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Abstract: Design reliability at the beginning of a product development program is 
typically low and development costs can account for a large proportion of total product 
cost.  We consider how to conduct development programs (series of tests and redesigns) 
for one-shot systems (which are destroyed at first use or during testing).  In rough terms, 
our aim is to both achieve high final design reliability and spend as little of a fixed budget 
as possible on development.  We employ multiple-state reliability models.  Dynamic 
programming is used to identify a best test-and-redesign strategy and is shown to be 
presently computationally feasible for at least 5-state models.  Our analysis is flexible 
enough to allow for the accelerated stress testing needed in the case of ultra-high 
reliability requirements, where testing otherwise provides little information on design 
reliability change. 
 
Keywords: development programs, one-shot systems, multiple-state design reliability, 
test, redesign, optimal programs, dynamic programming, accelerated testing 
 
1.  INTRODUCTION 

 
The purpose of this article is to identify and study the properties of optimal (test-and-

redesign) development programs.  We consider programs for one-shot systems such as 
missiles, which are destroyed at their first test or first use.  Our analysis builds on those 
of Huang, McBeth, and Vardeman [1] (HMV1) and Moon, Vardeman, and McBeth [2] 
(MVM2).  The previous work is generalized in two important directions, by allowing 1) 
multiple-state reliability modeling and 2) test failure probabilities different from normal-
use failure probabilities. 

Earlier work (HMV1 and MVM2) provided only crude 2-state modeling of design 
reliability.  That modeling might be appropriate for systems with only a single potential 
failure mode.  But the present multiple-state analysis allows for “fine” modeling of the 
evolution of a design (where multiple failure modes are possible and might be either 
eliminated or inadvertently generated by an engineering redesign). 

Real test failure probabilities can be different from normal-use-condition failure 
probabilities in the important case of accelerated stress testing.  Such testing can be 
necessary for sensible development programs for high-reliability systems.  There, it is 
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practically impossible to obtain normal-use-condition test results that will definitively 
signal a change in design reliability.  However, using appropriate physical acceleration 
factors, it can be possible to raise failure probabilities and thereby conduct tests whose 
results more clearly distinguish between design reliabilities. 

Our interest in accelerated testing here is in this kind of increase in failure 
probabilities and the enabling of better empirical discrimination between reliability states.  
We are not concerned directly with its utility in producing quick/timely test results where 
normal-use testing would be prohibitively time consuming.  Nor do we address the 
practical issues of what physical mechanisms can be employed in such acceleration or 
what protocols are most efficient.  There is a huge literature on accelerated testing, in 
both statistics and engineering that address these matters.  Representative work in the 
former can be found by beginning in Nelson [3], Meeker and Escobar [4], and Meeker 
and Escobar [5], and in the latter beginning in Chan [6] and Hobbs [7]. 

The original motivation for the line of inquiry represented here came from issues 
questions raised in a 1992 National Research Council (NRC) workshop on statistical 
issues in defense analysis and testing.  A more recent report of NRC efforts in this area 
can be found in Cohen, Rolph, and Steffey [8].  Work similar in basic motivation to ours 
can be found in Gaver and Jacobs [9] and Donovan and Murphy [10].  And there is a 
sizeable statistical literature on the measurement of “reliability growth” (that is generally 
less concerned with the mechanism by which design reliability is changed than is ours) 
and representative work in this area is that of Fard and Dietrich [11], Erkanli, Mazzuchi, 
and Soyer [12], Mazzuchi and Soyer, R. [13].   

 
2.  MODELING DEVELOPMENT PROGRAMS USING MULTIPLE-STATE 
DESIGN RELIABILITY MODELS 

 
We make the following basic assumptions about the process used in the development 

of a one-shot system. 
1) An initial budget is sufficient to build N  systems and all costs are in units of systems 

built. 
2) Testing does not change design reliability. It provides information on the current 

design reliability state.  A test result is either a “success” or a “failure” and can be 
purchased at a cost T .  (As this test information is Bernoulli distributed, it does not 
typically accumulate very rapidly.) 

3) Redesign has the potential to change the design reliability, but in general does not 
necessarily always improve it.  It might degrade or improve design reliability, and can 
be purchased at a cost D . 

4) Constants , ,  and N T D  are positive (and are not necessarily integers). 
5) The effects of redesign are described by the redesign transition matrix u  (explained 

more fully below) at any point in the development process where it is employed. 
6) There are k  possible values of design (normal-use-condition) reliability, ir , ( k  

design reliability states).  For convenience, design reliability at a higher numbered 
state is greater than design reliability at a lower numbered state ( 1 1k kr r r−> > > ).  
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7) For each reliability state, i , there is a corresponding test reliability, iq .  We will 
assume that test reliabilities are ordered in the same way as design reliabilities, i.e. 
( 1 1k kq q q−> > > ). 

8) There is no a priori restriction on the order in which tests and redesigns may be done 
in a development process.  In particular, multiple tests may be made one after another 
(with no intervening tests) and multiple redesigns may be made one after another 
(with no intervening tests).  (This is in contrast to the analysis of HMV1.) 
 

2.1 The General Multiple-State Design Reliability Models  
 
We seek a development program that produces the largest possible mean number 

of effective systems of a final design, given an initial budget sufficient to build N  
systems.  We will work in units of “systems” and final (conditional) mean numbers of 
effective systems can be evaluated from the remaining budget at the end of development 
as *B∗  ⋅Π   (for B∗  the part of the budget remaining at the end of development, ⋅    the 

greatest integer function, and *Π  the final design reliability, the ir  corresponding to the 

actual state in which development stops).  Then ( )*E B∗  ⋅Π 
 is our objective function. 

We will take what amounts to a Bayesian approach to optimization by not 
assuming the initial reliability state to be known exactly, but by (more generally) 
assuming that one has an initial/prior distribution over reliability states, 0s .  (This simple 
k -dimensional probability vector could be developed as an engineering “pre-test” 
consensus description of beliefs concerning the reliability of an initial/“0-order” design.)  
Then we will let ( )NV s  be the maximum of ( )*E B∗  ⋅Π   (the overall return of an 

optimal development plan) for the initial budget of N  systems and the starting 
probability distribution over the states, 0 =s s . 

