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This paper compares the welfare effects of anticipated and unanticipated
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1 Introduction

Does the anticipation of future shocks has a stabilizing effect on the economy
and thus reduces the welfare loss compared to unanticipated shocks? In this
paper, we seek to answer this question by comparing the welfare effects of
unanticipated and anticipated cost-push shocks in the canonical New Keynesian
model with a monetary authority which minimizes a standard loss function
that weights the volatility of inflation and the output gap. In particular, we
analytically solve for dynamics and welfare in case of optimal monetary policy
under timeless perspective commitment and discretion. We distinguish the
usual case of unanticipated cost-push shocks and the case of future cost-push
shocks that are known in advance.

Since the real business cycle revolution of Kydland and Prescott (1982)
and his successors, unanticipated random disturbances are considered as the
main driving force in explaining business cycles. New Keynesians add nominal
rigidities to the real business cycle framework to study the role of monetary
policy in aggregate fluctuations but maintain the assumption of unpredictable
random shocks (see, e.g., the textbooks of Walsh (2003), Woodford (2003), or
Gaĺı (2008)). An exception is the stream of literature that analyzes anticipated
disinflations going back to Ball (1994) who shows that a simple variant of the
New Keynesian model predicts a boom in response to an anticipated disinfla-
tion. However, the literature on the optimal design of monetary policy usually
considers unanticipated shocks (see, e.g. Clarida, Gaĺı, and Gertler (1999),
Svensson (1999), King, Khan, and Wolman (2000), or Woodford (2003)).

Recently, a number of macroeconometric studies emphasize the role of antic-
ipated shocks as sources of macroeconomic fluctuations. Beaudry and Portier
(2006) find that more than half of business cycle fluctuations are caused by
news about future technological opportunities. Davis (2007) and Fujiwara, Hi-
rose, and Shintani (2008) analyze the importance of anticipated shocks in large
scale DSGE models closely related to the model of Christiano, Eichenbaum, and
Evans (2005) and report that these disturbances are important components of
aggregate fluctuations. Schmitt-Grohé and Uribe (2008) conduct a Bayesian es-
timation of a real-business cycle model and find that anticipated shocks are the
most important source of aggregate fluctuations. In particular, they report that
anticipated shocks explain two thirds of the volatility in consumption, output,
investment, and employment.

Theoretical studies on the role of anticipations for business cycle fluctuations
include Beaudry and Portier (2004, 2007), Beaudry, Collard, and Portier (2006),
Jaimovich and Rebelo (2006, 2008), Den Haan and Kaltenbrunner (2007), or
Christiano, Ilut, Motto, and Rostagno (2008).

However, none of these studies considers the welfare effects of the antic-
ipation of future shocks. In this study, we derive a solution of welfare as a
function of the time span between the anticipation and the realization of the
shock which enables us to discover the dependency of welfare on the length of
the anticipation period. Furthermore, we contribute to the literature by sys-
tematically investigating the role of nominal rigidities for the welfare impacts
of anticipations.
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To the best of our knowledge, Wohltmann and Winkler (2008) and Winkler
(2008) are the only studies that compare the welfare effects of anticipated and
unanticipated shocks. They both analyze energy price shocks under different
monetary policy regimes including optimal monetary policy. However, these
studies rely on numerical simulations and do not, as we do, investigate the role
of nominal rigidities.

The main results of this paper are the following. For empirically plausible
degrees of nominal rigidity, the anticipation of a future cost-push shock leads
to a higher welfare loss than an analogous unanticipated shock. A welfare gain
from the anticipation of a future cost shock may only occur if prices are suffi-
ciently flexible. This result is consistent with the findings of Schmitt-Grohé and
Uribe (2008) who show that the anticipation of future shocks has a stabilizing
effect on an economy without nominal rigidities. We point out that precisely
the degree of nominal rigidity play an important role for the evaluation of the
welfare effects of anticipations.

Our results are driven by two opposing effects. On the one hand, we obtain
the well-known result that the anticipation of a future shock dampens its im-
pact effect. On the other hand, we show that anticipation of future cost-push
shocks enhances the persistence of output and inflation and thus enhances the
welfare loss. This persistence effect, in turn, is amplified by the degree of price
stickiness.

Nevertheless, at a first glance, our findings seem to be puzzling since it
suggests that the information about the occurrence of future shocks is in general
welfare-reducing. But then the question arises, why rational agents do not
ignore the knowledge about future disturbances. In the remainder of this paper,
we will seek to shed more light on this question.

Our paper is organized as follows. Section 2 presents the canonical New
Keynesian model and its solution under the policy regimes timeless perspective
commitment and discretion. In section 3, we report and discuss our main find-
ings. Furthermore, we provide analytical proofs and, for the sake of illustration,
numerical simulations. Section 4 concludes. The paper includes an extensive
mathematical appendix.

2 The Framework

The canonical New Keynesian model serves as analytical framework. It consists
of an optimizing IS-type relationship of the form

xt = Etxt+1 −
1

σ
(it −Etπt+1) (σ ≥ 1) (1)

and a price adjustment equation of Calvo-Rotemberg type, often referred to as
New Keynesian Phillips Curve (NKPC)

πt = βEtπt+1 + κxt + kt (0 < β < 1, κ > 0) (2)

xt denotes the output gap, πt is inflation, and it is the nominal interest rate. Et

is the expectations operator conditional on information up to date t. β is the
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discount factor and 1/σ denotes the intertemporal elasticity of substitution.
It is well-known that under the assumptions of Calvo (1983) price setting, a
constant returns to scale production function with labor as single input, and
perfect labor markets, the slope parameter κ is given by κ = (η+σ) (1−ω)(1−βω)

ω
,

where η is the inverse of the labor supply elasticity.1 Obviously, κ is negatively
correlated with the degree of price rigidity ω. According to the Calvo price
adjustment mechanism, a fraction 1−ω of firms can adjust their price in period
t. Simultaneously, ω is the probability that a single price which is reoptimized
in period t, also holds in the next period t + 1. The Calvo parameter ω is
therefore a measure of the degree of price rigidity on the goods markets.

In the NKPC, kt represents a temporary cost-push shock that is assumed
to be autoregressive of order one with AR parameter ϕ ∈ [0, 1) and a one-unit
cost shock εt

kt = ϕkt−1 + εt (t ≥ T > 0) (3)

Since we consider anticipated cost-push shocks, the one-unit cost shock εt is not
white noise, but known to the public before the shock actually occurs.2 Assume
that at time t = 0 the public anticipates the cost-push shock to take place at
some future time T > 0. Then,

εt =

{

1 for t = T > 0

0 for t 6= T
(4)

The adjustment dynamics induced by anticipated shocks involve two phases,
the time span between the anticipation and the realization of the shock (0 ≤
t < T ) and the time span after the implementation of the shock (T ≤ t ≤ ∞).
The lead time T up to the realization of the shock is equal to the length of the
anticipation phase 0 ≤ t < T . An implication of our definition of anticipated
shocks is that rational expectations are equivalent to perfect foresight so that
we can omit the expectations operator.

The policy maker’s objective at the time of anticipation t = 0 is to minimize
the intertemporal loss function

V = E0

∞
∑

t=0

βt(α1π
2
t + α2x

2
t ) (α1 > α2 > 0, 0 < β ≤ 1) (5)

which reflects the objective of flexible inflation targeting (see, e.g., Svensson
(1999)). Rotemberg and Woodford (1999) and Woodord (2003) show that,
under certain conditions, a quadratic loss function in inflation and the output
gap is the correct approximation to the representative agent’s utility function.

The first-order conditions of the policy problem under timeless perspective
precommitment monetary policy as well as under discretion are well known and

1See, e.g., Walsh (2003) for a derivation of the NKPC under Calvo pricing.
2Schmitt-Grohé and Uribe (2007) study the impacts of anticipated cost shocks on the pass-
through to prices.
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need not to be derived here (see, for example, Walsh (2003)). Under the optimal
timeless perspective precommitment policy, inflation satisfies the targeting rule

πt = −
α2

α1κ
(xt − xt−1) (6)

while the output gap is described by the second-order difference equation

(

1 + β +
α1κ

2

α2

)

xt − xt−1 − βEtxt+1 = −
α1κ

α2
kt (7)

where the expectational operator can be omitted in case of anticipated shocks.
To solve the difference equation for xt, write equation (7) as

(

xt+1

wt+1

)

= C

(

xt

wt

)

+

(α1κ
α2β

0

)

kt (8)

where wt = xt−1 and

C =

(

1
β

(

1 + β + α1κ2

α2

)

− 1
β

1 0

)

(9)

The auxiliary variable wt is backward-looking (with the initial value w0 = 0,
while the output gap xt is forward-looking. The system matrix C has two real
eigenvalues r1 and r2 with r1 > 1 > r2 > 0 so that the Blanchard and Kahn
(1980) saddlepath stability condition is satisfied. A detailed derivation of our
results is provided in the mathematical appendix.

The solution for the output gap over the anticipation phase is given by

xt = −
1

r1 − ϕ

1

r1 − r2

α1κ

α2β
r−T
1 (rt+1

1 − rt+1
2 ) for t < T (10)

with the initial values

x0 = −
1

r1 − ϕ

α1κ

α2β
r−T
1 , x−1 = 0 (11)

while the solution for t ≥ T is defined by

xt =
α1κ

α2β

1

(r1 − ϕ)(r2 − ϕ)
· (12)

·

[

ϕt+1−T −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
rt+1
2

]

for t ≥ T

In the limiting case of unanticipated shocks (T = 0), the term in brackets in
equation (12) simplifies to ϕt+1−rt+1

2 . Note that the solution formula (10) also
holds in the shock period t = T .

Using (6), the solution time path of the inflation rate follows

πt =
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

(r1 − 1)rt
1 − (r2 − 1)rt

2

]

for t ≤ T (13)
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with the initial value

π0 =
1

β

1

r1 − ϕ
r−T
1 (14)

and

πt =
1

β

1

r1 − ϕ

1

r2 − ϕ
· (15)

·

[

(1 − ϕ)ϕt−T −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
(1 − r2)r

t
2

]

for t ≥ T

In the limiting case T = 0, the term in brackets simplifies to (1−ϕ)ϕt−(1−r2)r
t
2.

