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Approximating data and statistical procedures.
[. Approximating data *

P. L. Dawvies
March 25, 2003

Abstract
Stochastic models approximate data and are not true represen-
tations of the same. Statistical procedures make use of approximate
stochastic models to facilitate the analysis of data.

1 Rationality

D. W. Miiller (1974)

... die distanzierte Rationalitat. Damit ist ein Verhalten gegeniiber
Sachgegebenheiten gemeint, das sich nicht von deren etwaigen
oder vermeintlichen Eigengesetzlichkeiten leiten 1afit, sondern ih-
nen mit Entwiirfen des Verstandes in der Form von Modellen,
Hypothesen, Arbeitshypothesen, Definitionen, Folgerungen, Al-
ternativen, Analogien, also sozusagen “aus der Distanz”, in der
Weise partiellen, vorlaufigen, approximativen Wissens, gegentibertritt.

2 The lack of a concept of approximation

Although statistical models are largely ad hoc with little if any theoretical
underpinning statistical theory is based on the premise of true models. This
will be denied by many but can be confirmed by taking any book on statistics
and looking up the word “approximation” in the index. Statistics has no
concept of an approximate stochastic model.

*Research supported in part by Sonderforschungsbereich 475, University of Dortmund



3 Approximation

A stochastic model P is an adequate approximation for a given data set &, =
(1,...,2,) if a “typical” sample X, (P) = (X1(P),..., X, (P)) generated
under the model P “looks like” the data x,,.

4 Looks like

The words “looks like” are operationalized by specifying certain features
of the sample which are of interest. They may be chosen on the basis of
substantive knowledge of the data or on properties of the simulated data
sets X ,,(P). Certain features of simulated data sets may not be granted
legitimacy when comparing simulated and real data sets. Tukey (1993c)

...we should have to say that certain aspects of the data not
typically, but unavoidably, including “Most (Modelled) observa-
tions have irrational values !”  are not to be used in relating
conceptual (or simulated) samples to observed samples. Thought
and debate as to just which aspects are to be denied legitimacy
will be both necessary and valuable.

5 Features not feature

The use of the plural in Section 4 was intentional. In general a model will
be adequate only if the simulated samples exhibit several different features
which are judged to be relevant. There is no general principle of defining
what is adequate, it depends on the circumstances.

6 Typical

The word “typical” is quantified by specifying a number o, 0 < a < 1, such
that at least 1000% of simulated samples exhibit the features of interest.



7 An illustrative experiment

Using P generate 999 samples X, ,(P), i = 1,....,999 each of size n and then
insert the real data set @, at random. Specify a and then name 1000(1 — «)
“untypical” data sets. If the real data set is one of those named then the
model is not an adequate approximation. Small versions are given by Figures
1, 2 and 3. The real data sets of Figures 1 and 3 were kindly provided by
Prof. Dieter Mergel of the Physics Department of the University of Essen.
They relate to the intensity of reflected X-rays as a function of the angle of
incidence and come from the area of thin film physics. The real data set of
Figure 2 gives the daily rates of return for a financial index.

8 Algorithms

The operationalization of “looks like” and the quantification of “typical” will
in principle result in an algorithm with inputs P and «,, which will determine
whether or not the model P is an adequate approximation for the data «,,.

9 Direct comparison

The concept of approximation involves only the postulated model P via its
samples X, (P) and the data «,. It is a direct comparison of samples gen-
erated under P and @,. It does not involve a comparison of P with some
postulated “true” generating mechanism () of x,,.

10 Approximation for the data at hand

A model P is an adequate approximation or not for the data at hand x,,.
There is no assumption that @, is embedded in a sequence of data sets as
is done in the frequentist interpretation. The degree of belief in the truth
of any model is zero. Treating stochastic models as approximations to given
data sets is neither frequentist nor subjective.



11 Data generated by the model

If the data @, were in fact generated by the model P (there is no assump-

tion that this is the case) then the model P will be adequate for @, with
probability at least a.

12 Adequacy regions

Given a data set &, and a family of models {F; : # € ©} we define the
approximation region for x,, by

A(x,,0) = {6 : Py is an adequate approximation for x,,} (1)

The approximation region A(x,,©) may be empty. It , is equal to X,,(6))
for some 6y € © then ¢, € A(z,,0) with probability at least «. If it is
known that @, was so generated then A(x,,0) is an a-confidence region
for 6y. This will only be the case in simulations where, ignoring problems of
randomness for the moment, data can be generated according to a model. In
the frequentist approach confidence intervals are often justified by claiming
that they will contain the true parameter in say 95% of the cases for a
sequence of real data sets (see for example Bickel and Doksumn (1977), page
163). In the adequacy interpretation for any 0 € A(x,,0) 95% of the data
sets generated und Py will look like x,,.