This is a problem in (Bayesian) sequential analysis. A development process 
proceeds in stages.  At any stage of a development program, there are 3 choices of 
development activity: “test,” “redesign,” and “build.”  Each activity has a different 
conditional expected pay-off, which we proceed to explain in detail. 

 
2.1.1 Testing 

 
Testing provides information on the current design reliability state by producing a 

binary test result 

 
0 if the test is passed
1 if the test is failed 

X 
= 


 

on any single test.  Each test can be purchased at cost of T  systems.  Bayes’ rule is used 
to update one’s distribution for the current reliability state after a test is made.  This, of 
course, requires knowledge of the vector of reliabilities of the states (r ), and a pre-test 
probability distribution over the states (s ).  We will let 
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 ( )X′ =s η s  
denote a vector specifying the updated probability distribution after testing and obtaining 
test outcome X .  Let q  be the vector of test reliabilities, ( )r s  be the expected reliability 
under normal use conditions 

 ( )
1

k

i i
i

r r s
=

=∑s   

and ( )q s  be the expected reliability under test conditions, 

 ( )
1

k

i i
i

q q s
=

= ∑s   

 (For case of testing under normal use conditions, =q r  and ( ) ( )q r=s s .)   Then 

 ( ) ( ) ( )
0 1

1
 and 

( ) 1 ( )
i ii i

i i

q sq s
q q

η η
−

= =
−

s s
s s

 

and the updated distribution over reliability states following a test is 

 ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

01 02 0

11 12 1

, , , if  0 (the test is passed)

, , , if  1 (the test is failed)  
k

X
k

X

X

η η η

η η η

 =′ = = 
=

s s s
s η s

s s s

…

…
 (2.1) 

(The forms of ( )0η s  and ( )1η s  in (2.1) are generalizations of ones used in HMV1.) 
 

The remaining budget after testing will be N T− .  Therefore, upon testing and 
observing X , the optimal conditional expected number of effective systems will be 

 ( )( )N T XV − η s  
So the expected final return if a test is made is 

 ( ) ( )( ) ( )( ) ( )( )0 11N T N Tq V q V− −+ −s η s s η s  
 
2.1.2 Redesigning 

 
We suppose that redesign is purchased at a cost of D  systems lost to a final stockpile 

per unit of engineering effort expended in attempts to improve current design reliability.  
Our model allows the possibility of regressive redesigns (degrading design reliability).  
The (random) effects of redesigns are represented by a (stationary) Markov chain with 
transition matrix u  (see the particular structures of the matrix used in our work in 
Appendix A.7) describing movements between design reliability states (to better or worse 
states) as shown in Figure 1. 
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state1 state2 

u 12 

u 21 

u 2k

u 11 state  k 

u kk 

u 1k

u k1

u k2

u 22…. state 1 state 2

u 12 

u 21 

u 2k

u 11 state  k 

u kk 

u 1k

u k1

u k2

…. 

 
 
Figure 1. Possible Design Reliability Movements with Redesign in the k -State Model  
 

Let ( )δ s  be an updated probability distribution over the states produced from s  
by a redesign. Each 

 ( )
1

k

i ji j
j

u sδ
=

=∑s  

or in matrix notation 

 ( ) ( ) ( ) ( )( ) ( )

11 12 1

21 22 2
1 2 1 2

1 2

' , , , , ,...,

k

k
k k

k k kk

u u u
u u u

s s s

u u u

δ δ δ

 
 
 = = = ⋅
 
  
 

s δ s s s s

…
…

…

…

 

(Again, this form is a generalization of one used in MVM2.) 
The remaining budget after a redesign will be N D− .  Therefore, the optimal 

expected return if one redesigns is ( )( )N DV − δ s . 
 

2.1.3 Building 
 
The final potential development activity is “build,” which means that the 

development program is terminated and the entire remaining budget is used to build 
systems according to the current design and with its reliability.  Therefore if one builds, 
the mean number of effective systems in the final stockpile is ( )N r⋅   s . 

 
2.1.4 Optimal Return Functions 

 
In light of the forgoing development, the overall optimal return function is 
 ( ) { }1 2 3max , ,NV = Ψ Ψ Ψs  (2.2) 

for 

 
( )

( ) ( )( ) ( )( ) ( )( )
1

2 0 1

                        ,

1N T N T

N r

q V q V− −

Ψ = ⋅  
Ψ = + −

s

s η s s η s
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and 
 ( )( )3 N DV −Ψ = δ s  

A development activity is (currently or initially) optimal at budget N  and probability 
distribution s  if its corresponding Ψ  is maximum in display (2.2). 

Optimal activities at any stage of a development program can be determined by 
repeatedly updating the remaining budget and probability distribution over the states, and 
using the optimal return function.  An optimal development program will continue 
sequentially until “build” is chosen.  In the case that testing and redesign both cost 1 

system, the number of possible development policies could be as large as 
12 3 3 1

2

N N−⋅ + − .  

Naïve direct enumeration of all possible development policies to find a best plan would 
thus require that one find expected payoffs for each of a set of policies whose size grows 
exponentially in N . 

 
2.2 Accelerated Stress Testing 
  

We consider a particular model for accelerated stress testing made from the 
general k -state model.  Our test failure probability vector is obtained by multiplying the 
normal-use failure probability vector = −p 1 r  by an “acceleration factor,” 1a ≥ .  That is, 
test reliability under accelerated testing in state i  is 

 ( )1 1 1i i iq ap a r= − = − −  

( 1 and all i ia q r= =  describes normal use conditions, and 1
11 a p−< <  describes 

accelerated testing.) 
  
3.  SOME DIRECT CONSEQUENCES OF THE MODEL ASSUMPTIONS 
 
 Despite the move from 2-state models to k -state models and the generalization 
that allows ≠q r , many properties of the model specified in Section 2 carry over directly 
from corresponding properties of the 2-state model of MVM2.  For completeness, and 
because several are needed in subsequent arguments, some are summarized in this 
section. 
 
