ECDNSTOR

Working Paper

On the Non-Optimality of Information: An Analysis of the Welfare Effects of Anticipated Shocks in the New Keynesian Model

Economics working paper / Christian-Albrechts-Universität Kiel, Department of Economics, No. 2008,21

Provided in cooperation with:
Christian-Albrechts-Universität Kiel (CAU)

Suggested citation: Wohltmann, Hans-Werner; Winkler, Roland C. (2008) : On the NonOptimality of Information: An Analysis of the Welfare Effects of Anticipated Shocks in the New Keynesian Model, Economics working paper / Christian-Albrechts-Universität Kiel, Department of Economics, No. 2008,21, http://hdl.handle.net/10419/27676

Nutzungsbedingungen:

Die ZBW räumt Ihnen als Nutzerin/Nutzer das unentgeltliche,
räumlich unbeschränkte und zeitlich auf die Dauer des Schutzrechts beschränkte einfache Recht ein, das ausgewählte Werk im Rahmen der unter
\rightarrow http://www.econstor.eu/dspace/Nutzungsbedingungen
nachzulesenden vollständigen Nutzungsbedingungen zu
vervielfältigen, mit denen die Nutzerin/der Nutzer sich durch die erste Nutzung einverstanden erklärt.

Terms of use:

The ZBW grants you, the user, the non-exclusive right to use the selected work free of charge, territorially unrestricted and within the time limit of the term of the property rights according to the terms specified at
\rightarrow http://www.econstor.eu/dspace/Nutzungsbedingungen
By the first use of the selected work the user agrees and declares to comply with these terms of use.

On the Non-Optimality of Information: An Analysis of the Welfare Effects of Anticipated Shocks in the New Keynesian Model

by Hans-Werner Wohltmann and Roland Winkler

Christian-Albrechts-Universität Kiel
Economics Working Paper
No 2008-21

On the Non-Optimality of Information:
 An Analysis of the Welfare Effects of Anticipated Shocks in the New Keynesian Model

Hans-Werner Wohltmann ${ }^{\ddagger}$ and Roland Winkler ${ }^{\text {§ }}$
Department of Economics, Christian-Albrechts-University of Kiel, Olshausenstr. 40, D-24098 Kiel, Germany

December 29, 2008

Abstract

This paper compares the welfare effects of anticipated and unanticipated cost-push shocks in the canonical New Keynesian model with optimal monetary policy. We find that, for empirically plausible degrees of nominal rigidity, the anticipation of a future cost-push shock leads to a higher welfare loss than an unanticipated shock. A welfare gain from the anticipation of a future cost shock may only occur if prices are sufficiently flexible. We analytically show that this surprising result holds although unanticipated shocks lead to higher negative impact effects on welfare than anticipated shocks.

JEL classification: E31, E32, E52
Keywords: Anticipated Shocks, Optimal Monetary Policy, Sticky Prices, Welfare Analysis

[^0]
1 Introduction

Does the anticipation of future shocks has a stabilizing effect on the economy and thus reduces the welfare loss compared to unanticipated shocks? In this paper, we seek to answer this question by comparing the welfare effects of unanticipated and anticipated cost-push shocks in the canonical New Keynesian model with a monetary authority which minimizes a standard loss function that weights the volatility of inflation and the output gap. In particular, we analytically solve for dynamics and welfare in case of optimal monetary policy under timeless perspective commitment and discretion. We distinguish the usual case of unanticipated cost-push shocks and the case of future cost-push shocks that are known in advance.

Since the real business cycle revolution of Kydland and Prescott (1982) and his successors, unanticipated random disturbances are considered as the main driving force in explaining business cycles. New Keynesians add nominal rigidities to the real business cycle framework to study the role of monetary policy in aggregate fluctuations but maintain the assumption of unpredictable random shocks (see, e.g., the textbooks of Walsh (2003), Woodford (2003), or Galí (2008)). An exception is the stream of literature that analyzes anticipated disinflations going back to Ball (1994) who shows that a simple variant of the New Keynesian model predicts a boom in response to an anticipated disinflation. However, the literature on the optimal design of monetary policy usually considers unanticipated shocks (see, e.g. Clarida, Galí, and Gertler (1999), Svensson (1999), King, Khan, and Wolman (2000), or Woodford (2003)).

Recently, a number of macroeconometric studies emphasize the role of anticipated shocks as sources of macroeconomic fluctuations. Beaudry and Portier (2006) find that more than half of business cycle fluctuations are caused by news about future technological opportunities. Davis (2007) and Fujiwara, Hirose, and Shintani (2008) analyze the importance of anticipated shocks in large scale DSGE models closely related to the model of Christiano, Eichenbaum, and Evans (2005) and report that these disturbances are important components of aggregate fluctuations. Schmitt-Grohé and Uribe (2008) conduct a Bayesian estimation of a real-business cycle model and find that anticipated shocks are the most important source of aggregate fluctuations. In particular, they report that anticipated shocks explain two thirds of the volatility in consumption, output, investment, and employment.

Theoretical studies on the role of anticipations for business cycle fluctuations include Beaudry and Portier (2004, 2007), Beaudry, Collard, and Portier (2006), Jaimovich and Rebelo (2006, 2008), Den Haan and Kaltenbrunner (2007), or Christiano, Ilut, Motto, and Rostagno (2008).

However, none of these studies considers the welfare effects of the anticipation of future shocks. In this study, we derive a solution of welfare as a function of the time span between the anticipation and the realization of the shock which enables us to discover the dependency of welfare on the length of the anticipation period. Furthermore, we contribute to the literature by systematically investigating the role of nominal rigidities for the welfare impacts of anticipations.

To the best of our knowledge, Wohltmann and Winkler (2008) and Winkler (2008) are the only studies that compare the welfare effects of anticipated and unanticipated shocks. They both analyze energy price shocks under different monetary policy regimes including optimal monetary policy. However, these studies rely on numerical simulations and do not, as we do, investigate the role of nominal rigidities.

The main results of this paper are the following. For empirically plausible degrees of nominal rigidity, the anticipation of a future cost-push shock leads to a higher welfare loss than an analogous unanticipated shock. A welfare gain from the anticipation of a future cost shock may only occur if prices are sufficiently flexible. This result is consistent with the findings of Schmitt-Grohé and Uribe (2008) who show that the anticipation of future shocks has a stabilizing effect on an economy without nominal rigidities. We point out that precisely the degree of nominal rigidity play an important role for the evaluation of the welfare effects of anticipations.

Our results are driven by two opposing effects. On the one hand, we obtain the well-known result that the anticipation of a future shock dampens its impact effect. On the other hand, we show that anticipation of future cost-push shocks enhances the persistence of output and inflation and thus enhances the welfare loss. This persistence effect, in turn, is amplified by the degree of price stickiness.

Nevertheless, at a first glance, our findings seem to be puzzling since it suggests that the information about the occurrence of future shocks is in general welfare-reducing. But then the question arises, why rational agents do not ignore the knowledge about future disturbances. In the remainder of this paper, we will seek to shed more light on this question.

Our paper is organized as follows. Section 2 presents the canonical New Keynesian model and its solution under the policy regimes timeless perspective commitment and discretion. In section 3, we report and discuss our main findings. Furthermore, we provide analytical proofs and, for the sake of illustration, numerical simulations. Section 4 concludes. The paper includes an extensive mathematical appendix.

2 The Framework

The canonical New Keynesian model serves as analytical framework. It consists of an optimizing IS-type relationship of the form

$$
\begin{equation*}
x_{t}=E_{t} x_{t+1}-\frac{1}{\sigma}\left(i_{t}-E_{t} \pi_{t+1}\right) \quad(\sigma \geq 1) \tag{1}
\end{equation*}
$$

and a price adjustment equation of Calvo-Rotemberg type, often referred to as New Keynesian Phillips Curve (NKPC)

$$
\begin{equation*}
\pi_{t}=\beta E_{t} \pi_{t+1}+\kappa x_{t}+k_{t} \quad(0<\beta<1, \kappa>0) \tag{2}
\end{equation*}
$$

x_{t} denotes the output gap, π_{t} is inflation, and i_{t} is the nominal interest rate. E_{t} is the expectations operator conditional on information up to date $t . \beta$ is the
discount factor and $1 / \sigma$ denotes the intertemporal elasticity of substitution. It is well-known that under the assumptions of Calvo (1983) price setting, a constant returns to scale production function with labor as single input, and perfect labor markets, the slope parameter κ is given by $\kappa=(\eta+\sigma) \frac{(1-\omega)(1-\beta \omega)}{\omega}$, where η is the inverse of the labor supply elasticity. ${ }^{1}$ Obviously, κ is negatively correlated with the degree of price rigidity ω. According to the Calvo price adjustment mechanism, a fraction $1-\omega$ of firms can adjust their price in period t. Simultaneously, ω is the probability that a single price which is reoptimized in period t, also holds in the next period $t+1$. The Calvo parameter ω is therefore a measure of the degree of price rigidity on the goods markets.

In the NKPC, k_{t} represents a temporary cost-push shock that is assumed to be autoregressive of order one with AR parameter $\varphi \in[0,1)$ and a one-unit cost shock ε_{t}

$$
\begin{equation*}
k_{t}=\varphi k_{t-1}+\varepsilon_{t} \quad(t \geq T>0) \tag{3}
\end{equation*}
$$

Since we consider anticipated cost-push shocks, the one-unit cost shock ε_{t} is not white noise, but known to the public before the shock actually occurs. ${ }^{2}$ Assume that at time $t=0$ the public anticipates the cost-push shock to take place at some future time $T>0$. Then,

$$
\varepsilon_{t}= \begin{cases}1 & \text { for } t=T>0 \tag{4}\\ 0 & \text { for } t \neq T\end{cases}
$$

The adjustment dynamics induced by anticipated shocks involve two phases, the time span between the anticipation and the realization of the shock ($0 \leq$ $t<T)$ and the time span after the implementation of the shock $(T \leq t \leq \infty)$. The lead time T up to the realization of the shock is equal to the length of the anticipation phase $0 \leq t<T$. An implication of our definition of anticipated shocks is that rational expectations are equivalent to perfect foresight so that we can omit the expectations operator.

The policy maker's objective at the time of anticipation $t=0$ is to minimize the intertemporal loss function

$$
\begin{equation*}
V=E_{0} \sum_{t=0}^{\infty} \beta^{t}\left(\alpha_{1} \pi_{t}^{2}+\alpha_{2} x_{t}^{2}\right) \quad\left(\alpha_{1}>\alpha_{2}>0,0<\beta \leq 1\right) \tag{5}
\end{equation*}
$$

which reflects the objective of flexible inflation targeting (see, e.g., Svensson (1999)). Rotemberg and Woodford (1999) and Woodord (2003) show that, under certain conditions, a quadratic loss function in inflation and the output gap is the correct approximation to the representative agent's utility function.

The first-order conditions of the policy problem under timeless perspective precommitment monetary policy as well as under discretion are well known and

[^1]need not to be derived here (see, for example, Walsh (2003)). Under the optimal timeless perspective precommitment policy, inflation satisfies the targeting rule
\[

$$
\begin{equation*}
\pi_{t}=-\frac{\alpha_{2}}{\alpha_{1} \kappa}\left(x_{t}-x_{t-1}\right) \tag{6}
\end{equation*}
$$

\]

while the output gap is described by the second-order difference equation

$$
\begin{equation*}
\left(1+\beta+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right) x_{t}-x_{t-1}-\beta E_{t} x_{t+1}=-\frac{\alpha_{1} \kappa}{\alpha_{2}} k_{t} \tag{7}
\end{equation*}
$$

where the expectational operator can be omitted in case of anticipated shocks.
To solve the difference equation for x_{t}, write equation (7) as

$$
\begin{equation*}
\binom{x_{t+1}}{w_{t+1}}=C\binom{x_{t}}{w_{t}}+\binom{\frac{\alpha_{1} \kappa}{\alpha_{2} \beta}}{0} k_{t} \tag{8}
\end{equation*}
$$

where $w_{t}=x_{t-1}$ and

$$
C=\left(\begin{array}{cc}
\frac{1}{\beta}\left(1+\beta+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right) & -\frac{1}{\beta} \tag{9}\\
1 & 0
\end{array}\right)
$$

The auxiliary variable w_{t} is backward-looking (with the initial value $w_{0}=0$, while the output gap x_{t} is forward-looking. The system matrix C has two real eigenvalues r_{1} and r_{2} with $r_{1}>1>r_{2}>0$ so that the Blanchard and Kahn (1980) saddlepath stability condition is satisfied. A detailed derivation of our results is provided in the mathematical appendix.

The solution for the output gap over the anticipation phase is given by

$$
\begin{equation*}
x_{t}=-\frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} r_{1}^{-T}\left(r_{1}^{t+1}-r_{2}^{t+1}\right) \quad \text { for } \quad t<T \tag{10}
\end{equation*}
$$

with the initial values

$$
\begin{equation*}
x_{0}=-\frac{1}{r_{1}-\varphi} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} r_{1}^{-T}, \quad x_{-1}=0 \tag{11}
\end{equation*}
$$

while the solution for $t \geq T$ is defined by

$$
\begin{align*}
& x_{t}=\frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \frac{1}{\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)} \tag{12}\\
& \cdot\left[\varphi^{t+1-T}-\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}} r_{2}^{t+1}\right] \text { for } t \geq T
\end{align*}
$$

In the limiting case of unanticipated shocks $(T=0)$, the term in brackets in equation (12) simplifies to $\varphi^{t+1}-r_{2}^{t+1}$. Note that the solution formula (10) also holds in the shock period $t=T$.