To determine the welfare loss under the optimal precommitment policy,
write the loss function V as V1 + V2, where

V1 = E0

T−1
∑

t=0

βt
(

α1π
2
t + α2x

2
t

)

(16)

is the loss in the anticipation period and

V2 = E0

∞
∑

t=T

βt
(

α1π
2
t + α2x

2
t

)

(17)

is the loss caused by the realization of the shock.
By inserting the solution for xt and πt, the loss V1 can be rewritten as

V1 = α1λ
2r−2T

1

(

rT
1 − rT

2

)

(

r1 − 1

rT
2

+
1 − r2

rT
1

)

(18)

where

λ =
1

β

1

r1 − ϕ

1

r1 − r2
(19)

Accordingly, the loss V2 can be rewritten as

V2 =
α1β

T

β2(r1 − ϕ)2

{

(

rT
2 − rT

1

)2
(1 − r2)

(r1 − r2)2r2T
1

+
r1

r1r2 − ϕ2

}

(20)

The total loss V is then simply given by V = V1 + V2.
Under the policy regime discretion (D), the central bank is unable to make

a commitment to future policies. Now private expectations are given for the
central bank and the reduced form of the first-order conditions reads as

πt = −
α2

α1κ
xt (21)

Etxt+1 =
1

β

[

1 +
α1κ

2

α2

]

xt +
α1κ

α2β
kt (22)
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with Etxt+1 = xt+1 in case of anticipated shocks. The difference equation in xt

has the unstable eigenvalue

rD =
1

β

[

1 +
α1κ

2

α2

]

=
1

α2β

[

α2 + α1κ
2
]

> 1 (23)

and the forward solution

xt = −

∞
∑

s=0

r−s
D

1

rD

α1κ

α2β
kt+s (24)

Since

kt+s =

{

ϕt+s−T for t+ s ≥ T

0 for t+ s < T
(25)

we obtain for t ≥ T

xt = −
α1κ

α2 + α1κ2 − α2βϕ
ϕt−T (26)

and for t < T

xt = −
α1κ

α2 + α1κ2 − α2βϕ
rt−T
D (27)

Due to rt−T
D = 1 for t = T , the solution formula (27) also holds in the shock

period t = T . For t = 0 we obtain

x0 = −
α1κ

α2 + α1κ2 − α2βϕ
r−T
D (28)

so that the the size of the initial jump of xt decreases with increasing T .
For the inflation rate πt we obtain the solution time path

πt =



















α2

α2 + α1κ2 − α2βϕ
rt−T
D if 0 ≤ t ≤ T

α2

α2 + α1κ2 − α2βϕ
ϕt−T if t ≥ T

(29)

Note that the limiting case ϕ = 0 implies πt = xt = 0 for t > T .
It is well-known that the loss under discretion (VD) is greater than the total

loss under the optimal precommitment policy. By inserting the solution time
paths for πt and xt in the loss function, we obtain

VD = V D
1 + V D

2 (30)

=
T−1
∑

t=0

βt

[

α2
2

α1κ2
+ α2

]

x2
t +

∞
∑

t=T

βt

[

α2
2

α1κ2
+ α2

]

x2
t

=
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2

(

r−2T
D − βT

1 − βr2D
+

βT

1 − βϕ2

)

=
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βr2D

(

r−2T
D −

β(r2D − ϕ2)

1 − βϕ2
βT

)

where

1

1 − βr2D
=

α2
2β

α2
2β − (α2 + α1κ2)2

< 0 (31)
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3 Main Results

In this section, we compare the welfare loss induced by anticipated shocks (T >
0) to the corresponding loss if the same deterministic shock is not anticipated
in advance (T = 0). In particular, we investigate the properties of the welfare
loss V considered as function of the lead time T .

Since the size of the initial jumps of the forward-looking variables xt and
πt are negatively correlated with the lead time T , we can conjecture that the
loss function V = V (T ) is a decreasing function in T . In the following, we will
demonstrate that this conjecture is false in general. It is only true, if the degree
of price flexibility is very high.

Our main results can be summarized in the form of four propositions.

Proposition 1. Without discounting (i.e. β = 1) the welfare loss induced by
an anticipated cost-push shock is greater than the corresponding loss in case of
an unanticipated shock. This result is independent of the length of the lead time
T and the degree of price rigidity ω:

If β = 1, then V (0) < V (T ) for all T > 0 (32)

and all ω > 0 .

A similar result holds with discounting (β < 1) provided the degree of
price rigidity ω is sufficiently high and the time span between anticipation and
realization of the shock is not too large.

Proposition 2. If β is less than unity and the degree of price flexibility 1 −
ω low, there exists a positive upper bound T ∗

c for the lead time T , positively
depending on ω, such that

V (0) < V (T ) for all 0 < T < T ∗
c . (33)

Proposition 3. If the degree of price flexibility is very high (i.e. ω very small)
then T ∗

c = 0 so that

V (T ) < V (0) for all T > 0 . (34)

Only in this case (which seems empirically not very realistic), the welfare loss
under anticipated cost-push shocks is always smaller than under unanticipated
shocks.

Proposition 4. The propositions 1, 2, and 3 hold under the optimal monetary
policy regimes timeless perspective commitment and discretion. They also hold
under (optimal) simple rules of Taylor-type.

Sketch of Proof of Propositions 1, 2, and 3. Consider the partial loss func-
tion V1 (given by (18)) as function of T (the time span between the anticipation
and realization of the cost-push shock).

The function V1 = V1(T ) has the following properties:

V1(0) = 0, lim
T→∞

V1(T ) =

{

0 for β < 1

V 1 > 0 for β = 1
(35)
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where

V 1 =
α1(r1 − 1)

(r1 − ϕ)2(r1 − r2)2
(36)

The derivative of V1 with respect to T , i. e.

dV1

dT
= α1λ

2

{

2 ln r1 · r
−2T
1 [r1 + r2 − 2] − (r1 − 1) ln(r1r2) · (r1r2)

−T (37)

− (1 − r2) ln

(

r2
r31

)

·

(

r2
r31

)T }

is positive at time T = 0:

dV1

dT

∣

∣

∣

T=0
= α1

1

β2

1

(r1 − ϕ)2
1

r1 − r2
[ln r1 − ln r2] > 0 (38)

Therefore, V1(T ) starts to rise with increasing T (although the size of the initial
jumps of xt and πt is decreasing in T ). For β < 1, the limit value limT→∞ V1(T )
is equal to zero. Therefore, V1(T ) must decrease if T is sufficiently large.

The loss function V2 = V2(T ) (given by (20)) has the following properties:

V2(0) =
α1

β2(r1 − ϕ)2
r1

r1r2 − ϕ2
> 0 (39)

lim
T→∞

V2(T ) =







0 if β < 1

V 2 > V2(0)
∣

∣

∣

β = 1
=

α1r1
(r1 − ϕ)2(1 − ϕ2)

if β = 1
(40)

where

V 2 =
α1

(r1 − ϕ)2

{

1 − r2
(r1 − r2)2

+
r1

1 − ϕ2

}

(41)

The first derivative of V2 with respect to T

dV2

dT
=

α1

β2(r1 − ϕ)2
βT

{

r1
r1r2 − ϕ2

lnβ (42)

+
1 − r2

(r1 − r2)2

[

(ln r2 − 3 ln r1)

(

r2
r1

)2T

+ 4 ln r1

(

r2
r1

)T

+ lnβ

]}

implies for β < 1 and T = 0

dV2

dT

∣

∣

∣

T=0
=

α1

β2(r1 − ϕ)2
r1

r1r2 − ϕ2
lnβ < 0 (43)

since β = 1/(r1r2). For β < 1, the derivative dV2/dT is also negative if T
is sufficiently large. In the limiting case β = 1, the loss function V2(T ) is an
increasing function in T with a limit value V 2 > V2(0).

We can now investigate the development of the total loss V = V1 + V2.
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In the limiting case β = 1, the total loss V (T ) is an overall increasing
function in T with V (0) = V2(0) > 0 and

lim
T→∞

V (T ) =
α1

(r1 − ϕ)2

{

1

r1 − r2
+

r1
1 − ϕ2

}

> V2(0)
∣

∣

∣

β=1
> 0 (44)

If β = 1, we can write V (T ) as V1(T ) + V2(T ), where

V1(T ) =
α1

(r1 − ϕ)2(r1 − r2)2

[

(r1 − 1) + (2 − r1 − r2)r
−2T
1 − (1 − r2)

(

r2
r31

)T
]

(45)

V2(T ) =
α1

(r1 − ϕ)2







1 − r2
(r1 − r2)2

[

1 −

(

r2
r1

)T
]2

+
r1

1 − ϕ2







(46)

Then

dV1

dT
=

α1

(r1 − ϕ)2(r1 − r2)2

{

2[r1 + r2 − 2] ln r1 (47)

+[3 ln r1 − ln r2](1 − r2)

(

r2
r1

)T
}

r−2T
1 > 0 for all T ≥ 0

(due to r1 + r2 = tr C > 2 and ln r2 < 0) and

dV2

dT
=

α1

(r1 − ϕ)2
1 − r2

(r1 − r2)2

{

−2

(

1 −

(

r2
r1

)T
)

ln

(

r2
r1

)

}

(

r2
r1

)T

(48)

>
(=)

0 if T >
(=)

0

(because 0 < r2 < 1 < r1). Therefore, dV/dT > 0 for all T ≥ 0 so that V is a
monotonically increasing function in T . This result holds independently of the
degree of price rigidity ω.

For β < 1, V (0) = V2(0) > 0 (with V2(0) defined in (39)) and limT→∞ V (T ) =
0. For small values of ω, i.e. a high degree of price flexibility, the total loss V
is a decreasing function in T implying V (T ) < V (0) for all T > 0. With high
price flexibility, the welfare loss under anticipated shocks is smaller than under
unanticipated shocks.

For the derivative dV/dT at time T = 0 we get

dV

dT

∣

∣

∣

T=0
=

α1

β2(r1 − ϕ)2

{[

1

r1 − r2
−

r1
r1r2 − ϕ2

]

ln r1 (49)

−

[

1

r1 − r2
+

r1
r1r2 − ϕ2

]

ln r2

}

Then

dV

dT

∣

∣

∣

T=0
> 0 ⇔ 2

(

1

β
− ϕ2

)

ln r1 +
(

r21 − ϕ2
)

lnβ > 0 (50)
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A rising ω induces a fall in the unstable eigenvalue r1 since dκ/dω < 0. Since
the fall in r21 is stronger than the decrease in ln r1, and 1/β−ϕ2 > 0, inequality
(50) is fulfilled if the degree of price rigidity ω is sufficiently large. In this
case V (T ) starts to rise and due to limT→∞ V (T ) = 0 its development must
be hump-shaped implying the existence of an upper bound T ∗

c > 0 such that
V (T ) > V (0) > 0 for all T < T ∗

c .
The value of the upper bound T ∗

c is the positive solution of the equation
V (T ) = V (0), where V (0) = V2(0) is given by (39). This leads to the equation

1 −

(

r2
r1

)T

=
[

(r1r2)
T − 1

] r1(r1 − r2)

r1r2 − ϕ2
(51)

Equation (51) can be written as

βT r2T
1

[

βr21

(

1 −
1

βT

)

+
1

βT
− βϕ2

]

= 1 − βϕ2 ⇔ (52)

r2T
1

[

βT+1
(

r21 − ϕ2
)

+
(

1 − βr21
)]

= 1 − βϕ2 (53)

so that T ∗
c is also the positive solution of (52) and (53). The value of T ∗

c is de-
pendent on ω and β. A rising ω (a higher degree of price rigidity) decreases the
unstable eigenvalue r1 so that the left-hand side of equation (52) is decreased
while the right-hand side remains unchanged. Since βT r2T

1 = (r1/r2)
T is in-

creasing in T , equation (52) implies that the solution value T ∗
c must increase

if ω rises. Conversely, a higher degree of price flexibility induces a fall in T ∗
c .

For sufficiently small values of ω, the only solution of (53) is T ∗
c = 0 (so that

V (T ) < V (0) for all T > 0). If a positive solution T ∗
c of (53) exists, then it is

also an increasing function in the discount factor β with T ∗
c = ∞ if β = 1.

Sketch of Proof of Proposition 4. Consider VD (given by (30)) as function
in T . Then

VD(0) =
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βϕ2
> 0 (54)

and

lim
T→∞

VD(T ) =

{

0 if β < 1
α1α2[α2+α1κ2]

[α2(1−βϕ)+α1κ2]2

(

1
r2

D
−1

+ 1
1−ϕ2

)

> VD(0) > 0 if β = 1
(55)

The partial loss function

V D
2 (T ) =

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
βT

1 − βϕ2
(56)

has the properties

V D
2 (0) = VD(0) (57)

lim
T→∞

V D
2 (T ) = 0 if β < 1 (58)
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dV D
2

dT
= (lnβ)V D

2 (T ) < 0 if β < 1 for all 0 ≤ T <∞ (59)

For β = 1, the function V D
2 (T ) is constant (independent of T ).

The partial loss function V D
1 (T ) given by

V D
1 (T ) =

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
r−2T
D − βT

1 − βr2D
(60)

has similar properties as the corresponding function V1(T ) under the policy
regime timeless perspective commitment:

V D
1 (0) = 0 (61)

lim
T→∞

V D
1 (T ) =











0 if β < 1

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
1

r2D − 1
> 0 if β = 1

(62)

The first derivative with respect to T

dV D
1 (T )

dT
=

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βr2D

[

−2(ln rD)r−2T
D − (lnβ)βT

]

(63)

is positive at time T = 0, since 1 − βr2D < 0 and −2 ln rD − lnβ < 0 due to
rD > 1 ≥ β.