3.1 Properties of the Update of s  After a Test 
 
Proposition 1 The expected design reliability after testing is the same as the expected 
current design reliability: 

 ( ) ( )( ) ( )( ) ( )( ) ( )0 11q r q r r+ − =s η s s η s s  
 This direct generalization of the 2-state Proposition 1 of MVM2 reflects the fact 
that testing does not change the design reliability.  Testing only provides information on 
current design reliability.                                                                                                                                     
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Proposition 2 (Probability distribution over the states under an infinite sequence of tests) 
If one could make infinite series of tests on particular design, s  would converge in 
probability to a distribution degenerate at the correct reliability state. 
 
 This statistical consistency result generalizes Proposition 2 of MVM2 and 
confirms that our modeling allows that with enough testing, one could with virtual 
certainty ascertain the true current design reliability. 
  
Proposition 3 ( ) ( )1 0k k ksη η≤ ≤s s  and ( ) ( )01 1 11sη η≤ ≤s s .  
 
 This generalizes Proposition 3 of MVM2 and says that 1) the probability at the 
best design reliability state will decrease after a failed test but will increase after a 
successful test, and 2) the probability at the worst design reliability state will increase 
after a failed test but will decrease after a successful test. 

 
3.2 Properties of the Update of s  After a Redesign 
 
 Simple properties of stationary finite state Markov chains can be used to establish 
some properties of the effects of redesign generalizing the 2-state Propositions 4 and 5 of   
MVM2. 
 
Proposition 4 (Probability distribution over the states after a single redesign) 

Case 1 ( 0iju >  for i j≤  and 0iju =  for i j> ): For any i , ( )
1 1

i i

j j
j j

sδ
= =

≤∑ ∑s . 

Case 2 ( 1iiu =  for all 1, 2, ,i k= … ): ( ) =δ s s ; Redesign has no effect on s . 
 
 We will call the situation of Case 1 that of "non-regressive redesigns" following 
MVM2.  In Case 1, Proposition 4 says that the distributions ( ) and δ s s  are stochastically 
ordered (and so, for example, ( )k ksδ ≥s  and 1 1( ) sδ ≤s ). 
 
Proposition 5 (Probability distribution over the states under an infinite sequence of 
redesigns)  

Case 1 The Markov chain transition matrix u  is irreducible, positive recurrent, 
and aperiodic: Under an infinite sequence of redesigns s  converges to a steady-
state probability vector ( )1 2, , , kβ β β=β … that may be computed by solving the 
linear equations = ⋅β β u  and 1 2 1kβ β β+ + + = . 
Case 2 ( 0iju >  for i j≤  and 0iju =  for i j> ): Under an infinite sequence of 

redesigns ks  converges to 1 and expected design reliability ( )r s  converges to kr . 
 
The Case 1 result promises a kind of  “law of diminishing returns” for possibly 

regressive redesigns and suggests that in many contexts (at least in the absence of testing 
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adequate to definitively indicate a true current reliability state) relatively few redesigns 
may be appropriate in a program.  On the other hand, the Case 2 result says that if one 
makes an infinite sequence of non-regressive redesigns, eventually design reliability will 
be at the best design reliability state.  
 
4.  ANALYSIS OF OPTIMAL DEVELOPMENT PLANS 
 
 The properties of our model recorded in Section 3 are important, but don’t 
immediately concern optimal development plans.  In this section we first state those 
properties of optimal development that allow their computation, and then describe how 
we use those properties and simulations in our analysis of plan behavior. 
 
4.1 Optimal Next Actions and Evaluating ( )NV s  
 
Proposition 6 If 1N D< + , stopping is an optimal next action and ( ) ( )NV N r= ⋅  s s . 

 
This proposition says that redesign or testing will not be beneficial if the 

remaining budget after making a redesign ( N D− ) would be below that required to build 
one system.  This guarantees that at least one system of the final design will be built. 
 
Proposition 7 If 1N T D< + + , only stopping and redesign are potentially optimal next 
actions and 

 ( ) ( )( ){ }
 s.t. 1
max l

N l N lD
V N lD r

− ≥
= − ⋅  s δ s  

 (for ( )lδ s  the l -fold composition of δ  with itself). 
This proposition says that testing is not beneficial if the remaining budget after 

making a test would not be sufficient to purchase at least one redesign and build one 
system.  It is better to stop or do a number of redesigns that produces the maximum 
expected payoff.    

 
The following is simply a formalization of display (2.2) and says that for large 

current budgets, stopping, testing and redesign are all potential next actions. 
 
Proposition 8 If 1N T D≥ + + , stopping, testing, and redesign are potentially optimal 
next actions and 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }0 1max , 1 ,N N T N T N DV N r q V q V V− − −= ⋅ + −  s s s η s s η s δ s  

 
4.2 Analysis of Optimal Development Programs 

 
Our analysis of optimal development programs consists of two steps.  First, using the 

results of Section 4.1 we compute and store ( )mV s  at each possible remaining budget 
point m , over a grid of probability distributions for the states (a grid of s  vectors in the 
simplex of probability vectors in k -space).  Second, we investigate the behavior of the 
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optimal plans using simulation.  During the simulation process, an optimal activity at any 
current budget cN  and current probability vector for the states cs  is determined using the 
information stored in the first step. 
 
4.2.1 Computation of the Optimal Plans and Expected Payoff for an Initial Budget 
of N  

 
The computation of optimal returns ( )mV s  at each possible remaining budget 

point ( m ) for all possible probability distributions over the states (s ) proceeds by 
“backwards induction.”  This process moves from the smallest to the largest possible 
remaining budget point.  Inputs are the redesign transition matrix u , the initial budget 
N , the test cost T , the redesign cost D , the design reliability vector r , and parameters 
for a ( ),k M -simplex-lattice design specifying the grid of vectors s  over which optimal 
payoffs will be evaluated 

In our first step we: 
a) determine all possible remaining budget points, m , that might be reached in the 

development process using 
 1 2 1m N k T k D= − − ≥  
 where 1k  and 2k  (respectively a number of tests and a number of redesigns in the 
sequence) are nonnegative integers, 

b) sort the possible remaining budget points in ascending order 
 1 21 ... bm m m N≤ < < < =  
 where b is the total number of possible remaining budget points,  

c) recursively determine optimal returns ( )mV s for all s  on a grid by applying 
Propositions 6-8 (and interpolations where needed), starting from 1m  and 
proceeding to bm N= . In this process: 
1) the probability distributions (s ) over the states are elements of a ( ),k M -

simplex-lattice design.  So each component of s  is a multiple of 1M − , and 
1 2 1ks s s+ + + = .  (We used 5,000M =  in our analyses.) 

