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Abstract. Motivated by applications in statistical quality control and signal analysis, we
propose a sequential detection procedure which is designed to detect structural changes,
in particular jumps, immediately. This is achieved by modifying a median filter by appro-
priate kernel-based jump preserving weights (shrinking) and a clipping mechanism. We
aim at both robustness and immediate detection of jumps. Whereas the median approach
ensures robust smooths when there are no jumps, the modification ensure immediate re-
action to jumps. For general clipping location estimators we show that the procedure can
detect jumps of certain heights with no delay, even when applied to Banach space valued
data. For shrinking medians we provide an asymptotic upper bound for the normed delay.
The finite sample properties are studied by simulations which show that our proposal
outperforms classical procedures in certain respects.
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1. Introduction

Our aim is to study a class of sequential detection rules. The basic situation is as follows.

We are given a sequential stream of observations Y1, Y2, . . . with associated time stamps

t1, t2, . . . . The observations represent certain (univariate or multivariate) quality character-

istics or a sequence of signals, e.g., FFT spectra obtained by analyzing frames of an audio

signal. In many applications one is interested in on-line monitoring of such sequences of

observations meaning that one wants to get a signal, if there is some departure from normal

behavior. In statistical terms it is assumed that the sequence {Yn} is distributed according

to a known in-control model corresponding to a certain null hypothesis about the process

and therefore about the reality. At each time-point tn a statistical decision procedure is

applied to the available data set Y1, . . . , Yn in order to decide whether we still should rely

on the in-control model or whether there is strong enough evidence to reject this model.

In this paper we study a general detection rule which is especially designed to detect

sufficiently high jumps with no delay. This means, our procedure can guarantee that the

location of the jump is exactly reproduced. Further, the method can be applied to various

fields, since it can deal with univariate, multivariate, and even function-valued data.

To motivate our approach, let us briefly consider the following application in some detail.

In Statistical Quality Control one observes a quality characteristic, Yn, at each time point

tn. In many cases the data {(Yn, tn)} is obtained by sampling the underlying continuous-

time process at discrete ordered time-points {tn}. It is assumed that {Yn} forms a sequence

of identically and symmetrically distributed random variables with common median m, as

long as the production process is in-control. If there is a failure, certain characteristics of

the process may change, and based on statistical estimators of these quantities we may infer

that a change has occurred. For simplicity we confine ourselves to the case that the median

changes, since in general one can transform the data to ensure that structural changes

affect the location of the process. Detecting jumps immediately and in a robust way is

often crucial to analyze the cause of the failure. This in particular applies for complex

production processes where a large number of systems interact. In this case a severe failure

is often the result of a cascade of small failures at different time points. Such a complex

failure can also change the distribution consideraby. Thus, robustness is a concern.

The best known classical procedures to detect change-points sequentially are the likelihood

motivated CUSUM chart, which dates back to Page (1954, 1955), the Shiryaev-Roberts pro-

cedure, independently proposed by by Girshick and Rubin (1952) and Shiryaev (1950), and

the EWMA chart due to Roberts (1959), which employs the L2-optimal predictor of the
2



integrated moving average process of order 1. For results on the (asymptotic) optimality

properties of the CUSUM and Shiryaev-Roberts procedure we refer to Pollak (1985), Mous-

takides (1986), Ritov (1990), and Yakir (1996, 1997). Since these procedures are motivated

by maximum likelihood and Bayesian approaches, one has to know the in-control and out-

of-control distributions to calculate the relevant statistics. Both the CUSUM and EWMA

procedures have been also extended and intensively studied for dependent processes, too.

The basic idea is to use these schemes as motivated by a certain parametric model and to

modify the procedure to take account of dependencies or different distributions. For de-

tails of that approach we refer to Vasilopoulos and Stamboulis (1978), Schmid and Schoene

(1997), and the references given there.

From a nonparametric viewpoint a natural candidate procedure is to use a nonparamet-

ric estimator of the process mean and to compare it with some critical value. Smoothing

estimators which estimate smooth functions consistently were intensively studied in the

classical fixed-sample design. Sequential procedures based on related kernel smoothers and

optimal kernels have been studied by Schmid and Steland (2000) and Steland (2003a,

2003c). Asymptotic distribution theory for dependent time series can be found in Steland

(2003b). For an application to sequential control of credit risk management see Steland

(2002b). Since the procedures studied there are based on weighted averages, they are in-

herently not robust. Furthermore, classic smoothers then to smooth large jumps. Therefore,

in this paper we investigate the performance of a jump preserving procedure based on the

median.