If A(x,.0) is an adequacy region and T'(#) is some functional then the
adequacy region for T'is {T'(0) : 0 € A(x,,0)}.

13 An example

We consider a sample @,, of size n and the family of models is the normal
family {N(pu,0?) : p € R,o € R, }. We denote the standard deviation of the
sample by s, and the mean by z,. The model N'(y,0?) will be considered
as an adequate approximation for the data if the following hold:

(@, — 1) /o 2(0.99)/V/n

qchi2(0.01,n — 1) < s?/e? < qchi2(0.99,n — 1)
<
dio(Fps N(p,0%) < qdko(0.01,n)

A~ N
= W N
~—



where qchi2(a, k) denotes the a—quantile of the chi-squared distribution with
k degrees of freedom, z(a) denotes the a-quantile of the standard normal,
dj, denotes the Kolmogoroff metric, F, is the empirical distribution function
associated with @, and qdko(a,n) is the a—quantile of the Kolmogoroff
metric for a sample of size n.

The corresponding approximations for a normal sample (right panel) and a
double exponential sample (left panel) both of size 50 are shown in Figure 4.
The samples were standardized to have mean () and standard deviation 1.

14 Precision

In the case of continuous probability models the property that simulated
samples are irrational with probability one will be denied legitimacy (Section
4). The simulated samples will be truncated to the precision of the data x,,.

15 Generating i.i.d. univariate samples

Suppose we have a real sample &, and a model involving independently
and identically distributed random variables with a continuous distribution
function F. In accordance with Section 14 the samples of size n generated
using F are truncated to the precision of @,,, say . Given any 6 > 0 we can
consider a distribution GG such that the Kolmogoroff distance between F' and
G’

satisfies d, (F,G) < d. If § is sufficiently small and we generate the samples
by
X;(F)=F " (U;), X{G)=G"U),i=1,...,n (6)

where the U; are i.i.d uniform on [0, 1] then the truncated samples will be
equal with high probability. Consequently if F' is an adequate model for x,,
then so is G.

16 Topologies, weak and strong

The topology of data analysis and hence of all of statistics is a weak topology.
We use the term “weak” in its customary topological sense. On identifying



a topology with its open sets a topology O, is weaker that a topology O,
it O C O, (Hewitt and Ross (1979) page 9). A weak topology is not to
be confused with the weak topology although the weak topology is a weak
topology (see Donoho and Liu (1988)). Typical weak topologies are generated
by metrics of the form

de (P, Q) = sup{|P(C) = Q(C)] : C € C} (7)
where C is a Vapnik-Cervonenkis class of (Borel) subsets of R" (see for ex-
ample Pollard (1984), Vapnik (1998)). The Kolmogoroff metric (5) is a weak
metric. Strong metrics are density based and are related to the total variation
metric

diy (P, Q) = sup{|P(B) — Q(B)| : B Borel}. (8)
The Hellinger metric is a strong metric, Kullback-Leibler is a strong discrep-
ancy.

17 Topologies and approximation

Weak topologies are consistent with approximation whereas strong ones are
not. Given a data set x,, and a continuous probability model P which is an
adequate approximation for the data there will be other probability models
() which are also adequate approximations but with d;,(P,Q) = 1. In the
case of Section 15 this follows on noting that given F' and given 6 however
small there are distributions G with dj,(F.G) < ¢ but with d,,(F,G) = 1.
For large n it is perfectly reasonable to approximate the binomial distribution
bin(n,0.5) by the normal distribution. This is not possible in a strong metric.
Sometimes the discrete nature of quantity is not discernable at the macro
level, atoms or the energy levels of a photon. A natural approximation by a
continuous distribution is not possible in a strong metric.

18 Topologies and direct comparison

Given a continuous model P and a simulated data set X ,,(P) we form the
empirical measure P,(P) = :—12:7:1 dx,(p) Where 9, denotes the unit measure
in x. We have d,,(P,(P),P) = 1 whereas for a weak metric dez based on
a Vapnik-Cervonenkis class d¢(P,(P),P) = O(1/y/n) whatever P. Weak
metrics permit direct comparison of the data and the model whereas strong
metrics allow only an indirect comparison.