2) the procedure for determining optimal returns ( )mV s  is: 

 { }
{ }

1

1 2

1 2 3

if  1 1
( ) max , if  1 1

max , , if  1
m

m D
V D m T D

T D m

Ψ ≤ < +
= Ψ Ψ + ≤ < + +
 Ψ Ψ Ψ + + ≤

s  

         where 
( )

( ) ( )( ) ( )( ) ( )( )
( )( )

1

2 0 1

3

         ,

         INTERP 1 INTERP ,  and

         INTERP

m T m T

m D

m r

q V q V

V

− −

−

Ψ = ⋅  
   Ψ = + −   

 Ψ =  

s

s η s s η s

δ s
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        and the interpolation method [ ]INTERP  is described in Appendix A.6. 
 
 Some discussion is in order concerning the magnitude of the computational 

burden implied by a) through c) above.  In the first place, we note that when T  is an 
integer multiple of D  (or vice versa) b  is linear in N .  In a worst case, where no integer 
multiple of T  is an integer multiple of D , b  is only quadratic in N  (being 

approximately 1 1 1
2

N N
T D

  + +  
  

).  So (unlike what happens when one tries to directly 

enumerate all possible plans) the computational burden that must be faced to determine 
optimal policies doesn’t grow rapidly in the budget size. 

Further, the number of points in a ( ),k M -simplex-lattice design is exactly 

( ) ( )1 !/ ! 1 !k M M k+ − −   This means that for fixed k , the computational burden grows 

with M  at order 1kM − .  M  controls the precision with which the functions ( )mV s  are 
computed (and therefore, the precision with which an optimal policy is identified).  For 
the small values of k  we used, this suggests an attractive relationship between precision 
and computational time.  And the count of design points also shows that for fixed M , the 
computational burden grows with k  at order ( )1 Mk − .  While this is strictly speaking 
“polynomial” order, for the kind of large M  we’ve employed (to get good precision), 
this grows very fast with k .  And from a practical point of view, it was the number of 
states, k , that was the limiting factor in our computations. 

 
4.2.2 Simulating the Behavior of an Optimal Development Plan 

 
We studied the expected (under a particular prior/initial probability distribution 

0s ) behavior of optimal (for that 0s ) development plans using simulation.  Simulation of 
the development plan for an initial probability distribution, 0s , and an initial budget of N  
involves randomly generating test results and the effects of redesigns.  (Test results are 
Bernoulli distributed according to the current reliability state, and that state evolves 
randomly according to the transition matrix.)  During the simulation process, an optimal 
next activity at any point is determined by consulting the optimal returns computed and 
stored as described in Section 4.2.1.  One simulation “trial” then consists of beginning at 
a) below and ending at d): 

a) An initial reliability state is generated according to the initial distribution over the 
states ( 0s ). 

b) Starting at initial budget N  and initial probability vector 0s , an optimal next 
activity at any current budget cN  and current probability vector for states cs  is 
determined by using Propositions 6-8 and the stored values of ( )mV s . 

c) Depending upon what activity is prescribed in b), the current budget cN , the 
probability vector cs , and the current reliability state are updated as follows: 
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1) If the activity prescribed is “redesign,” the budget is reduced to cN N D′ = − , 
the probability vector is updated to ( )c' =s δ s , and a new real reliability state is 
generated from the current one using the distribution specified by the 
appropriate row of the transition matrix u . 

2) If the activity prescribed is “test,” the budget is reduced to cN N T′ = − , a test 
result X  is generated by using the current real design reliability state, the 
probability vector is updated to ( )cX′ =s η s , and the real design reliability state 
is not changed. 

d)   The development process is terminated when “build” becomes an optimal next 
activity, and we record the conditional expected number of effective systems built 

* *B  ⋅Π  , for *B the final remaining budget and *Π  the final realized design 
reliability. 

Such trials (beginning at a) and ending at d)) are made until a desired number has been 
accumulated. 
 
5.  SOME NUMERICAL RESULTS 
 
5.1 Relationship Between Computing Time and Number of Design Reliability States 
 

Table 5.1 shows some average computing times for 3-state, 4-state, and 5-state 
models.  The computing time has two parts.  First is the set-up time needed to build a 
table of optimal returns for all possible probability distributions at all possible remaining 
budget points.  The set-up time for given and k N  is approximately constant in the other 
problem parameters and mostly depends on the number of s  grid points used (namely 
( ) ( )1 !/ ! 1 !k M M k+ − − ).  Second, there is an average simulation time used to study a 
development plan.  The average (across initial distributions ( 0s )) simulation times for all 
25,000 trials of the development programs for 3, 4, and 5-state models are displayed (for 
66, 56, and 70 initial distributions 0s  respectively).  As we expect, the computing time 
increases rapidly in the number of design reliability states. 
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Table 5.1: Computing Time for 1000,  5N T D= = = , and 1( , ) (0.10,0.90)kr r = (the 

1i ir r+ −  constant for a given k ) 
 

Computing Time (Minutes)*        
3-State Model 4-State Model  5-State Model 

Set-up Time 39 314 2,058 

Average Simulation Time for  
Problem 1 (using au ) 

   0.197      1.697        9.685 

Average Simulation Time for 
Problem 2 (using bu ) 

   0.061      0.411        2.871 

*(Using an 800 MHz Pentium II computer with 512 MB RAM, running programs 
developed in C++) 
 
5.2 k -State Results Without Accelerated Testing (the Effects of Model Parameters 
on Optimal Plan Behavior) 

 
We consider how the test cost (T ), the redesign cost ( D ), the redesign transition 

matrix (u ), and the design reliability vector (r ) affect the behavior and performance of 
optimal plans.  Most of the discussion here is based primarily on extensive simulation 
results (for a total of 7,128 different problems) using 3-state reliability models with =q r  
reported in Shevasuthisilp [14].  We have also done some simulations for 4- and 5-state 
models to verify that our methods and analyses are capable of handling larger numbers of 
states and produce qualitatively the same results as for 3-state models. 