Whereas classical nonparametric smoothers only use horizontal smoothing, jump-preserving

estimators also employ a vertical smoothing scheme. It is that property which enables

jump-preserving estimators to reproduce jumps more accurately than other approaches.

The basic idea of this approach was developed for image processing purposes and is called

sigma filter (Lee, 1983). Related techniques, in particular robust approaches, have been

studied by Chiu et. al. (1998) with an emphasis towards image processing, and by Rue et

al. (2002) using local linear M-smoothers. Rafaj�lowicz (1996) proposed their application

to sequential monitoring. Pawlak and Rafaj�lowicz (2000, 2001c) studied the more general

framework of vertical regression. Limit theorems for the normed delay of stopping rules

relying on classical kernel smoothers can be found in Brodsky and Darkhovsky (1993,

2000). An extension to the sigma filter for i.i.d. data was given by Steland (2002a). The

application of a median-based clipping estimator was proposed by Kryzak, Rafaj�lowicz and

Skubalska-Rafaj�lowicz (2001).
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2. Sequential detection procedure

The proposed method of detection is probably best understood in the context of univariate

observations. After describing the change-point model, we give an introduction to jump-

preserving median estimation. The extension to higher dimensional data is discussed in the

next section.

2.1. Model. Let Y = Y (t) be a generic univariate observation with associated time t. We

assume that

Y (t) = m(t) + εt

where εt denotes an error term distributed according to a symmetric density fε with median

0. Consequently, m(t) stands for median of Y (t). Further, we will denote the density of Y

at time t by f(y; t).

For a given stream {(Yi, ti)} of observations obtained by observing Y (t) at the ordered

non-stochastic time points t1 < t2 < . . . , we assume that

Med(Yi) = 0, ti < tq (in-control model)

and

Med(Yi) = m(ti) > 0, ti ≥ tq (out-of-control model).

More precisely, for our results we assume that

Med Y (t) = m(t) ≥ B > 0

if the process runs out-of-control, i.e, t ≥ tq. Here tq denotes the change-point and q its

index. Of course, one may also consider negative shifts, but for simplicity of presentation

we shall concentrate on positive ones.

2.2. Jump-preserving estimation. Before presenting the method itself, we shall provide

a brief introduction to the statistical reasoning leading to our approach.

Recall that the median is a minimizer of the expected absolute deviation,

(1) m(t) = argminm∈R

∫
|y − m|f(y; t) dy.

The basic idea of our approach is to introduce a weighting mechanism in this objective

function which ensures that the minimizer is still given by the median m(t), and which

simultaneously guarantees that observations far away from m(t) are downweighted. Define

kM(y; t) = k

(
y − m(t)

M

)
4



where k is a symmetric probability density with center of symmetry equal to 0 and M

denotes a positive parameter. Instead of (1) we shall now study

(2) m∗(t) = argminm∈R

∫
kM(y; t)|y − m|f(y; t) dy.

Of course, our aim is to verify that m∗(t) = m(t). This fact can be easily seen by a change

of measure. Observe that

E[kM(y; t)|Y − m|] =

∫
kM(y; t)|y − m|f(y; t) dy

= c−1
kM ;t

∫
|y − m|fkM

(y; t) dy(3)

where the transformed density fkM
(y; t) is given by

fkM
(y; t) =

f(y; t)kM(y; t)

ckM ;t
, ckM ;t =

∫
f(y; t)kM(y; t)dy.

It is instructive to note that for kernels k with support [−1, 1] the transformed density has

support [m(t) − M, m(t) + M ]. Moreover, for the uniform kernel given by k(z) = 1/2 if

|z| ≤ 1 and k(z) = 0 otherwise, the transformed density is simply obtained by truncating

the distribution and renormalizing. Equation (3) shows that if Y ∗ is distributed according

to fkM
(y; t), we may write

m∗(t) = Med(Y ∗; t).

As a consequence, a minimizer of the weighted version (2) is given by the median of an

observation Y ∗ which is distributed according to the transformed density which has support

[m(t) − M, m(t) + M ].

To see that the median of Y ∗ is equal to m(t), note that the transformed density is obtained

by a translation y �→ y − m(t) of the density

ϕkM
(z; t) =

fε(z)k(z/M)

ckM ;t
,

which is symmetric around 0, since the error density fε and the kernel k have this property.

2.3. Sampling from fkM
and a data transformation. Let us briefly discuss a heuris-

tic but not rigoruous reasoning of an approach to obtain a sample whose distribution is

approximately given by fkM
(y; t), and a data transformation to obtain a sample catching

the location. Our remarks only aim at providing further motivation. The rigorous results

presented below are not affected by these rough ideas.