19 Topologies and the differential operator

Given an absolutely continuous distribution function F'

F(x) = / flu)du
the differential operator D is defined by
D(F) = f. )

If a weak metric is used on the space of distribution functions F and some
usual norm on the space of density functions D then the differential operator
D : F — D is discontinuous at every point F' € F.

20 Smooth functionals

A functional T defined on the space of probability distributions is smooth in
different degrees if it is bounded or continuous or differentiable with respect
to a weak metric. The gold standard is locally uniform Fréchet differentiabil-
ity (Davies (1998), Bednarski and Clarke (1998)). As weak topologies have
few open sets it is more difficult to construct such functionals than it is to
construct functionals which are smooth with respect to strong topologies.

21 Asymptotics and direct comparison

The direct comparison of the real data @, with simulated data sets X,,(P)
can sometimes be simplified by the use of asymptotics. To be of use these
must be locally uniform and supplementable by simulations for small sample
sizes. Locally uniformly differentiable functionals in a weak metric (Section
20) give rise to locally uniform asymptotics.



22 Locally uniform Fréchet differentiability:
an example

Consider an M-functional T(P) = (T, (P), Ts(P)) defined by

‘/.d} (%) dP(x) = 0 (10)
/ X(%) WPl) =0 (11)

Given a data set @, we consider a probability model P as adequate approx-
imation for x,, if it satisfies

d/w(PnaP) < qdko(alvn) (12)

and

T,(P,) —T,(P)

q((l - aQ)/Q:Tv Pv Tl) S Tg(P,,,)

< q((1+a2)/27T1P7n> (13)

where P, denotes the empirical probability based on @, and ¢(«, T, P,n)
denotes the g-quantile of (T (P,(P)) — T, (P))/Ts(FP,(P)). Davies (1998)
shows that under suitable smoothness conditions on ¥ and y and under weak
conditions on P which involve only its largest atom, 7" is locally uniformly
Fréchet differentiable at P in the Kolmogoroftf metric. In particular

|Q<a:T7 P'/ Tl) - Q(a7T7Q7n‘)| S C'(P)dkO(QP) (14)

and we also have locally uniform convergence to a normal distribution with
a quantifiable error term. Putting all this together we can approximate
(o, T, P,n) by q(a,T, P,,n) for P satisfying (12) and ¢(a,T, P,,n) itself
by

2(a)S(T,n, P,)/v/n

where

)\ 2
S o (B55E) ap()

(ot (%05 ap(a))

and z(«a) is the a— quantile of the standard normal distribution. The er-

S(T,n, P)* = (15)

rors involved in these approximation are in principle calculable given the

8



‘ data | location scale emp. int. Gau. int ‘
xgs, | 0.105  0.813 [-0.144,0.354] [-0.145.,0.355]
xes | 0.141  0.1.70 [-0.405,0.687] [-0.380.0.622]

Table 1:

data x,. Without the local uniformity one could only appeal to non-uniform

asymptotics.
We set
exp(z/5) — 1
r) = —————— 16
v(x) exp(a/5) + 1 (16)
(2) -1 (17)
X =
X 1

and apply the T-functional to two data sets of size n = 50. The first xg;,
is 1.1.d. standard Gaussian and the second xesy is 1.1.d. standard Cauchy.
We set ay = 0.99 and as = 0.96 to give a > 0.95. The results are given in
Table 1 where emp. int. and gau. int. refer respectively to the approximation
intervals for T (P) based on the quantiles derived from (15) with P = P,
and P = N(0,1) respectively.

23 Existence and uniqueness

Often it is necessary to impose conditions on a probability measure P to
ensure the existence and uniqueness of some functional 7" at P. For exam-
ple if T is the functional of the Section 22 then Huber (1981) pages 138-
139 requires only that the largest atom A(P) of P should satisfy A(P) <
X(£00)/(x(£oc) — x(0)). In contrast Davies (1987) when considering the
existence and uniqueness of so called S-functionals requires that P have a
symmetric decreasing density f which is strictly decreasing at some point
which depends on the function defining the S-functional. Such a condition
is strong. There is an unfortunate tendency to dismiss a condition which re-
quires, for example, only the existence of a continuous density as weak. One
reads such expressions as “under weak conditions” or “under general condi-
tions”. This is to be deprecated. Such conditions are strong, not weak, and
are not acceptable.