In case β < 1, the development of V D
1 (T ) is hump-shaped with the maximum

value at time T ∗
d which is the solution of the equation

2(ln rD)r−2T
D + (lnβ)βT = 0 (64)

Equation (64) is equivalent to

−
2 ln rD
lnβ

= (βr2D)T (65)

with the solution

T ∗
d =

ln

[

−
2 ln rD
lnβ

]

ln(βr2D)
> 0 (66)

The total loss function VD(T ) = V D
1 (T )+V D

2 (T ) has a similar development
as the corresponding function V (T ) under timeless perspective commitment. In
the limiting case β = 1 it is overall increasing. For β < 1 it is hump-shaped, if
the degree of price flexibility is not too large, while it is monotonically decreasing
in T if the value of ω is small. For small values of ω the derivative of VD at
time T = 0 is negative, while it is positive if ω is sufficiently large. For the sake
of brevity, the proof for the case of simple (optimal) Taylor rules is presented
in the mathematical appendix.

11



The propositions 1 to 3 follow from two opposing effects on the welfare loss
which change in opposite directions with increasing lead time T . On the one
hand, the size of the initial jumps of the forward-looking variables xt and πt

taking place at the time of anticipation, is inversely related to the time span
between anticipation and realization of the cost-push shock. The longer the
lead time T , the smaller is the response of output and inflation on impact so
that the contribution of this anticipation effect to the welfare loss V decreases
with increasing T . On the other hand, the persistence effect of the cost-push
shock on the target variables xt and πt is increasing in T . Thereby, persistence
is measured as the total variation of a variable over time, i.e. its intertemporal
deviation from the respective initial steady state. For example, the persistence
of the price level pt is given by

∑∞
t=0 |pt − p0| where the initial steady state can

be normalized to zero. In the appendix, we derive the persistence of pt, xt, and
πt under the optimal monetary policy regimes commitment and discretion and
show that persistence is smaller in case of unanticipated shocks than in case of
anticipated shocks.

For the sake of illustration, we numerically simulated our solutions by using
a standard calibration. The time unit is one quarter. The discount rate is equal
to β = 0.99 implying an annual steady state real interest rate of approximately
4 percent. The inverse of the intertemporal elasticity of substitution, σ, is set
to σ = 2. We set η = 1 implying a quadratic disutility of labor. The Calvo
parameter ω is either set to 0.25 implying an average duration of price contracts
of four months or to 0.75 implying an average duration of price contracts of one
year. The weights in the loss function are set to α1 = 1 and α2 = 0.5 reflecting
the objective of flexible inflation targeting. Finally, we assume the cost-push
shock to be persistent and choose ϕ equal to 0.5.

Figure 1 depicts impulse response functions of inflation, output gap, and
price level in case of low (ω = 0.25, left column) and high (ω = 0.75, right col-
umn) price rigidity under the optimal monetary policy with timeless perspective
commitment. Solid lines with triangles denote responses to a cost-push shock
that unexpectedly emerges in period t = 0, solid lines with circles denote re-
sponses to a cost-push shock whose realization in period T = 2 is anticipated
in period t = 0.

We firstly consider the empirically plausible case of high price rigidity. In
case of an unanticipated cost-shock, both the price level and inflation rise
whereas output falls in response to the realization of the increase in the costs
of production.3 Subsequently, all variables converge in a hump-shaped fashion
to their respective steady state values.

Anticipated cost shocks have two effects, namely the anticipation effect
which reflects the change in xt, πt, and pt in response to the anticipation of
a future change in costs, and the realization effect which occurs when the an-
ticipated change in costs actually takes place. Under the optimal monetary
policy with commitment, output starts to decline and prices begin to increase
in response to the anticipation of a future rise in the costs of production. Both

3We could think about this cost-push shock as an exogenous rise in wage mark-ups (see, for
example, Gaĺı (2008)).
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Figure 1: Impulse response functions under optimal policy with timeless
perspective commitment.

Notes: Solid lines with triangles denote responses to an unanticipated
cost-push shock, solid lines with circles denote responses to an anticipated
cost-push shock. In case of low price rigidity, the Calvo parameter ω is set
to 0.25; in case of high price rigidity, ω is set to 0.75.

variables respond in a hump-shaped fashion peaking at the date of realization.
The increase in prices causes inflation to jump at the time of anticipation, peak-
ing at the date of realization and then returning in a hump-shaped fashion to
its initial steady state level.

In case of low price rigidity, an unanticipated cost shock causes an immediate
rise in prices and an immediate drop in output. Subsequently, both variables
converge monotonically to their initial steady state levels. After the initial
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jump, inflation falls sharply and converges from below to its pre-shock level.
The announcement of a future rise in costs has negligible anticipation effects
when prices are highly flexible. The reason is that the price setting problem of
firms becomes more of an atemporal (static) nature when the Calvo parameter
ω decreases. In this case firms know that, with a high probability, they will
be able to raise their price when the anticipated shock actually materializes
in period T . Thus, output and prices change only slightly in response to an
announcement or anticipation of future cost-push shocks.

Regardless of the degree of price rigidity, Figure 1 illustrates that the initial
jumps of inflation, output gap and price level are greater in case of unantic-
ipated (T = 0) than in case of anticipated shocks (T = 2). On the other
hand, anticipated shocks amplify the persistence of pt, xt, and πt compared to
unanticipated shocks.4
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Figure 2: Welfare loss for different lengths of anticipation period under op-
timal timeless perspective commitment policy in case β = 1.

Figure 2 illustrates the welfare loss V = V (T ) in case β = 1. Without time
discounting in the intertemporal loss function, the persistence effect always
dominates the anticipation effect so that proposition 1 holds. In Figure 2, the
total loss V = V (T ) is overall increasing in T if β = 1.

If future deviations of the state variables from their initial steady state levels
are discounted, the contribution of the initial jumps of output and inflation for
the determination of the total loss becomes more important. The same holds for
increasing degree of price flexibility 1−ω, since the persistence of prices, output
and inflation is a decreasing function of 1 − ω. If the degree of price flexibility
is high, the value of the total loss is almost completely determined by the size
of the initial jumps of xt and πt which in turn is inversely proportional to the
lead time T . With a sufficiently high degree of price flexibility, the total loss
under unanticipated cost-push shocks is greater than the loss under anticipated
shocks so that proposition 3 holds. This result is also illustrated in Figure 3,
where V (T ) is a monotonically decreasing function in the lead time T if the
degree of price rigidity ω is very small.

4This result also holds in the special case ϕ = 0, i.e. if the shock exhibits no serial correlation.
It is well-known that even in this case the optimal precommitment policy introduces inertia
in the impulse response functions.
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Figure 3: Welfare loss for different lengths of anticipation period under op-
timal timeless perspective commitment policy in case β = 0.99.

From an empirical point of view, the parameter ω is not that small so that
the development of the impulse response functions displays inertia or strong
serial correlation. Then, if the time span between the anticipation and the
implementation of the cost-push shock is not too long, the persistence effect
dominates and the value of the total loss V (T ) is greater than V (0). This
is illustrated in Figure 3, where the development of the loss function V (T ) is
hump-shaped and monotonically increasing for small values of T .

Propositions 1 to 3 are independent of the chosen optimal monetary policy
regime. They hold under timeless perspective commitment as well as under
discretion (see Figure 4 and 5 for a numerical visualization). They also hold
under simple monetary policy rules (such as Taylor-type rules or money growth
peg).
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Figure 4: Welfare loss for different lengths of anticipation period under the
optimal discretionary policy in case β = 1.

In order to check whether the welfare-reducing effects of anticipations hold
for empirically plausible degrees of nominal rigidity, we compute the critical
anticipation values T ∗

c (commitment) and T ∗
d (discretion). Table 1 depicts the

values of T ∗
c and T ∗

d for a persistent (ϕ = 0.5) and a one-off cost-push shock
(ϕ = 0).

Table 1 shows that the anticipation of cost-push shocks dampens the welfare
loss induced by such shocks only for empirically unrealistic degrees of nominal
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Figure 5: Welfare loss for different lengths of anticipation period under the
optimal discretionary policy in case β = 0.99.

rigidity. For the widely applied values of ω = 0.75 or ω = 0.66, the anticipation
period or lead time T must be extremely large to obtain a welfare gain from
anticipation. Under commitment and a value ω = 0.75, the loss under an
anticipated shock is smaller than the loss under an unanticipated shock of same
size when the shock is anticipated to take place in T ∗

c = 54 (for ϕ = 0.5) or
T ∗

c = 66 (for ϕ = 0) quarters. Even larger values are obtained under optimal
discretionary policy. A Calvo parameter of 0.5 represents the lower bound
in the range of values that are reported in the literature. In this case and
under the monetary policy regime commitment, the anticipation of future cost
shocks has a welfare-enhancing effect if the lead time is larger or equal to two
quarters for persistent and three quarters for one-off shocks, respectively. Under
discretionary monetary policy, these critical values are three and four quarters.

Our simulations illustrate that for a wide range of empirically realistic de-
grees of nominal rigidities (i.e., ω ≥ 0.5) in conjunction with a plausible length
of the anticipation period, the welfare loss of anticipated cost shocks exceeds
the welfare loss of unanticipated cost shocks.

Table 1: Values of the critical lead time T ∗

c and T ∗

d

Degree of price rigidity ω
Monetary policy 0.75 0.66 0.60 0.55 0.50 0.45 0.40 0.25
With ϕ = 0.5
Commitment 53.09 19.82 9.00 4.23 1.82 0.69 0.16 0
Discretion 125.90 40.41 15.61 6.37 2.42 0 0 0

With ϕ = 0
Commitment 65.78 25.57 11.79 5.59 2.41 0.95 0.28 0
Discretion 146.99 50.77 20.25 8.38 3.20 0 0 0

Note: For an anticipation period 0 < T < T ∗
i it is true that V |T > V |T=0, for T > T ∗

i it is

true that V |T < V |T=0 where i = c, d.
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4 Conclusion

In this paper we investigate the welfare effects resulting from the anticipation of
future shocks. In particular, we analyze the welfare loss for different lengths of
the time span between the anticipation and the realization of cost-push shocks.
This includes the widely applied case of unanticipated cost-push shocks. Our
analysis is based on the canonical New Keynesian model with optimal monetary
policy.

We emphasize the role of nominal rigidities for the welfare effects of an-
ticipations. We show that for empirically plausible degrees of nominal rigidity,
anticipated cost shocks entail higher welfare losses than unexpected cost shocks.
The anticipation of a future cost-push shock dampens the volatility of output
and inflation only if prices are highly flexible. These results hold independently
of the monetary policy regime (timeless perspective commitment, discretion,
(optimal) simple rules).

Our results imply that the knowledge about the realization of future cost
shocks is in general welfare-reducing. The question remains why rational agents
do not simply ignore this information. However, this would be inconsistent with
the profit-maximizing behavior of individual firms and the utility-maximizing
behavior of individual households on which our model is based. The firm’s
optimality condition in fact calls for an increase in prices in response to the
anticipation of a future rise in costs. By simply ignoring this information, the
firm would make a loss.