Let −∞ < g1 < · · · < gR < ∞ be equidistant points with Δ = gj+1 − gj. Choose

ξj ∈ (gj, gj+1]. Recall that the histogram approximates the underlying density, i.e., fj/Δ ≈
5



f(ξj), if fj is the proportion of the Y ′
i s in (gj, gj+1]. Suppose Y ∗

1 , . . . , Y ∗
L is a sample with

corresponding proportions

f ∗
j =

k(ξj/M)fj∑L
l=1 k(ξl/M)fl

, j = 1, . . . , R − 1.

Note that such a sample can be approximately constructed if we use 	f ∗
j f−1

j L
 copies of

each observation in (gj, gj+1]. Here 	x
 denotes the greatest integer less or equal than x,

x ∈ R. We have

f ∗
j

Δ
=

k(ξj/M)fj/Δ∑
l k(ξl)fl

≈ k(ξj/M)f(ξj)∑
l k(ξj/M)f(ξl)Δ

≈ k(ξj/M)f(ξj)∫
k(x/M)f(x) dx

= fkM
(ξj).

To motivate a data transformation of Y1, . . . , Yn related to the first moment of fkM
, suppose

now that fj = 1/n for all j, meaning that fj/Δ yields an approximation of f(Y(j)), where

Y(1), . . . , Y(n) denotes the order statistic. Then both sides of

f ∗
j /Δ ≈ k(Y(j)/M)f(Y(j))∑

l k(Y(j)/M)f(Y(j))Δ

yield an approximation of fkM
(y) at y = Y(j). Note that the f ∗

j define a discrete distribution

which puts mass k(Yi/M)/
∑

j k(Yj/M) on the point Yi, i = 1, . . . , n. The moments of this

distribution are given by

mr =

∑n
i=1 k(Yi/M)Y r

i∑n
i=1 k(Yi/M)

, r ∈ N.

Looking at the numerator and neglecting the denominator, we propose to base inference

on the transformed observation

(4) k([Y − m(t)]/M)Y

The median of the random variable (4) is

Med[k([Y − m(t)]/M)Y ] = Med[k(ε/M)m(t)] + Med[k(ε/M)ε]

= m(t) Med[k(ε/M)],

since ε
d
= −ε and k(−x) = k(x) for all x ∈ R, which implies k(ε/M)ε

d
= k(−ε/M)(−ε) =

−k(ε/M)ε, i.e., Med[k(ε/M)ε] = 0. Consequently, the median of the transformed observa-

tions (4) is proportional to m(t).
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To obtain data taking on extreme values if |m(tn)| is large, we plug in Yn as an estimate

for m(tn). Hence we base our procedures on the transformed sample

Zi = k([Yi − Yn]/M)Yi, 1 ≤ i ≤ n, n ∈ N.

Note that observations far away from the current observation are shrunken towards 0.

Further, if Yi is symmetrically distributed around 0 (in-control model), then Yi
d
= −Yi, and

therefore

−k([Yi − Yn]/M)Yi
d
= k([Yi − Yn]/M)Yi.

Consequently, the median of these transformed quantities is 0.

2.4. The detection procedure. To obtain a robust and smooth estimate when the pro-

cess is in control, we propose to calculate the empirical (clipping) median of the most

recent, say, h observations of the sample Y1, . . . , Yn available at time tn. Here the clipping

median is defined as

m̂nh = ClipMedn−h+1≤i≤n

{
k

(
Yi − Yn

M

)
Yi

}
,

where ClipMed stands for the empirical median calculated from all Zi’s with corresponding

Yi satisfying |Yi − Yn| ≤ M . Note that observations with |Yi − Yn| > M are excluded from

the calculation of the median. Taking the median ensures a certain degree of robustness

of the estimator if there are no jumps, whereas the clipping property ensures that the

estimator is able to react immediately when there is a level shift or strong trend in the

data, for the following reasons. Both properties are controlled by h (degree of smoothing)

and M (sensitivity with respect to jumps). If M is not too small, on average only a few

observations will be excluded reducing efficiency only slightly. But if there is a (large) jump,

Yn is expected to be large, and thus the neighorbood defined by N (Yn) = {i : |Yi−Yn| ≤ M}
will shrink substantially. This has the effect that, firstly, the median is calculated from a

small sample mainly consisting of observations after the change point, and, secondly, the

estimator no longer smoothes the data. Note that if N (Yn) = {n}, which may happen if Yn

is an extreme outlier or the first observation with a mean differing considerably from the

in-control mean, then the clipping median interpolates, i.e., ClipMedn−h+1≤i≤n = Yn. If the

process mean is constant after the change point, the estimator will stabilize again, since

N (Yn) will tend to increase successively, and continues to smooth the data in a robust way.