24 Residual based approximation and scale

Definitions of approximation based on residuals are often useful, particularly
in regression problems. A source of difficulty is in determining the appropriate
order of magnitude for the noise or the residuals. There is a tendency for
Ly-methods to produce residuals which “look like” those required by the
model even in situations where the model is not an adequate approximation.
An example are outliers in the standard linear regression problem. In some
nonparametric regression problems there is also a problem in determining an
appropriate scale. Thought is necessary when addressing this problem.

25 Density based statistics

Many concepts in statistics such as likelihood, Hellinger distance, AIC and
Minimum Description Length are density based. Because of Sections 17 and
19 an adequate theory of approximation cannot be derived from density
based concepts. They have only a minor role to play in statistical theory and
practice. They can probably be dispensed with.

26 Pathologies of maximum likelihood

Given an ordinary non-pathological univariate dataset @x,, to be explicit,
say a sample of size n from the standard Gaussian distribution N(0,1) and
given any M and any ¢ > 0 there exists a distribution F' with the following
properties:

(i) d(F,N(0,1)) < &
(i

) Fis symmetric with mean zero and variance 1
(iii) F has a positive infinitely differentiable density f
)

(iv) F has a moment generating function, in particular moments of all or-
ders are finite

/’L l
‘l]( dd‘d; $” 1S Z\/[.
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Because of (i) F is indistinguishable from the N(0,1) distribution, (iii) and
(iv) are irrelevant but look good. The maximum likelihood estimator based
on the location model F(- — y) can be made to take on any desired value.

27 Pathologies of Bayes

Consider the sample of Section 26 with sample size n > 2. Let I" be a prior
distribution for g with a positive, continuous and bounded density ~. Then
given M, ¢ > 0, > 0 and n > 0 there exists a distribution F' satisfying
(1)-(iv) of Section 26 such that the posterior distribution A(-|x,) satisfies

A((M =8, M +6)|z,) > 1 —1. (18)

This corresponds to the result of Section 26. The posterior distribution for
pt can be made to be arbitrarily highly concentrated on an arbitrarily small
interval about an arbitrary point.

28 Pathologies of efficiency

Consider the sample of Section 26 with sample size n > 2. Then given ¢ >
0 and § > 0 there exists a distribution F' satistying (i)-(iv) of Section 26
such that the 95%-confidence interval I(x,) for p based on the location
family F(- — p) and the data @, satisfies I(@,) C (—4,0). In other words the
confidence interval can be made arbitrarily small using a distribution which
is empirically indistinguishable from the normal distribution with the same
mean and variance.

29 Data independent pathologies

The pathologies of Sections 26 and 27 rely on constructing a data dependent
model. Given the finiteness of precision of all real data similar constructions
will give rise to data independent pathologies of a similar form.

30 Commonsense and pathologies

The location models of Sections 26, 27 and 28 could be dismissed on common-
sense grounds as being silly, absurd or pathological. Firstly, this is not the

11



case. The models are not pathological as data generated by them are indis-
tinguishable from normal data for any practical degree of precision. Secondly,
such adjectives are of no help in understanding the problem. The pathologies
arise only in conjunction with the procedures “prescribed” by the model. It is
the combination of procedures and model which gives rise to the pathologies.
There is no reason for allowing models to prescribe anything.

31 Likelihood, sufficiency and perturbations

Given a parametric model Py, 6 € © and a sample x,, the likelihood principle
states that the likelihood function contains all relevant information about
6 contained in the data (Berger (1980) pages 23-28). For certain paramet-
ric likelihood functions a factorization is possible which defines a sufficient
statistic. In this case the sufficient statistic contains all relevant information
about # contained in the sample. For i.i.d. Gaussian sample X, (#) the mean
and standard deviation form a sufficient statistic. They do not contain all
the relevant information about # contained in the data. They do not contain
the most important information, namely that the data may be well approx-
imated by a Gaussian model with appropriate parameter values. The small
print contains the proviso that the likelihood principle only holds for data
which are distributed according to P, for some 6 but even this is not suf-
ficient. Not only must the data be so distributed but we must also know
that they are so distributed. This brings us back to Section 2. The likelihood
principle is based on revealed truth.