Using (6), the solution time path of the inflation rate follows

$$
\begin{equation*}
\pi_{t}=\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T}\left[\left(r_{1}-1\right) r_{1}^{t}-\left(r_{2}-1\right) r_{2}^{t}\right] \quad \text { for } t \leq T \tag{13}
\end{equation*}
$$

with the initial value

$$
\begin{equation*}
\pi_{0}=\frac{1}{\beta} \frac{1}{r_{1}-\varphi} r_{1}^{-T} \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
\pi_{t}=\frac{1}{\beta} & \frac{1}{r_{1}-\varphi} \frac{1}{r_{2}-\varphi} \tag{15}\\
& \cdot\left[(1-\varphi) \varphi^{t-T}-\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}}\left(1-r_{2}\right) r_{2}^{t}\right] \text { for } t \geq T
\end{align*}
$$

In the limiting case $T=0$, the term in brackets simplifies to $(1-\varphi) \varphi^{t}-\left(1-r_{2}\right) r_{2}^{t}$.
To determine the welfare loss under the optimal precommitment policy, write the loss function V as $V_{1}+V_{2}$, where

$$
\begin{equation*}
V_{1}=E_{0} \sum_{t=0}^{T-1} \beta^{t}\left(\alpha_{1} \pi_{t}^{2}+\alpha_{2} x_{t}^{2}\right) \tag{16}
\end{equation*}
$$

is the loss in the anticipation period and

$$
\begin{equation*}
V_{2}=E_{0} \sum_{t=T}^{\infty} \beta^{t}\left(\alpha_{1} \pi_{t}^{2}+\alpha_{2} x_{t}^{2}\right) \tag{17}
\end{equation*}
$$

is the loss caused by the realization of the shock.
By inserting the solution for x_{t} and π_{t}, the loss V_{1} can be rewritten as

$$
\begin{equation*}
V_{1}=\alpha_{1} \lambda^{2} r_{1}^{-2 T}\left(r_{1}^{T}-r_{2}^{T}\right)\left(\frac{r_{1}-1}{r_{2}^{T}}+\frac{1-r_{2}}{r_{1}^{T}}\right) \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
\lambda=\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} \tag{19}
\end{equation*}
$$

Accordingly, the loss V_{2} can be rewritten as

$$
\begin{equation*}
V_{2}=\frac{\alpha_{1} \beta^{T}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}}\left\{\frac{\left(r_{2}^{T}-r_{1}^{T}\right)^{2}\left(1-r_{2}\right)}{\left(r_{1}-r_{2}\right)^{2} r_{1}^{2 T}}+\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}\right\} \tag{20}
\end{equation*}
$$

The total loss V is then simply given by $V=V_{1}+V_{2}$.
Under the policy regime discretion (D), the central bank is unable to make a commitment to future policies. Now private expectations are given for the central bank and the reduced form of the first-order conditions reads as

$$
\begin{align*}
\pi_{t} & =-\frac{\alpha_{2}}{\alpha_{1} \kappa} x_{t} \tag{21}\\
E_{t} x_{t+1} & =\frac{1}{\beta}\left[1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right] x_{t}+\frac{\alpha_{1} \kappa}{\alpha_{2} \beta} k_{t} \tag{22}
\end{align*}
$$

with $E_{t} x_{t+1}=x_{t+1}$ in case of anticipated shocks. The difference equation in x_{t} has the unstable eigenvalue

$$
\begin{equation*}
r_{D}=\frac{1}{\beta}\left[1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right]=\frac{1}{\alpha_{2} \beta}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]>1 \tag{23}
\end{equation*}
$$

and the forward solution

$$
\begin{equation*}
x_{t}=-\sum_{s=0}^{\infty} r_{D}^{-s} \frac{1}{r_{D}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} k_{t+s} \tag{24}
\end{equation*}
$$

Since

$$
k_{t+s}= \begin{cases}\varphi^{t+s-T} & \text { for } t+s \geq T \tag{25}\\ 0 & \text { for } t+s<T\end{cases}
$$

we obtain for $t \geq T$

$$
\begin{equation*}
x_{t}=-\frac{\alpha_{1} \kappa}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} \varphi^{t-T} \tag{26}
\end{equation*}
$$

and for $t<T$

$$
\begin{equation*}
x_{t}=-\frac{\alpha_{1} \kappa}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} r_{D}^{t-T} \tag{27}
\end{equation*}
$$

Due to $r_{D}^{t-T}=1$ for $t=T$, the solution formula (27) also holds in the shock period $t=T$. For $t=0$ we obtain

$$
\begin{equation*}
x_{0}=-\frac{\alpha_{1} \kappa}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} r_{D}^{-T} \tag{28}
\end{equation*}
$$

so that the the size of the initial jump of x_{t} decreases with increasing T.
For the inflation rate π_{t} we obtain the solution time path

$$
\pi_{t}= \begin{cases}\frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} r_{D}^{t-T} & \text { if } \quad 0 \leq t \leq T \tag{29}\\ \frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} \varphi^{t-T} & \text { if } \quad t \geq T\end{cases}
$$

Note that the limiting case $\varphi=0$ implies $\pi_{t}=x_{t}=0$ for $t>T$.
It is well-known that the loss under discretion $\left(V_{D}\right)$ is greater than the total loss under the optimal precommitment policy. By inserting the solution time paths for π_{t} and x_{t} in the loss function, we obtain

$$
\begin{align*}
V_{D} & =V_{1}^{D}+V_{2}^{D} \tag{30}\\
& =\sum_{t=0}^{T-1} \beta^{t}\left[\frac{\alpha_{2}^{2}}{\alpha_{1} \kappa^{2}}+\alpha_{2}\right] x_{t}^{2}+\sum_{t=T}^{\infty} \beta^{t}\left[\frac{\alpha_{2}^{2}}{\alpha_{1} \kappa^{2}}+\alpha_{2}\right] x_{t}^{2} \\
& =\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}}\left(\frac{r_{D}^{-2 T}-\beta^{T}}{1-\beta r_{D}^{2}}+\frac{\beta^{T}}{1-\beta \varphi^{2}}\right) \\
& =\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{1}{1-\beta r_{D}^{2}}\left(r_{D}^{-2 T}-\frac{\beta\left(r_{D}^{2}-\varphi^{2}\right)}{1-\beta \varphi^{2}} \beta^{T}\right)
\end{align*}
$$

where

$$
\begin{equation*}
\frac{1}{1-\beta r_{D}^{2}}=\frac{\alpha_{2}^{2} \beta}{\alpha_{2}^{2} \beta-\left(\alpha_{2}+\alpha_{1} \kappa^{2}\right)^{2}}<0 \tag{31}
\end{equation*}
$$

3 Main Results

In this section, we compare the welfare loss induced by anticipated shocks ($T>$ $0)$ to the corresponding loss if the same deterministic shock is not anticipated in advance $(T=0)$. In particular, we investigate the properties of the welfare loss V considered as function of the lead time T.

Since the size of the initial jumps of the forward-looking variables x_{t} and π_{t} are negatively correlated with the lead time T, we can conjecture that the loss function $V=V(T)$ is a decreasing function in T. In the following, we will demonstrate that this conjecture is false in general. It is only true, if the degree of price flexibility is very high.

Our main results can be summarized in the form of four propositions.
Proposition 1. Without discounting (i.e. $\beta=1$) the welfare loss induced by an anticipated cost-push shock is greater than the corresponding loss in case of an unanticipated shock. This result is independent of the length of the lead time T and the degree of price rigidity ω :

$$
\begin{array}{ll}
\text { If } \beta=1, \text { then } V(0)<V(T) & \text { for all } T>0 \tag{32}\\
& \text { and all } \omega>0 .
\end{array}
$$

A similar result holds with discounting $(\beta<1)$ provided the degree of price rigidity ω is sufficiently high and the time span between anticipation and realization of the shock is not too large.

Proposition 2. If β is less than unity and the degree of price flexibility 1 ω low, there exists a positive upper bound T_{c}^{*} for the lead time T, positively depending on ω, such that

$$
\begin{equation*}
V(0)<V(T) \quad \text { for all } \quad 0<T<T_{c}^{*} \tag{33}
\end{equation*}
$$

Proposition 3. If the degree of price flexibility is very high (i.e. ω very small) then $T_{c}^{*}=0$ so that

$$
\begin{equation*}
V(T)<V(0) \quad \text { for all } \quad T>0 \tag{34}
\end{equation*}
$$

Only in this case (which seems empirically not very realistic), the welfare loss under anticipated cost-push shocks is always smaller than under unanticipated shocks.

Proposition 4. The propositions 1, 2, and 3 hold under the optimal monetary policy regimes timeless perspective commitment and discretion. They also hold under (optimal) simple rules of Taylor-type.

Sketch of Proof of Propositions 1, 2, and 3. Consider the partial loss function V_{1} (given by (18)) as function of T (the time span between the anticipation and realization of the cost-push shock).

The function $V_{1}=V_{1}(T)$ has the following properties:

$$
V_{1}(0)=0, \quad \lim _{T \rightarrow \infty} V_{1}(T)= \begin{cases}0 & \text { for } \beta<1 \tag{35}\\ \bar{V}_{1}>0 & \text { for } \beta=1\end{cases}
$$

where

$$
\begin{equation*}
\bar{V}_{1}=\frac{\alpha_{1}\left(r_{1}-1\right)}{\left(r_{1}-\varphi\right)^{2}\left(r_{1}-r_{2}\right)^{2}} \tag{36}
\end{equation*}
$$

The derivative of V_{1} with respect to T, i. e.

$$
\begin{align*}
\frac{d V_{1}}{d T}=\alpha_{1} \lambda^{2}\{ & 2 \ln r_{1} \cdot r_{1}^{-2 T}\left[r_{1}+r_{2}-2\right]-\left(r_{1}-1\right) \ln \left(r_{1} r_{2}\right) \cdot\left(r_{1} r_{2}\right)^{-T} \tag{37}\\
& \left.-\left(1-r_{2}\right) \ln \left(\frac{r_{2}}{r_{1}^{3}}\right) \cdot\left(\frac{r_{2}}{r_{1}^{3}}\right)^{T}\right\}
\end{align*}
$$

is positive at time $T=0$:

$$
\begin{equation*}
\left.\frac{d V_{1}}{d T}\right|_{T=0}=\alpha_{1} \frac{1}{\beta^{2}} \frac{1}{\left(r_{1}-\varphi\right)^{2}} \frac{1}{r_{1}-r_{2}}\left[\ln r_{1}-\ln r_{2}\right]>0 \tag{38}
\end{equation*}
$$

Therefore, $V_{1}(T)$ starts to rise with increasing T (although the size of the initial jumps of x_{t} and π_{t} is decreasing in $\left.T\right)$. For $\beta<1$, the limit value $\lim _{T \rightarrow \infty} V_{1}(T)$ is equal to zero. Therefore, $V_{1}(T)$ must decrease if T is sufficiently large.

The loss function $V_{2}=V_{2}(T)$ (given by (20)) has the following properties:

$$
\begin{align*}
V_{2}(0) & =\frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}} \frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}>0 \tag{39}\\
\lim _{T \rightarrow \infty} V_{2}(T) & = \begin{cases}0 & \text { if } \beta<1 \\
\bar{V}_{2}>\left.V_{2}(0)\right|_{\beta=1}=\frac{\alpha_{1} r_{1}}{\left(r_{1}-\varphi\right)^{2}\left(1-\varphi^{2}\right)} & \text { if } \beta=1\end{cases} \tag{40}
\end{align*}
$$

where

$$
\begin{equation*}
\bar{V}_{2}=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}}\left\{\frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}+\frac{r_{1}}{1-\varphi^{2}}\right\} \tag{41}
\end{equation*}
$$

The first derivative of V_{2} with respect to T

$$
\begin{align*}
\frac{d V_{2}}{d T}= & \frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}} \beta^{T}\left\{\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}} \ln \beta\right. \tag{42}\\
& \left.+\frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}\left[\left(\ln r_{2}-3 \ln r_{1}\right)\left(\frac{r_{2}}{r_{1}}\right)^{2 T}+4 \ln r_{1}\left(\frac{r_{2}}{r_{1}}\right)^{T}+\ln \beta\right]\right\}
\end{align*}
$$

implies for $\beta<1$ and $T=0$

$$
\begin{equation*}
\left.\frac{d V_{2}}{d T}\right|_{T=0}=\frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}} \frac{r_{1}}{r_{1} r_{2}-\varphi^{2}} \ln \beta<0 \tag{43}
\end{equation*}
$$

since $\beta=1 /\left(r_{1} r_{2}\right)$. For $\beta<1$, the derivative $d V_{2} / d T$ is also negative if T is sufficiently large. In the limiting case $\beta=1$, the loss function $V_{2}(T)$ is an increasing function in T with a limit value $\bar{V}_{2}>V_{2}(0)$.

We can now investigate the development of the total loss $V=V_{1}+V_{2}$.

In the limiting case $\beta=1$, the total loss $V(T)$ is an overall increasing function in T with $V(0)=V_{2}(0)>0$ and

$$
\begin{equation*}
\lim _{T \rightarrow \infty} V(T)=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}}\left\{\frac{1}{r_{1}-r_{2}}+\frac{r_{1}}{1-\varphi^{2}}\right\}>\left.V_{2}(0)\right|_{\beta=1}>0 \tag{44}
\end{equation*}
$$

If $\beta=1$, we can write $V(T)$ as $V_{1}(T)+V_{2}(T)$, where

$$
\begin{align*}
& V_{1}(T)=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}\left(r_{1}-r_{2}\right)^{2}}\left[\left(r_{1}-1\right)+\left(2-r_{1}-r_{2}\right) r_{1}^{-2 T}-\left(1-r_{2}\right)\left(\frac{r_{2}}{r_{1}^{3}}\right)^{T}\right] \\
& V_{2}(T)=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}}\left\{\frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}\left[1-\left(\frac{r_{2}}{r_{1}}\right)^{T}\right]^{2}+\frac{r_{1}}{1-\varphi^{2}}\right\} \tag{45}
\end{align*}
$$

Then

$$
\begin{align*}
\frac{d V_{1}}{d T}= & \frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}\left(r_{1}-r_{2}\right)^{2}}\left\{2\left[r_{1}+r_{2}-2\right] \ln r_{1}\right. \tag{47}\\
& \left.+\left[3 \ln r_{1}-\ln r_{2}\right]\left(1-r_{2}\right)\left(\frac{r_{2}}{r_{1}}\right)^{T}\right\} r_{1}^{-2 T}>0 \quad \text { for all } T \geq 0
\end{align*}
$$

(due to $r_{1}+r_{2}=\operatorname{tr} C>2$ and $\ln r_{2}<0$) and

$$
\begin{align*}
& \frac{d V_{2}}{d T}=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}} \frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}\left\{-2\left(1-\left(\frac{r_{2}}{r_{1}}\right)^{T}\right) \ln \left(\frac{r_{2}}{r_{1}}\right)\right\}\left(\frac{r_{2}}{r_{1}}\right)^{T} \tag{48}\\
& \underset{(=0)}{>0} \text { if } T \underset{(=)}{>0}
\end{align*}
$$

(because $0<r_{2}<1<r_{1}$). Therefore, $d V / d T>0$ for all $T \geq 0$ so that V is a monotonically increasing function in T. This result holds independently of the degree of price rigidity ω.

For $\beta<1, V(0)=V_{2}(0)>0\left(\right.$ with $V_{2}(0)$ defined in (39)) and $\lim _{T \rightarrow \infty} V(T)=$ 0 . For small values of ω, i.e. a high degree of price flexibility, the total loss V is a decreasing function in T implying $V(T)<V(0)$ for all $T>0$. With high price flexibility, the welfare loss under anticipated shocks is smaller than under unanticipated shocks.

For the derivative $d V / d T$ at time $T=0$ we get

$$
\begin{gather*}
\left.\frac{d V}{d T}\right|_{T=0}=\frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}}\left\{\left[\frac{1}{r_{1}-r_{2}}-\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}\right] \ln r_{1}\right. \tag{49}\\
\left.-\left[\frac{1}{r_{1}-r_{2}}+\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}\right] \ln r_{2}\right\}
\end{gather*}
$$

Then

$$
\begin{equation*}
\left.\frac{d V}{d T}\right|_{T=0}>0 \Leftrightarrow 2\left(\frac{1}{\beta}-\varphi^{2}\right) \ln r_{1}+\left(r_{1}^{2}-\varphi^{2}\right) \ln \beta>0 \tag{50}
\end{equation*}
$$

A rising ω induces a fall in the unstable eigenvalue r_{1} since $d \kappa / d \omega<0$. Since the fall in r_{1}^{2} is stronger than the decrease in $\ln r_{1}$, and $1 / \beta-\varphi^{2}>0$, inequality (50) is fulfilled if the degree of price rigidity ω is sufficiently large. In this case $V(T)$ starts to rise and due to $\lim _{T \rightarrow \infty} V(T)=0$ its development must be hump-shaped implying the existence of an upper bound $T_{c}^{*}>0$ such that $V(T)>V(0)>0$ for all $T<T_{c}^{*}$.

