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Abstract  
 

In this entry we seek to put into perspective some of the ways in which statistical methods 
contribute to modern engineering practice. 

 
 
Engineers design and oversee the production, operation, and maintenance of the products 
and systems that under-gird modern technological society.  Their work is built on the 
foundation of physical (and increasingly biological) science.  However, it is of necessity 
often highly empirical, because there simply isn’t scientific theory complete and simple 
enough to effectively describe all of the myriad circumstances that arise even in 
engineering design, let alone those encountered in production, operation, and 
maintenance.  As a consequence, engineering is an inherently statistical enterprise.  
Engineers must routinely collect, summarize, and draw inferences based on data, and it is 
hard to think of a statistical method that has no potential use in modern engineering.  
 
The above said, it is possible to identify classes of statistical methods that have 
traditionally been associated with engineering applications and some that are increasingly 
important to the field.  This encyclopedia entry will identify some of those and indicate 
their place in modern engineering practice, with no attempt to provide technical details of 
their implementation. 
 
Statistics and Measurement 
 
It is nearly self-evident that if one is to design, build, and run technological systems and 
devices, one must be able to measure.  And particularly when new systems are on the 
“leading edge” of technology, how to measure can be a serious issue.  While statistics 
offers no direct help in suggesting physical mechanisms to exploit, it does offer important 
methodologies for quantifying and improving the quality of measurements.  (The long-
standing presence of a statistical group in the US National Institute of Standards and 
Technology testifies to this importance.  And in passing we remark that this group’s 
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online NIST/SEMATECH e-Handbook of Statistical Methods,  
http://www.itl.nist.gov/d iv898/handbook/ [8] provides widely accessible current 
information on statistical methods useful to engineers, in measurement problems and 
beyond.) 
 
One fundamental class of statistical problems in engineering measurement concerns the 
quantification of measurement precision (variability) and identification of important 
contributors to random measurement error.  Random effects models and corresponding 
estimation of variance components are useful statistical tools in these endeavors.  The 
particular context where several different technicians will use a measurement device and 
there is interest in quantifying respectively both a baseline “repeat measurement of the 
same item by a single technician” variance component and a “between technicians” 
variance component, is known as the “gauge repeatability and reproducibility” (gauge 
R&R) problem in engineering and quality control circles.  (See, for example, Vardeman 
and Van Valkenburg [15].) 
 
A second fundamental type of statistical problem in engineering measurement is that of 
adjusting the output of a measurement device to agree (on average) with that of a state-
of-the-art or “gold standard” device (or some fixed standard value).  This is the 
calibration problem, and calibration is aimed at the reduction of systematic measurement 
error or bias, i.e. the improvement of measurement accuracy.  (Osborne [9] provides a 
nice review of statistical methodology appropriate in calibration problems and available 
through the early 1990’s.)  Various forms of regression analysis are common tools in this 
enterprise and it is worth noting that since most often one regresses “new” measurements 
on gold-standard measurements or standard values, transformation of measurements to 
standard values involves an “inverse prediction.”  Accordingly, typical confidence limits 
for a standard value corresponding to a given new measurement come from inversion of 
families of prediction limits for a new measurement not contained in a calibration data 
set. 
 
As measurements themselves become more complicated (for example moving from 
single real numbers, to approximate chemical spectra produced by mass spectrometers or 
to probe paths and approximate coordinates of “touch points” in space produced by 
coordinate measuring machines) the potential for application of methods of multivariate 
analysis and functional data analysis becomes clear.  The recognition of other real 
characteristics of measurements like their digital or rounded nature (their imperfect 
resolution) point to the need for increasingly sophisticated statistical modeling and 
inference methods.  And the need for efficient and effective data collection in 
measurement studies suggests the relevance of methods of statistical experimental design 
in this area. 
 
Statistics and Empirical Optimization 
 
Engineering practice is subject to tremendous economic pressure.  Engineering designs 
must be produced quickly and cheaply, and the products designed must be both highly 
effective and cheap to make, while the systems that produce them must be made to run at 
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high efficiency.  All of this (and the lack of comprehensive scientific knowledge adequate 
to describe and evaluate the implications of every possible engineering alternative) 
implies the engineering need for methods of empirical optimization. 
 