Some representative results from the large set reported in Shevasuthisilp [14] are 
summarized in tables in Appendix A.8.  Model parameters and plan characteristics 
recorded there are: initial probability distribution for the states ( 0s ) and average 

probability distribution at program end ( *s ), initial expected reliability ( ( )0r s ) and 

average reliability at program end ( ( )*r s ), the expected number of effective systems 

without ( 0( )N r⋅   s ) and with ( 0( )NV s ) development, the optimal first action ( F , where 
1F =  is “build”, 2F =  is “test”, and 3F =  is “redesign”), and the average numbers of 

systems built ( *B   ), redesigns made ( *∆ ), and tests made ( *Τ ).  The averages in the 
tables come from 25,000 simulation trials per case and have very small standard errors.  
(The sizes of these standard errors are summarized in the final table of Appendix A.8.)  
The particular forms of u  referred to in the tables and their captions are given and 
discussed briefly in Appendix A.7. 

 Table A.1 illustrates how the redesign cost ( D ) affects the behavior of optimal 
plans. The test cost is fixed at 5T =  and redesign costs are 5 and 50D = .  We find that 
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as the redesign cost increases, the average number of redesigns made by optimal plans, 
the optimal mean number of effective systems built, and the average final expected 
reliability all decrease.  The findings are sensible, because when the cost of redesign is 
high, it is not economical to do many redesigns.  Increasing the redesign cost also affects 
the number of tests made and the optimal first activity in a development program.  As the 
redesign cost increases, the optimal first activity can change from test to build.  It is not 
beneficial to do testing alone without following poor test results with redesign.  

Table A.2 illustrates how the test cost (T ) affects the behavior of optimal plans.  
The redesign cost is fixed at 5D =  and test costs are 5 and 50T = .  We find that as the 
test cost increases, the average number of tests made by optimal plans, the optimal mean 
number of effective systems, and the average final expected reliability all decrease.  The 
findings are reasonable.  An optimal plan uses few tests when testing is expensive.  In 
such cases there is little empirical reliability information available for design 
improvement.  It is also evident from Table A.2 that the optimal first activity in a 
development program tends to change from test to build as test cost increases. 

Table A.3 illustrates how the redesign transition matrix (u ) affects the behavior 
of optimal plans.  Redesign and test costs are fixed at 5T D= = .  We find that when a 
more effective redesign transition matrix is available ( bu  in place of au ) the average 

number of redesigns made and amount of resources devoted to development ( *N B −   ) 
by optimal plans decrease, but the mean number of effective systems increases.  Moving 
to a better redesign transition matrix also decreases the number of tests made and tends to 
change the optimal first activity from test to redesign. 

Table A.4 enables comparisons of optimal plans for two different design 
reliability vectors ( (0.10,0.30,0.50) and (0.80,0.85,0.90)= =q r ).  We find that optimal 
programs for low design reliability problems employ more tests and redesigns than 
optimal programs for high design reliability problems.  This agrees with intuition that 
when reliability is low, more development resources should be devoted to improve 
current design reliability. 

Table A.5 summarizes simulation results for high reliability problems 
( (0.80,0.85,0.90)= =q r ) with redesign transition matrix bu , 5T = , and 5 and 50D = .  
The nature of optimal plans is “unusual” for these cases, in that no test is made in any 
optimal program.  This was consistent across all such high design reliability cases we 
studied (495 combinations of parameters using and  of 5,10 and 50T D , 4 redesign 
transition matrices, and 66 initial probability distributions).  Since design reliability is 
always high (always at least 0.8), the likelihood of test failure in any reliability state is 
very low, and testing does not produce much useful information.  Testing only wastes 
limited development resources if it does not provide a basis to discriminate effectively 
among reliability states. 
 In all, careful examination of our simulation results confirms that our mathematics 
is behaving qualitatively “exactly as it should,” in complete accord with intuition.  What 
it provides is, of course, exact quantitative guidelines consistent with any set of input 
model parameters. 
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5.3 k -State Results with Accelerated Testing 
 

In general, the acceleration of testing described in Section 2.2 does affect the 
behavior of optimal development programs in high reliability problems.  The effects are 
positive, since the acceleration provides more useful reliability information for guiding 
design improvement.  In our high reliability cases, expected returns under accelerated 
testing were always higher than expected returns under the normal use testing conditions.  
We also found that in the cases we studied, the larger the acceleration factor, the stronger 
the positive effects.  The optimal plans under acceleration are often intuitively more 
appealing than without acceleration.  By using acceleration, optimal plans often change 
from employing only redesign(s) or immediate build, to using a mixed sequence of tests 
and redesigns before building. 

Tables A.7 and A.8 (for (0.80,0.85,0.90)=r ) and Table A.9 (for 
(0.900,0.945,0.990)=r ) of the Appendix A.9 summarize numbers of cases (at 66 initial 

probability distributions 0s  on an 10M =  grid) affected by acceleration of testing.  If 
optimal plans are affected (changed by the use of 1a > ), the differences ( I ) between 
expected optimal returns under accelerated testing and normal use conditions testing are 
summarized.  (As in our other simulations, 25,000 runs were made for each case.)     
 Table A.7 illustrates how the behavior of optimal plans is affected by using the 
maximum possible acceleration factor at different levels of redesign cost.  The number of 
optimal plans affected decreases as the redesign cost ( D ) increases.  This suggests that 
accelerated testing is less effective as the redesign cost increases.  More informative 
testing alone is not beneficial if redesign cannot be economically made after testing. 
When the redesign cost is high, one is pushed towards an initial “build” action.  