The value of the upper bound T_{c}^{*} is the positive solution of the equation $V(T)=V(0)$, where $V(0)=V_{2}(0)$ is given by (39). This leads to the equation

$$
\begin{equation*}
1-\left(\frac{r_{2}}{r_{1}}\right)^{T}=\left[\left(r_{1} r_{2}\right)^{T}-1\right] \frac{r_{1}\left(r_{1}-r_{2}\right)}{r_{1} r_{2}-\varphi^{2}} \tag{51}
\end{equation*}
$$

Equation (51) can be written as

$$
\begin{align*}
& \beta^{T} r_{1}^{2 T}\left[\beta r_{1}^{2}\left(1-\frac{1}{\beta^{T}}\right)+\frac{1}{\beta^{T}}-\beta \varphi^{2}\right]=1-\beta \varphi^{2} \quad \Leftrightarrow \tag{52}\\
& r_{1}^{2 T}\left[\beta^{T+1}\left(r_{1}^{2}-\varphi^{2}\right)+\left(1-\beta r_{1}^{2}\right)\right]=1-\beta \varphi^{2} \tag{53}
\end{align*}
$$

so that T_{c}^{*} is also the positive solution of (52) and (53). The value of T_{c}^{*} is dependent on ω and β. A rising ω (a higher degree of price rigidity) decreases the unstable eigenvalue r_{1} so that the left-hand side of equation (52) is decreased while the right-hand side remains unchanged. Since $\beta^{T} r_{1}^{2 T}=\left(r_{1} / r_{2}\right)^{T}$ is increasing in T, equation (52) implies that the solution value T_{c}^{*} must increase if ω rises. Conversely, a higher degree of price flexibility induces a fall in T_{c}^{*}. For sufficiently small values of ω, the only solution of (53) is $T_{c}^{*}=0$ (so that $V(T)<V(0)$ for all $T>0)$. If a positive solution T_{c}^{*} of (53) exists, then it is also an increasing function in the discount factor β with $T_{c}^{*}=\infty$ if $\beta=1$.

Sketch of Proof of Proposition 4. Consider V_{D} (given by (30)) as function in T. Then

$$
\begin{equation*}
V_{D}(0)=\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{1}{1-\beta \varphi^{2}}>0 \tag{54}
\end{equation*}
$$

and

$$
\lim _{T \rightarrow \infty} V_{D}(T)= \begin{cases}0 & \text { if } \beta<1 \tag{55}\\ \frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}}\left(\frac{1}{r_{D}^{2}-1}+\frac{1}{1-\varphi^{2}}\right)>V_{D}(0)>0 & \text { if } \beta=1\end{cases}
$$

The partial loss function

$$
\begin{equation*}
V_{2}^{D}(T)=\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{\beta^{T}}{1-\beta \varphi^{2}} \tag{56}
\end{equation*}
$$

has the properties

$$
\begin{gather*}
V_{2}^{D}(0)=V_{D}(0) \tag{57}\\
\lim _{T \rightarrow \infty} V_{2}^{D}(T)=0 \quad \text { if } \quad \beta<1 \tag{58}
\end{gather*}
$$

$$
\begin{equation*}
\frac{d V_{2}^{D}}{d T}=(\ln \beta) V_{2}^{D}(T)<0 \quad \text { if } \quad \beta<1 \quad \text { for all } \quad 0 \leq T<\infty \tag{59}
\end{equation*}
$$

For $\beta=1$, the function $V_{2}^{D}(T)$ is constant (independent of T).
The partial loss function $V_{1}^{D}(T)$ given by

$$
\begin{equation*}
V_{1}^{D}(T)=\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{r_{D}^{-2 T}-\beta^{T}}{1-\beta r_{D}^{2}} \tag{60}
\end{equation*}
$$

has similar properties as the corresponding function $V_{1}(T)$ under the policy regime timeless perspective commitment:

$$
\begin{align*}
V_{1}^{D}(0) & =0 \tag{61}\\
\lim _{T \rightarrow \infty} V_{1}^{D}(T) & = \begin{cases}0 & \text { if } \beta<1 \\
\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{1}{r_{D}^{2}-1}>0 & \text { if } \beta=1\end{cases} \tag{62}
\end{align*}
$$

The first derivative with respect to T

$$
\begin{equation*}
\frac{d V_{1}^{D}(T)}{d T}=\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{1}{1-\beta r_{D}^{2}}\left[-2\left(\ln r_{D}\right) r_{D}^{-2 T}-(\ln \beta) \beta^{T}\right] \tag{63}
\end{equation*}
$$

is positive at time $T=0$, since $1-\beta r_{D}^{2}<0$ and $-2 \ln r_{D}-\ln \beta<0$ due to $r_{D}>1 \geq \beta$.

In case $\beta<1$, the development of $V_{1}^{D}(T)$ is hump-shaped with the maximum value at time T_{d}^{*} which is the solution of the equation

$$
\begin{equation*}
2\left(\ln r_{D}\right) r_{D}^{-2 T}+(\ln \beta) \beta^{T}=0 \tag{64}
\end{equation*}
$$

Equation (64) is equivalent to

$$
\begin{equation*}
-\frac{2 \ln r_{D}}{\ln \beta}=\left(\beta r_{D}^{2}\right)^{T} \tag{65}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
T_{d}^{*}=\frac{\ln \left[-\frac{2 \ln r_{D}}{\ln \beta}\right]}{\ln \left(\beta r_{D}^{2}\right)}>0 \tag{66}
\end{equation*}
$$

The total loss function $V_{D}(T)=V_{1}^{D}(T)+V_{2}^{D}(T)$ has a similar development as the corresponding function $V(T)$ under timeless perspective commitment. In the limiting case $\beta=1$ it is overall increasing. For $\beta<1$ it is hump-shaped, if the degree of price flexibility is not too large, while it is monotonically decreasing in T if the value of ω is small. For small values of ω the derivative of V_{D} at time $T=0$ is negative, while it is positive if ω is sufficiently large. For the sake of brevity, the proof for the case of simple (optimal) Taylor rules is presented in the mathematical appendix.

The propositions 1 to 3 follow from two opposing effects on the welfare loss which change in opposite directions with increasing lead time T. On the one hand, the size of the initial jumps of the forward-looking variables x_{t} and π_{t} taking place at the time of anticipation, is inversely related to the time span between anticipation and realization of the cost-push shock. The longer the lead time T, the smaller is the response of output and inflation on impact so that the contribution of this anticipation effect to the welfare loss V decreases with increasing T. On the other hand, the persistence effect of the cost-push shock on the target variables x_{t} and π_{t} is increasing in T. Thereby, persistence is measured as the total variation of a variable over time, i.e. its intertemporal deviation from the respective initial steady state. For example, the persistence of the price level p_{t} is given by $\sum_{t=0}^{\infty}\left|p_{t}-\bar{p}_{0}\right|$ where the initial steady state can be normalized to zero. In the appendix, we derive the persistence of p_{t}, x_{t}, and π_{t} under the optimal monetary policy regimes commitment and discretion and show that persistence is smaller in case of unanticipated shocks than in case of anticipated shocks.

For the sake of illustration, we numerically simulated our solutions by using a standard calibration. The time unit is one quarter. The discount rate is equal to $\beta=0.99$ implying an annual steady state real interest rate of approximately 4 percent. The inverse of the intertemporal elasticity of substitution, σ, is set to $\sigma=2$. We set $\eta=1$ implying a quadratic disutility of labor. The Calvo parameter ω is either set to 0.25 implying an average duration of price contracts of four months or to 0.75 implying an average duration of price contracts of one year. The weights in the loss function are set to $\alpha_{1}=1$ and $\alpha_{2}=0.5$ reflecting the objective of flexible inflation targeting. Finally, we assume the cost-push shock to be persistent and choose φ equal to 0.5 .

Figure 1 depicts impulse response functions of inflation, output gap, and price level in case of low $(\omega=0.25$, left column) and high $(\omega=0.75$, right col$u m n$) price rigidity under the optimal monetary policy with timeless perspective commitment. Solid lines with triangles denote responses to a cost-push shock that unexpectedly emerges in period $t=0$, solid lines with circles denote responses to a cost-push shock whose realization in period $T=2$ is anticipated in period $t=0$.

We firstly consider the empirically plausible case of high price rigidity. In case of an unanticipated cost-shock, both the price level and inflation rise whereas output falls in response to the realization of the increase in the costs of production. ${ }^{3}$ Subsequently, all variables converge in a hump-shaped fashion to their respective steady state values.

Anticipated cost shocks have two effects, namely the anticipation effect which reflects the change in x_{t}, π_{t}, and p_{t} in response to the anticipation of a future change in costs, and the realization effect which occurs when the anticipated change in costs actually takes place. Under the optimal monetary policy with commitment, output starts to decline and prices begin to increase in response to the anticipation of a future rise in the costs of production. Both

[^2]

Figure 1: Impulse response functions under optimal policy with timeless perspective commitment.

Notes: Solid lines with triangles denote responses to an unanticipated cost-push shock, solid lines with circles denote responses to an anticipated cost-push shock. In case of low price rigidity, the Calvo parameter ω is set to 0.25 ; in case of high price rigidity, ω is set to 0.75 .
variables respond in a hump-shaped fashion peaking at the date of realization. The increase in prices causes inflation to jump at the time of anticipation, peaking at the date of realization and then returning in a hump-shaped fashion to its initial steady state level.

In case of low price rigidity, an unanticipated cost shock causes an immediate rise in prices and an immediate drop in output. Subsequently, both variables converge monotonically to their initial steady state levels. After the initial
jump, inflation falls sharply and converges from below to its pre-shock level. The announcement of a future rise in costs has negligible anticipation effects when prices are highly flexible. The reason is that the price setting problem of firms becomes more of an atemporal (static) nature when the Calvo parameter ω decreases. In this case firms know that, with a high probability, they will be able to raise their price when the anticipated shock actually materializes in period T. Thus, output and prices change only slightly in response to an announcement or anticipation of future cost-push shocks.

Regardless of the degree of price rigidity, Figure 1 illustrates that the initial jumps of inflation, output gap and price level are greater in case of unanticipated $(T=0)$ than in case of anticipated shocks $(T=2)$. On the other hand, anticipated shocks amplify the persistence of p_{t}, x_{t}, and π_{t} compared to unanticipated shocks. ${ }^{4}$

Figure 2: Welfare loss for different lengths of anticipation period under optimal timeless perspective commitment policy in case $\beta=1$.

Figure 2 illustrates the welfare loss $V=V(T)$ in case $\beta=1$. Without time discounting in the intertemporal loss function, the persistence effect always dominates the anticipation effect so that proposition 1 holds. In Figure 2, the total loss $V=V(T)$ is overall increasing in T if $\beta=1$.

If future deviations of the state variables from their initial steady state levels are discounted, the contribution of the initial jumps of output and inflation for the determination of the total loss becomes more important. The same holds for increasing degree of price flexibility $1-\omega$, since the persistence of prices, output and inflation is a decreasing function of $1-\omega$. If the degree of price flexibility is high, the value of the total loss is almost completely determined by the size of the initial jumps of x_{t} and π_{t} which in turn is inversely proportional to the lead time T. With a sufficiently high degree of price flexibility, the total loss under unanticipated cost-push shocks is greater than the loss under anticipated shocks so that proposition 3 holds. This result is also illustrated in Figure 3, where $V(T)$ is a monotonically decreasing function in the lead time T if the degree of price rigidity ω is very small.

[^3]

Figure 3: Welfare loss for different lengths of anticipation period under optimal timeless perspective commitment policy in case $\beta=0.99$.

From an empirical point of view, the parameter ω is not that small so that the development of the impulse response functions displays inertia or strong serial correlation. Then, if the time span between the anticipation and the implementation of the cost-push shock is not too long, the persistence effect dominates and the value of the total loss $V(T)$ is greater than $V(0)$. This is illustrated in Figure 3, where the development of the loss function $V(T)$ is hump-shaped and monotonically increasing for small values of T.

Propositions 1 to 3 are independent of the chosen optimal monetary policy regime. They hold under timeless perspective commitment as well as under discretion (see Figure 4 and 5 for a numerical visualization). They also hold under simple monetary policy rules (such as Taylor-type rules or money growth peg).

Figure 4: Welfare loss for different lengths of anticipation period under the optimal discretionary policy in case $\beta=1$.

In order to check whether the welfare-reducing effects of anticipations hold for empirically plausible degrees of nominal rigidity, we compute the critical anticipation values T_{c}^{*} (commitment) and T_{d}^{*} (discretion). Table 1 depicts the values of T_{c}^{*} and T_{d}^{*} for a persistent $(\varphi=0.5)$ and a one-off cost-push shock ($\varphi=0$).

Table 1 shows that the anticipation of cost-push shocks dampens the welfare loss induced by such shocks only for empirically unrealistic degrees of nominal

Figure 5: Welfare loss for different lengths of anticipation period under the optimal discretionary policy in case $\beta=0.99$.
rigidity. For the widely applied values of $\omega=0.75$ or $\omega=0.66$, the anticipation period or lead time T must be extremely large to obtain a welfare gain from anticipation. Under commitment and a value $\omega=0.75$, the loss under an anticipated shock is smaller than the loss under an unanticipated shock of same size when the shock is anticipated to take place in $T_{c}^{*}=54$ (for $\varphi=0.5$) or $T_{c}^{*}=66$ (for $\varphi=0$) quarters. Even larger values are obtained under optimal discretionary policy. A Calvo parameter of 0.5 represents the lower bound in the range of values that are reported in the literature. In this case and under the monetary policy regime commitment, the anticipation of future cost shocks has a welfare-enhancing effect if the lead time is larger or equal to two quarters for persistent and three quarters for one-off shocks, respectively. Under discretionary monetary policy, these critical values are three and four quarters.

Our simulations illustrate that for a wide range of empirically realistic degrees of nominal rigidities (i.e., $\omega \geq 0.5$) in conjunction with a plausible length of the anticipation period, the welfare loss of anticipated cost shocks exceeds the welfare loss of unanticipated cost shocks.

Table 1: Values of the critical lead time T_{c}^{*} and T_{d}^{*}

	Degree of price rigidity ω								
Monetary policy	0.75	0.66	0.60	0.55	0.50	0.45	0.40	0.25	
With $\varphi=0.5$									
Commitment	53.09	19.82	9.00	4.23	1.82	0.69	0.16	0	
Discretion	125.90	40.41	15.61	6.37	2.42	0	0	0	
With $\varphi=0$									
Commitment	65.78	25.57	11.79	5.59	2.41	0.95	0.28	0	
Discretion	146.99	50.77	20.25	8.38	3.20	0	0	0	

Note: For an anticipation period $0<T<T_{i}^{*}$ it is true that $\left.V\right|_{T}>\left.V\right|_{T=0}$, for $T>T_{i}^{*}$ it is true that $\left.V\right|_{T}<\left.V\right|_{T=0}$ where $i=c, d$.

4 Conclusion

In this paper we investigate the welfare effects resulting from the anticipation of future shocks. In particular, we analyze the welfare loss for different lengths of the time span between the anticipation and the realization of cost-push shocks. This includes the widely applied case of unanticipated cost-push shocks. Our analysis is based on the canonical New Keynesian model with optimal monetary policy.

We emphasize the role of nominal rigidities for the welfare effects of anticipations. We show that for empirically plausible degrees of nominal rigidity, anticipated cost shocks entail higher welfare losses than unexpected cost shocks. The anticipation of a future cost-push shock dampens the volatility of output and inflation only if prices are highly flexible. These results hold independently of the monetary policy regime (timeless perspective commitment, discretion, (optimal) simple rules).

Our results imply that the knowledge about the realization of future cost shocks is in general welfare-reducing. The question remains why rational agents do not simply ignore this information. However, this would be inconsistent with the profit-maximizing behavior of individual firms and the utility-maximizing behavior of individual households on which our model is based. The firm's optimality condition in fact calls for an increase in prices in response to the anticipation of a future rise in costs. By simply ignoring this information, the firm would make a loss.

Hence, our results reveal a contradiction between the optimal behavior of individuals and the optimum from a social point of view.

References

Ball, L. (1994). Credible Disinflation with Staggered Price Setting. American Economic Review 84, 282-289.

Beaudry, P., Portier. F. (2004). An Exploration into Pigou's Theory of Cycles. Journal of Monetary Economics 51, 1183-1216.

Beaudry, P., Portier. F. (2006). Stock Prices, News, and Economic Fluctuations. American Economic Review 96, 1293-1307.