Noting that we may assume that the in-control median is 0, since otherwise we may replace

the Yis by Yi − μ0 where μ0 is the in-control median, we decide in favor of a jump at time

n if

m̂nh < −c, m̂nh > c, or |m̂nh| > c
7



for some pre-specified threshold (critical value) c > 0, depending on whether one aims at

detecting positive, negative, or arbitrary jumps. The corresponding stopping time for the

two-sided case is therefore defined as

Nh = Nh(c) = inf{n ∈ N : |m̂nh| > c}.

2.5. Choice of the threshold. Concerning the choice of the threshold c there are two

basic approaches. A popular criterion is to choose c such that the average in-control run

length attains a pre-specified value, say, ξ. The average in-control run length is defined by

ARL0(c; h) = E[Nh(c)] =
∑
k∈N

kP0(Nh(c) = k)

The value c can be approximated numerically by estimating ARL0(c; h) by simulation. For

better comparison we used this approach in our simulation study.

However, this requires knowledge of the in-control distribution, which is often unknown.

Further, for some applications it is more important to detect jumps of a certain magnitude

with a high certainty than knowing that the stopping time has a certain average run length.

Thus, one can also choose c depending on the size of a jump we want to detect with high

probability. This approach is also motivated by the no-delay property discussed below.

3. Zero-delay property

In this section we discuss the zero-delay property of the proposed sequential detection

procedure. We provide sufficient conditions on the design of the detection procedure such

that a jump of height B is detected with no delay. It turns out that this property holds true

for univariate, multivariate, and function-valued observations. Further, no assumptions on

the dependence structure are necessary. This means, the result is valid for any dependent

stochastic process. When concerned with multivariate observations, e.g., vectors, a jump

of height B is a vector B defining the jump height for each coordinate. It is clear that we

need an appropriate framework which can deal with the various cases. Basically, we have

certain objects y representing possible observations, addition, subtraction of these objects

is required and should have a reasonable interpretation. Of course, multiplication with real

numbers is necessary, and finally, an order relation to compare objects. Therefore, we shall

assume that we are given Banach space-valued observations where the Banach space is

equipped with an order relation.

To this end let (B, ‖ ◦ ‖) be a Banach space with norm ‖ ◦ ‖. Let P denote a probability

measure defined on a sigma algebra F of measurable events A ⊂ B. If the dimension of B
8



is finite, all norms are equivalent, but the choice of the norm is important for applications,

since it defines our understanding of neighborhoods.

We shall further assume that there is an order relation ≤ given, i.e., a subset R≤ ⊂ B×B
such that for all x, y, z ∈ B the following three properties are satisfied:

(i) (x, y) ∈ R≤ or (y, x) ∈ R≤.

(ii) (x, x) ∈ R≤.

(iii) If (x, y) ∈ R≤ and (y, z) ∈ R≤, then (x, z) ∈ R≤.

As usual, we write x ≤ y if (x, y) ∈ R≤.

Let Y1, Y2, . . . be a sequence of independent and identically distributed B-valued random

elements. We shall now generalize the detection rule proposed in the previous section to

the current more general framework. Note that the median-based estimator proposed in

the previous section is well-defined if B = R and ‖ ◦ ‖ = | ◦ |. For the multivariate case,

B = Rk and ‖ ◦ ‖ being an arbitrary vector norm, the multivariate median is not uniquely

defined. However, the zero-delay property does in fact not depend on the concrete choice of

a location estimator, as long as the estimator satisfies a rather mild regularity assumptions,

which is satisfied by many location estimators. Therefore we assume that

(5) m̂nh = LocEsti∈{n−h+1,...,n:|Yi−Yn|≤M}

{
k

(
Yi − Yn

M

)
Yi

}
,

where LocEst stands for a clipping location estimator. This means, m̂nh is a statistic with

values in B depending only on the random elements Y1, . . . , Yn up to time tn, such that

only random elements Yi are used if their distance to the current observation Yn does not

exceed M . More precisely, we assume that

(6) m̂nh is a σ(Yn
n−h+1)-measurable statistic

where

Yn
l = {Yi : l ≤ i ≤ n, |Yi − Yn| ≤ M}

with

(7) min ‖Yn
n−h+1‖ ≤ ‖m̂n‖ ≤ max ‖Yn

n−h+1‖.
Here we use the notation

min ‖A‖ = min{‖a‖ : a ∈ A}.
max ‖A‖ is defined analogously. A signal to indicate evidence that the process is no longer

in control is given when

(8) ‖m̂n‖ > c
9



where c is a pre-specified critical value (threshold).