Hence, our results reveal a contradiction between the optimal behavior of
individuals and the optimum from a social point of view.
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Mathematical Appendix

Solution time paths under the optimal timeless perspective pre-

commitment policy

It is well-known that under the optimal timeless perspective precommitment
policy inflation and the output gap satisfy

πt = −
α2

α1κ
(xt − xt−1) (1)

and
(

1 + β +
α1κ

2

α2

)

xt − xt−1 − βEtxt+1 = −
α1κ

α2
kt (2)

where the expectational operator can be omitted in case of anticipated shocks.
To solve the difference equation for xt write equation (2) as

(

xt+1

wt+1

)

= C

(

xt

wt

)

+

(α1κ
α2β

0

)

kt (3)

where wt = xt−1 and

C =

(

1
β

(

1 + β + α1κ2

α2

)

− 1
β

1 0

)

(4)

The auxiliary variable wt is backward-looking (with the initial value w0 = 0)
while the output gap xt is forward-looking. The system matrix C has two real
eigenvalues r1 and r2 with r1 > 1 > r2 > 0 so that the Blanchard/Kahn (1980)
saddlepath stability condition is satisfied. The eigenvalues are given by

r1,2 =
1

2
trC ±

√

1

2
(trC)2 − |C| (5)

with

trC =
1

β

(

1 + β +
α1κ

2

α2

)

= r1 + r2 , |C| =
1

β
= r1r2 (6)

We can transfer system (3) into Jordan-canonical form using the similarity
transformation

C = H · Λ ·H−1 (7)

where Λ = diag(r1, r2) is a diagonal matrix whose diagonal elements are the
characteristic roots of C and

H =

(

r1 r2
1 1

)

(8)
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is a matrix of linearly independent eigenvectors of C. Define auxiliary variables
vt and zt by

H−1

(

xt

wt

)

=

(

vt

zt

)

or

(

xt

wt

)

= H

(

vt

zt

)

(9)

Premultiplying equation (3) with H−1 yields the Jordan-canonical system
(

vt+1

zt+1

)

=

(

r1 0
0 r2

)(

vt

zt

)

+
1

r1 − r2

α1κ

α2β

(

1

−1

)

kt (10)

The difference equation in vt contains the unstable eigenvalue r1 and has the
unique stable forward solution

vt = −
∞
∑

s=0

r−s
1

1

r1

1

r1 − r2

α1κ

α2β
kt+s (11)

Since the cost-push shock kt+s is a AR(1) variable with

kt+s =

{

ϕt+s−T for t+ s ≥ T

0 for t+ s < T
(12)

we obtain

vt =











−
1

r1 − ϕ

1

r1 − r2

α1κ

α2β
ϕt−T for t ≥ T

−
1

r1 − ϕ

1

r1 − r2

α1κ

α2β
rt−T
1 for t ≤ T

(13)

with the initial value

v0 = −
1

r1 − ϕ

1

r1 − r2

α1κ

α2β
r−T
1 < 0 (14)

The difference equation in zt has the general backward solution

zt = rt
2K −

t−1
∑

s=0

rt−s−1
2

1

r1 − r2

α1κ

α2β
ks (15)

where the constant K follows from the initial condition

z0 = K = w0 − v0 = −v0 (16)

Since ks = 0 for s < T we obtain

zt = rt
2K =

1

r1 − ϕ

1

r1 − r2

α1κ

α2β
r−T
1 rt

2 for t ≤ T (17)

and

zt = rt
2K −

1

r2 − ϕ

1

r1 − r2

α1κ

α2β

[

rt−T
2 − ϕt−T

]

(18)

=
1

r1 − r2

α1κ

α2β

[(

r−T
1

r1 − ϕ
−

r−T
2

r2 − ϕ

)

rt
2 +

ϕ−T

r2 − ϕ
ϕt

]

for t ≥ T
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The solution for the output gap xt = r1vt + r2zt is then given by

xt = −
1

r1 − ϕ

1

r1 − r2

α1κ

α2β
r−T
1 (rt+1

1 − rt+1
2 ) for t ≤ T (19)

with the initial values

x0 = −
1

r1 − ϕ

α1κ

α2β
r−T
1 , x−1 = 0 (20)

and

xt =
α1κ

α2β

1

(r1 − ϕ)(r2 − ϕ)
· (21)

·

[

ϕt+1−T −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
rt+1
2

]

for t ≥ T

The solution formula (21) also contains the limiting case T = 0, i.e., if the
cost-push shock is not anticipated. The term in brackets then simplifies to
ϕt+1 − rt+1

2 .
Using (1), the solution time path of the inflation rate follows:

πt =
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

(r1 − 1)rt
1 − (r2 − 1)rt

2

]

for t ≤ T (22)

with the initial value

π0 =
1

β

1

r1 − ϕ
r−T
1 (23)

and

πt =
1

β

1

r1 − ϕ

1

r2 − ϕ
· (24)

·

[

(1 − ϕ)ϕt−T −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
(1 − r2)r

t
2

]

for t ≥ T

In the special case T = 0 the term in brackets simplifies to (1−ϕ)ϕt−(1−r2)r
t
2.

The solution time path of the price level pt can be derived from the solution
of πt due to

pt =

t
∑

k=0

πk (25)

We then obtain for or t ≤ T :

pt =
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

t
∑

k=0

[

(r1 − 1)rk
1 − (r2 − 1)rk

2

]

(26)

=
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

(r1 − 1)
1 − rt+1

1

1 − r1
− (r2 − 1)

1 − rt+1
2

1 − r2

]

=
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

rt+1
1 − rt+1

2

]
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and for t ≥ T

pt =

T−1
∑

k=0

πk +

t
∑

k=T

πk (27)

=
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

rT
1 − rT

2

]

+
1

β

1

r1 − ϕ

1

r2 − ϕ
·

·

t
∑

k=T

{

(1 − ϕ)ϕk−T −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
(1 − r2)r

k
2

}

=
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

rT
1 − rT

2

]

+
1

β

1

r1 − ϕ

1

r2 − ϕ
·

·

[

−(1 − ϕ)ϕ−T ϕ
t+1 − ϕT

1 − ϕ
+

(r1 − ϕ)r−T
2 − (r2 − ϕ)r−T

1

r1 − r2
(1 − r2)

rt+1
2 − rT

2

1 − r2

]

=
1

β

1

r1 − ϕ

1

r1 − r2
r−T
1

[

rT
1 − rT

2

]

+
1

β

1

r1 − ϕ

1

r2 − ϕ
·

·

[

1 − ϕt+1−T +
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2

(

rt+1
2 − rT

2

)

]

=
1

β

1

r2 − ϕ

1

r1 − r2
rt+1−T
2 −

1

β

1

r1 − ϕ

1

r1 − r2
r−T
1 rt+1

2 −
1

β

1

r1 − ϕ

1

r2 − ϕ
ϕt+1−T

Obviously,

lim
t→∞

pt = 0 for all T ≥ 0 (28)

and

p0 =
1

β

1

r1 − ϕ
r−T
1 = π0 > 0 (29)

so that the size of the initial jump in p is inversely proportional to the lead time
T .

Similar results hold for the state variables xt and πt. Since

t
∑

k=0

(xk − xk−1) = xt (30)

equation (1) implies

pt =

t
∑

k=0

πk = −
α2

α1κ

t
∑

k=0

(xk − xk−1) = −
α2

α1κ
xt (31)

so that pt > 0 if and only if xt < 0. The optimal policy under timeless perspec-
tive implies pt > 0 for all 0 ≤ t <∞ so that xt < 0 for all t < ∞. We can also
show that the persistence or total variation of pt is positive correlated with T ,
i.e.

∞
∑

t=0

pt

∣

∣

∣

T=0
<

∞
∑

t=0

pt

∣

∣

∣

T>0
for all T > 0 (32)
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where the infinite sum
∑∞

t=0 pt

∣

∣

∣

T>0
is an increasing function in T .

The persistence measure used here is based on the deviation of pt from its
initial steady state level p0, where the deviation |pt − p0| is calculated both for
t < T and t ≥ T . Thereafter the differences |pt − p0| are summed up. Since
p0 = 0 and pt > 0 for all t we must determine the infinite sum

∑∞
t=0 pt.

Inequality (32) holds although the initial jump of pt is a negative function
in T . To prove the inequality note that

∞
∑

t=0

pt

∣

∣

∣

T=0
=

1

β(r1 − ϕ)(r2 − ϕ)

[

r2
1 − r2

−
ϕ

1 − ϕ

]

(33)

=
1

β(r1 − ϕ)(1 − r2)(1 − ϕ)
T
∑

t=0

pt

∣

∣

∣

T>0
=

1

β(r1 − ϕ)(r1 − r2)
r−T
1

[

r1
1 − rT+1

1

1 − r1
− r2

1 − rT+1
2

1 − r2

]

(34)

and

∞
∑

t=T+1

pt

∣

∣

∣

T>0
=

1

β(r2 − ϕ)(r1 − r2)
r1−T
2

rT+1
2

1 − r2
(35)

−
1

β(r1 − ϕ)(r1 − r2)
r−T
1 r2

rT+1
2

1 − r2

−
1

β(r1 − ϕ)(r2 − ϕ)
ϕ1−T ϕ

T+1

1 − ϕ

so that

∞
∑

t=0

pt

∣

∣

∣

T>0
=

1

β(r1 − ϕ)(r1 − r2)

[

r1−T
1

1 − r1
−

r21
1 − r1

−
r2r

−T
1

1 − r2
(36)

+
r−T
1 rT+2

2

1 − r2
−
r−T
1 rT+2

2

1 − r2

]

+
1

β(r2 − ϕ)

[

1

r1 − r2

r22
1 − r2

−
1

r1 − ϕ

ϕ2

1 − ϕ

]

=
1

β(r1 − ϕ)(r1 − r2)

[

r1
1 − r1

(

r−T
1 − r1

)

−
r2r

−T
1

1 − r2

]

+
1

β(r2 − ϕ)

[

1

r1 − r2

r22
1 − r2

−
1

r1 − ϕ

ϕ2

1 − ϕ

]
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Then

∞
∑

t=0

pt

∣

∣

∣

T>0
>

∞
∑

t=0

pt

∣

∣

∣

T=0
⇔

(37)

1

β(r1 − ϕ)(r1 − r2)

r1
1 − r1

(

r−T
1 − r1

)

−
r2

1 − r2
[

1

β(r1 − ϕ)(r1 − r2)
r−T
1 −

1

β(r2 − ϕ)

r2
r1 − r2

+
1

β(r1 − ϕ)(r2 − ϕ)

]

−
1

β(r2 − ϕ)

1

r1 − ϕ

ϕ

1 − ϕ
[ϕ− 1] > 0 ⇔

1

β(r1 − ϕ)(r1 − r2)

r1
1 − r1

(

r−T
1 − r1

)

−
1

β(r1 − ϕ)(r1 − r2)

r2
1 − r2

(

r−T
1 − r1

)

−
1

β(r1 − ϕ)(r1 − r2)

r2
1 − r2

r1

−
r2

1 − r2

[

−
r1 − ϕ

β(r1 − ϕ)(r2 − ϕ)

r2
r1 − r2

+
r1 − r2

β(r1 − ϕ)(r2 − ϕ)(r1 − r2)

]

+
1

β(r1 − ϕ)(r2 − ϕ)
ϕ > 0 ⇔

1

β(r1 − ϕ)(r1 − r2)

(

r−T
1 − r1

)

[

r1
1 − r1

−
r2

1 − r2

]

+
r2

1 − r2

1

β(r1 − ϕ)(r2 − ϕ)(r1 − r2)
·

· [r2(r1 − ϕ) − (r1 − r2) − (r2 − ϕ)r1] +
1

β(r1 − ϕ)(r2 − ϕ)
ϕ > 0 ⇔

1

β(r1 − ϕ)(r1 − 1)(1 − r2)

(

r1 − r−T
1

)

+
1

β(r1 − ϕ)(r2 − ϕ)
·

·

[

ϕ+
r2

(1 − r2)(r1 − r2)
(r2(r1 − ϕ) − (r1 − r2) − (r2 − ϕ)r1)

]

> 0 ⇔

1

β(r1 − ϕ)(r1 − 1)(1 − r2)

(

r1 − r−T
1

)

+
1

β(r1 − ϕ)(r2 − ϕ)

(r1 − r2)(ϕ − r2)

(1 − r2)(r1 − r2)
> 0 ⇔

1

β(r1 − ϕ)(r1 − 1)(1 − r2)

(

r1 − r−T
1

)

−
1

β(r1 − ϕ)(1 − r2)
> 0 ⇔

r1 − r−T
1 − (r1 − 1) > 0 ⇔

1 − r−T
1 > 0

Since r1 > 1 the last inequality is fulfilled. Note that the total variation of

pt, i.e.
∑∞

t=0 pt

∣

∣

∣

T>0
is an increasing function in T . This follows from equation

(36), since the derivative of r1

1−r1
r−T
1 − r2

1−r2
r−T
1 with respect to T is positive.
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An implication of inequality (37) is

∞
∑

t=0

|xt|
∣

∣

∣

T=0
<

∞
∑

t=0

|xt|
∣

∣

∣

T>0
(38)

since

|xt| =
α1κ

α2
pt (39)

The persistence of the output response in case of anticipated cost-push shocks
is therefore stronger than in case of unanticipated shocks.

