction would be equalized over the seasons.
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x(t) = flow of starts at operational time t.

rTi
X(i) x(u) du)Y(i) y(u) du

T11 Til
X(i), Y(i) = monthly accumulations of starts and

completions in month 1.

operational time at the end of month I

(t) = Y(i)/(T - Ill)
x(t) X(i)/(ri — ill), for T1_1 < t <

The interpolated flow values x(t) and (t) could be constructed more

efficiently by using their estimated autocovariances,11 but the present simple

method is significantly easier. b(s) is estimated by a linear regression of

(t) on t), where 100 observations (equally spaced in operational time) are

given for each calendar year. The results of this estimation are given in

Figure 5 and Table 3.

The results again are bimodal, even more strongly than those for the

Tinsley lags in C.4. The value for the prediction sum of squares is parti-

cularly encouraging; the standard deviation of forecast error has been reduced

about 40% below its values in C.3. (separate lags) and C.4. (Tinsley lags).

If a long time series for monthly starts and completions were available,

an adequate test of the operational time hypothesis against the alternative of

separate lags could be made; operational time would probably be rejected. As

we have seen, however, operational time is a good approximate restriction to use

with the present limited set of data.

See Whittle [8] for a discussion of these techniques.
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Estimated Start—to—Completion Lag in Operational Time
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Table 3

Completion/Start Lag Using Operational Time12

lazjndex (s)
Month(t) 1 2 3 4 5 6 7 8 9 10 11 11

January .060 .131 .091 .048 .055 .112 .151 .112 .060 .009 0 0

February .059 .138 .098 .049 .064 .122 .140 .094 .045 .005 0 0

March .063 .153 .107 .051 .080 .138 .130 .081 .036 .003 0 0

pril .071 .170 .115 .056 .102 .156 .125 .073 .031 .002 0 0

May .080 .184 .118 .064 .124 .171 .126 .073 .032 .003 0 0

June .089 .190 .116 .069 .136 .183 .134 .080 .038 .005 0 0

July .095 .187 .110 .068 .135 .186 .148 .094 .049 .009 0 0

August .095 .177 .103 .060 .119 .177 .164 .113 .063 .015 0 0

September .090 .164 .097 .051 .096 .156 .179 .132 .078 .020 0 0

October .081 .150 .092 .045 .075 .134 .181 .144 .087 .022 0 0

November .072 .139 .089 .045 .060 .118 .174 .143 .086 .020 0 0

December .064 .132 .088 .046 .053 .111 .163 .130 .075 .015 0 0

= .9938

Durbjn-Ljatson 1.56

Prediction Sum of Squares = 26.3

12Since these lags are estimated for "continuous time" (actually, increments smaller
than months) the numbers represent the relationship between Y(t) and X(t) implied by the
estimated lag structure at the end of each month only.
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