We are now in a position to formulate the result on zero-delay detection in a rigorous

fashion.

Theorem 3.1. Assume (6), (7). Further, suppose that the process mean m(t) satisfies

m(t) =

{
0, t < tq (in-control model)

B, t ≥ tq (out-of-control model)

For any stationary stochastic process {εn : n ∈ Z} in discrete time with

P [−A ≤ εn ≤ A] = 1

holds true for some constant A ∈ B, the detection rule (8) with m̂nh defined by (5) detects

the jump B with zero delay, with probability 1, if

‖B − A‖ − M > c.

Proof. Using −A ≤ εn ≤ A, for all n, we may argue as follows. For all n < q we have

Yn = m(tn) + εn ≤ A,

whereas for n ≥ q

Yn = m(tn) + εn ≥ B − A.

Further, by definition of m̂n and Yn
n−h+1, we have for all n ≥ q

‖m̂nh‖ ≥ min ‖Yn
n−h+1‖ = min

i:|Yi−Yn|≤M
|Yi|

≥ ‖Yn‖ − M ≥ ‖B − A‖ − M.

Since we have zero delay iff. m̂qh > c, a sufficient condition is

‖B − A‖ − M > c.

�

4. The asymptotic delay for shrinking medians

In the previous section it was shown that clipping location estimators can detect jumps of

certain heights with no delay for all h. This is essentially due to clipping and boundedness

of the error terms. We will now omit clipping, but still shrink the data towards 0 using

a kernel k. To avoid that part of the sample collapses to 0, we assume that k attaches a

minimal weight, i.e.,

(9) 0 < kmin ≤ k(z) ≤ kmax < ∞, and k(z) = kmin, if |z| > M.
10



We also assumed that k(−z) = k(z) for all z ∈ R and k(|z1|) ≥ k(|z2|) for |z1| ≤ |z2|.
We study the asymptotic behavior in terms of the point-wise false-alarm rate and show

that, roughly speaking, for large enough h the delay, when expressed as a percentage of

the bandwidth h, is not larger than (1/2 + ε). The results are verified for independent

univariate data having a density with bounded support. The results of this section are

asymptotic, but the case of small h is studied to some extent via simulations in the next

section.

To this end consider the stopping rule which gives a signal if

(10) m̂nh > c

for a pre-specified threshold c, where

m̂nh = Medn−h+1≤i≤n

{
k

(
Yi − Yn

M

)
Yi

}
.

The associated stopping time is again given by

Nh = inf{n ∈ N : m̂nh > c}.
Recall that this procedure uses the most recent h observations. Define also the related

quantities delay and normed delay by

Dh = max{0, Nh − tq} and ρh =
Dh

h
,

respectively. To study asymptotic properties of the delay it is common to consider the

normed delay given by ρh, which measures the delay expressed as a percentage of the

effective sample size h.

We will need the following lemma.

Lemma 4.1. For y ∈ R and M > 0 define Zi(y; M) = k([Yi − y]/M)Yi, i = 1, . . . , n.

Denote the d.f. of Zi(y; M) by FZ1(y;M). We have for all y ∈ R and M > 0:

(i) F (x/kmax) ≤ FZ1(y;M)(x) ≤ F (x/kmin), x ≥ 0.

(ii) F (x/kmin) ≤ FZ1(y;M)(x) ≤ F (x/kmax), x < 0.

Proof. If x ≥ 0, then Z1(y; M) ≥ 0 implies Y1 ≥ 0. Thus,

{kminY1 ≥ x} ⊂ {Z1(y; M) ≥ x} ⊂ {kmaxY1 ≥ x},
which verifies (i). Analogously, if x < 0 we have

{kminY1 ≤ x} ⊂ {Z1(y; M) ≤ x} ⊂ {kmaxY1 ≤ x}
verfiying (ii). �
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The following results asserts that the in-control probability that a signal is given, the

false-alarm rate, tends to zero, in probability, as h → ∞.

Theorem 4.1. (In-control behavior). Let {Yn : n ∈ Z} be i.i.d. with common density

function f satisfying f(x) = f(−x) for all x ∈ R and f(0) > 0. Then for each x > 0

P [m̂nh > x] = oP (1),

as h → ∞.