Table A.8 illustrates how the behavior of optimal plans is affected by using the 
maximum possible acceleration factor for three different redesign transition matrices.  
Most of the optimal plans are affected when the redesign transition matrix is bu  
( 0.05, 0.75g f= = ), a redesign transition matrix describing moderately effective 
redesigns.  Acceleration has almost no effect when redesigns are highly effective (for the 
matrix cu  ( 0.05, 1.00g f= = ) redesign always improves system reliability). When 
redesign is highly effective, this fact always dominates the effect of (even accelerated) 
testing.  Accelerated testing has less effect on the optimal plans for the least effective 
redesign mechanism au  ( 0.05, 0.25g f= = ) than for bu  ( 0.05, 0.75g f= = ).  For this 
case, redesign is rarely an optimal activity and (accelerated) testing is not called for 
either, since testing alone is not beneficial if it is not followed by effective redesign. 

Table A.9 shows how the behavior of optimal plans is affected by the acceleration 
factor ( a ). The number of optimal plans affected and performance measures increase as 
the acceleration factor increases. This is intuitively appealing because testing under high 
acceleration provides more informative indications of design reliability.  
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6.  FINAL COMMENTS 

 
This paper’s extension of the earlier analyses of HMV1 and MVM2 allows for far 

more realistic modeling of a development process.  Of course, using more than two 
reliability states creates the burden of specifying more detailed vectors  and 0r s  and a 
defensible form for u , and use of the ≠q r  idea requires specification of a 
sensible/physically appropriate link between and r q .  (We have used one synthetic 
choice, others potentially suggested by physical theory in particular contexts are clearly 
possible.)  But this situation is as it always is when contemplating the use of nested 
mathematical models.  A balance must be struck between increasing potential model 
fidelity given appropriate values for increasing numbers of parameters, and one’s 
diminishing ability to adequately specify them.  Our work demonstrates that 
computationally at least, there is no real problem in moving to substantially increased 
model complexity. 

Should one wish to improve modeling flexibility and potential fidelity yet further, 
there a several directions that more complex modeling could take.  Among them are at 
least the following: 

a) We have used a simple stationary Markov chain transition mechanism and single 
cost to describe redesign.  But this could be generalized.  Different kinds of 
redesigns (potentially only available at different stages of a program) with 
different costs and different likely efficacies might be considered.  For example, 
designers could gain experience over time, or it might be very difficult to 
redesign effectively late in a development program.  So, the effects of redesign 
might be described using matrices that change with the number of redesigns 
made or the remaining budget.  Or it is possible and potentially more realistic to 
describe redesign cost as a function of remaining budget, the type of redesign 
transition matrix applied, or the current distribution over design reliability states. 

b) There are varieties of ways in which the modeling of testing might be made more 
flexible/general.  Several different kinds of tests with different costs and different 
test failure probabilities might be considered.  Or, where there is test data that 
stands behind pass-fail outcomes, incorporating parametric modeling of those 
results could lead to more effective development programs.  (For example, a 
normal variable might cause a test failure if it exceeds some physically important 
limit.  Using the value of the variable in modeling rather than simply the 
information as to whether it exceeds the test limit can improve expected payoff.  
See Huang [15] and Senoglu and Vardeman [16] in this regard for 2-state 
problems.) 

 

A.  APPENDIX 
 
 In this appendix we provide proofs for several of the propositions.  (We present 
only those proofs that are both fundamentally different from any presented in MVM2 for 
2-state cases and also perhaps not completely obvious.)   We then give some details for 
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the interpolation method we used in our computations and specify the redesign transition 
matrices we employed in our numerical work.  Finally, tables summarizing some of our 
numerical results are presented. 
 
A.1 Proof of Proposition 1 
 
 Note that 
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A.2 Proof of Proposition 3 
 

Consider showing that 1 ( )k ksη ≤s .  Note that 
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Since 1 1k kr r r−> > > , the numerator above is nonnegative. 
Arguments for the inequalities 0 01 1 1 11( ) , ( ) ,  and ( )k ks s sη η η≥ ≤ ≤s s s  are 

analogous.    
 
A.3 Proof of Proposition 4 (Case I) 
 

For the non-regressive case, 
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A.4 Proof of Proposition 6  
 

First suppose that T D≥ .  Here 1N T< + , so making either a test or redesign will 
reduce the current budget below that required to build at least one system of the final 
design.  Therefore stopping is an optimal next action and ( ) ( )NV N r= ⋅  s s .  

For T D< , consider first the case where 1N D< +  and 1N T< + .  Making either 
a redesign or a test will reduce the budget below that required to build at least one system 
of the final design. Therefore stopping is an optimal next action. 

Next consider the situation where 1N D< +  and 1 1 2T N T+ ≤ < + .  Stopping 
and making a test are potentially optimal next actions.  So 

 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ){ }
( ) ( ) ( )( )( ) ( )( ) ( )( )( ){ }
( ) ( ) ( )( ) ( )( ) ( )( )( ){ }

0 1

0 1

0 1
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         max , 1

         max , 1

N N T N TV N r q V q V

N r q N T r q N T r

N r N T q r q r

− −= ⋅ + −  

= ⋅ − ⋅ + − − ⋅          

= ⋅ − ⋅ + −      

s s s η s s η s

s s η s s η s

s s η s s η s

 

Apply Proposition 1 and this becomes 
 ( ) ( ) ( ){ } ( )max ,NV N r N T r N r= ⋅ − ⋅ = ⋅          s s s s  

 
Finally, (for T D< ) suppose that 1N D< +  and ( )1 1 1l T N lT+ − ≤ < +  for a 

positive integer l .  The optimal expected payoffs can be determined by induction and 
again applying Proposition 1, and are found to be ( )N r⋅   s .  Since this expected payoff 
is available by stopping, we may therefore also conclude that stopping is an optimal next 
action.   
 