Likelihood requires a density with respect to a single measure which domi-
nates all the distributions P4, 0 € ©. In continuous models there exist arbi-
trarily small perturbations (Jy,6 € © which are not dominated by a single
measure and hence for which no likelihood is available. Even if we restrict
considerations to perturbations with likelihood these can, in conjunction with
the likelihood principle, be chosen to give almost any pathological result de-
sired. Similar considerations hold for the concept of sufficiency. Likelihood
and sufficiency are both pathologically discontinuous in the weak topology
of data analysis. Given data and a model with a likelihood function there is
no reason for basing the analysis on this function and every reason for not
doing so.

12



32 Blandness: pathologies tamed

Section 28 shows the possibility of importing precision via the model by
means of model optimal procedures. This can be avoided by using smooth
functionals (Section 20) or to a limited extent by using models which are
“bland” or “hornless” (Tukey (1993¢)). Any peculiarity or “horn” of a model
will be exploited to the fullest extent by an optimal procedure. The Cauchy
distribution has a slight horn, namely its peakedness near the origin. Bland
models are useful for comparison. We are fortunate that the normal distri-

bution is bland. Tukey (1993c):

NO ONE HAS EVER SHOWN THAT HE OR SHE HAD A
FREE LUNCH
Here, of course, “FREE LUNCH” means “usefulness of a model
that is locally easy to make inferences from”.

33 Why the normal distribution?

The normal distribution and optimal procedures based on it are often per-
fectly reasonable. The reason is that it is very difficult to estimate the pop-
ulation mean on the basis of a normal sample.

34 Regularization and pathologies

Statistical problems which involve continuous probability models are badly
posed. The problem is not removed by requiring the model to be a reasonable
approximation to the data by means, for example, of a goodness-of-fit test.
General principles such as Bayes or likelihood can always be made to produce
pathologies for models which are consistent with the data. These cannot be
removed by qualitative assumptions such as smooth densities and finite mo-
ments (Sections 26, 27 and 28). To prevent pathologies the problem must be
regularized or almost regularized. The normal distribution may be regarded
as a regularization of the location problem where the regularization is done
in terms of Fisher information (Section 33). Other forms of regularization are
possible and are of interest (Huber (1981)). However it is as well to be aware
of the inexplicit requirement of regularization behind some so called general
principles of statistics.
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35 Reasonable and pathological

There is a continuum between what is reasonable and what is pathological.
It is not always easy to decide where we are on this scale.

36 Robustness

Our attitude to robustness is based on that of Huber (1981) whose approach
is a functional analytical one. Robustness is or should be concerned with
boundedness, continuity and differentiability of functionals in weak topolo-
gies. Because of its emphasis on efficiency the approach to robustness based
on influence functions (see for example Section 2. of Hampel, Rousseeuw,
Ronchetti and Stahel (1985)) inherits the problems of likelihood. Care must
be taken with the basic model to avoid pathologies as in Section 28. The au-
thors are aware of this (page 413 of Hampel et al (1986)) and their concept
of a simple model is related to the concept of blandness (Section 32).

37 Model choice

Many stochastic models are indexed by an infinite dimensional parameter or
by a sequence of finite dimensional parameter spaces of increasing dimension.
Given a data set @, there may be many models which are an adequate
approximation for the data or there may be none. Procedures governing the
choice of models must be able to deal with both situations and will in general
also incorporate substantive knowledge about the data. A theory of model
choice which does not allow the conclusion that none of the offered models
is adequate is itself not adequate.

38 Model choice and simplicity

If a family of models is indexed by an infinite dimensional parameter then
there can be infinitely many adequate models for a given data set x,. In
such cases a concept of simplicity is required. An example is the regression
function f in the nonparametric regression model

Y(t)=f(t)+<c(t)., 0<t< 1L (19)

14



Consider a model based on some infinitely differentiable f which is an ade-
quate approximation to the data. We may perturb f in some manner to give
rise to a function f’ which is not even continuous but such that || f— f'||. < €
where ¢ is so small as to be non-observable. In this and similar situations we
can only try and specify a maximum degree of smoothness which is compat-
ible with an adequate approximation (Donoho (1988)). More generally we
can only specify a minimum degree of complexity required for an adequate
approximation. The operational definition of complexity may depend both
on substantive knowledge and the theoretical properties of the models.