Beaudry, P., Portier. F. (2007). When Can Changes in Expectations Cause Business Cycle Fluctuations in Neo-Classical Settings? Journal of Economic Theory 135, 458-477.

Beaudry, P., Collard, F., Portier. F. (2006). Gold Rush Fever in Business Cycles. NBER Working Paper 12710. National Bureau of Economic Research.

Blanchard, O. J., Kahn, K. (1980). The Solution of Linear Difference Models under Rational Expectations. Econometrica 48, 1305-1311.

Calvo, G. (1983). Staggered Prices in a Utility Maximizing Framework. Journal of Monetary Economics 12, 383-398.

Christiano, L. J., Eichenbaum, M., Evans, C. L. (2005). Nominal Rigidities and the Dynamic Effects of a Shock to Monetary Policy. Journal of Political Economy 113, 1-45.

Christiano, L. J., Ilut, C., Motto, R., Rostagno, M. (2008). Monetary Policy and Stock Market Boom-Bust Cycles. ECB Working Paper 955. European Central Bank.

Clarida, R. H., Galí, J., Gertler, M. (1999). The Science of Monetary Policy: A New Keynesian Perspective. Journal of Economic Literature 37, 1661-1707.

Davis, J. M. (2007). News and the Term Structure in General Equilibrium. Unpublished Manuscript.

Den Haan, W. J., Kaltenbrunner, G. (2007). Anticipated Growth and Business Cycles in Matching Models. CEPR Discussion Papers 6063. Centre for Economic Policy Research.

Fujiwara, I., Hirose, Y., Shintani, M. (2008). Can News Be a Major Source of Aggregate Fluctuations? A Bayesian DSGE Approach. IMES Discussion Paper 2008-E-16. Institute for Monetary and Economic Studies, Bank of Japan.

Galí, J. (2008). Monetary Policy, Inflation, and the Business Cycle. Princeton University Press.

Khan, A., King, R. G., Wolman, A. L. (2003). Optimal Monetary Policy. Review of Economic Studies 70, 825-860.

Kydland, F. E., Prescott, E. C. (1982). Time to Build and Aggregate Fluctuations. Econometrica 50, 1345-1370.

Jaimovich, N., Rebelo, S. (2006). Can News About the Future Drive the Business Cycle? NBER Working Paper 12537. National Bureau of Economic Research.

Jaimovich, N., Rebelo, S. (2008). News and Business Cycles in Open Economies. Journal of Money, Credit and Banking 40, 1699-1711.

Rotemberg, J. J., Woodford, M. (1999). Interest Rate Rules in an Estimated Sticky Price Model. In: Taylor, J. B. (Ed.), Monetary Policy Rules, University of Chicago Press, 57-119

Schmitt-Grohé, S., Uribe, M. (2007). Incomplete Cost Pass-Through under Deep Habits. NBER Working Paper 12961. National Bureau of Economic Research.

Schmitt-Grohé, S., Uribe, M. (2008). What's News in Business Cycles. NBER Working Paper 14215, National Bureau of Economic Research.

Svensson, L. E. O. (1999). Inflation Targeting as a Monetary Policy Rule. Journal of Monetary Economics 43, 607-654.

Walsh, C. E. (2003). Monetary Theory and Policy. Second Edition. MIT Press.
Winkler, R. (2008). Oil Price Shocks, Ramsey Monetary Policy, and Welfare. Unpublished Manuscript, Christian-Albrechts-Universität Kiel.

Wohltmann, H.-W., Winkler, R. (2008a). Anticipated and Unanticipated Oil Price Shocks and Optimal Monetary Policy. Economics Working Paper 200805. Department of Economics, Christian-Albrechts-Universität Kiel.

Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton University Press.

Mathematical Appendix

Solution time paths under the optimal timeless perspective precommitment policy

It is well-known that under the optimal timeless perspective precommitment policy inflation and the output gap satisfy

$$
\begin{equation*}
\pi_{t}=-\frac{\alpha_{2}}{\alpha_{1} \kappa}\left(x_{t}-x_{t-1}\right) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(1+\beta+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right) x_{t}-x_{t-1}-\beta E_{t} x_{t+1}=-\frac{\alpha_{1} \kappa}{\alpha_{2}} k_{t} \tag{2}
\end{equation*}
$$

where the expectational operator can be omitted in case of anticipated shocks. To solve the difference equation for x_{t} write equation (2) as

$$
\begin{equation*}
\binom{x_{t+1}}{w_{t+1}}=C\binom{x_{t}}{w_{t}}+\binom{\frac{\alpha_{1} \kappa}{\alpha_{2} \beta}}{0} k_{t} \tag{3}
\end{equation*}
$$

where $w_{t}=x_{t-1}$ and

$$
C=\left(\begin{array}{cc}
\frac{1}{\beta}\left(1+\beta+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right) & -\frac{1}{\beta} \tag{4}\\
1 & 0
\end{array}\right)
$$

The auxiliary variable w_{t} is backward-looking (with the initial value $w_{0}=0$) while the output gap x_{t} is forward-looking. The system matrix C has two real eigenvalues r_{1} and r_{2} with $r_{1}>1>r_{2}>0$ so that the Blanchard/Kahn (1980) saddlepath stability condition is satisfied. The eigenvalues are given by

$$
\begin{equation*}
r_{1,2}=\frac{1}{2} \operatorname{tr} C \pm \sqrt{\frac{1}{2}(\operatorname{tr} C)^{2}-|C|} \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\operatorname{tr} C=\frac{1}{\beta}\left(1+\beta+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right)=r_{1}+r_{2}, \quad|C|=\frac{1}{\beta}=r_{1} r_{2} \tag{6}
\end{equation*}
$$

We can transfer system (3) into Jordan-canonical form using the similarity transformation

$$
\begin{equation*}
C=H \cdot \Lambda \cdot H^{-1} \tag{7}
\end{equation*}
$$

where $\Lambda=\operatorname{diag}\left(r_{1}, r_{2}\right)$ is a diagonal matrix whose diagonal elements are the characteristic roots of C and

$$
H=\left(\begin{array}{cc}
r_{1} & r_{2} \tag{8}\\
1 & 1
\end{array}\right)
$$

is a matrix of linearly independent eigenvectors of C. Define auxiliary variables v_{t} and z_{t} by

$$
\begin{equation*}
H^{-1}\binom{x_{t}}{w_{t}}=\binom{v_{t}}{z_{t}} \quad \text { or } \quad\binom{x_{t}}{w_{t}}=H\binom{v_{t}}{z_{t}} \tag{9}
\end{equation*}
$$

Premultiplying equation (3) with H^{-1} yields the Jordan-canonical system

$$
\binom{v_{t+1}}{z_{t+1}}=\left(\begin{array}{cc}
r_{1} & 0 \tag{10}\\
0 & r_{2}
\end{array}\right)\binom{v_{t}}{z_{t}}+\frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta}\binom{1}{-1} k_{t}
$$

The difference equation in v_{t} contains the unstable eigenvalue r_{1} and has the unique stable forward solution

$$
\begin{equation*}
v_{t}=-\sum_{s=0}^{\infty} r_{1}^{-s} \frac{1}{r_{1}} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} k_{t+s} \tag{11}
\end{equation*}
$$

Since the cost-push shock k_{t+s} is a $\operatorname{AR}(1)$ variable with

$$
k_{t+s}= \begin{cases}\varphi^{t+s-T} & \text { for } \quad t+s \geq T \tag{12}\\ 0 & \text { for } \quad t+s<T\end{cases}
$$

we obtain

$$
v_{t}= \begin{cases}-\frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \varphi^{t-T} & \text { for } \quad t \geq T \tag{13}\\ -\frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} r_{1}^{t-T} & \text { for } \quad t \leq T\end{cases}
$$

with the initial value

$$
\begin{equation*}
v_{0}=-\frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} r_{1}^{-T}<0 \tag{14}
\end{equation*}
$$

The difference equation in z_{t} has the general backward solution

$$
\begin{equation*}
z_{t}=r_{2}^{t} K-\sum_{s=0}^{t-1} r_{2}^{t-s-1} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} k_{s} \tag{15}
\end{equation*}
$$

where the constant K follows from the initial condition

$$
\begin{equation*}
z_{0}=K=w_{0}-v_{0}=-v_{0} \tag{16}
\end{equation*}
$$

Since $k_{s}=0$ for $s<T$ we obtain

$$
\begin{equation*}
z_{t}=r_{2}^{t} K=\frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} r_{1}^{-T} r_{2}^{t} \quad \text { for } t \leq T \tag{17}
\end{equation*}
$$

and

$$
\begin{align*}
z_{t} & =r_{2}^{t} K-\frac{1}{r_{2}-\varphi} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta}\left[r_{2}^{t-T}-\varphi^{t-T}\right] \tag{18}\\
& =\frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta}\left[\left(\frac{r_{1}^{-T}}{r_{1}-\varphi}-\frac{r_{2}^{-T}}{r_{2}-\varphi}\right) r_{2}^{t}+\frac{\varphi^{-T}}{r_{2}-\varphi} \varphi^{t}\right] \quad \text { for } \quad t \geq T
\end{align*}
$$

The solution for the output gap $x_{t}=r_{1} v_{t}+r_{2} z_{t}$ is then given by

$$
\begin{equation*}
x_{t}=-\frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} r_{1}^{-T}\left(r_{1}^{t+1}-r_{2}^{t+1}\right) \quad \text { for } \quad t \leq T \tag{19}
\end{equation*}
$$

with the initial values

$$
\begin{equation*}
x_{0}=-\frac{1}{r_{1}-\varphi} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} r_{1}^{-T}, \quad x_{-1}=0 \tag{20}
\end{equation*}
$$

and

$$
\begin{align*}
& x_{t}=\frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \frac{1}{\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)} \cdot \tag{21}\\
& \cdot\left[\varphi^{t+1-T}-\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}} r_{2}^{t+1}\right] \text { for } t \geq T
\end{align*}
$$

The solution formula (21) also contains the limiting case $T=0$, i.e., if the cost-push shock is not anticipated. The term in brackets then simplifies to $\varphi^{t+1}-r_{2}^{t+1}$.

Using (1), the solution time path of the inflation rate follows:

$$
\begin{equation*}
\pi_{t}=\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T}\left[\left(r_{1}-1\right) r_{1}^{t}-\left(r_{2}-1\right) r_{2}^{t}\right] \text { for } t \leq T \tag{22}
\end{equation*}
$$

with the initial value

$$
\begin{equation*}
\pi_{0}=\frac{1}{\beta} \frac{1}{r_{1}-\varphi} r_{1}^{-T} \tag{23}
\end{equation*}
$$

and

$$
\begin{align*}
& \pi_{t}= \frac{1}{\beta} \tag{24}\\
& \quad \frac{1}{r_{1}-\varphi} \frac{1}{r_{2}-\varphi} \\
& \cdot\left[(1-\varphi) \varphi^{t-T}-\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}}\left(1-r_{2}\right) r_{2}^{t}\right] \text { for } t \geq T
\end{align*}
$$

In the special case $T=0$ the term in brackets simplifies to $(1-\varphi) \varphi^{t}-\left(1-r_{2}\right) r_{2}^{t}$.
The solution time path of the price level p_{t} can be derived from the solution of π_{t} due to

$$
\begin{equation*}
p_{t}=\sum_{k=0}^{t} \pi_{k} \tag{25}
\end{equation*}
$$

We then obtain for or $t \leq T$:

$$
\begin{align*}
p_{t} & =\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T} \sum_{k=0}^{t}\left[\left(r_{1}-1\right) r_{1}^{k}-\left(r_{2}-1\right) r_{2}^{k}\right] \tag{26}\\
& =\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T}\left[\left(r_{1}-1\right) \frac{1-r_{1}^{t+1}}{1-r_{1}}-\left(r_{2}-1\right) \frac{1-r_{2}^{t+1}}{1-r_{2}}\right] \\
& =\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T}\left[r_{1}^{t+1}-r_{2}^{t+1}\right]
\end{align*}
$$

and for $t \geq T$

$$
\begin{align*}
p_{t}= & \sum_{k=0}^{T-1} \pi_{k}+\sum_{k=T}^{t} \pi_{k} \tag{27}\\
= & \frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T}\left[r_{1}^{T}-r_{2}^{T}\right]+\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{2}-\varphi} \cdot \\
& \cdot \sum_{k=T}^{t}\left\{(1-\varphi) \varphi^{k-T}-\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}}\left(1-r_{2}\right) r_{2}^{k}\right\} \\
= & \frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T}\left[r_{1}^{T}-r_{2}^{T}\right]+\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{2}-\varphi} \cdot \\
& \cdot\left[-(1-\varphi) \varphi^{-T} \frac{\varphi^{t+1}-\varphi^{T}}{1-\varphi}+\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}}\left(1-r_{2}\right) \frac{r_{2}^{t+1}-r_{2}^{T}}{1-r_{2}}\right] \\
= & \frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T}\left[r_{1}^{T}-r_{2}^{T}\right]+\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{2}-\varphi} \cdot \\
& \cdot\left[1-\varphi^{t+1-T}+\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}}\left(r_{2}^{t+1}-r_{2}^{T}\right)\right] \\
= & \frac{1}{\beta} \frac{1}{r_{2}-\varphi} \frac{1}{r_{1}-r_{2}} r_{2}^{t+1-T}-\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} r_{1}^{-T} r_{2}^{t+1}-\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{2}-\varphi} \varphi^{t+1-T}
\end{align*}
$$

Obviously,

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p_{t}=0 \quad \text { for all } \quad T \geq 0 \tag{28}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{0}=\frac{1}{\beta} \frac{1}{r_{1}-\varphi} r_{1}^{-T}=\pi_{0}>0 \tag{29}
\end{equation*}
$$

so that the size of the initial jump in p is inversely proportional to the lead time T.

Similar results hold for the state variables x_{t} and π_{t}. Since

$$
\begin{equation*}
\sum_{k=0}^{t}\left(x_{k}-x_{k-1}\right)=x_{t} \tag{30}
\end{equation*}
$$

equation (1) implies

$$
\begin{equation*}
p_{t}=\sum_{k=0}^{t} \pi_{k}=-\frac{\alpha_{2}}{\alpha_{1} \kappa} \sum_{k=0}^{t}\left(x_{k}-x_{k-1}\right)=-\frac{\alpha_{2}}{\alpha_{1} \kappa} x_{t} \tag{31}
\end{equation*}
$$

so that $p_{t}>0$ if and only if $x_{t}<0$. The optimal policy under timeless perspective implies $p_{t}>0$ for all $0 \leq t<\infty$ so that $x_{t}<0$ for all $t<\infty$. We can also show that the persistence or total variation of p_{t} is positive correlated with T, i.e.

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty} p_{t}\right|_{T=0}<\left.\sum_{t=0}^{\infty} p_{t}\right|_{T>0} \quad \text { for all } \quad T>0 \tag{32}
\end{equation*}
$$

where the infinite sum $\left.\sum_{t=0}^{\infty} p_{t}\right|_{T>0}$ is an increasing function in T.
The persistence measure used here is based on the deviation of p_{t} from its initial steady state level \bar{p}_{0}, where the deviation $\left|p_{t}-\bar{p}_{0}\right|$ is calculated both for $t<T$ and $t \geq T$. Thereafter the differences $\left|p_{t}-\bar{p}_{0}\right|$ are summed up. Since $\bar{p}_{0}=0$ and $p_{t}>0$ for all t we must determine the infinite sum $\sum_{t=0}^{\infty} p_{t}$.