A similar result can be shown for the inflation rate πt if the limiting case
ϕ = 0 is considered. We then get for T = 0

πt =

{

1 − (1 − r2) = r2 if t = 0

−(1 − r2)r
t
2 < 0 if t > 0

(40)

implying

∞
∑

t=0

πt = π0 +
∞
∑

t=1

πt = r2 − (1 − r2)
∞
∑

t=1

rt
2 (41)

= r2 − (1 − r2)

[

1

1 − r2
− 1

]

= r2 − r2 = 0

and

∞
∑

t=0

|πt|
∣

∣

∣

T=ϕ=0
= r2 + (1 − r2)

∞
∑

t=1

rt
2 = 2r2 (42)

In case T > 0 and ϕ = 0 we get

- for t ≤ T :

πt =
r2

r1 − r2
r−T
1

[

(r1 − 1)rt
1 − (r2 − 1)rt

2

]

> 0 (43)

- for t > T :

πt = −
r1r

−T
2 − r2r

−T
1

r1 − r2
(1 − r2)r

t
2 < 0 (44)

Then

T
∑

t=0

πt =
r2

r1 − r2
r−T
1

T
∑

t=0

[

(r1 − 1)rt
1 − (r2 − 1)rt

2

]

(45)

=
r2

r1 − r2
r−T
1

[

(r1 − 1)
1 − rT+1

1

1 − r1
+ (1 − r2)

1 − rT+1
2

1 − r2

]

=
r2

r1 − r2
r−T
1

[

rT+1
1 − rT+1

2

]
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and

∞
∑

t=T+1

πt = −
1 − r2
r1 − r2

[

r1r
−T
2 − r2r

−T
1

] rT+1
2

1 − r2
(46)

= −
r2

r1 − r2
r−T
1

[

rT+1
1 − rT+1

2

]

so that

∞
∑

t=0

πt = 0 (47)

and

∞
∑

t=0

|πt|
∣

∣

∣

T>0

ϕ=0

= 2
r2

r1 − r2
r−T
1

[

rT+1
1 − rT+1

2

]

(48)

Now

r2
r1 − r2

r−T
1

[

rT+1
1 − rT+1

2

]

> r2 ⇔ (49)

r−T
1

[

rT+1
1 − rT+1

2

]

> r1 − r2 ⇔

rT+1
1 − rT+1

2 > rT+1
1 − r2r

T
1 ⇔

r2r
T
1 − rT+1

2 > 0 ⇔

r2
[

rT
1 − rT

2

]

> 0

Due to r1 > 1 > r2 > 0 the last inequality is met so that

∞
∑

t=0

|πt|
∣

∣

∣

T=ϕ=0
<

∞
∑

t=0

|πt|
∣

∣

∣

T>0

ϕ=0

(50)

The case ϕ > 0 is more difficult to analyze since πt can take both positive and
negative values for t > T > 0. If T = 0, πt changes sign immediately after the
initial jump. Since

πt =
1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)ϕt − (1 − r2)r
t
2

]

(if T = 0) (51)

we get

π0 =
1

β(r1 − ϕ)
> 0 (52)

and

∞
∑

t=1

πt

∣

∣

∣

T=0
=

1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)
∞
∑

t=1

ϕt − (1 − r2)
∞
∑

t=1

rt
2

]

(53)

=
1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)

(

1

1 − ϕ
− 1

)

− (1 − r2)

(

1

1 − r2
− 1

)]

=
1

β(r1 − ϕ)(r2 − ϕ)
(ϕ− r2) = −

1

β(r1 − ϕ)
= −π0
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so that

∞
∑

t=0

|πt|
∣

∣

∣

T=0
= 2

1

β(r1 − ϕ)
(54)

In case T > 0 πt is positive for 0 ≤ t ≤ T and we obtain due to (22)

T
∑

t=0

πt =
1

β(r1 − ϕ)(r1 − r2)
r−T
1

[

(r1 − 1)
1 − rT+1

1

1 − r1
− (r2 − 1)

1 − rT+1
2

1 − r2

]

(55)

=
1

β(r1 − ϕ)(r1 − r2)
r−T
1

[

−
(

1 − rT+1
1

)

+ 1 − rT+1
2

]

=
1

β(r1 − ϕ)(r1 − r2)
r−T
1

[

rT+1
1 − rT+1

2

]

=
r1

β(r1 − ϕ)(r1 − r2)

[

1 −

(

r2
r1

)T+1
]

> 0

(since r1 > 1 > r2 > 0). If t > T , πt is negative for sufficiently large values of
t. For small values of t > T πt may be positive. Due to

lim
t→∞

pt = 0 and pt =

t
∑

k=0

πk (56)

we must have

∞
∑

t=0

πt = 0 (57)

so that

∞
∑

t=T+1

πt = −

T
∑

t=0

πt < 0 (58)

The last equation also follows from (24): With

ψ = −
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
(59)
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we obtain

∞
∑

t=T+1

πt =
1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)ϕ−T
∞
∑

t=T+1

ϕt + ψ(1 − r2)
∞
∑

t=T+1

rt
2

]

(60)

=
1

β(r1 − ϕ)(r2 − ϕ)

[

(1 − ϕ)ϕ−T ϕ
T+1

1 − ϕ
+ ψ(1 − r2)

rT+1
2

1 − r2

]

=
1

β(r1 − ϕ)(r2 − ϕ)

[

ϕ+ ψrT+1
2

]

=
1

β(r1 − ϕ)(r2 − ϕ)

[

ϕ−
(r1 − ϕ)r−T

2 − (r2 − ϕ)r−T
1

r1 − r2
rT+1
2

]

=
1

β(r1 − ϕ)(r2 − ϕ)

[

ϕ−
r1 − ϕ

r1 − r2
r2 +

r2 − ϕ

r1 − r2
r−T
1 rT+1

2

]

=
1

β(r1 − ϕ)(r2 − ϕ)(r1 − r2)

[

ϕ(r1 − r2) − r2(r1 − ϕ) + (r2 − ϕ)r−T
1 rT+1

2

]

=
1

β(r1 − ϕ)(r2 − ϕ)(r1 − r2)

[

(ϕ− r2)r1 + (r2 − ϕ)r−T
1 rT+1

2

]

=
1

β(r1 − ϕ)(r1 − r2)

[

−r1 + r−T
1 rT+1

2

]

= −
r1

β(r1 − ϕ)(r1 − r2)

[

1 −

(

r2
r1

)T+1
]

= −

T
∑

t=0

πt < 0

Therefore,

T
∑

t=0

πt

∣

∣

∣

T>0
−

∞
∑

t=T+1

πt

∣

∣

∣

T>0
= 2

T
∑

t=0

πt

∣

∣

∣

T>0
>

∞
∑

t=0

|πt|
∣

∣

∣

T=0
= 2π0

∣

∣

∣

T=0
⇔ (61)

T
∑

t=0

πt

∣

∣

∣

T>0
> π0

∣

∣

∣

T=0
⇔

r1
β(r1 − ϕ)(r1 − r2)

[

1 − (
r2
r1

)T+1

]

>
1

β(r1 − ϕ)
⇔

r1
r1 − r2

[

1 −

(

r2
r1

)T+1
]

> 1 ⇔

r1

[

1 −

(

r2
r1

)T+1
]

> r1 − r2 ⇔

r2 > r1

(

r2
r1

)T+1

⇔

1 >

(

r2
r1

)T

⇔

rT
1 > rT

2
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The last inequality is met due to r1 > 1 > r2 > 0. Since

−
∞
∑

t=T+1

πt

∣

∣

∣

T>0
≤

∞
∑

t=T+1

|πt|
∣

∣

∣

T>0
(62)

the stronger persistence in case of anticipated shocks follows:

∞
∑

t=0

|πt|
∣

∣

∣

T>0
=

T
∑

t=0

πt +

∞
∑

t=T+1

|πt| ≥

T
∑

t=0

πt −

∞
∑

t=T+1

πt >

∞
∑

t=0

|πt|
∣

∣

∣

T=0
(63)

Note that for arbitrary T > 0

π0

∣

∣

∣

T=0
<

T
∑

t=0

πt

∣

∣

∣

T>0
(64)

but

πt

∣

∣

∣

T>0
< π0

∣

∣

∣

T=0
for all 0 ≤ t ≤ T (65)

In particular

πT

∣

∣

∣

T>0
< π0

∣

∣

∣

T=0
(66)

since

πt

∣

∣

∣

T>0
=

1

β(r1 − ϕ)(r1 − r2)
r−T
1

[

(r1 − 1)rT
1 − (r2 − 1)rT

2

]

(67)

=
1

β(r1 − ϕ)(r1 − r2)

[

(r1 − 1) − (r2 − 1)

(

r2
r1

)T
]

< π0

∣

∣

∣

T=0
=

1

β(r1 − ϕ)
⇔

1

r1 − r2

[

(r1 − 1) − (r2 − 1)

(

r2
r1

)T
]

< 1 ⇔

(r1 − 1) − (r2 − 1)

(

r2
r1

)T

< r1 − r2 ⇔

(1 − r2)

(

r2
r1

)T

< 1 − r2 ⇔

(

r2
r1

)T

< 1

Since the last equation holds, the value of the inflation rate at the time of
implementation of the cost-push shock is smaller in case of anticipated compared
to unanticipated shocks.5

5This result holds under the optimal timeless perspective precommitment policy. Under the
policy regime discretion we have (cf. (138))

π0

∣

∣

∣

T=0

= πT

∣

∣

∣

T>0

=
α2

α2 + α1κ2 − α2βϕ

30



The loss under the optimal policy

To determine the welfare loss under the optimal precommitment policy, write
the loss function V as V1 + V2, where

V1 = E0

T−1
∑

t=0

βt
(

α1π
2
t + α2x

2
t

)

(68)

is the loss resulting from the anticipation of the shock and

V2 = E0

∞
∑

t=T

βt
(

α1π
2
t + α2x

2
t

)

(69)

is the loss following from the realization of the shock. We first calculate the
value of the loss function V1. Since the solution time path of the state vector
(πt, xt)

′ over the anticipation interval can be written as
(

πt

xt

)

= G

(

rt
1 0
0 rt

2

)(

1

1

)

(t < T ) (70)

where

G =







(r1−1)r−T

1

β(r1−ϕ)(r1−r2)
−(r2−1)r−T

1

β(r1−ϕ)(r1−r2)

−α1κ
α2β

r1−T

1

(r1−ϕ)(r1−r2)
α1κ
α2β

r2r
−T

1

(r1−ϕ)(r1−r2)






(71)

we obtain

V1 =
T−1
∑

t=0

βt

(

πt

xt

)′(
α1 0
0 α2

)(

πt

xt

)

(72)

=

T−1
∑

t=0

βt

(

1

1

)′(
rt
1 0
0 rt

2

)

G′

(

α1 0
0 α2

)

G

(

rt
1 0
0 rt

2

)(

1

1

)

=

(

1

1

)′

W1

(

1

1

)

= tr

(

W1

(

1

1

)(

1

1

)′)

= w
(1)
11 + 2w

(1)
12 + w

(1)
22

where the symmetric matrix W1 =
(

w
(1)
ij

)

1≤i,j≤2
is defined as the finite sum of

matrices

W1 =

T−1
∑

t=0

βt

(

rt
1 0
0 rt

2

)

D

(

rt
1 0
0 rt

2

)