39 Model choice and substantive knowledge

Another approach to the choice of model which is related to the consider-
ation of the previous section is one that is at least partially based on prior
quantitative or substantive knowledge. Examples are a first derivative of at
most 1.5 or monotone increasing or at most one local maximum. Prior knowl-
edge of the form, a finite second moment, a continuous second derivative are
not quantitative and can not help in choosing a model. See the comment to
(iii) and (iv) of Section 26. Quantitative bounds on the function class in-
volved lead to quantitative entropy bounds which appear in the exponential
inequalities of empirical process theory (see Vapnik (1998)). These inequali-
ties can be used when choosing a model. Classes of functions defined only by
qualitative bounds have infinite entropy and are of no help when choosing a
model.

40 Model choice and universal principles

Some procedures of model choice are universal in that they are based on
a principle which is independent of any substantive knowledge about the
data. Examples are Akaike’s AIC (Akaike (1973, 1974, 1977, 1978 1981) ),
Schwarz’s BIC (Schwarz (1978)), Bozdogan’s ICOMP (Bozdogan (200)), Ris-
sanen’s MDL (Rissanen (1987)) and Bayes. Substantive knowledge is incor-
porated in the choice of the family of models and, in the Bayesian scheme,
in the prior distribution. This having been done no further use is made of it.
The choice of the model within the family is based on the universal principle.
Each model is assigned a single real number which purports to represent the

15



degree of fit of the model to the data, possibly modified to take the complex-
ity of the model into account. That model is chosen which gives the best fit
or, in the case of Bayes, the numbers represent some measure of the degree
of belief in the model.

41 Model choice and sufficiency

Rissanen (1987)

It is argued that all the useful information in observed data
that can be extracted with a selected class of modelled distribu-
tions, will be obtained if we calculate the stochastic complexity,
defined to be the shortest description length of the data.

.***...

Hence, if we could determine a model with which the stochas-
tic complexity is reached, we would have learned all the useful
information in the data that on the whole can be extracted with
the chosen class, and that the only way anyone could teach us
more is to offer a better model class. For this reason such a model
may be regarded to represent the sufficient statistic [my italics]
for the data ....

42 Universal principles, approximation and
new models

The universal principles of Section 40 measure the (modified) goodness-of-
fit of a model by a single number. Typically a definition of approximation
of a data set by a model will depend on several features of both the data
and the model, at least partly determined by substantive knowledge. It will
not be reduceable to a single number (Section 5). In particular it is not
possible to decide on the basis of the single numbers and the parameter
values yielded by universal principles whether or not the model is an adequate
approximation to the data or not. Thus irrespective of how bad a family of
models is, universal principles of model selection give us no cause to look for
a better family. Robustifying a universal principle does not weaken the above
criticism.

16



43 Model choice: Nonparametric regression

This section is based on Davies and Kovac (2001). We consider data of the
form (t;,y(t;)),i = 1,...,n with the ¢; ordered points in [0, 1] and the y(¢;)
real valued. We look for an adequate approximation in the class of models
{P(f,o): f:][0,1] - R, ¢ > 0} where random variables generated under
P(f,o) are of the form

V(1) = £(t) + o=(1) (20)

with £(t) representing standard Gaussian white noise. In many situations
noise is indeed well approximated by Gaussian white noise but the method
can be extended to accommodate for example Cauchy noise. We treat ¢ as
a nuisance parameter and set

s = Ld8median(|y(t2) — y(to)], .. y(tn) = y(ta-)D /Y2 (21)

Approximation intervals for o can also be given if desired. For any given f
and any interval I C {1,....n} we set

w(l) = Z(?J(l‘j) — )/ (22)

where |I| denotes the number of elements of I. The model based on f is an
adequate approximation to the data if

sup|w(I)] < s,7/7(Z)log(n) (23)
IeT
where Z is a family of subintervals of {1,....n}. If Z is a multiresolution

scheme with factor 2 we use the default value 7 = 2.5. The equations (21),
(22) and (23) define the concept of approximation which we use. As a mea-
sure of complexity we take the number of local extremes of the function f.
The final approximation problem is then to determine a function f with the
minimum number of local extremes subject to (23). In Davies and Kovac
(2001) developed a technology for solving this problem which is based on the
taut string due to Hartigan and Hartigan (1985). Recently there has been
progress on solving the problem directly but here we still use the taut string.
The solution for the real dataset of Figure 3 is shown in Figure 5. The re-
maining data sets of Figure 3 were generated using the function of Figure 5
contaminated with Gaussian white noise with the appropriate variance and
the final result being rounded to an integer.
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44 Model choice: densities