Inequality (32) holds although the initial jump of p_{t} is a negative function in T. To prove the inequality note that

$$
\begin{align*}
\left.\sum_{t=0}^{\infty} p_{t}\right|_{T=0} & =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[\frac{r_{2}}{1-r_{2}}-\frac{\varphi}{1-\varphi}\right] \tag{33}\\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(1-r_{2}\right)(1-\varphi)} \\
\left.\sum_{t=0}^{T} p_{t}\right|_{T>0} & =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} r_{1}^{-T}\left[r_{1} \frac{1-r_{1}^{T+1}}{1-r_{1}}-r_{2} \frac{1-r_{2}^{T+1}}{1-r_{2}}\right] \tag{34}
\end{align*}
$$

and

$$
\begin{align*}
\left.\sum_{t=T+1}^{\infty} p_{t}\right|_{T>0}= & \frac{1}{\beta\left(r_{2}-\varphi\right)\left(r_{1}-r_{2}\right)} r_{2}^{1-T} \frac{r_{2}^{T+1}}{1-r_{2}} \tag{35}\\
& -\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} r_{1}^{-T} r_{2} \frac{r_{2}^{T+1}}{1-r_{2}} \\
& -\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)} \varphi^{1-T} \frac{\varphi^{T+1}}{1-\varphi}
\end{align*}
$$

so that

$$
\begin{align*}
\left.\sum_{t=0}^{\infty} p_{t}\right|_{T>0}= & \frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[\frac{r_{1}^{1-T}}{1-r_{1}}-\frac{r_{1}^{2}}{1-r_{1}}-\frac{r_{2} r_{1}^{-T}}{1-r_{2}}\right. \tag{36}\\
& \left.+\frac{r_{1}^{-T} r_{2}^{T+2}}{1-r_{2}}-\frac{r_{1}^{-T} r_{2}^{T+2}}{1-r_{2}}\right] \\
& +\frac{1}{\beta\left(r_{2}-\varphi\right)}\left[\frac{1}{r_{1}-r_{2}} \frac{r_{2}^{2}}{1-r_{2}}-\frac{1}{r_{1}-\varphi} \frac{\varphi^{2}}{1-\varphi}\right] \\
= & \frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[\frac{r_{1}}{1-r_{1}}\left(r_{1}^{-T}-r_{1}\right)-\frac{r_{2} r_{1}^{-T}}{1-r_{2}}\right] \\
& +\frac{1}{\beta\left(r_{2}-\varphi\right)}\left[\frac{1}{r_{1}-r_{2}} \frac{r_{2}^{2}}{1-r_{2}}-\frac{1}{r_{1}-\varphi} \frac{\varphi^{2}}{1-\varphi}\right]
\end{align*}
$$

Then

$$
\begin{array}{r}
\left.\sum_{t=0}^{\infty} p_{t}\right|_{T>0} ^{\infty}>\left.\sum_{t=0}^{\infty} p_{t}\right|_{T=0} \tag{37}\\
\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} \frac{r_{1}}{1-r_{1}}\left(r_{1}^{-T}-r_{1}\right)-\frac{r_{2}}{1-r_{2}} \\
{\left[\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} r_{1}^{-T}-\frac{1}{\beta\left(r_{2}-\varphi\right)} \frac{r_{2}}{r_{1}-r_{2}}+\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\right]} \\
-\frac{1}{\beta\left(r_{2}-\varphi\right)} \frac{1}{r_{1}-\varphi} \frac{\varphi}{1-\varphi}[\varphi-1]>0
\end{array} \quad \Leftrightarrow
$$

An implication of inequality (37) is

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty}\left|x_{t}\right|\right|_{T=0}<\left.\sum_{t=0}^{\infty}\left|x_{t}\right|\right|_{T>0} \tag{38}
\end{equation*}
$$

since

$$
\begin{equation*}
\left|x_{t}\right|=\frac{\alpha_{1} \kappa}{\alpha_{2}} p_{t} \tag{39}
\end{equation*}
$$

The persistence of the output response in case of anticipated cost-push shocks is therefore stronger than in case of unanticipated shocks.

A similar result can be shown for the inflation rate π_{t} if the limiting case $\varphi=0$ is considered. We then get for $T=0$

$$
\pi_{t}=\left\{\begin{array}{lll}
1-\left(1-r_{2}\right)=r_{2} & \text { if } \quad t=0 \tag{40}\\
-\left(1-r_{2}\right) r_{2}^{t}<0 & \text { if } \quad t>0
\end{array}\right.
$$

implying

$$
\begin{align*}
\sum_{t=0}^{\infty} \pi_{t} & =\pi_{0}+\sum_{t=1}^{\infty} \pi_{t}=r_{2}-\left(1-r_{2}\right) \sum_{t=1}^{\infty} r_{2}^{t} \tag{41}\\
& =r_{2}-\left(1-r_{2}\right)\left[\frac{1}{1-r_{2}}-1\right]=r_{2}-r_{2}=0
\end{align*}
$$

and

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T=\varphi=0}=r_{2}+\left(1-r_{2}\right) \sum_{t=1}^{\infty} r_{2}^{t}=2 r_{2} \tag{42}
\end{equation*}
$$

In case $T>0$ and $\varphi=0$ we get

- for $t \leq T$:

$$
\begin{equation*}
\pi_{t}=\frac{r_{2}}{r_{1}-r_{2}} r_{1}^{-T}\left[\left(r_{1}-1\right) r_{1}^{t}-\left(r_{2}-1\right) r_{2}^{t}\right]>0 \tag{43}
\end{equation*}
$$

- for $t>T$:

$$
\begin{equation*}
\pi_{t}=-\frac{r_{1} r_{2}^{-T}-r_{2} r_{1}^{-T}}{r_{1}-r_{2}}\left(1-r_{2}\right) r_{2}^{t}<0 \tag{44}
\end{equation*}
$$

Then

$$
\begin{align*}
\sum_{t=0}^{T} \pi_{t} & =\frac{r_{2}}{r_{1}-r_{2}} r_{1}^{-T} \sum_{t=0}^{T}\left[\left(r_{1}-1\right) r_{1}^{t}-\left(r_{2}-1\right) r_{2}^{t}\right] \tag{45}\\
& =\frac{r_{2}}{r_{1}-r_{2}} r_{1}^{-T}\left[\left(r_{1}-1\right) \frac{1-r_{1}^{T+1}}{1-r_{1}}+\left(1-r_{2}\right) \frac{1-r_{2}^{T+1}}{1-r_{2}}\right] \\
& =\frac{r_{2}}{r_{1}-r_{2}} r_{1}^{-T}\left[r_{1}^{T+1}-r_{2}^{T+1}\right]
\end{align*}
$$

and

$$
\begin{align*}
\sum_{t=T+1}^{\infty} \pi_{t} & =-\frac{1-r_{2}}{r_{1}-r_{2}}\left[r_{1} r_{2}^{-T}-r_{2} r_{1}^{-T}\right] \frac{r_{2}^{T+1}}{1-r_{2}} \tag{46}\\
& =-\frac{r_{2}}{r_{1}-r_{2}} r_{1}^{-T}\left[r_{1}^{T+1}-r_{2}^{T+1}\right]
\end{align*}
$$

so that

$$
\begin{equation*}
\sum_{t=0}^{\infty} \pi_{t}=0 \tag{47}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{\substack{T>0 \\ \varphi=0}}=2 \frac{r_{2}}{r_{1}-r_{2}} r_{1}^{-T}\left[r_{1}^{T+1}-r_{2}^{T+1}\right] \tag{48}
\end{equation*}
$$

Now

$$
\begin{array}{rlrl}
\frac{r_{2}}{r_{1}-r_{2}} r_{1}^{-T}\left[r_{1}^{T+1}-r_{2}^{T+1}\right] & >r_{2} & \Leftrightarrow \tag{49}\\
r_{1}^{-T}\left[r_{1}^{T+1}-r_{2}^{T+1}\right] & >r_{1}-r_{2} & & \Leftrightarrow \\
r_{1}^{T+1}-r_{2}^{T+1}>r_{1}^{T+1}-r_{2} r_{1}^{T} & & \Leftrightarrow \\
r_{2} r_{1}^{T}-r_{2}^{T+1}>0 & & \Leftrightarrow \\
r_{2}\left[r_{1}^{T}-r_{2}^{T}\right] & >0 & &
\end{array}
$$

Due to $r_{1}>1>r_{2}>0$ the last inequality is met so that

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T=\varphi=0}<\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{\substack{T>0 \\ \varphi=0}} \tag{50}
\end{equation*}
$$

The case $\varphi>0$ is more difficult to analyze since π_{t} can take both positive and negative values for $t>T>0$. If $T=0, \pi_{t}$ changes sign immediately after the initial jump. Since

$$
\begin{equation*}
\pi_{t}=\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[(1-\varphi) \varphi^{t}-\left(1-r_{2}\right) r_{2}^{t}\right] \quad(\text { if } T=0) \tag{51}
\end{equation*}
$$

we get

$$
\begin{equation*}
\pi_{0}=\frac{1}{\beta\left(r_{1}-\varphi\right)}>0 \tag{52}
\end{equation*}
$$

and

$$
\begin{align*}
\left.\sum_{t=1}^{\infty} \pi_{t}\right|_{T=0} & =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[(1-\varphi) \sum_{t=1}^{\infty} \varphi^{t}-\left(1-r_{2}\right) \sum_{t=1}^{\infty} r_{2}^{t}\right] \tag{53}\\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[(1-\varphi)\left(\frac{1}{1-\varphi}-1\right)-\left(1-r_{2}\right)\left(\frac{1}{1-r_{2}}-1\right)\right] \\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left(\varphi-r_{2}\right)=-\frac{1}{\beta\left(r_{1}-\varphi\right)}=-\pi_{0}
\end{align*}
$$

so that

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T=0}=2 \frac{1}{\beta\left(r_{1}-\varphi\right)} \tag{54}
\end{equation*}
$$

In case $T>0 \pi_{t}$ is positive for $0 \leq t \leq T$ and we obtain due to (22)

$$
\begin{align*}
\sum_{t=0}^{T} \pi_{t} & =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} r_{1}^{-T}\left[\left(r_{1}-1\right) \frac{1-r_{1}^{T+1}}{1-r_{1}}-\left(r_{2}-1\right) \frac{1-r_{2}^{T+1}}{1-r_{2}}\right] \tag{55}\\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} r_{1}^{-T}\left[-\left(1-r_{1}^{T+1}\right)+1-r_{2}^{T+1}\right] \\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} r_{1}^{-T}\left[r_{1}^{T+1}-r_{2}^{T+1}\right] \\
& =\frac{r_{1}}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[1-\left(\frac{r_{2}}{r_{1}}\right)^{T+1}\right]>0
\end{align*}
$$

(since $r_{1}>1>r_{2}>0$). If $t>T, \pi_{t}$ is negative for sufficiently large values of t. For small values of $t>T \pi_{t}$ may be positive. Due to

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p_{t}=0 \quad \text { and } \quad p_{t}=\sum_{k=0}^{t} \pi_{k} \tag{56}
\end{equation*}
$$

we must have

$$
\begin{equation*}
\sum_{t=0}^{\infty} \pi_{t}=0 \tag{57}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sum_{t=T+1}^{\infty} \pi_{t}=-\sum_{t=0}^{T} \pi_{t}<0 \tag{58}
\end{equation*}
$$

The last equation also follows from (24): With

$$
\begin{equation*}
\psi=-\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}} \tag{59}
\end{equation*}
$$

we obtain

$$
\begin{align*}
\sum_{t=T+1}^{\infty} \pi_{t} & =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[(1-\varphi) \varphi^{-T} \sum_{t=T+1}^{\infty} \varphi^{t}+\psi\left(1-r_{2}\right) \sum_{t=T+1}^{\infty} r_{2}^{t}\right] \tag{60}\\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[(1-\varphi) \varphi^{-T} \frac{\varphi^{T+1}}{1-\varphi}+\psi\left(1-r_{2}\right) \frac{r_{2}^{T+1}}{1-r_{2}}\right] \\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[\varphi+\psi r_{2}^{T+1}\right] \\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[\varphi-\frac{\left(r_{1}-\varphi\right) r_{2}^{-T}-\left(r_{2}-\varphi\right) r_{1}^{-T}}{r_{1}-r_{2}} r_{2}^{T+1}\right] \\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)}\left[\varphi-\frac{r_{1}-\varphi}{r_{1}-r_{2}} r_{2}+\frac{r_{2}-\varphi}{r_{1}-r_{2}} r_{1}^{-T} r_{2}^{T+1}\right] \\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[\varphi\left(r_{1}-r_{2}\right)-r_{2}\left(r_{1}-\varphi\right)+\left(r_{2}-\varphi\right) r_{1}^{-T} r_{2}^{T+1}\right] \\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[\left(\varphi-r_{2}\right) r_{1}+\left(r_{2}-\varphi\right) r_{1}^{-T} r_{2}^{T+1}\right] \\
& =\frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[-r_{1}+r_{1}^{-T} r_{2}^{T+1}\right] \\
& =-\frac{r_{1}}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[1-\left(\frac{r_{2}}{r_{1}}\right)^{T+1}\right]=-\sum_{t=0}^{T} \pi_{t}<0
\end{align*}
$$

Therefore,

$$
\begin{align*}
& \left.\sum_{t=0}^{T} \pi_{t}\right|_{T>0}-\left.\sum_{t=T+1}^{\infty} \pi_{t}\right|_{T>0}=\left.2 \sum_{t=0}^{T} \pi_{t}\right|_{T>0}>\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T=0}=\left.2 \pi_{0}\right|_{T=0} \Leftrightarrow \tag{61}\\
& \left.\sum_{t=0}^{T} \pi_{t}\right|_{T>0}>\left.\pi_{0}\right|_{T=0} \\
& \Leftrightarrow \\
& \frac{r_{1}}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[1-\left(\frac{r_{2}}{r_{1}}\right)^{T+1}\right]>\frac{1}{\beta\left(r_{1}-\varphi\right)} \quad \Leftrightarrow \\
& \frac{r_{1}}{r_{1}-r_{2}}\left[1-\left(\frac{r_{2}}{r_{1}}\right)^{T+1}\right]>1 \\
& r_{1}\left[1-\left(\frac{r_{2}}{r_{1}}\right)^{T+1}\right]>r_{1}-r_{2} \quad \Leftrightarrow \\
& r_{2}>r_{1}\left(\frac{r_{2}}{r_{1}}\right)^{T+1} \Leftrightarrow \\
& 1>\left(\frac{r_{2}}{r_{1}}\right)^{T} \quad \Leftrightarrow \\
& r_{1}^{T}>r_{2}^{T} \\
& \Leftrightarrow
\end{align*}
$$

The last inequality is met due to $r_{1}>1>r_{2}>0$. Since

$$
\begin{equation*}
-\left.\sum_{t=T+1}^{\infty} \pi_{t}\right|_{T>0} \leq\left.\sum_{t=T+1}^{\infty}\left|\pi_{t}\right|\right|_{T>0} \tag{62}
\end{equation*}
$$

the stronger persistence in case of anticipated shocks follows:

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T>0}=\sum_{t=0}^{T} \pi_{t}+\sum_{t=T+1}^{\infty}\left|\pi_{t}\right| \geq \sum_{t=0}^{T} \pi_{t}-\sum_{t=T+1}^{\infty} \pi_{t}>\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T=0} \tag{63}
\end{equation*}
$$

Note that for arbitrary $T>0$

$$
\begin{equation*}
\left.\pi_{0}\right|_{T=0}<\left.\sum_{t=0}^{T} \pi_{t}\right|_{T>0} \tag{64}
\end{equation*}
$$

but

$$
\begin{equation*}
\left.\pi_{t}\right|_{T>0}<\left.\pi_{0}\right|_{T=0} \quad \text { for all } \quad 0 \leq t \leq T \tag{65}
\end{equation*}
$$