Proof. By conditioning on Yn we have to analyze∫
P [Medn−h+1≤i≤n{Zi(y; M)} > x]dF (y)

where for i = n − h + 1, . . . , n

Zi(y; M) = k([Yi − y]/M)Yi.

Note that sgn Zi(y; M) = sgn Yi. Hence P [Zi(y; M) ≤ 0] = P [Yi ≤ 0] = 1/2 yielding

Med[Z1(y; M)] = 0, ∀y ∈ R, ∀M > 0.

Furthermore, by Lemma 4.1 we may estimate the density fZ1(y;M) of the variables Zi(y; M)

by

fZ1(y;M)(0) = lim
ε↓0

FZ1(y;M)(ε) − FZ1(y;M)(−ε)

2ε

≥ lim
ε↓0

1

kmax

F (ε/kmax) − F (ε/kmax)

2ε/kmax

= k−1
maxf(0).

Thus, we obtain

0 < f(0)/kmax ≤ inf
y∈R,M>0

fZ1(y;M)(0).

We shall use the Bahadur-type representation of the median, see Bahadur (1966), Kiefer

(1967), Serfling (1980, ch. 2.5.2), and Hesse (1990). It is known that

(11) Medn−h+1≤i≤n{Zi(y; M)} =
1

h

n∑
i=n−h+1

ηi(y; M) + Rn,

as h → ∞, where

ηi(y; M) =
1(Zi(y; M) ≤ 0) − 1/2

fZ1(y;M)(0)
,

n − h + 1 ≤ i ≤ n, and the remainder term satisfies

Rn = O(h−3/4(log h)1/2(log log h)1/4).
12



with probability 1, more precisely, Kiefer shows that

lim sup
n→∞

n3/4Rn

(log log n)3/4
=

25/4[p(1 − p)]1/4

33/4
,

where in our case p = 1/2. Hence, the approximation (11) is uniform in y ∈ R and M > 0.

Further, the random variables {ηi(y; M)} are i.i.d. with

|ηi(y; M)| ≤ M = sup
y∈R,M>0

f−1
Z1(y;M)(0).

Consequently, Bernstein’s inequality gives

P [

n∑
i=n−h+1

ηi(y; M) > x] ≤ 2 exp

(
−1

2

(hx)2

v + Mx/3

)
,

where

v > sup
y

Var (
n∑

i=n−h+1

ηi) = h(1/4)/ inf
y∈R,M>0

fZ1(y;M)(0).

�

The next result considers the (asymptotic) delay of the rule (10). Due to the robustness of

the median, without clipping we can not expect to obtain a no-delay property. However,

the delay is not larger than (1/2 + ε)h for arbitrary ε > 0, if the bandwidth is sufficiently

large and the jump is large enough. Interestingly, it turns out that in order to detect small

jumps with minimal delay, the minimal weight kmin attached by the kernel kmin should be

not too small.

Theorem 4.2. (Out-of-control behavior). Assume both the kernel k satisfies condition (9)

and the process mean m(t) satisfies

m(t) =

{
0, t < tq (in-control model)

B, t ≥ tq (out-of-control model)

Assume {εn} are i.i.d. with support [−A, A] for some A > 0, f(x) = f(−x) for all x ∈ R,

and f(0) > 0. If

B ≥ 2A + M, B > max{A(kmax + kmin)/kmin, [c + kmax]A/kmin},
then for each ε > 0 there exists some h0 > 0 such that for h ≥ h0 the normed delay, ρh, of

the procedure (10) satisfies

P [ρh > 1/2 + ε] = 0.

13



Proof. Let ε > 0. We have

P [ρh > 1/2 + ε] = P [Nh > tq + (1/2 + ε)h] ≤ P [m̂l(h),h ≤ c].

where l(h) = tq +	(1/2 + ε)h
. Clearly, if h0 = 1/(2ε) we have (1/2+ε)h ≥ (h+1)/2 for all

h ≥ h0. Put Zi = k([Yi−Yl(h)]/M)Yi for all i. If i < tq we have Zi = k([εi−(εl(h)+B)]/M)εi.

Since B ≥ 2A + M and εl(h) + B ∈ [B −A, B + A], εi ≤ A ≤ B −M −A ≤ εl(h) + B −M ,

i.e., Zi = kminεi by definition of the kernel k. Consequently,

Zi ∈ [−kminA, kminA] if i < tq.

For i ≥ tq we have Zi = k([εi − εl(h)]/M)εi yielding

Zi ∈ [kminB − kmaxA, kmax(A + B)] if i ≥ tq.