Given a data set &, we look for a density f which is an adequate approxi-
mation for the data i.e. data generated under the density will look like the
original data set. The following is based on Davies and Kovac (2003). The
notion of complexity we use is that of Section 43. The notion of adequacy
we use is based on Kuiper metrics which are defined as follows. The Kuiper
metric df of order k is given

k
dl‘j“(F’ G) = sup {Z(F(b,) — F(cu) — G(b,) + G(ay)) tap < by <.iiap < bk}
i=1
(24)
We take an Kolmogoroff ball of radius ¢ centred at the empirical distribution
function F,, and calculate the taut string T'S through it with T'S(x(;,) = 0
and TS(I(")) =1 where 2y < ... < x(,) are the order statistics. The radius
of the ball is decreased until d§ ,(F,,TS) < qu(n,k). For n > 50 we use
the default value & = 19 and qu(n, k) is such that for a uniform sample the
probability that the taut string has modality 1 is 1/2. We note again that no
mention is made of a “true” density and that the concept of approximation
is based on a weak metric.

45 Bayes and learning

Bayesian statistics is conservative in the extreme. It is not possible to learn
anything within the Bayesian framework: to learn you have to abandon it.

46 Bayes, bets and truth

A Bayesian prior can be interpreted as a degree of believe in the truth of a
model. Just as in a horse race the Dutch book argument or, in more modern
terms, an arbitrage argument shows that the betting odds must be describ-
able by an additive probability measure. The additivity of the Bayesian prior
rests on the assumption that it is not possible for two different models to be
simultaneously true. If we bet on the number of black balls in an urn then it
is not possible for the urn to simultaneously contain exactly five and exactly
six black balls. If one could ascertain the truth of a statistical model then I
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suppose that in one sense the Bayesian approach could be justified. Simul-
taneously however it would be the end of Bayesian statistics as we would
probably find that all our models are false. Bayesians bets are non-callable
and this is indispensable for Bayesian statistics which requires both the idea
of truth and the impossibility of ascertaining it.

47 Callable bets

In spite of the arguments of Section 46 there is a simple way of betting on
models and parameter values such that the bets are callable. We do not bet
that the model P is the true model for the data @, but rather that the
model P, is an adequate approximation for the data @,. The definition of
an adequate approximation will be operationalized by an algorithm (Section
8) and so one has only to run the algorithm to see whether the model is
indeed an adequate approximation. We can quote odds for every model or
parameter value but it is clear that these odds cannot be described by a
probability distribution over the parameter space. Indeed, if for example 1
quote odds 50% that the N(0,1) distribution is an adequate model then I will
also quote odds of 50% for each of the models N (107" 1), N(0,1+ 10~'°)
and N (107901 4+ 107100) ..

i

48 Determinism and randommness

It is often thought that statisticians analyse random data, a claim supported
by much of the statistical literature where data sets are referred to as real-
izations of random variables. In spite of this no data set has ever been shown
to be random nor is there any known method for generating random data.
On the other hand there are deterministic data sets such as the decimal ex-
pansion of m which show all the characteristics of random data sets (Murier
and Rousson (1998)). Stochastic methods can be applied with success to
deterministic sequences such as that the distribution of the prime numbers
(Kac (1959)). Any satisfactory theory of approximation must not place any
assumptions of the randomness or otherwise of the data sets being analysed.
The above arguments could be countered by claiming that the most basic
scientific theory we have at present namely quantum mechanics has an in-
escapable random component in the random collapse of the wave packet.
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This is however not the case. A theory of quantum mechanics going back
to David Bohm is a deterministic one (Bell (1987), Albert (1992), Goldstein
(1998a), (1988b), Diirr (2001)).

49 Tukey and approximation

An early version of this paper was sent to John Tukey who replied with
three unpublished (Tukey (1993a), (1993b), (1993c)) articles which are now

available from my website.

Davies’s emphasis on approximation is well-chosen and sur-
prisingly novel. While these [sic] will undoubtedly be a place for
much careful work in learning how to describe the concept - - and
its applications - - in detail, it is clear that Davies has taken the
decisive step by asserting that there must be a formal admission
that adequate approximation, of one set of observable (or simu-
lated) values by another set, needs to be treated as a practical
identity.

50 Principles

Statistics has no principles. The mind is free tempered only by the reality of
the world we live in (see Section 1).
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