In particular

$$
\begin{equation*}
\left.\pi_{T}\right|_{T>0}<\left.\pi_{0}\right|_{T=0} \tag{66}
\end{equation*}
$$

since

$$
\begin{align*}
&\left.\pi_{t}\right|_{T>0}= \frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} r_{1}^{-T}\left[\left(r_{1}-1\right) r_{1}^{T}-\left(r_{2}-1\right) r_{2}^{T}\right] \tag{67}\\
&= \frac{1}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)}\left[\left(r_{1}-1\right)-\left(r_{2}-1\right)\left(\frac{r_{2}}{r_{1}}\right)^{T}\right]<\left.\pi_{0}\right|_{T=0}=\frac{1}{\beta\left(r_{1}-\varphi\right)} \Leftrightarrow \\
& \frac{1}{r_{1}-r_{2}}\left[\left(r_{1}-1\right)-\left(r_{2}-1\right)\left(\frac{r_{2}}{r_{1}}\right)^{T}\right]<1 \Leftrightarrow \\
& \Leftrightarrow \\
&\left(r_{1}-1\right)-\left(r_{2}-1\right)\left(\frac{r_{2}}{r_{1}}\right)^{T}<r_{1}-r_{2} \Leftrightarrow \\
&\left(1-r_{2}\right)\left(\frac{r_{2}}{r_{1}}\right)^{T}<1-r_{2} \Leftrightarrow \\
&\left(\frac{r_{2}}{r_{1}}\right)^{T}<1
\end{align*}
$$

Since the last equation holds, the value of the inflation rate at the time of implementation of the cost-push shock is smaller in case of anticipated compared to unanticipated shocks. ${ }^{5}$

[^4]
The loss under the optimal policy

To determine the welfare loss under the optimal precommitment policy, write the loss function V as $V_{1}+V_{2}$, where

$$
\begin{equation*}
V_{1}=E_{0} \sum_{t=0}^{T-1} \beta^{t}\left(\alpha_{1} \pi_{t}^{2}+\alpha_{2} x_{t}^{2}\right) \tag{68}
\end{equation*}
$$

is the loss resulting from the anticipation of the shock and

$$
\begin{equation*}
V_{2}=E_{0} \sum_{t=T}^{\infty} \beta^{t}\left(\alpha_{1} \pi_{t}^{2}+\alpha_{2} x_{t}^{2}\right) \tag{69}
\end{equation*}
$$

is the loss following from the realization of the shock. We first calculate the value of the loss function V_{1}. Since the solution time path of the state vector $\left(\pi_{t}, x_{t}\right)^{\prime}$ over the anticipation interval can be written as

$$
\binom{\pi_{t}}{x_{t}}=G\left(\begin{array}{cc}
r_{1}^{t} & 0 \tag{70}\\
0 & r_{2}^{t}
\end{array}\right)\binom{1}{1} \quad(t<T)
$$

where

$$
G=\left(\begin{array}{cc}
\frac{\left(r_{1}-1\right) r_{1}^{-T}}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} & \frac{-\left(r_{2}-1\right) r_{1}^{-T}}{\beta\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} \tag{71}\\
\frac{-\alpha_{1} \kappa}{\alpha_{2} \beta} \frac{r_{1}^{1-T}}{\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)} & \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \frac{r_{2} r_{1}^{-T}}{\left(r_{1}-\varphi\right)\left(r_{1}-r_{2}\right)}
\end{array}\right)
$$

we obtain

$$
\begin{align*}
V_{1} & =\sum_{t=0}^{T-1} \beta^{t}\binom{\pi_{t}}{x_{t}}^{\prime}\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \alpha_{2}
\end{array}\right)\binom{\pi_{t}}{x_{t}} \tag{72}\\
& =\sum_{t=0}^{T-1} \beta^{t}\binom{1}{1}^{\prime}\left(\begin{array}{cc}
r_{1}^{t} & 0 \\
0 & r_{2}^{t}
\end{array}\right) G^{\prime}\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \alpha_{2}
\end{array}\right) G\left(\begin{array}{cc}
r_{1}^{t} & 0 \\
0 & r_{2}^{t}
\end{array}\right)\binom{1}{1} \\
& =\binom{1}{1}^{\prime} W_{1}\binom{1}{1} \\
& =\operatorname{tr}\left(W_{1}\binom{1}{1}\binom{1}{1}\right) \\
& =w_{11}^{(1)}+2 w_{12}^{(1)}+w_{22}^{(1)}
\end{align*}
$$

where the symmetric matrix $W_{1}=\left(w_{i j}^{(1)}\right)_{1 \leq i, j \leq 2}$ is defined as the finite sum of matrices

$$
W_{1}=\sum_{t=0}^{T-1} \beta^{t}\left(\begin{array}{cc}
r_{1}^{t} & 0 \tag{73}\\
0 & r_{2}^{t}
\end{array}\right) D\left(\begin{array}{cc}
r_{1}^{t} & 0 \\
0 & r_{2}^{t}
\end{array}\right)
$$

with

$$
D=\left(\begin{array}{ll}
d_{11} & d_{12} \tag{74}\\
d_{12} & d_{22}
\end{array}\right)=G^{\prime}\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \alpha_{2}
\end{array}\right) G
$$

The elements of the symmetric matrix D are given by

$$
\begin{gather*}
d_{11}=\alpha_{1} \lambda^{2} r_{1}^{-2 T}\left[\left(r_{1}-1\right)^{2}+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{1}^{2}\right] \tag{75}\\
d_{12}=-\alpha_{1} \lambda^{2} r_{1}^{-2 T}\left[\left(r_{1}-1\right)\left(r_{2}-1\right)+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{1} r_{2}\right] \tag{76}\\
d_{22}=\alpha_{1} \lambda^{2} r_{1}^{-2 T}\left[\left(r_{2}-1\right)^{2}+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{2}^{2}\right] \tag{77}
\end{gather*}
$$

where we have used the abbreviation

$$
\begin{equation*}
\lambda=\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}} \tag{78}
\end{equation*}
$$

According to (6) we have

$$
\begin{align*}
\left(r_{1}-1\right)\left(r_{2}-1\right)+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{1} r_{2} & = \tag{79}\\
r_{1} r_{2}\left[1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right]+1-\left(r_{1}+r_{2}\right) & = \\
\frac{1}{\beta}\left[1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right]+1-\left(r_{1}+r_{2}\right) & = \\
\operatorname{tr} C-1+1-\left(r_{1}+r_{2}\right) & =0
\end{align*}
$$

so that

$$
\begin{gather*}
w_{11}^{(1)}=d_{11} \sum_{t=0}^{T-1} \beta^{t} r_{1}^{2 t}=\frac{1-\beta^{T} r_{1}^{2 T}}{1-\beta r_{1}^{2}} d_{11} \tag{80}\\
w_{12}^{(1)}=d_{12} \sum_{t=0}^{T-1} \beta^{t} r_{1}^{t} r_{2}^{t}=0 \tag{81}\\
w_{22}^{(1)}=d_{22} \sum_{t=0}^{T-1} \beta^{t} r_{2}^{2 t}=\frac{1-\beta^{T} r_{2}^{2 T}}{1-\beta r_{2}^{2}} d_{22} \tag{82}
\end{gather*}
$$

Using (6) we get

$$
\begin{align*}
\left(r_{1}-1\right)^{2}+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{1}^{2} & = \tag{83}\\
r_{1}^{2}\left(1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right)+1-2 r_{1} & = \\
\beta\left(r_{1}^{2}\left[r_{1}+r_{2}-1\right]+\frac{1}{\beta}\left[1-2 r_{1}\right]\right) & = \\
\frac{1}{r_{2}}\left(r_{1}\left[r_{1}+r_{2}-1\right]+r_{2}\left[1-2 r_{1}\right]\right) & =\frac{1}{r_{2}}\left(r_{1}-r_{2}\right)\left(r_{1}-1\right)
\end{align*}
$$

so that

$$
\begin{align*}
w_{11}^{(1)} & =\frac{r_{2}^{T}-r_{1}^{T}}{\left(r_{2}-r_{1}\right) r_{2}^{T-1}} \alpha_{1} \lambda^{2} r_{1}^{-2 T} \frac{1}{r_{2}}\left(r_{1}-r_{2}\right)\left(r_{1}-1\right) \tag{84}\\
& =\alpha_{1} \lambda^{2} r_{1}^{-2 T} \frac{r_{1}^{T}-r_{2}^{T}}{r_{2}^{T}}\left(r_{1}-1\right)
\end{align*}
$$

and analogically

$$
\begin{equation*}
w_{22}^{(1)}=\alpha_{1} \lambda^{2} r_{1}^{-2 T} \frac{r_{1}^{T}-r_{2}^{T}}{r_{1}^{T}}\left(1-r_{2}\right) \tag{85}
\end{equation*}
$$

Then the loss V_{1} can be written as

$$
\begin{equation*}
V_{1}=\alpha_{1} \lambda^{2} r_{1}^{-2 T}\left(r_{1}^{T}-r_{2}^{T}\right)\left(\frac{r_{1}-1}{r_{2}^{T}}+\frac{1-r_{2}}{r_{1}^{T}}\right) \tag{86}
\end{equation*}
$$

Consider V_{1} as function in T (the time span between the anticipation and realization of the cost-push shock). The function $V_{1}(T)$ has the following properties:

$$
V_{1}(0)=0, \quad \lim _{T \rightarrow \infty} V_{1}(T)= \begin{cases}0 & \text { for } \beta<1 \tag{87}\\ \bar{V}_{1}>0 & \text { for } \beta=1\end{cases}
$$

where

$$
\begin{equation*}
\bar{V}_{1}=\frac{\alpha_{1}\left(r_{1}-1\right)}{\left(r_{1}-\varphi\right)^{2}\left(r_{1}-r_{2}\right)^{2}} \tag{88}
\end{equation*}
$$

The derivative of V_{1} with respect to T, i. e.

$$
\begin{align*}
\frac{d V_{1}}{d T}= & \alpha_{1} \lambda^{2}\left\{2 \ln r_{1} \cdot r_{1}^{-2 T}\left[r_{1}+r_{2}-2\right]-\left(r_{1}-1\right) \ln \left(r_{1} r_{2}\right) \cdot\left(r_{1} r_{2}\right)^{-T}\right. \tag{89}\\
& \left.-\left(1-r_{2}\right) \ln \left(\frac{r_{2}}{r_{1}^{3}}\right) \cdot\left(\frac{r_{2}}{r_{1}^{3}}\right)^{T}\right\}
\end{align*}
$$

is positive at time $T=0$:

$$
\begin{align*}
\left.\frac{d V_{1}}{d T}\right|_{T=0}= & \alpha_{1} \lambda^{2}\left\{2\left(\ln r_{1}\right)\left(r_{1}+r_{2}-2\right)\right. \tag{90}\\
& \left.-\left(r_{1}-1\right) \ln \left(r_{1} r_{2}\right)-\left(1-r_{2}\right) \ln \left(\frac{r_{2}}{r_{1}^{3}}\right)\right\} \\
= & \alpha_{1} \lambda^{2}\left(r_{1}-r_{2}\right)\left[\ln r_{1}-\ln r_{2}\right] \\
= & \alpha_{1} \frac{1}{\beta^{2}} \frac{1}{\left(r_{1}-\varphi\right)^{2}} \frac{1}{r_{1}-r_{2}}\left[\ln r_{1}-\ln r_{2}\right]>0
\end{align*}
$$

Therefore, $V_{1}(T)$ starts to rise with increasing T (although the size of the initial jumps of x_{t} and π_{t} is decreasing in T). For $\beta<1$ the limit value is equal to zero, therefore $V_{1}(T)$ must decrease if T is sufficiently large. Figure 6 illustrates the hump-shaped development of $V_{1}(T)$ in case $\beta<1$.

Figure 6: Partial loss in the anticipation phase for different lengths of anticipation period under optimal timeless perspective commitment policy in case $\beta=0.99$.

To calculate the loss function V_{2}, write $\left(\pi_{t}, x_{t}\right)^{\prime}$ as

$$
\binom{\pi_{t}}{x_{t}}=F\left(\begin{array}{cc}
\varphi^{t} & 0 \tag{91}\\
0 & r_{2}^{t}
\end{array}\right)\binom{1}{1} \quad(t \geq T)
$$

where

$$
F=\left(\begin{array}{cc}
\frac{(1-\varphi) \varphi^{-T}}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)} & \frac{\left[\left(r_{2}-\varphi\right) r_{1}^{-T}-\left(r_{1}-\varphi\right) r_{2}^{-T}\right]\left(1-r_{2}\right)}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)\left(r_{1}-r_{2}\right)} \tag{92}\\
\frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \frac{\varphi^{-(T-1)}}{\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)} & \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \frac{\left[\left(r_{2}-\varphi\right) r_{1}^{-T}-\left(r_{1}-\varphi\right) r_{2}^{-T}\right] r_{2}}{\beta\left(r_{1}-\varphi\right)\left(r_{2}-\varphi\right)\left(r_{1}-r_{2}\right)}
\end{array}\right)
$$

Then

$$
\begin{align*}
V_{2} & =\sum_{t=T}^{\infty} \beta^{t}\binom{\pi_{t}}{x_{t}}^{\prime}\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \alpha_{2}
\end{array}\right)\binom{\pi_{t}}{x_{t}} \tag{93}\\
& =\sum_{t=T}^{\infty} \beta^{t}\binom{1}{1}^{\prime}\left(\begin{array}{cc}
\varphi^{t} & 0 \\
0 & r_{2}^{t}
\end{array}\right) F^{\prime}\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \alpha_{2}
\end{array}\right) F\left(\begin{array}{cc}
\varphi^{t} & 0 \\
0 & r_{2}^{t}
\end{array}\right)\binom{1}{1} \\
& =\binom{1}{1}^{\prime} W_{2}\binom{1}{1}=\operatorname{tr}\left(W_{2}\binom{1}{1}\binom{1}{1}^{\prime}\right) \\
& =w_{11}^{(2)}+2 w_{12}^{(2)}+w_{22}^{(2)}
\end{align*}
$$

where the symmetric matrix $W_{2}=\left(w_{i j}^{(2)}\right)_{1 \leq i, j \leq 2}$ is the geometric sum of matrices

$$
W_{2}=\sum_{t=T}^{\infty} \beta^{t}\left(\begin{array}{cc}
\varphi & 0 \tag{94}\\
0 & r_{2}
\end{array}\right)^{t} Q\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{t}
$$

with

$$
Q=\left(\begin{array}{ll}
q_{11} & q_{12} \tag{95}\\
q_{21} & q_{22}
\end{array}\right)=F^{\prime}\left(\begin{array}{cc}
\alpha_{1} & 0 \\
0 & \alpha_{2}
\end{array}\right) F
$$

The elements of the symmetric matrix Q are given by

$$
\begin{gather*}
q_{11}=\alpha_{1} \delta^{2} \varphi^{-2 T}\left[(1-\varphi)^{2}+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} \varphi^{2}\right] \tag{96}\\
q_{12}=\alpha_{1} \delta^{2} \phi \varphi^{-T} \frac{1}{r_{1}-r_{2}}\left[\left(1-r_{2}\right)(1-\varphi)+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{2} \varphi\right] \tag{97}\\
q_{22}=\alpha_{1} \delta^{2} \phi^{2} \frac{1}{\left(r_{1}-r_{2}\right)^{2}}\left[\left(1-r_{2}\right)^{2}+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{2}^{2}\right] \tag{98}
\end{gather*}
$$

with the abbreviations

$$
\begin{equation*}
\delta=\frac{1}{\beta} \frac{1}{r_{1}-\varphi} \frac{1}{r_{2}-\varphi} \tag{99}
\end{equation*}
$$

and

$$
\begin{equation*}
\phi=\left(r_{2}-\varphi\right) r_{1}^{-T}-\left(r_{1}-\varphi\right) r_{2}^{-T} \tag{100}
\end{equation*}
$$