A.5 Proof of Proposition 7  
 

For T D≤  the potential optimal next options are stopping, redesign, and testing, 
and the optimal return is from (2.2) 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }0 1max , 1 ,N N T N T N DV N r q V q V V− − −= ⋅ + −  s s s η s s η s δ s  

An optimal next action after making a test is stopping (using Proposition 6, since the 
remaining budget after making a test is less than 1 D+ ). Thus 

( ) ( ) ( ) ( )( ) ( )( ) ( )( ) ( )( ){ }
( ) ( ) ( )( ) ( )( ) ( )( )( ) ( )( ){ }

0 1

0 1

max , 1 ,

         max , 1 ,

NV N r q N T r q N T r N D r

N r N T q r q r N D r

= ⋅ − ⋅ + − − ⋅ − ⋅              

= ⋅ − ⋅ + − − ⋅          

s s s η s s η s δ s

s s η s s η s δ s

Apply Proposition 1 to the second term in braces. The recursion (2.2) becomes 
 ( ) ( ) ( ) ( )( ){ }max , ,NV N r N T r N D r= ⋅ − ⋅ − ⋅          s s s δ s  

The first term is greater than the second term, so in fact 
 ( ) ( ) ( )( ){ }max ,NV N r N D r= ⋅ − ⋅      s s δ s  

and potentially optimal next actions are stopping and redesign.  
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For T D> , consider first the case where 1N T D< + +  and 1 1 2D N D+ ≤ < + .  
By the same argument as used in the T D≤  case, testing is not an option.  Thus, potential 
actions are stopping and redesign and the expected payoffs are ( )N r⋅   s  and 

( )( )N DV − δ s  respectively. Then apply Proposition 6 to the second term and it becomes 

( )( )N D r− ⋅   δ s , so here 

 ( ) ( )( ){ }
0,1

max l
n l

V N lD r
=

= − ⋅  s δ s  

 
 

Finally, (for T D> ) consider the case where 1N T D< + +  and 
1 ( 1) 1l D N lD+ − ≤ < +  for a positive integer l .  Again testing is not an option, potential 
next actions are stopping and redesign, and the expected payoffs are 

 ( ) ( ) ( )( ){ }max ,N N DV N r V −= ⋅  s s δ s  

By induction 
 ( )( ) ( ) ( )( )( ){ }

0 1
max m

N D m l
V N D mD r− ≤ ≤ −

= − − ⋅  δ s δ δ s  

So 
 ( ) ( )( ){ }

 s.t. 1
max l

N l N lD
V N lD r

− ≥
= − ⋅  s δ s  

and the possible options are stopping or doing at most 1N
D
− 

  
 redesigns.   

 
A.6 The Interpolation Method 

 
Interpolation is needed during the process of recursively determining expected 

returns ( )mV s , where at budget m  and probability vector s an updated probability 
distribution ′s  does not match exactly any point on the available grid of probability 
vectors.  We use multidimensional linear interpolation (and can hope that it will often be 
very accurate in our application, since exactly as indicated in Proposition 11 of MVM2 
for the 2-state model, every ( )mV s  is piecewise linear in s ).  The following is a complete 
description of our method for the 3k = case. (Details for larger k are similar.) 

Let ( )mV s  be a value to be interpolated. Write 1 2 3( , , )s s s=s  and think of ( )mV s  as 
a function of 2s  and 3s , and as already evaluated for those s  whose entries are multiples 
of 1M −  for a positive integer M .  Let 

 2 2 3 3 and w Ms w Ms= =  
Define both 2 2 and w w− +  as 2w  if 2w  is an integer, and as the two consecutive integers 
with 2 2 2w w w− +< <  otherwise.  Similarly define 3 3and .w w− +  
 Then, if 2 3w w M+ ++ ≤  define for 2,3i =  
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If, on the other hand, 2 3w w M+ ++ > , set  
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A. 7 Transition Matrices Describing Effects of Redesigns 
 

We parameterized the transition matrices u  used in our simulations in terms of 1) 
a diagonal probability, g , representing the likelihood of affecting no reliability change 
through redesign and 2) a conditional probability of improving design reliability given a 
reliability change, f .  Two “non-regressive” ( 1f = ) and two other transition matrices 
allowing the possibility of design degradation ( 1f < ) were created using 0.05g =  and 

0.25,0.75f = , and using 0.05,0.50g =  and 1.00f =  respectively in the following 
forms.   For k = 3 we used 
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For k = 4 we used 
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And for k = 5 we used 
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A.8  Tables Summarizing Some Numerical Results Without Acceleration of Testing 

 
Table A.1: Simulation Results for 1,000N = , 5T = , au  ( 0.05, 0.25g f= = ), and 

(0.10,0.50,0.90)= =q r  
 

0s  D  *s  ( )0r s  ( )*r s  0( )N r⋅   s  0( )NV s  F  *B    *∆  *Τ  

5 (0.000,0.055,0.945) 0.878 770.31 3 876.71 8.62 16.02 
(1.00,0.00,0.00) 

50 (0.072,0.230,0.698) 
0.100 

0.751 
100 

515.52 3 652.19 5.93 10.22 

5 (0.000,0.055,0.945) 0.878 788.95 2 898.14 5.74 14.64 
(0.00,0.70,0.30) 

50 (0.034,0.309,0.657) 
0.620 

0.749 
620 

631.28 2 827.15 2.64 8.18 

5 (0.000,0.048,0.952) 0.881 829.41 2 941.30 2.26 9.48 
(0.00,0.30,0.70) 

50 (0.000,0.300,0.700) 
0.780 

0.780 
780 

780.00 1 1000.00 0.00 0.00 

 
Table A.2: Simulation Results for 1,000N = , 5D = , au  ( 0.05, 0.25g f= = ), and 

(0.10,0.50,0.90)= =q r  
 

0s  T  *s  ( )0r s  ( )*r s 0( )N r⋅   s  0( )NV s  F  *B    *∆  *Τ  

5 (0.000,0.055,0.945) 0.878 770.31 3 876.71 8.62 16.02 
(1.00,0.00,0.00) 

50 (0.163,0.229,0.608) 
0.100 

0.678 
100 

482.09 3 688.58 8.83 5.35 

5 (0.000,0.055,0.945) 0.878 788.95 2 898.14 5.74 14.64 
(0.00,0.70,0.30) 

50 (0.000,0.700,0.300) 
0.620 

0.620 
620 

620.00 1 1000.00 0.00 0.00 

5 (0.000,0.048,0.952) 0.881 829.41 2 941.30 2.26 9.48 
(0.00,0.30,0.70) 

50 (0.000,0.300,0.700) 
0.780 

0.780 
780 

780.00 1 1000.00 0.00 0.00 
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Table A.3: Simulation Results for 1,000N = , 5T D= = , (0.10,0.50,0.90)= =q r , au  
( 0.05, 0.25g f= = ), and bu  ( 0.05, 0.75g f= = ) 