(73)

with

D =

(

d11 d12

d12 d22

)

= G′

(

α1 0
0 α2

)

G (74)

31



The elements of the symmetric matrix D are given by

d11 = α1λ
2r−2T

1

[

(r1 − 1)2 +
α1κ

2

α2
r21

]

(75)

d12 = −α1λ
2r−2T

1

[

(r1 − 1)(r2 − 1) +
α1κ

2

α2
r1r2

]

(76)

d22 = α1λ
2r−2T

1

[

(r2 − 1)2 +
α1κ

2

α2
r22

]

(77)

where we have used the abbreviation

λ =
1

β

1

r1 − ϕ

1

r1 − r2
(78)

According to (6) we have

(r1 − 1)(r2 − 1) +
α1κ

2

α2
r1r2 = (79)

r1r2

[

1 +
α1κ

2

α2

]

+ 1 − (r1 + r2) =

1

β

[

1 +
α1κ

2

α2

]

+ 1 − (r1 + r2) =

trC − 1 + 1 − (r1 + r2) = 0

so that

w
(1)
11 = d11

T−1
∑

t=0

βtr2t
1 =

1 − βT r2T
1

1 − βr21
d11 (80)

w
(1)
12 = d12

T−1
∑

t=0

βtrt
1r

t
2 = 0 (81)

w
(1)
22 = d22

T−1
∑

t=0

βtr2t
2 =

1 − βT r2T
2

1 − βr22
d22 (82)

Using (6) we get

(r1 − 1)2 +
α1κ

2

α2
r21 = (83)

r21

(

1 +
α1κ

2

α2

)

+ 1 − 2r1 =

β

(

r21[r1 + r2 − 1] +
1

β
[1 − 2r1]

)

=

1

r2

(

r1[r1 + r2 − 1] + r2[1 − 2r1]

)

=
1

r2
(r1 − r2)(r1 − 1)
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so that

w
(1)
11 =

rT
2 − rT

1

(r2 − r1)r
T−1
2

α1λ
2r−2T

1

1

r2
(r1 − r2)(r1 − 1) (84)

= α1λ
2r−2T

1

rT
1 − rT

2

rT
2

(r1 − 1)

and analogically

w
(1)
22 = α1λ

2r−2T
1

rT
1 − rT

2

rT
1

(1 − r2) (85)

Then the loss V1 can be written as

V1 = α1λ
2r−2T

1

(

rT
1 − rT

2

)

(

r1 − 1

rT
2

+
1 − r2

rT
1

)

(86)

Consider V1 as function in T (the time span between the anticipation and real-
ization of the cost-push shock). The function V1(T ) has the following properties:

V1(0) = 0, lim
T→∞

V1(T ) =

{

0 for β < 1

V 1 > 0 for β = 1
(87)

where

V 1 =
α1(r1 − 1)

(r1 − ϕ)2(r1 − r2)2
(88)

The derivative of V1 with respect to T , i. e.

dV1

dT
= α1λ

2

{

2 ln r1 · r
−2T
1 [r1 + r2 − 2] − (r1 − 1) ln(r1r2) · (r1r2)

−T (89)

− (1 − r2) ln(
r2
r31

) · (
r2
r31

)T
}

is positive at time T = 0:

dV1

dT

∣

∣

∣

T=0
= α1λ

2

{

2(ln r1)(r1 + r2 − 2) (90)

− (r1 − 1) ln(r1r2) − (1 − r2) ln

(

r2
r31

)}

= α1λ
2(r1 − r2)[ln r1 − ln r2]

= α1
1

β2

1

(r1 − ϕ)2
1

r1 − r2
[ln r1 − ln r2] > 0

Therefore, V1(T ) starts to rise with increasing T (although the size of the initial
jumps of xt and πt is decreasing in T ). For β < 1 the limit value is equal to
zero, therefore V1(T ) must decrease if T is sufficiently large. Figure 6 illustrates
the hump-shaped development of V1(T ) in case β < 1.
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Figure 6: Partial loss in the anticipation phase for different lengths of antic-
ipation period under optimal timeless perspective commitment policy in case
β = 0.99.

To calculate the loss function V2, write (πt, xt)
′ as

(

πt

xt

)

= F

(

ϕt 0
0 rt

2

)(

1

1

)

(t ≥ T ) (91)

where

F =













(1−ϕ)ϕ−T

β(r1−ϕ)(r2−ϕ)

[(r2−ϕ)r−T

1 −(r1−ϕ)r−T

2 ](1−r2)
β(r1−ϕ)(r2−ϕ)(r1−r2)

α1κ
α2β

ϕ−(T−1)

(r1−ϕ)(r2−ϕ)
α1κ
α2β

[(r2−ϕ)r−T

1 −(r1−ϕ)r−T

2 ]r2
β(r1−ϕ)(r2−ϕ)(r1−r2)













(92)

Then

V2 =

∞
∑

t=T

βt

(

πt

xt

)′(
α1 0
0 α2

)(

πt

xt

)

(93)

=

∞
∑

t=T

βt

(

1

1

)′(
ϕt 0
0 rt

2

)

F ′

(

α1 0
0 α2

)

F

(

ϕt 0
0 rt

2

)(

1

1

)

=

(

1

1

)′

W2

(

1

1

)

= tr

(

W2

(

1

1

)(

1

1

)′)

= w
(2)
11 + 2w

(2)
12 +w

(2)
22

where the symmetric matrix W2 =
(

w
(2)
ij

)

1≤i,j≤2
is the geometric sum of ma-

trices

W2 =
∞
∑

t=T

βt

(

ϕ 0
0 r2

)t

Q

(

ϕ 0
0 r2

)t

(94)

with

Q =

(

q11 q12
q21 q22

)

= F ′

(

α1 0
0 α2

)

F (95)
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The elements of the symmetric matrix Q are given by

q11 = α1δ
2ϕ−2T

[

(1 − ϕ)2 +
α1κ

2

α2
ϕ2

]

(96)

q12 = α1δ
2φϕ−T 1

r1 − r2

[

(1 − r2)(1 − ϕ) +
α1κ

2

α2
r2ϕ

]

(97)

q22 = α1δ
2φ2 1

(r1 − r2)2

[

(1 − r2)
2 +

α1κ
2

α2
r22

]

(98)

with the abbreviations

δ =
1

β

1

r1 − ϕ

1

r2 − ϕ
(99)

and

φ = (r2 − ϕ)r−T
1 − (r1 − ϕ)r−T

2 (100)

The definition of W2 implies that the matrix W2 satisfies the matrix equation

W2 = βT

(

ϕ 0
0 r2

)T

Q

(

ϕ 0
0 r2

)T

+
∞
∑

t=T+1

βt

(

ϕ 0
0 r2

)t

Q

(

ϕ 0
0 r2

)t

(101)

= βT

(

ϕ 0
0 r2

)T

Q

(

ϕ 0
0 r2

)T

+

∞
∑

t=T

βt+1

(

ϕ 0
0 r2

)t+1

Q

(

ϕ 0
0 r2

)t+1

= βT

(

ϕ 0
0 r2

)T

Q

(

ϕ 0
0 r2

)T

+ β

(

ϕ 0
0 r2

)

W2

(

ϕ 0
0 r2

)

Since

βT

(

ϕ 0
0 r2

)T

Q

(

ϕ 0
0 r2

)T

=

(

βTϕ2T q11 βTϕT rT
2 q12

βTϕT rT
2 q21 βT r2T

2 q22

)

(102)

and

W2 − β

(

ϕ 0
0 r2

)

W2

(

ϕ 0
0 r2

)

=

(

(1 − βϕ2)w
(2)
11 (1 − βϕr2)w

(2)
12

(1 − βϕr2)w
(2)
21 (1 − βr22)w

(2)
22

)

(103)

we obtain

w
(2)
11 =

βTϕ2T

1 − βϕ2
q11 (104)

w
(2)
12 = w

(2)
21 =

βTϕT rT
2

1 − βϕr2
q12 (105)
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w
(2)
22 =

βT r2T
2

1 − βr22
q22 (106)

Using (6) and the definition of qij we can write

w
(2)
11 = α1δ

2 βT

1 − βϕ2

[

(1 − 2ϕ) +

(

1 +
α1κ

2

α2

)

ϕ2

]

(107)

= α1δ
2 βT

r1r2 − ϕ2

[

r1r2(1 − 2ϕ) + (r1 + r2 − 1)ϕ2
]

w
(2)
12 = α1δ

2φ
βT rT

2

1 − βϕr2

1

r1 − r2

[

(1 − r2)(1 − ϕ) +
α1κ

2

α2
r2ϕ

]

(108)

= α1δ
2φ

βT rT
2

r1 − ϕ

1

r1 − r2

[

r1(1 − r2)(1 − ϕ) + r1r2
α1κ

2

α2
ϕ

]

= α1δ
2φ

βT rT
2

r1 − ϕ

1

r1 − r2
[r1(1 − ϕ− r2) + (r1 + r2 − 1)ϕ]

= α1δ
2φβT rT

2

1 − r2
r1 − r2

w
(2)
22 = α1δ

2φ2 β
T r2T

2

1 − βr22

1

(r1 − r2)2

[

(1 − r2)
2 +

α1κ
2

α2
r22

]

(109)

= α1δ
2φ2βT r2T

2

r1
r1 − r2

1

(r1 − r2)2

[

1 − 2r2 + r22

(

1 +
α1κ

2

α2

)]

= α1δ
2φ2βT r2T

2

1 − r2
(r1 − r2)2

Then

V2 = α1δ
2βT

{

1

r1r2 − ϕ2

[

r1r2(1 − 2ϕ) + (r1 + r2 − 1)ϕ2
]

(110)

+
2φ

r1 − r2
rT
2 (1 − r2) +

φ2

(r1 − r2)2
r2T
2 (1 − r2)

}

Since

1

r1r2 − ϕ2

[

r1r2(1 − 2ϕ) + (r1 + r2 − 1)ϕ2
]

= 1 +
(r1 + r2)ϕ− 2r1r2

r1r2 − ϕ2
ϕ (111)

and (according to the definition of φ)

1 +
1

r1 − r2
φrT

2 =
1

(r1 − r2)rT
1

(r2 − ϕ)(rT
2 − rT

1 ) (112)
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we can write

V2 = α1δ
2βT

{

(

1 +
1

r1 − r2
φrT

2

)2

(1 − r2) + r2 +
(r1 + r2)ϕ− 2r1r2

r1r2 − ϕ2
ϕ

}

(113)

= α1δ
2βT

{

1

(r1 − r2)2r2T
1

(r2 − ϕ)2
(

rT
2 − rT

1

)2
(1 − r2) +

r1(r2 − ϕ)2

r1r2 − ϕ2

}

=
α1β

T

β2(r1 − ϕ)2

{

(

rT
2 − rT

1

)2
(1 − r2)

(r1 − r2)2r2T
1

+
r1

r1r2 − ϕ2

}

The loss function V2 = V2(T ) has the following properties:

V2(0) =
α1

β2(r1 − ϕ)2
r1

r1r2 − ϕ2
> 0 (114)

lim
T→∞

V2(T ) =







0 if β < 1

V 2 > V2(0)
∣

∣

∣

β = 1
=

α1r1
(r1 − ϕ)2(1 − ϕ2)

if β = 1
(115)

where

V 2 =
α1

(r1 − ϕ)2

{

1 − r2
(r1 − r2)2

+
r1

1 − ϕ2

}

(116)

The first derivative of V2 with respect to T

dV2

dT
=

α1

β2(r1 − ϕ)2
βT

{

r1
r1r2 − ϕ2

lnβ (117)

+
1 − r2

(r1 − r2)2

[

(ln r2 − 3 ln r1)

(

r2
r1

)2T

+ 4 ln r1

(

r2
r1

)T

+ lnβ

]}

implies for β < 1

dV2

dT

∣

∣

∣

T=0
=

α1

β2(r1 − ϕ)2
r1

r1r2 − ϕ2
lnβ < 0 (118)

(since β = 1/(r1r2)). For β < 1, dV2/dT is also negative if T is sufficiently
large. Figure 7 illustrates that the development of V2 is overall decreasing if
the value of ω is sufficiently small (i.e., the degree of price flexibility is high);
otherwise it is not monotone, but hump-shaped. For sufficiently large values of
ω the loss function V2 has two extrema (a maximum and a minimum) which can
be determined from the first-order condition dV2/dT = 0. The first extremum
of V2 cannot be represented graphically since the corresponding value of T is
very small. Note that in the limiting case β = 1 the loss function V2(T ) is an
increasing function in T with a limit value V 2 > V2(0).