The definition of W_{2} implies that the matrix W_{2} satisfies the matrix equation

$$
\begin{align*}
W_{2} & =\beta^{T}\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{T} Q\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{T}+\sum_{t=T+1}^{\infty} \beta^{t}\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{t} Q\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{t} \tag{101}\\
& =\beta^{T}\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{T} Q\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{T}+\sum_{t=T}^{\infty} \beta^{t+1}\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{t+1} Q\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{t+1} \\
& =\beta^{T}\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{T} Q\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{T}+\beta\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right) W_{2}\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)
\end{align*}
$$

Since

$$
\beta^{T}\left(\begin{array}{cc}
\varphi & 0 \tag{102}\\
0 & r_{2}
\end{array}\right)^{T} Q\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)^{T}=\left(\begin{array}{cc}
\beta^{T} \varphi^{2 T} q_{11} & \beta^{T} \varphi^{T} r_{2}^{T} q_{12} \\
\beta^{T} \varphi^{T} r_{2}^{T} q_{21} & \beta^{T} r_{2}^{2 T} q_{22}
\end{array}\right)
$$

and

$$
W_{2}-\beta\left(\begin{array}{cc}
\varphi & 0 \tag{103}\\
0 & r_{2}
\end{array}\right) W_{2}\left(\begin{array}{cc}
\varphi & 0 \\
0 & r_{2}
\end{array}\right)=\left(\begin{array}{cc}
\left(1-\beta \varphi^{2}\right) w_{11}^{(2)} & \left(1-\beta \varphi r_{2}\right) w_{12}^{(2)} \\
\left(1-\beta \varphi r_{2}\right) w_{21}^{(2)} & \left(1-\beta r_{2}^{2}\right) w_{22}^{(2)}
\end{array}\right)
$$

we obtain

$$
\begin{gather*}
w_{11}^{(2)}=\frac{\beta^{T} \varphi^{2 T}}{1-\beta \varphi^{2}} q_{11} \tag{104}\\
w_{12}^{(2)}=w_{21}^{(2)}=\frac{\beta^{T} \varphi^{T} r_{2}^{T}}{1-\beta \varphi r_{2}} q_{12} \tag{105}
\end{gather*}
$$

$$
\begin{equation*}
w_{22}^{(2)}=\frac{\beta^{T} r_{2}^{2 T}}{1-\beta r_{2}^{2}} q_{22} \tag{106}
\end{equation*}
$$

Using (6) and the definition of $q_{i j}$ we can write

$$
\begin{gather*}
w_{11}^{(2)}=\alpha_{1} \delta^{2} \frac{\beta^{T}}{1-\beta \varphi^{2}}\left[(1-2 \varphi)+\left(1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right) \varphi^{2}\right] \tag{107}\\
=\alpha_{1} \delta^{2} \frac{\beta^{T}}{r_{1} r_{2}-\varphi^{2}}\left[r_{1} r_{2}(1-2 \varphi)+\left(r_{1}+r_{2}-1\right) \varphi^{2}\right] \\
w_{12}^{(2)}=\alpha_{1} \delta^{2} \phi \frac{\beta^{T} r_{2}^{T}}{1-\beta \varphi r_{2}} \frac{1}{r_{1}-r_{2}}\left[\left(1-r_{2}\right)(1-\varphi)+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{2} \varphi\right] \tag{108}\\
=\alpha_{1} \delta^{2} \phi \frac{\beta^{T} r_{2}^{T}}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}}\left[r_{1}\left(1-r_{2}\right)(1-\varphi)+r_{1} r_{2} \frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} \varphi\right] \\
=\alpha_{1} \delta^{2} \phi \frac{\beta^{T} r_{2}^{T}}{r_{1}-\varphi} \frac{1}{r_{1}-r_{2}}\left[r_{1}\left(1-\varphi-r_{2}\right)+\left(r_{1}+r_{2}-1\right) \varphi\right] \\
=\alpha_{1} \delta^{2} \phi \beta^{T} r_{2}^{T} \frac{1-r_{2}}{r_{1}-r_{2}} \\
w_{22}^{(2)}=\alpha_{1} \delta^{2} \phi^{2} \frac{\beta^{T} r_{2}^{2 T}}{1-\beta r_{2}^{2}} \frac{1}{\left(r_{1}-r_{2}\right)^{2}}\left[\left(1-r_{2}\right)^{2}+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}} r_{2}^{2}\right] \tag{109}\\
= \\
=\alpha_{1} \delta^{2} \phi^{2} \beta^{T} r_{2}^{2 T} \frac{r_{1}}{r_{1}-r_{2}} \frac{1}{\left(r_{1}-r_{2}\right)^{2}}\left[1-2 r_{2}+r_{2}^{2}\left(1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right)\right] \\
=\alpha_{1} \delta^{2} \phi^{2} \beta^{T} r_{2}^{2 T} \frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}
\end{gather*}
$$

Then

$$
\begin{align*}
V_{2}= & \alpha_{1} \delta^{2} \beta^{T}\left\{\frac{1}{r_{1} r_{2}-\varphi^{2}}\left[r_{1} r_{2}(1-2 \varphi)+\left(r_{1}+r_{2}-1\right) \varphi^{2}\right]\right. \tag{110}\\
& \left.+\frac{2 \phi}{r_{1}-r_{2}} r_{2}^{T}\left(1-r_{2}\right)+\frac{\phi^{2}}{\left(r_{1}-r_{2}\right)^{2}} r_{2}^{2 T}\left(1-r_{2}\right)\right\}
\end{align*}
$$

Since

$$
\begin{equation*}
\frac{1}{r_{1} r_{2}-\varphi^{2}}\left[r_{1} r_{2}(1-2 \varphi)+\left(r_{1}+r_{2}-1\right) \varphi^{2}\right]=1+\frac{\left(r_{1}+r_{2}\right) \varphi-2 r_{1} r_{2}}{r_{1} r_{2}-\varphi^{2}} \varphi \tag{111}
\end{equation*}
$$

and (according to the definition of ϕ)

$$
\begin{equation*}
1+\frac{1}{r_{1}-r_{2}} \phi r_{2}^{T}=\frac{1}{\left(r_{1}-r_{2}\right) r_{1}^{T}}\left(r_{2}-\varphi\right)\left(r_{2}^{T}-r_{1}^{T}\right) \tag{112}
\end{equation*}
$$

we can write

$$
\begin{align*}
V_{2} & =\alpha_{1} \delta^{2} \beta^{T}\left\{\left(1+\frac{1}{r_{1}-r_{2}} \phi r_{2}^{T}\right)^{2}\left(1-r_{2}\right)+r_{2}+\frac{\left(r_{1}+r_{2}\right) \varphi-2 r_{1} r_{2}}{r_{1} r_{2}-\varphi^{2}} \varphi\right\} \tag{113}\\
& =\alpha_{1} \delta^{2} \beta^{T}\left\{\frac{1}{\left(r_{1}-r_{2}\right)^{2} r_{1}^{2 T}}\left(r_{2}-\varphi\right)^{2}\left(r_{2}^{T}-r_{1}^{T}\right)^{2}\left(1-r_{2}\right)+\frac{r_{1}\left(r_{2}-\varphi\right)^{2}}{r_{1} r_{2}-\varphi^{2}}\right\} \\
& =\frac{\alpha_{1} \beta^{T}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}}\left\{\frac{\left(r_{2}^{T}-r_{1}^{T}\right)^{2}\left(1-r_{2}\right)}{\left(r_{1}-r_{2}\right)^{2} r_{1}^{2 T}}+\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}\right\}
\end{align*}
$$

The loss function $V_{2}=V_{2}(T)$ has the following properties:

$$
\begin{gather*}
V_{2}(0)=\frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}} \frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}>0 \tag{114}\\
\lim _{T \rightarrow \infty} V_{2}(T)= \begin{cases}0 & \text { if } \beta<1 \\
\bar{V}_{2}>\left.V_{2}(0)\right|_{\beta=1}=\frac{\alpha_{1} r_{1}}{\left(r_{1}-\varphi\right)^{2}\left(1-\varphi^{2}\right)} & \text { if } \beta=1\end{cases} \tag{115}
\end{gather*}
$$

where

$$
\begin{equation*}
\bar{V}_{2}=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}}\left\{\frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}+\frac{r_{1}}{1-\varphi^{2}}\right\} \tag{116}
\end{equation*}
$$

The first derivative of V_{2} with respect to T

$$
\begin{align*}
\frac{d V_{2}}{d T}= & \frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}} \beta^{T}\left\{\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}} \ln \beta\right. \tag{117}\\
& \left.+\frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}\left[\left(\ln r_{2}-3 \ln r_{1}\right)\left(\frac{r_{2}}{r_{1}}\right)^{2 T}+4 \ln r_{1}\left(\frac{r_{2}}{r_{1}}\right)^{T}+\ln \beta\right]\right\}
\end{align*}
$$

implies for $\beta<1$

$$
\begin{equation*}
\left.\frac{d V_{2}}{d T}\right|_{T=0}=\frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}} \frac{r_{1}}{r_{1} r_{2}-\varphi^{2}} \ln \beta<0 \tag{118}
\end{equation*}
$$

(since $\beta=1 /\left(r_{1} r_{2}\right)$). For $\beta<1, d V_{2} / d T$ is also negative if T is sufficiently large. Figure 7 illustrates that the development of V_{2} is overall decreasing if the value of ω is sufficiently small (i.e., the degree of price flexibility is high); otherwise it is not monotone, but hump-shaped. For sufficiently large values of ω the loss function V_{2} has two extrema (a maximum and a minimum) which can be determined from the first-order condition $d V_{2} / d T=0$. The first extremum of V_{2} cannot be represented graphically since the corresponding value of T is very small. Note that in the limiting case $\beta=1$ the loss function $V_{2}(T)$ is an increasing function in T with a limit value $\bar{V}_{2}>V_{2}(0)$.

We can now derive the development of the total loss $V=V_{1}+V_{2}$. We first assume $\beta<1$. Then $V(0)=V_{2}(0)>0$ (with $V_{2}(0)$ defined in (114)) and

Figure 7: Partial loss in the implementation phase for different lengths of anticipation period under optimal timeless perspective commitment policy in case $\beta=0.99$.
$\lim _{T \rightarrow \infty} V(T)=0$. For small values of ω, i.e. a high degree of price flexibility, the total loss V is a decreasing function in T implying $V(T)<V(0)$ for all $T>0$. With high price flexibility the welfare loss under anticipated shocks is smaller than under unanticipated shocks. If ω is small, the persistence of the state variables is weak and the total loss is mainly determined by the size of the initial jumps of x_{t} and π_{t} which is a decreasing function in T. By contrast, for sufficiently large values of ω (i.e. a high degree of price rigidity) the jump variables x_{t} and π_{t} display a strong persistence so that the welfare loss starts to rise with increasing lead time T. For the derivative $d V / d T$ at time $T=0$ we get

$$
\begin{align*}
\left.\frac{d V}{d T}\right|_{T=0} & =\left.\frac{d V_{1}}{d T}\right|_{T=0}+\left.\frac{d V_{2}}{d T}\right|_{T=0} \tag{119}\\
& =\frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}}\left\{\frac{1}{r_{1}-r_{2}}\left[\ln r_{1}-\ln r_{2}\right]+\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}} \ln \beta\right\} \\
& =\frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}}\left\{\frac{1}{r_{1}-r_{2}}\left[\ln r_{1}-\ln r_{2}\right]-\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}\left[\ln r_{1}+\ln r_{2}\right]\right\} \\
& =\frac{\alpha_{1}}{\beta^{2}\left(r_{1}-\varphi\right)^{2}}\left\{\left[\frac{1}{r_{1}-r_{2}}-\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}\right] \ln r_{1}-\left[\frac{1}{r_{1}-r_{2}}+\frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}\right] \ln r_{2}\right\}
\end{align*}
$$

Then

$$
\begin{array}{r}
\left.\frac{d V}{d T}\right|_{T=0}>0
\end{array} \begin{array}{r}
\Leftrightarrow \tag{120}\\
{\left[r_{1}\left(2 r_{2}-r_{1}\right)-\varphi^{2}\right] \ln r_{1}-\left[r_{1}^{2}-\varphi^{2}\right] \ln r_{2}>0}
\end{array} \quad \Leftrightarrow
$$

The last equivalence holds since $\ln r_{2}=-\left(\ln r_{1}+\ln \beta\right)$. A rising ω induces a fall in the unstable eigenvalue r_{1} since $d \kappa / d \omega<0$. Since the fall in r_{1}^{2} is stronger than the decrease in $\ln r_{1}$, and $1 / \beta-\varphi^{2}>0$, inequality (120) is fulfilled if ω is sufficiently large. In this case $V(T)$ starts to rise and due to $\lim _{T \rightarrow \infty} V(T)=0$
its development must be hump-shaped implying the existence of an upper bound $T_{c}^{*}>0$ such that $V(T)>V(0)$ for all $T<T_{c}^{*}$.

With low price flexibility and a lead time T which is not too long, the welfare loss under anticipated shocks is greater than under unanticipated shocks. The reason is the stronger persistence of x_{t} and π_{t} in case $T>0$ (compared to $T=0$) which dominates the determination of the total loss if ω is sufficiently large.

The value of the upper bound T_{c}^{*} is the positive solution of the equation $V(T)=V(0)$, where $V(0)=V_{2}(0)$ is given by (114). This leads to the equation

$$
\begin{align*}
\frac{1}{\left(r_{1}-r_{2}\right)^{2}} r_{1}^{-2 T}\left(r_{1}^{T}-r_{2}^{T}\right)\left[\frac{r_{1}-1}{r_{2}^{T}}+\frac{1-r_{2}}{r_{1}^{T}}\right. & \left.+\beta^{T}\left(r_{1}^{T}-r_{2}^{T}\right)\left(1-r_{2}\right)\right] \tag{121}\\
& =\left(1-\beta^{T}\right) \frac{r_{1}}{r_{1} r_{2}-\varphi^{2}}
\end{align*}
$$

which is equivalent to

$$
\begin{equation*}
1-\left(\frac{r_{2}}{r_{1}}\right)^{T}=\left[\left(r_{1} r_{2}\right)^{T}-1\right] \frac{r_{1}\left(r_{1}-r_{2}\right)}{r_{1} r_{2}-\varphi^{2}} \tag{122}
\end{equation*}
$$

Equation (122) can be written as

$$
\begin{align*}
1-\frac{1}{\beta^{T} r_{1}^{2 T}} & =\frac{\left(\frac{1}{\beta}\right)^{T}-1}{\frac{1}{\beta}-\varphi^{2}}\left(r_{1}^{2}-\frac{1}{\beta}\right) \quad \Leftrightarrow \\
\beta^{T} r_{1}^{2 T}-1 & =\frac{\left(\frac{1}{\beta}\right)^{T}-1}{1-\beta \varphi^{2}}\left(\beta r_{1}^{2}-1\right) \beta^{T} r_{1}^{2 T} \quad \Leftrightarrow \\
\beta^{T} r_{1}^{2 T}\left[1-\frac{\left(\frac{1}{\beta}\right)^{T}-1}{1-\beta \varphi^{2}}\left(\beta r_{1}^{2}-1\right)\right] & =1 \Leftrightarrow \\
\beta^{T} r_{1}^{2 T}\left[\beta\left(r_{1}^{2}-\varphi^{2}\right)+\frac{1}{\beta^{T}}\left(1-\beta r_{1}^{2}\right)\right] & =1-\beta \varphi^{2} \quad \Leftrightarrow \\
\beta^{T} r_{1}^{2 T}\left[\beta r_{1}^{2}\left(1-\frac{1}{\beta^{T}}\right)+\frac{1}{\beta^{T}}-\beta \varphi^{2}\right] & =1-\beta \varphi^{2} \quad \Leftrightarrow \tag{123}\\
r_{1}^{2 T}\left[\beta^{T+1}\left(r_{1}^{2}-\varphi^{2}\right)+\left(1-\beta r_{1}^{2}\right)\right] & =1-\beta \varphi^{2} \quad \tag{124}
\end{align*}
$$

so that T_{c}^{*} is also the positive solution of (123) and (124). The value of T_{c}^{*} is dependent on ω and β. A rising ω (a higher degree of price rigidity) decreases the unstable eigenvalue r_{1} so that the left-hand side of equation (123) is decreased while the right-hand side remains unchanged. Since $\beta^{T} r_{1}^{2 T}=\left(r_{1} / r_{2}\right)^{T}$ is increasing in T, equation (123) implies that the solution value T_{c}^{*} must increase if ω rises. Conversely, a higher degree of price flexibility induces a fall in T_{c}^{*}. For sufficiently small values of ω the only solution of (124) is $T_{c}^{*}=0$ (so that $V(T)<V(0)$ for all $T>0$). If a positive solution T_{c}^{*} of (124) exists, then it is also an increasing function in the discount factor β with $T_{c}^{*}=\infty$ if $\beta=1$.