Since the breakpoint of the median is 1/2,

Medi=l(h)−h+1,...,l(h){Zi} ≥ kminB − kmaxA,

if kminA < kminB − kmaxA or, equivalently, B > A(kmax + kmin)/kmin. Thus, if additionally

kminB − kmaxA > c, or, equivalently, B > [c + kmax]A/kmin, {m̂l(h),h ≤ c} = ∅.

�

5. Simulations

To shed some light onto the performance properties of the methods studied in this pa-

per we performed a simulation study. The primary aims were to analyze (i) whether the

procedures are able to detect change-points with high probability when confronted with er-

ror distributions with unbounded support, and (ii) whether the procedures are sufficiently

robust with respect to contaminations. To allow comparisons with other procedures the

critical value was chosen to ensure that the procedure achieves an in-control average run

length of ξ = 60. Remaining parameters were optimized with respect to a unit shift of

the mean. Optimizing for a unit shift (moderate jump) was considered to be a good com-

promise, when the aim is to evaluate the procedures for both small jumps, where EWMA

charts are considered to be a good choice, and large jumps. The EWMA chart is given

by Zn = (1 − λ)Zn−1 + λYn, and λ = 1 yields the Shewhart chart, which is preferable to

detect large jumps. Optimization was done for λ between 0.01 and 0.99. For the (clipping)

median the parameter M was also chosen to minimize the out-of-control ARL. We consid-

ered both the ARL and the probability that the procedure detects the change-point with

no delay for various alternatives. Robustness was studied by a symmetric contaminated
14



normal model. For each setting of the parameters of the simulation models 50,000 runs

were used to estimate these quantities of interest.

Normal Errors: In our first experiment we generated series of i.i.d. N(0, 1)–distributed error

terms εn. In-control series were obtained by putting Yn = εn, whereas for out-of-control

series an alternative m(t) was added starting from time n = 1, i.e.,

Yn = m(n) + εn, n ∈ N.

Given a generic pattern function m0 defined on the unit interval [0, 1] the alternative m

was defined as m(n) = m0(n/ξ) if n ≤ ξ and m(n) = 0 if n > ξ. This means, the pattern

was stretched out onto the interval [0, ξ].

For the clipping median we used an Epanechnikov kernel, and for the MedMin procedure

we simply used the kernel

k(z) =

{
kmin + 0.75 · (1 − z2), |z| ≤ 1

kmin, |z| > 1.

obtained by adding the constant kmin = 0.5.

Table 1 reports out-of-control ARLs and the first 4 atoms of the run length distribution for

the ClipMed, the MedMin, and the EWMA procedures. We used h = 5 and h = 10. Which

procedure is better depends on the alternative m0. We studied two alternatives where the

(clipping) was not expected to be perfect to avoid trivial results. As expected, in terms of

ARL the EWMA is preferable. But it is worse in term of probability of no delay.

Noting that the first two alternatives start with a level shift of size 1 (moderate shift), for

which the methods were optimized. The first one then decrease to 0, whereas the second

increases. Although the EWMA is preferable in terms of ARL, it almost never detects the

jump immediately, whereas the corresponding probability for the clipping median is 100

times higher. The third alternative, te−4t, starts with a trend. In this situation the ClipMed

and MedMin procedures are only slightly worse than the EWMA in terms of ARL.

The question arises, how the ARL and prob. of delay behave as a function of the jump

height a ≥ 0. Figure 1 provides the corresponding ARL curve for a pure jump model

m(n) = a, whereas Figure 2 shows the corresponding prob. of no delay. If we are interested

in detecting jumps immediately with high probability, the intuitive benefits of the clipping

median is confirmed by our simulations.

Contaminated Normal Errors: Our second experiment concerns the robustness properties

of the procedures examined in this article. In many applications it is reasonable to assume

that a certain percentage, say, γ · 100% of the data point are ’bad’ ones. Typically, these
15



gross errors inflate the variance and produce outliers which severely affect performance

properties of classical procedures. To gain some insight into that question we used the

same model as above but generated errors according to a symmetric contaminated normal

distribution, i.e.,

(12) εn ∼ γ

2
N(−mc, σ

2
c ) + (1 − γ)N(0, σ2) +

γ

2
N(mc, σ

2
c ).

We used γ = 0.1, mc = 4, and σc = 1. To provide a fair comparison, the threshold c was

again chosen to ensure an in-control ARL 60, and remaining parameters were chosen to

ensure detection of a one-unit level shift with smallest ARL. Table 2 provides the results.