We can now derive the development of the total loss V = V1 + V2. We
first assume β < 1. Then V (0) = V2(0) > 0 (with V2(0) defined in (114)) and
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Figure 7: Partial loss in the implementation phase for different lengths of
anticipation period under optimal timeless perspective commitment policy in
case β = 0.99.

limT→∞ V (T ) = 0. For small values of ω, i.e. a high degree of price flexibility,
the total loss V is a decreasing function in T implying V (T ) < V (0) for all
T > 0. With high price flexibility the welfare loss under anticipated shocks is
smaller than under unanticipated shocks. If ω is small, the persistence of the
state variables is weak and the total loss is mainly determined by the size of
the initial jumps of xt and πt which is a decreasing function in T . By contrast,
for sufficiently large values of ω (i.e. a high degree of price rigidity) the jump
variables xt and πt display a strong persistence so that the welfare loss starts
to rise with increasing lead time T . For the derivative dV/dT at time T = 0 we
get

dV

dT

∣

∣

∣

T=0
=
dV1

dT

∣

∣

∣

T=0
+
dV2

dT

∣

∣

∣

T=0
(119)

=
α1

β2(r1 − ϕ)2

{

1

r1 − r2
[ln r1 − ln r2] +

r1
r1r2 − ϕ2

lnβ

}

=
α1

β2(r1 − ϕ)2

{

1

r1 − r2
[ln r1 − ln r2] −

r1
r1r2 − ϕ2

[ln r1 + ln r2]

}

=
α1

β2(r1 − ϕ)2

{[

1

r1 − r2
−

r1
r1r2 − ϕ2

]

ln r1 −

[

1

r1 − r2
+

r1
r1r2 − ϕ2

]

ln r2

}

Then

dV

dT

∣

∣

∣

T=0
> 0 ⇔ (120)

[

r1(2r2 − r1) − ϕ2
]

ln r1 −
[

r21 − ϕ2
]

ln r2 > 0 ⇔

2

(

1

β
− ϕ2

)

ln r1 +
(

r21 − ϕ2
)

lnβ > 0

The last equivalence holds since ln r2 = −(ln r1 +lnβ). A rising ω induces a fall
in the unstable eigenvalue r1 since dκ/dω < 0. Since the fall in r21 is stronger
than the decrease in ln r1, and 1/β − ϕ2 > 0, inequality (120) is fulfilled if ω is
sufficiently large. In this case V (T ) starts to rise and due to limT→∞ V (T ) = 0
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its development must be hump-shaped implying the existence of an upper bound
T ∗

c > 0 such that V (T ) > V (0) for all T < T ∗
c .

With low price flexibility and a lead time T which is not too long, the welfare
loss under anticipated shocks is greater than under unanticipated shocks. The
reason is the stronger persistence of xt and πt in case T > 0 (compared to
T = 0) which dominates the determination of the total loss if ω is sufficiently
large.

The value of the upper bound T ∗
c is the positive solution of the equation

V (T ) = V (0), where V (0) = V2(0) is given by (114). This leads to the equation

1

(r1 − r2)2
r−2T
1 (rT

1 − rT
2 )

[

r1 − 1

rT
2

+
1 − r2

rT
1

+ βT (rT
1 − rT

2 )(1 − r2)

]

(121)

=
(

1 − βT
) r1
r1r2 − ϕ2

which is equivalent to

1 −

(

r2
r1

)T

=
[

(r1r2)
T − 1

] r1(r1 − r2)

r1r2 − ϕ2
(122)

Equation (122) can be written as

1 −
1

βT r2T
1

=

(

1
β

)T

− 1

1
β
− ϕ2

(

r21 −
1

β

)

⇔

βT r2T
1 − 1 =

(

1
β

)T

− 1

1 − βϕ2

(

βr21 − 1
)

βT r2T
1 ⇔

βT r2T
1






1 −

(

1
β

)T

− 1

1 − βϕ2

(

βr21 − 1
)






= 1 ⇔

βT r2T
1

[

β
(

r21 − ϕ2
)

+
1

βT
(1 − βr21)

]

= 1 − βϕ2 ⇔

βT r2T
1

[

βr21

(

1 −
1

βT

)

+
1

βT
− βϕ2

]

= 1 − βϕ2 ⇔ (123)

r2T
1

[

βT+1
(

r21 − ϕ2
)

+
(

1 − βr21
)]

= 1 − βϕ2 (124)

so that T ∗
c is also the positive solution of (123) and (124). The value of T ∗

c is
dependent on ω and β. A rising ω (a higher degree of price rigidity) decreases
the unstable eigenvalue r1 so that the left-hand side of equation (123) is de-
creased while the right-hand side remains unchanged. Since βT r2T

1 = (r1/r2)
T

is increasing in T , equation (123) implies that the solution value T ∗
c must in-

crease if ω rises. Conversely, a higher degree of price flexibility induces a fall in
T ∗

c . For sufficiently small values of ω the only solution of (124) is T ∗
c = 0 (so

that V (T ) < V (0) for all T > 0). If a positive solution T ∗
c of (124) exists, then

it is also an increasing function in the discount factor β with T ∗
c = ∞ if β = 1.
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In the limiting case β = 1 the total loss V (T ) is an overall increasing function
in T with V (0) = V2(0) > 0 and

lim
T→∞

V (T ) =
α1

(r1 − ϕ)2

{

1

r1 − r2
+

r1
1 − ϕ2

}

> V2(0)
∣

∣

∣

β=1
> 0 (125)

If β = 1, we can write V (T ) as V1(T ) + V2(T ), where

V1(T ) =
α1

(r1 − ϕ)2(r1 − r2)2
r−2T
1

(

rT
1 − rT

2

)

[

(r1 − 1)r−T
2 + (1 − r2)r

−T
1

]

(126)

=
α1

(r1 − ϕ)2(r1 − r2)2

[

(r1 − 1) + (2 − r1 − r2)r
−2T
1 − (1 − r2)

(

r2
r31

)T
]

V2(T ) =
α1

(r1 − ϕ)2

{

(

rT
1 − rT

2

)2
(1 − r2)

(r1 − r2)2r2T
1

+
r1

1 − ϕ2

}

(127)

=
α1

(r1 − ϕ)2







1 − r2
(r1 − r2)2

[

1 −

(

r2
r1

)T
]2

+
r1

1 − ϕ2







Then

dV1

dT
=

α1

(r1 − ϕ)2(r1 − r2)2

{

2[r1 + r2 − 2] ln r1 (128)

+[3 ln r1 − ln r2](1 − r2)

(

r2
r1

)T
}

r−2T
1 > 0 for all T ≥ 0

(due to r1 + r2 = tr C > 2 and ln r2 < 0) and

dV2

dT
=

α1

(r1 − ϕ)2
1 − r2

(r1 − r2)2

{

−2

(

1 −

(

r2
r1

)T
)

ln

(

r2
r1

)

}

(

r2
r1

)T

(129)

>
(=)

0 if T >
(=)

0

(because 0 < r2 < 1 < r1). Therefore, dV/dT > 0 for all T ≥ 0 so that V is a
monotonically increasing function in T . This result holds independently of the
degree of price rigidity ω.

Optimal policy under discretion

Under the policy regime discretion (D), the central bank is unable to make
a commitment to future policies. Now private expectations are given for the
central bank and the reduced form of the first-order conditions can be written
as

πt = −
α2

α1κ
xt (130)

Etxt+1 =
1

β

[

1 +
α1κ

2

α2

]

xt +
α1κ

α2β
kt (131)
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with Etxt+1 = xt+1 in case of anticipated shocks. The difference equation in xt

has the unstable eigenvalue

rD =
1

β

[

1 +
α1κ

2

α2

]

=
1

α2β

[

α2 + α1κ
2
]

> 1 (132)

and the forward solution

xt = −
∞
∑

s=0

r−s
D

1

rD

α1κ

α2β
kt+s (133)

Since

kt+s =

{

ϕt+s−T for t+ s ≥ T

0 for t+ s < T
(134)

we get for t ≥ T

xt = −
∞
∑

s=0

r−s
D ϕs 1

rD

α1κ

α2β
ϕt−T = −

1

1 − r−1
D ϕ

1

rD

α1κ

α2β
ϕt−T (135)

= −
1

rD − ϕ

α1κ

α2β
ϕt−T = −

α1κ

α2 + α1κ2 − α2βϕ
ϕt−T

and for t < T

xt = −
∞
∑

s=T−t

r−s
D ϕs 1

rD

α1κ

α2β
ϕt−T = −

(r−1
D ϕ)T−t

1 − r−1
D ϕ

1

rD

α1κ

α2β
ϕt−T (136)

= −
(r−1

D )T−t

rD − ϕ

α1κ

α2β
= −

1

rD − ϕ

α1κ

α2β
rt−T
D = −

α1κ

α2 + α1κ2 − α2βϕ
rt−T
D

Since rt−T
D = 1 for t = T , the solution formula for xt also holds in the shock

period t = T . For t = 0 we get

x0 = −
α1κ

α2 + α1κ2 − α2βϕ
r−T
D (137)

so that the the size of the initial jump of xt decreases with increasing T .
For the inflation rate πt we obtain the solution time path

πt =



















α2

α2 + α1κ2 − α2βϕ
rt−T
D if 0 ≤ t ≤ T

α2

α2 + α1κ2 − α2βϕ
ϕt−T if t ≥ T

(138)

Note that the limiting case ϕ = 0 implies πt = xt = 0 for t > T .
For all 0 ≤ ϕ < 1 the adjustment processes of xt and πt in case of anticipated

cost-push shocks show a stronger persistence than in case T = 0. With the
abbreviation

φ̃ =
α2

α2 + α1κ2 − α2βϕ
> 0 (139)
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we have

∞
∑

t=0

|πt|
∣

∣

∣

T=0
= φ̃

∞
∑

t=0

ϕt =
φ̃

1 − ϕ
(140)

and

∞
∑

t=0

|πt|
∣

∣

∣

T>0
=

T−1
∑

t=0

πt

∣

∣

∣

T>0
+

∞
∑

t=T

πt

∣

∣

∣

T>0
(141)

= φ̃r−T
D

T−1
∑

t=0

rt
D + φ̃ϕ−T

∞
∑

t=T

ϕt

= φ̃r−T
D

1 − rT
D

1 − rD
+ φ̃ϕ−T ϕT

1 − ϕ

= φ̃
1

1 − ϕ
+ φ̃

1 − r−T
D

rD − 1
> φ̃

1

1 − ϕ
=

∞
∑

t=0

|πt|
∣

∣

∣

T=0

since rD > 1 and 0 < r−T
D < 1 if T > 0. An analogous result holds for xt.

The policy regime discretion implies

∞
∑

t=0

πt

∣

∣

∣

T=0
=

∞
∑

t=T

πt

∣

∣

∣

T>0
(142)

and

∞
∑

t=0

xt

∣

∣

∣

T=0
=

∞
∑

t=T

xt

∣

∣

∣

T>0
(143)

so that the stronger persistence of πt and xt in case T > 0 is due to the
anticipation effects

∑T−1
t=0 πt > 0 and

∑T−1
t=0 xt < 0.