      

0s  u  *s  ( )0r s  ( )*r s  0( )N r⋅   s  0( )NV s  F  *B    *∆  *Τ  

au  (0.000,0.055,0.945) 0.878 770.31 3 876.71 8.62 16.02 
(1.00,0.00,0.00) 

bu  (0.000,0.039,0.960) 
0.100 

0.884 
100 

848.14 3 959.32 3.56 4.58 

au  (0.000,0.055,0.945) 0.878 788.95 2 898.14 5.74 14.64 
(0.00,0.70,0.30) 

bu  (0.002,0.032,0.966) 
0.620 

0.886 
620 

860.23 3 971.27 2.14 3.61 

au  (0.000,0.048,0.952) 0.881 829.41 2 941.30 2.26 9.48 
(0.00,0.30,0.70) 

bu  (0.000,0.028,0.972) 
0.780 

0.889 
780 

859.76 3 966.96 2.09 4.51 
 
Table A.4: Simulation Results for 1,000N = , 5T D= = , and bu  ( 0.05, 0.75g f= = ) 

 

0s  =q r  *s  ( )0r s  ( )*r s  0( )N r⋅   s  0( )NV s  F  *B    *∆  *Τ  

(0.10,0.30,0.50) (0.009,0.087,0.904) 0.100 0.479 100 451.56 3 942.84 4.43 7.01 
(1.00,0.00,0.00) 

(0.80,0.85,0.90) (0.210,0.163,0.628) 0.800 0.871 800 862.32 3 990.00 2.00 0.00 

(0.10,0.30,0.50) (0.011,0.060,0.929) 0.360 0.484 360 460.63 3 952.40 2.61 6.91 
(0.00,0.70,0.30) 

(0.80,0.85,0.90) (0.220,0.071,0.727) 0.865 0.876 865 871.94 3 995.00 1.00 0.00 

(0.10,0.30,0.50) (0.009,0.068,0.923) 0.440 0.483 440 460.47 3 953.80 2.55 6.69 
(0.00,0.30,0.70) 

(0.80,0.85,0.90) (0.000,0.300,0.700) 0.885 0.885 885 885.00 1 1000.00 0.00 0.00 
 
Table A.5: Simulation Results for 1,000N = , 5T = , bu  ( 0.05, 0.75g f= = ), and 

(0.80,0.85,0.90)= =q r  
 

0s  D  *s  ( )0r s  ( )*r s  0( )N r⋅   s  0( )NV s  F  *B    *∆  *Τ  

5 (0.210,0.163,0.628) 0.871 862.32 3 990.00 2.00 0.00 
(1.00,0.00,0.00) 

50 (0.287,0.356,0.356) 
0.800 

0.853 
800 

810.57 3 950.00 1.00 0.00 

5 (0.220,0.071,0.727) 0.876 871.94 3 995.00 1.00 0.00 
(0.00,0.70,0.30) 

50 (0.000,0.700,0.300) 
0.865 

0.865 
865 

865.00 1 1000.00 0.00 0.00 

5 (0.000,0.300,0.700) 0.885 885.00 1 1000.00 0.00 0.00 
(0.00,0.30,0.70) 

50 (0.000,0.300,0.700) 
0.885 

0.885 
885 

885.00 1 1000.00 0.00 0.00 
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Table A.6:  Maximum Standard Errors for the Means Presented in Tables A.1-A.5 
mean 

(table entry) ( )max standard error standard errormax
mean

 
 
 

*
1s  57.7 10−×   
*
2s  59.8 10−×   
*
3s  56.1 10−×   

( )*r s  41.8 10−×  42.0 10−×  
*B    22.8 10−×  53.1 10−×  
*∆  21.3 10−×  35.0 10−×  
*Τ  22.5 10−×  31.5 10−×  

 
 
A.9  Tables Summarizing Some Numerical Results Indicating the Effects of 
Acceleration of Testing 
 
Table A.7: Results for 66 Distributions 0s  and Parameters 1000N = , 5T = , bu  
( 0.05, 0.75g f= = ), (0.80,0.85,0.90)=r , and 5 a = (the maximum possible) 

 
Numbers of Cases  

 
 5D =   10D =  50D =  

Unchanged Optimal Plans 10 (15.15%) 27 (40.91%) 66 (100%) 

Changed Optimal Plans 56 (84.85%) 39 (59.09%)   0 (0%) 

     with 0 5I< ≤  51 37   0 

     with5 10I< ≤    5   2   0 

( I  is the increase in the mean final number of effective systems produced by acceleration.) 
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Table A.8: Results for 66 Distributions 0s  and Parameters 1000N = , 0.05g = , 
2.5, 5T D= = , (0.80,0.85,0.90)=r , and 5 a = (the maximum possible) 

      
Numbers of Cases 

 
 a ( 0.25)f =u  b ( 0.75)f =u  c  ( 1.00)f =u  

Unchanged Optimal Plans  41 (62.12%)   4 (6.06%) 62 (93.94%) 

Changed Optimal Plans 25 (37.88%) 62 (93.94%)   4 (6.06%) 

     with 0 5I< ≤    8   5   4 

     with 5 10I< ≤    7 29   0 

     with 10 15I< ≤  10 25   0 

     with 15 20I< ≤    0   3   0 

(I is the increase in the mean final number of effective systems produced by acceleration.) 
 
Table A.9: Results for 66 Distributions 0s  and Parameters 1000N = , 2.5, 5T D= = , bu  
( 0.05, 0.75g f= = ), and (0.900,0.945,0.990)=r   
 

Numbers of Cases 
 

       7a =   10a =  (the maximum possible) 

Unchanged Optimal Plans         5 (7.57%)                      3 (4.55%) 

Changed Optimal Plans       61 (92.43%)                    63 (95.45%) 

     with 0 5I< ≤          7                       4  

     with 5 10I< ≤        51                        6  

     with 10 15I< ≤          3                      48  

     with 15 20I< ≤          0                       5  

(I is the increase in the mean final number of effective systems produced by acceleration.) 
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