Whereas the run length distribution of the EWMA procedure is now severely shifted to the

right, the respective distributions of the ClipMed and MedMin approaches are much less

affected by the contamination. The loss of robustness of the EWMA procedure even when

designed for a known contamination model as (12) results in a severe breakdown of the

performance both in terms of ARL and probability of no delay function. Figure 3 shows

that the benefits of the EWMA in terms of ARL now disappear. But Figure 4 shows that

the clipping median is much more better in detecting the change with no delay. Whereas

the curve of the EWMA procedure severely drops down, the curve of the clipping median

is only slightly affected.

6. Conclusions

We studied a sequential detection rule based on a (clipping) median to ensure both robust

smooths and immediate detection of jumps with high probability. The method is based on

shrinking the observations towards 0 and a clipping mechanism neglecting observations far

away from the current level. Sufficient conditions for zero delay are established for general

clipping location estimators for arbitrary Banach space-valued data. For the case of no

clipping we provide a sufficient condition for an asymptotic upper bound for the delay.

The case of small (effective) sample sizes is studied by a simulation study. The clipping

median seems to be preferable for many alternatives including the pure jump model, when

interest focuses on robustness and the probability of no delay, whereas the performance of

the EWMA severely breaks down for contaminated data. In particular, the benefit of the

clipping median in terms of the probability of no delay drastically increases.
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Alternative Method ARL Run Length Distribution
0 1 2 3

MedClip 5 10.18314 0.124 0.105 0.090 0.079
MedMin 5 8.51214 0.044 0.058 0.113 0.113

exp(−t) MedClip 10 14.69552 0.117 0.093 0.079 0.066
MedMin 10 20.089 0.036 0.033 0.033 0.031
EWMA 2.33504 0.089 0.312 0.250 0.152
MedClip 5 5.73346 0.134 0.114 0.101 0.089
MedMin 5 5.94268 0.043 0.063 0.125 0.127

1 + t MedClip 10 7.27214 0.122 0.101 0.086 0.079
MedMin 10 13.73018 0.035 0.031 0.031 0.032
EWMA 2.09836 0.098 0.331 0.259 0.154
MedClip 5 53.84614 0.021 0.020 0.021 0.020
MedMin 5 52.12082 0.021 0.021 0.020 0.021

texp(−4t) MedClip 10 55.73406 0.023 0.021 0.023 0.023
MedMin 10 54.52496 0.023 0.022 0.022 0.021
EWMA 39.37372 0.011 0.051 0.065 0.061

Table 1. Run length distribution for normal errors.

Alternative Method ARL Run Length Distribution
0 1 2 3

MedClip 5 10.354 0.116 0.105 0.093 0.078
MedMin 5 9.745 0.044 0.058 0.083 0.103

exp(−t) MedClip 10 10.354 0.116 0.105 0.093 0.078
MedMin 10 11.693 0.033 0.035 0.046 0.046
EWMA 8.008 0.001 0.078 0.131 0.127
MedClip 5 5.797 0.124 0.121 0.102 0.092
MedMin 5 6.782 0.043 0.061 0.092 0.112

1 + t MedClip 10 5.797 0.124 0.121 0.102 0.092
MedMin 10 8.760 0.033 0.035 0.038 0.051
EWMA 5.518 0.002 0.088 0.147 0.145
MedClip 5 55.417 0.018 0.020 0.019 0.025
MedMin 5 52.191 0.024 0.019 0.025 0.021

texp(−4t) MedClip 10 55.417 0.018 0.020 0.019 0.025
MedMin 10 52.437 0.027 0.027 0.023 0.023
EWMA 51.392 0.000 0.006 0.018 0.021

Table 2. Run length distribution for contaminated normal errors.
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Figure 1. Normal errors: Out-of-control ARL as a function of the jump

height. Shown are the EWMA chart (thin line), the MedClip 5 chart (bold

line), and the MedMin 5 chart (dashed line).
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Figure 2. Normal errors: The probability of no delay as a function of the

jump height. Shown are the EWMA chart (thin line) and the MedClip 5 chart

(bold line).

0 1 2 3 4

0.0
0.2

0.4
0.6

0.8
1.0

JUMP HEIGHT

PR
OB

. N
O−

DE
LA

Y

20



Figure 3. Contaminated normal errors: Out-of-control ARL as a function

of the jump height. Shown are the EWMA chart (thin line), the MedClip 5

chart (bold line), and the MedMin 5 chart (dashed).
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Figure 4. Contaminated normal errors: The probability of no delay as a

function of the jump height. Shown are the EWMA chart (thin line) and the

MedClip 5 chart (bold line).
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