The solution time path for the price level pt results from

pt =

t
∑

k=0

πk (144)

For 0 ≤ t ≤ T we get

pt =
α2

α2 + α1κ2 − α2βϕ

t
∑

k=0

rt−T
D (145)

=
α2

α2 + α1κ2 − α2βϕ
r−T
D

1 − rt+1
D

1 − rD

and for t ≥ T

pt =

T−1
∑

k=0

πk +

∞
∑

k=T

πk (146)

=
α2

α2 + α1κ2 − α2βϕ

[

r−T
D

1 − rT
D

1 − rD
− ϕ−T ϕ

t+1 − ϕT

1 − ϕ

]
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with

lim
t→∞

pt =
α2

α2 + α1κ2 − α2βϕ

[

1 − r−T
D

rD − 1
+

1

1 − ϕ

]

> 0 (147)

Note that the limit value of pt is a positive function in T . It is well-known that
a temporary cost-push shock yields a permanent rise in the price level under the
policy regime discretion. By contrast, under the optimal timeless perspective
precommitment policy there is only a temporary rise in the price level.

A further well-known result is that the loss under discretion (VD) is greater
than the total loss under the optimal precommitment policy. Inserting the
solution time paths for πt and xt in the loss function we obtain

VD =

∞
∑

t=0

βt
(

α1π
2
t + α2x

2
t

)

(148)

=
∞
∑

t=0

βt

[

α1

(

α2

α1κ

)2

+ α2

]

x2
t = V D

1 + V D
2

=

T−1
∑

t=0

βt

[

α2
2

α1κ2
+ α2

]

x2
t +

∞
∑

t=T

βt

[

α2
2

α1κ2
+ α2

]

x2
t

=
α2

2 + α1α2κ
2

α1κ2

(α1κ)
2

[α2(1 − βϕ) + α1κ2]2

(

T−1
∑

t=0

βtr
2(t−T )
D +

∞
∑

t=T

βtϕ2(t−T )

)

=
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2

(

r−2T
D

1 − (βr2D)T

1 − βr2D
+ ϕ−2T (βϕ2)T

1 − βϕ2

)

=
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2

(

r−2T
D − βT

1 − βr2D
+

βT

1 − βϕ2

)

=
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βr2D

(

r−2T
D −

β(r2D − ϕ2)

1 − βϕ2
βT

)

where

1

1 − βr2D
=

α2
2β

α2
2β − (α2 + α1κ2)2

< 0 (149)

Consider VD as function in T . Then

VD(0) =
α1α2[α2 + α1κ

2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βϕ2
> 0 (150)

and

lim
T→∞

VD(T ) =

{

0 if β < 1
α1α2[α2+α1κ2]

[α2(1−βϕ)+α1κ2]2

(

1
r2

D
−1

+ 1
1−ϕ2

)

> VD(0) > 0 if β = 1
(151)

The loss function

V D
2 (T ) =

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
βT

1 − βϕ2
(152)
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has the properties

V D
2 (0) = VD(0) (153)

lim
T→∞

V D
2 (T ) = 0 if β < 1 (154)

dV D
2

dT
= (lnβ)V D

2 (T ) < 0 if β < 1 for all 0 ≤ T <∞ (155)

For β = 1 the function V D
2 (T ) is constant.

The loss function V D
1 (T ) given by

V D
1 (T ) =

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
r−2T
D − βT

1 − βr2D
(156)

has similar properties as the corresponding function V1(T ) under the policy
regime commitment:

V D
1 (0) = 0 (157)

lim
T→∞

V D
1 (T ) =











0 if β < 1

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
1

r2D − 1
> 0 if β = 1

(158)

The first derivative with respect to T

dV D
1 (T )

dT
=

α1α2[α2 + α1κ
2]

[α2(1 − βϕ) + α1κ2]2
1

1 − βr2D

[

−2(ln rD)r−2T
D − (lnβ)βT

]

(159)

is positive at time T = 0, since 1 − βr2D < 0 and −2 ln rD − lnβ < 0 due to
rD > 1 ≥ β.

In case β < 1 the development of V D
1 (T ) is hump-shaped with the maximum

value at time T ∗
d which is the solution of the equation

2(ln rD)r−2T
D + (lnβ)βT = 0 (160)

Equation (160) is equivalent to

−
2 ln rD
lnβ

= (βr2D)T (161)

with the solution

T ∗
d =

ln

[

−
2 ln rD
lnβ

]

ln(βr2D)
> 0 (162)

The total loss function VD(T ) = V D
1 (T )+V D

2 (T ) has a similar development
as the corresponding function V (T ) under timeless perspective commitment.
In the limiting case β = 1 it is overall increasing while for β < 1 it is hump-
shaped, if the degree of price flexibility is not too large, while it is monotonically
decreasing in T if the value of ω is small. For small values of ω the derivative
of VD at time T = 0 is negative, while it is positive if ω is sufficiently large.
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Total loss under a simple rule

We can also determine the total loss under an ad hoc Taylor rule

it = δππt + δxxt (163)

with exogenously given coefficients δπ and δx. It is well-known that under the
condition δπ > 1 and δx ≥ 0 the baseline New Keynesian model satisfies the
Blanchard/Kahn (1980) saddlepath condition. The state equations

A

(

Etxt+1

Etπt+1

)

= B

(

xt

πt

)

+

(

0

−1

)

kt (164)

with

A =

(

1 1
σ

0 β

)

, B =

(

1 + δx

σ
δπ

σ

−κ 1

)

(165)

have two unstable eigenvalues belonging to the state matrix A−1B. Solving the
state equations forward we get with

vt =

(

xt

πt

)

, P = B−1A, q =

(

0

−1

)

(166)

the solution time paths in case of anticipated cost-push shocks:

- For t ≥ T

vt = −

(

∞
∑

s=0

ϕsP s

)

B−1qϕt−T = −[I2×2 − ϕP ]−1B−1qϕt−T (167)

= −[B − ϕA]−1qϕt−T

- For t < T

vt = −

(

∞
∑

s=T−t

ϕsP s

)

B−1qϕt−T (168)

= −[I2×2 − ϕP ]−1(ϕP )T−tB−1qϕt−T

= −[I2×2 − ϕP ]−1P T−t B−1q

The solution formula for t < T also holds in t = T since

vT = −[B − ϕA]−1q (169)

= −[I2×2 − ϕP ]−1B−1

The total loss under the simple Taylor rule (VSTR) can be written as

VSTR =
∞
∑

t=0

βtv′t

(

α2 0
0 α1

)

vt = V STR
1 + V STR

2 (170)
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where

V STR
1 =

T−1
∑

t=0

βtv′t

(

α2 0
0 α1

)

vt (171)

and

V STR
2 =

∞
∑

t=T

βtv′t

(

α2 0
0 α1

)

vt (172)

Define

M = (B − ϕA)−1 =

(

m11 m12

m21 m22

)

(173)

Then

V STR
2 =

∞
∑

t=T

βtq′M ′

(

α2 0
0 α1

)

Mqϕ2(t−T ) (174)

= q′M ′

(

α2 0
0 α1

)

Mqϕ−2T

(

∞
∑

t=T

βtϕ2t

)

=
(βϕ2)T

1 − βϕ2
ϕ−2T q′M ′

(

α2 0
0 α1

)

Mq

=
βT

1 − βϕ2
tr

(

M ′

(

α2 0
0 α1

)

Mqq′
)

where

M ′

(

α2 0
0 α1

)

M =

(

α2m
2
11 + α1m

2
21 α2m11m12 + α1m21m22

α2m11m12 + α1m21m22 α2m
2
12 + α1m

2
22

)

(175)

Since

qq′ =

(

0 0
0 1

)

(176)

we obtain

tr

(

M ′

(

α2 0
0 α1

)

Mqq′
)

= α2m
2
12 + α1m

2
22 (177)

The definition of the matrices A and B implies

B − ϕA =

(

1 + δx

σ
− ϕ δπ

σ
− ϕ

σ

−κ 1 − ϕβ

)

(178)

∆ = |B − ϕA| =

(

1 +
δ

σ
− ϕ

)

(1 − ϕβ) + κ

(

δπ
σ

−
ϕ

σ

)

=
1

σ
b (179)
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where

b = (1 − ϕ)(1 − ϕβ)σ + δx(1 − ϕβ) + κ(δπ − ϕ) (180)

> 0 if δπ > 1 and δx > 0

Then

M = (B − ϕA)−1 =
1

b

(

σ(1 − ϕβ) −(δπ − ϕ)
σκ σ(1 − ϕ) + δx

)

(181)

so that

m12 = −
1

b
(δπ − ϕ), m22 =

1

b
[σ(1 − ϕ) + δx] (182)

and

V STR
2 =

βT

1 − βϕ2

1

b2
[

α2(δπ − ϕ)2 + α1(σ(1 − ϕ) + δx)2
]

(183)

The loss function V STR
2 = V STR

2 (T ) hat the same properties as the correspond-
ing function under discretion (V D

2 (T )).
To calculate the loss V STR

1 set

Q = [I2×2 − ϕP ]−1 (where P = B−1A) (184)

and

q̃ = B−1q (185)

Then

vt = −QP T−tq̃ for t ≤ T (186)

and

V STR
1 = q̃′

(

T−1
∑

t=0

βt(P T−t)′Q′

(

α2 0
0 α1

)

QP T−t

)

q̃ (187)

= q̃′

(

T
∑

k=1

βT−k(P k)′Q′

(

α2 0
0 α1

)

QP k

)

q̃

= βT q̃′W̃ q̃ = βT tr(W̃ q̃q̃′)

where

q̃q̃′ = B−1qq′(B−1)′ = B−1

(

0 0
0 1

)

(B−1)′ (188)

=
1

(σ + δx + κδπ)2

(

δ2π −δπ(σ + δx)
−δπ(σ + δx) (σ + δx)2

)
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and

W̃ =
T
∑

k=1

β−k(P k)′Q′

(

α2 0
0 α1

)

QP k (189)

W̃ satisfies the following matrix equation: Let

D̃ = Q′

(

α2 0
0 α1

)

Q (190)

Then the definition of W̃ implies

W̃ = β−1P ′D̃P +
T
∑

k=2

β−k(P k)′D̃P k (191)

= β−1P ′D̃P +

T−1
∑

k=1

β−(k+1)(P k+1)′D̃P k+1

= β−1P ′D̃P + β−1P ′

(

T−1
∑

k=1

β−k(P k)′D̃P k

)

P

= β−1P ′D̃P + β−1P ′

(

T
∑

k=1

β−k(P k)′D̃P k

)

P − β−1P ′β−T (P T )′D̃P TP

= β−1P ′D̃P − β−(T+1)(P T+1)′D̃P T+1 + β−1P ′W̃P

or in compact representation

W̃ = H̃ + β−1P ′W̃P (192)

where

H̃ = β−1P ′D̃P − β−(T+1)(P T+1)′D̃P T+1 (193)

To solve for W̃ use the vectorization of a matrix and the Kronecker product of
matrices. Since

vec (β−1P ′W̃P ) = [β−1P ′ ⊗ P ′]vec W̃ (194)

we obtain

vec W̃ − [β−1P ′ ⊗ P ′]vec W̃ = vec H̃ (195)

with the solution

vec W̃ = [I4×4 − β−1P ′ ⊗ P ′]−1vec H̃ (196)

where

vec H̃ = vec (β−1P ′D̃P ) − vec (β−(T+1)(P T+1)′D̃P T+1) (197)

=
(

[β−1P ′ ⊗ P ′] − [β−(T+1)(P T+1)′ ⊗ (P T+1)′]
)

vec D̃
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and

vec D̃ = Q′ ⊗Q′vec

(

α2 0
0 α1

)

(198)

= ([I2×2 − ϕP ]−1)′ ⊗ ([I2×2 − ϕP ]−1)′









α2

0
0
α1









Note that vec D̃ equals vec

(

α2 0
0 α1

)

in the special case ϕ = 0. The devel-

opment of V STR
1 as function in T is analogous to the loss function V D

1 (T ).
Therefore, the total loss function V STR(T ) = V STR

1 (T ) + V STR
2 (T ) has the

same properties as the total loss under discretion.
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