This need has long been recognized and addressed in the traditional engineering statistics 
teaching emphasis on experimental design and analysis.  Methods of factorial and 
fractional factorial design and analysis, and so-called “response surface methodology” 
(empirical optimization strategies based on statistical experimental design and low order 
multivariate polynomial regression) have long had their place.  (See, for example, Box 
and Draper [2].)  Until fairly recently, the bulk of applications of these methods has 
probably been to the improvement of existing physical production processes.  But 
statistical tools are increasingly finding application “upstream” in engineering research 
and design, even in contexts where “data” are not measurements on real physical 
systems, but rather outputs of sometimes expensive-to-run computer codes for 
mathematical models of potential systems.  This last possibility goes in the statistical 
literature under the name of design and analysis of “computer experiments” and its 
methodology has connections to both classical experimental design theory and modern 
spatial statistics.  (See, for example, Santner, Williams, and Notz [11], Sacks et. al [10], 
and Currin et. al [3].) 
 
Statistics and Empirical Product and Process “Robustification” 
 
Related to, but not equivalent to, the notion of optimization is that of making a product or 
process “robust”/able to function appropriately across a wide variety of environments and 
over time.  The engineering need for methods of statistical experimental design and 
analysis to support the empirical search for robust product and process configurations 
was first effectively emphasized in the west in the mid 1980’s by Genichi Taguchi.  Since 
that time, a sizeable statistical literature has grown up in “Taguchi methods.”  This 
includes advances in both special forms of highly fractional experimental designs 
(purposely chosen to vary rather than control “noise”/environmental factors) and in 
modeling and inference for contexts where both mean and variance of response change 
with levels of factors whose levels are to be set in choosing a product or process design.  
(The panel discussion of Nair, et. al [6] is a basic early reference in this area.) 
 
Statistics and Process Monitoring 
 
One of the main subject areas traditionally clearly identified as part of  “engineering 
statistics” is “statistical process control.”  The traditional tacit assumptions have been that 
the main application of the methodology was to production, the most common tools were 
Shewhart control charts, and the fundamental idea (dating at least to Shewhart and the 
1920’s) was that production equipment should minimally behave as if it were “stable” 
(consistent up to iid random variation).  The traditional techniques of statistical process 
control have thus been aimed at detection of process change for iid processes. 
 
In the past decade or two, standard simple tools of statistical process monitoring have 
found application in many business contexts beyond the engineering domain (finding 
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prominent places in Total Quality Management and Six Sigma programs for business 
process improvement), and engineering applications have broadened considerably (for 
example including regular use in the ongoing monitoring of the stability of measurement 
processes and the condition of mechanical equipment in preventative maintenance).  In 
statistically sophisticated circles, theoretically superior alternatives to Shewhart charts 
(particularly CUSUM schemes and their variants) have been developed and promoted, 
though evidence of widespread implementation of these is lacking.  And there has been 
some recent work in engineering process monitoring taking a broader (than iid/white 
noise) view of what is acceptable null process behavior (that could perhaps be better 
informed by closer ties to the economic time series literature and its work on change 
detection). 
 
The usual engineering meaning of the phrase “process control” is something different 
from the monitoring/detection-of-fundamental-change technology of statistical process 
monitoring.  Most engineers (particularly mechanical, chemical and electrical engineers) 
understand the terminology to refer to methods (often based on quite sophisticated 
mathematical modeling) of ongoing adjustment of inherently dynamical systems.  There 
have been some efforts on the part of statisticians to provide integrations of methods of 
“engineering control” and “statistical control” (see for example Tucker, Faltin and 
Vander Wiel [12]).  These have had limited impact in engineering practice, due in no 
small part to difficulty statisticians face in acquiring the very specialized and case-by-
case subject-matter process knowledge and background in control theory needed to first 
understand real engineering control systems. 
 
Statistics and Process Characterization 
 
Much of modern engineering is done in contexts where multiple devices or systems of a 
given design will be made.  (While one-of-a kind engineering applications exist, they do 
not predominate.)  As such, various forms of data-based process characterization are 
important to engineers.  In some situations simple estimation of process parameters or 
functions of those (often called “capability indices”) suffices.  But it is also common to 
want data-based limits for likely values of either single new process outcomes or the bulk 
of all future process outcomes.  So there is a long tradition of the use of prediction and 
tolerance intervals in engineering statistics (that, curiously enough, is largely unparalleled 
in other application areas). 
 
Statistics and Reliability/Life Data Analysis 
 
The issue of engineering reliability is that of how long a device or system can be 
expected to function before some kind of partial or complete failure.  Where reliability is 
to be measured based on observed lifetime data, statistical methodology for single 
lifetime distributions like the Weibull, lognormal, and log-logistic models has been 
standard in engineering applications.  Where systems are “repairable,” inference methods 
for point processes (for example, renewal processes, and where there is the possibility of 
reliability growth or degradation, nonhomogenous Poisson processes) have found 
applications.  There is some commonality of statistical methodology between this area 
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and the area of medical survival analysis, and methods recognizing the presence of 
various kinds of censoring in data collection are essential.  A comprehensive reference in 
the general area of life data analysis is Meeker and Escobar [4] and Meeker and Escobar 
[5] provide a very broad discussion of ways in which statistical thinking and tools can 
contribute to reliability engineering efforts, from the early design stage through the 
analysis of field warranty data. 
 
Two emphases that are increasingly important in engineering life data analysis are the use 
of degradation data and the planning and analysis of accelerated life tests.  That is, where 
the failure of a device or system can be characterized in terms of the value(s) of one or 
more measurements and it is possible to model and collect informatio n on the evolution 
of these over time, there is the possibility of making inferences superior to those based 
only on simple times to failure.  (See, for example, Chapter 13 of Meeker and Escobar 
[4]).  And in contexts where engineers aim to develop highly reliable products whose 
typical lifetimes must exceed the length of any sensible product development cycle, the 
only means of empirical testing of prototypes is to subject them to environments more 
severe than a normal-use environment and try to extrapolate normal-use life 
characteristics from “accelerated stress” life characteristics.  Methods of statistical 
inference (lifetime model regression techniques) and study planning (experimental design 
optimization tools for lifetime regression models) have proved helpful in making the 
engineering work more systematic and efficient, particularly in applications in the 
electronics industry where good simple models exist for the effects on lifetime of typical 
stress factors, and per-unit test costs are relatively low.  (Nelson [7] and Chapters 17 
through 20 of Meeker and Escobar [4] are standard references here.) 
 
Statistics and (Sampling) Inspection and Acceptance Sampling 
 
In production contexts, there is typically a need to verify that a particular item or a 
product stream or lot of items meets performance/conformance goals of the producer 
and/or a consumer.  Where one admits that individual conformance assessments are 
subject to uncertainty (possibly, as in Albers, Arts, and Kallenberg [1], because only 
indirect measurement of primary performance characteristics is possible or desirable) or 
only some of all items of interest will be inspected, statistical methods become useful.  
Traditionally, this was evident in the prominent place of methods of acceptance sampling 
in the engineering statistics literature.  While this prominence has (appropriately) waned 
(see Vardeman [14] and Vander Wiel and Vardeman [13] in this regard), there remains 
an important role for statistics in the general area of the collection and interpretation of 
product inspection data. 
 
Probabilistic Analyses 
 
While most standard engineering analysis is deterministic, there are some areas where 
stochastic models are used and even fundamental.  To the extent that many engineering 
statisticians know a fair amount of probability, they have the potential to contribute to 
stochastic analysis in engineering.  Some of the engineering contexts in which the 
usefulness of stochastic modeling is well-established include: tolerancing problems, 
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system reliability prediction and retrospective “fault-tree” analysis, project planning and 
analysis, production process modeling and queuing, inspection efficacy in 
“nondestructive evaluation,” and signal processing.  In some of these contexts, analytical 
methods are well developed and common.  In others, Monte Carlo methods provide the 
primary path forward to improved engineering insight. 
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