In the limiting case $\beta=1$ the total loss $V(T)$ is an overall increasing function in T with $V(0)=V_{2}(0)>0$ and

$$
\begin{equation*}
\lim _{T \rightarrow \infty} V(T)=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}}\left\{\frac{1}{r_{1}-r_{2}}+\frac{r_{1}}{1-\varphi^{2}}\right\}>\left.V_{2}(0)\right|_{\beta=1}>0 \tag{125}
\end{equation*}
$$

If $\beta=1$, we can write $V(T)$ as $V_{1}(T)+V_{2}(T)$, where

$$
\begin{gather*}
V_{1}(T)=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}\left(r_{1}-r_{2}\right)^{2}} r_{1}^{-2 T}\left(r_{1}^{T}-r_{2}^{T}\right)\left[\left(r_{1}-1\right) r_{2}^{-T}+\left(1-r_{2}\right) r_{1}^{-T}\right] \\
=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}\left(r_{1}-r_{2}\right)^{2}}\left[\left(r_{1}-1\right)+\left(2-r_{1}-r_{2}\right) r_{1}^{-2 T}-\left(1-r_{2}\right)\left(\frac{r_{2}}{r_{1}^{3}}\right)^{T}\right] \tag{126}\\
V_{2}(T)=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}}\left\{\frac{\left(r_{1}^{T}-r_{2}^{T}\right)^{2}\left(1-r_{2}\right)}{\left(r_{1}-r_{2}\right)^{2} r_{1}^{2 T}}+\frac{r_{1}}{1-\varphi^{2}}\right\} \tag{127}\\
=\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}}\left\{\frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}\left[1-\left(\frac{r_{2}}{r_{1}}\right)^{T}\right]^{2}+\frac{r_{1}}{1-\varphi^{2}}\right\}
\end{gather*}
$$

Then

$$
\begin{align*}
\frac{d V_{1}}{d T}= & \frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}\left(r_{1}-r_{2}\right)^{2}}\left\{2\left[r_{1}+r_{2}-2\right] \ln r_{1}\right. \tag{128}\\
& \left.+\left[3 \ln r_{1}-\ln r_{2}\right]\left(1-r_{2}\right)\left(\frac{r_{2}}{r_{1}}\right)^{T}\right\} r_{1}^{-2 T}>0 \quad \text { for all } T \geq 0
\end{align*}
$$

(due to $r_{1}+r_{2}=\operatorname{tr} C>2$ and $\ln r_{2}<0$) and

$$
\begin{align*}
\frac{d V_{2}}{d T} & =\frac{\alpha_{1}}{\left(r_{1}-\varphi\right)^{2}} \frac{1-r_{2}}{\left(r_{1}-r_{2}\right)^{2}}\left\{-2\left(1-\left(\frac{r_{2}}{r_{1}}\right)^{T}\right) \ln \left(\frac{r_{2}}{r_{1}}\right)\right\}\left(\frac{r_{2}}{r_{1}}\right)^{T} \tag{129}\\
& >0 \text { if } \underset{(=)}{\gg 0} 0
\end{align*}
$$

(because $0<r_{2}<1<r_{1}$). Therefore, $d V / d T>0$ for all $T \geq 0$ so that V is a monotonically increasing function in T. This result holds independently of the degree of price rigidity ω.

Optimal policy under discretion

Under the policy regime discretion (D), the central bank is unable to make a commitment to future policies. Now private expectations are given for the central bank and the reduced form of the first-order conditions can be written as

$$
\begin{align*}
\pi_{t} & =-\frac{\alpha_{2}}{\alpha_{1} \kappa} x_{t} \tag{130}\\
E_{t} x_{t+1} & =\frac{1}{\beta}\left[1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right] x_{t}+\frac{\alpha_{1} \kappa}{\alpha_{2} \beta} k_{t} \tag{131}
\end{align*}
$$

with $E_{t} x_{t+1}=x_{t+1}$ in case of anticipated shocks. The difference equation in x_{t} has the unstable eigenvalue

$$
\begin{equation*}
r_{D}=\frac{1}{\beta}\left[1+\frac{\alpha_{1} \kappa^{2}}{\alpha_{2}}\right]=\frac{1}{\alpha_{2} \beta}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]>1 \tag{132}
\end{equation*}
$$

and the forward solution

$$
\begin{equation*}
x_{t}=-\sum_{s=0}^{\infty} r_{D}^{-s} \frac{1}{r_{D}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} k_{t+s} \tag{133}
\end{equation*}
$$

Since

$$
k_{t+s}= \begin{cases}\varphi^{t+s-T} & \text { for } t+s \geq T \tag{134}\\ 0 & \text { for } t+s<T\end{cases}
$$

we get for $t \geq T$

$$
\begin{align*}
x_{t} & =-\sum_{s=0}^{\infty} r_{D}^{-s} \varphi^{s} \frac{1}{r_{D}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \varphi^{t-T}=-\frac{1}{1-r_{D}^{-1} \varphi} \frac{1}{r_{D}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \varphi^{t-T} \tag{135}\\
& =-\frac{1}{r_{D}-\varphi} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \varphi^{t-T}=-\frac{\alpha_{1} \kappa}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} \varphi^{t-T}
\end{align*}
$$

and for $t<T$

$$
\begin{align*}
x_{t} & =-\sum_{s=T-t}^{\infty} r_{D}^{-s} \varphi^{s} \frac{1}{r_{D}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \varphi^{t-T}=-\frac{\left(r_{D}^{-1} \varphi\right)^{T-t}}{1-r_{D}^{-1} \varphi} \frac{1}{r_{D}} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} \varphi^{t-T} \tag{136}\\
& =-\frac{\left(r_{D}^{-1}\right)^{T-t}}{r_{D}-\varphi} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta}=-\frac{1}{r_{D}-\varphi} \frac{\alpha_{1} \kappa}{\alpha_{2} \beta} r_{D}^{t-T}=-\frac{\alpha_{1} \kappa}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} r_{D}^{t-T}
\end{align*}
$$

Since $r_{D}^{t-T}=1$ for $t=T$, the solution formula for x_{t} also holds in the shock period $t=T$. For $t=0$ we get

$$
\begin{equation*}
x_{0}=-\frac{\alpha_{1} \kappa}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} r_{D}^{-T} \tag{137}
\end{equation*}
$$

so that the the size of the initial jump of x_{t} decreases with increasing T.
For the inflation rate π_{t} we obtain the solution time path

$$
\pi_{t}= \begin{cases}\frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} r_{D}^{t-T} & \text { if } \tag{138}\\ \frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} \varphi^{t-T} & \text { if } \\ t \geq T\end{cases}
$$

Note that the limiting case $\varphi=0$ implies $\pi_{t}=x_{t}=0$ for $t>T$.
For all $0 \leq \varphi<1$ the adjustment processes of x_{t} and π_{t} in case of anticipated cost-push shocks show a stronger persistence than in case $T=0$. With the abbreviation

$$
\begin{equation*}
\tilde{\phi}=\frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi}>0 \tag{139}
\end{equation*}
$$

we have

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T=0}=\tilde{\phi} \sum_{t=0}^{\infty} \varphi^{t}=\frac{\tilde{\phi}}{1-\varphi} \tag{140}
\end{equation*}
$$

and

$$
\begin{align*}
\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T>0} & =\left.\sum_{t=0}^{T-1} \pi_{t}\right|_{T>0}+\left.\sum_{t=T}^{\infty} \pi_{t}\right|_{T>0} \tag{141}\\
& =\tilde{\phi} r_{D}^{-T} \sum_{t=0}^{T-1} r_{D}^{t}+\tilde{\phi} \varphi^{-T} \sum_{t=T}^{\infty} \varphi^{t} \\
& =\tilde{\phi} r_{D}^{-T} \frac{1-r_{D}^{T}}{1-r_{D}}+\tilde{\phi} \varphi^{-T} \frac{\varphi^{T}}{1-\varphi} \\
& =\tilde{\phi} \frac{1}{1-\varphi}+\tilde{\phi} \frac{1-r_{D}^{-T}}{r_{D}-1}>\tilde{\phi} \frac{1}{1-\varphi}=\left.\sum_{t=0}^{\infty}\left|\pi_{t}\right|\right|_{T=0}
\end{align*}
$$

since $r_{D}>1$ and $0<r_{D}^{-T}<1$ if $T>0$. An analogous result holds for x_{t}.
The policy regime discretion implies

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty} \pi_{t}\right|_{T=0}=\left.\sum_{t=T}^{\infty} \pi_{t}\right|_{T>0} \tag{142}
\end{equation*}
$$

and

$$
\begin{equation*}
\left.\sum_{t=0}^{\infty} x_{t}\right|_{T=0}=\left.\sum_{t=T}^{\infty} x_{t}\right|_{T>0} \tag{143}
\end{equation*}
$$

so that the stronger persistence of π_{t} and x_{t} in case $T>0$ is due to the anticipation effects $\sum_{t=0}^{T-1} \pi_{t}>0$ and $\sum_{t=0}^{T-1} x_{t}<0$.

The solution time path for the price level p_{t} results from

$$
\begin{equation*}
p_{t}=\sum_{k=0}^{t} \pi_{k} \tag{144}
\end{equation*}
$$

For $0 \leq t \leq T$ we get

$$
\begin{align*}
p_{t} & =\frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} \sum_{k=0}^{t} r_{D}^{t-T} \tag{145}\\
& =\frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi} r_{D}^{-T} \frac{1-r_{D}^{t+1}}{1-r_{D}}
\end{align*}
$$

and for $t \geq T$

$$
\begin{align*}
p_{t} & =\sum_{k=0}^{T-1} \pi_{k}+\sum_{k=T}^{\infty} \pi_{k} \tag{146}\\
& =\frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi}\left[r_{D}^{-T} \frac{1-r_{D}^{T}}{1-r_{D}}-\varphi^{-T} \frac{\varphi^{t+1}-\varphi^{T}}{1-\varphi}\right]
\end{align*}
$$

with

$$
\begin{equation*}
\lim _{t \rightarrow \infty} p_{t}=\frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi}\left[\frac{1-r_{D}^{-T}}{r_{D}-1}+\frac{1}{1-\varphi}\right]>0 \tag{147}
\end{equation*}
$$

Note that the limit value of p_{t} is a positive function in T. It is well-known that a temporary cost-push shock yields a permanent rise in the price level under the policy regime discretion. By contrast, under the optimal timeless perspective precommitment policy there is only a temporary rise in the price level.

A further well-known result is that the loss under discretion $\left(V_{D}\right)$ is greater than the total loss under the optimal precommitment policy. Inserting the solution time paths for π_{t} and x_{t} in the loss function we obtain

$$
\begin{align*}
V_{D} & =\sum_{t=0}^{\infty} \beta^{t}\left(\alpha_{1} \pi_{t}^{2}+\alpha_{2} x_{t}^{2}\right) \tag{148}\\
& =\sum_{t=0}^{\infty} \beta^{t}\left[\alpha_{1}\left(\frac{\alpha_{2}}{\alpha_{1} \kappa}\right)^{2}+\alpha_{2}\right] x_{t}^{2}=V_{1}^{D}+V_{2}^{D} \\
& =\sum_{t=0}^{T-1} \beta^{t}\left[\frac{\alpha_{2}^{2}}{\alpha_{1} \kappa^{2}}+\alpha_{2}\right] x_{t}^{2}+\sum_{t=T}^{\infty} \beta^{t}\left[\frac{\alpha_{2}^{2}}{\alpha_{1} \kappa^{2}}+\alpha_{2}\right] x_{t}^{2} \\
& =\frac{\alpha_{2}^{2}+\alpha_{1} \alpha_{2} \kappa^{2}}{\alpha_{1} \kappa^{2}} \frac{\left(\alpha_{1} \kappa\right)^{2}}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}}\left(\sum_{t=0}^{T-1} \beta^{t} r_{D}^{2(t-T)}+\sum_{t=T}^{\infty} \beta^{t} \varphi^{2(t-T)}\right) \\
& =\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}}\left(r_{D}^{-2 T} \frac{1-\left(\beta r_{D}^{2}\right)^{T}}{1-\beta r_{D}^{2}}+\varphi^{-2 T} \frac{\left(\beta \varphi^{2}\right)^{T}}{1-\beta \varphi^{2}}\right) \\
& =\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}}\left(\frac{r_{D}^{-2 T}-\beta^{T}}{1-\beta r_{D}^{2}}+\frac{\beta^{T}}{1-\beta \varphi^{2}}\right) \\
& =\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{1}{1-\beta r_{D}^{2}}\left(r_{D}^{-2 T}-\frac{\beta\left(r_{D}^{2}-\varphi^{2}\right)}{1-\beta \varphi^{2}} \beta^{T}\right)
\end{align*}
$$

where

$$
\begin{equation*}
\frac{1}{1-\beta r_{D}^{2}}=\frac{\alpha_{2}^{2} \beta}{\alpha_{2}^{2} \beta-\left(\alpha_{2}+\alpha_{1} \kappa^{2}\right)^{2}}<0 \tag{149}
\end{equation*}
$$

Consider V_{D} as function in T. Then

$$
\begin{equation*}
V_{D}(0)=\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{1}{1-\beta \varphi^{2}}>0 \tag{150}
\end{equation*}
$$

and

$$
\lim _{T \rightarrow \infty} V_{D}(T)= \begin{cases}0 & \text { if } \beta<1 \tag{151}\\ \frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}}\left(\frac{1}{r_{D}^{2}-1}+\frac{1}{1-\varphi^{2}}\right)>V_{D}(0)>0 & \text { if } \beta=1\end{cases}
$$

The loss function

$$
\begin{equation*}
V_{2}^{D}(T)=\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{\beta^{T}}{1-\beta \varphi^{2}} \tag{152}
\end{equation*}
$$

has the properties

$$
\begin{gather*}
V_{2}^{D}(0)=V_{D}(0) \tag{153}\\
\lim _{T \rightarrow \infty} V_{2}^{D}(T)=0 \quad \text { if } \beta<1 \tag{154}\\
\frac{d V_{2}^{D}}{d T}=(\ln \beta) V_{2}^{D}(T)<0 \quad \text { if } \quad \beta<1 \quad \text { for all } \quad 0 \leq T<\infty \tag{155}
\end{gather*}
$$

For $\beta=1$ the function $V_{2}^{D}(T)$ is constant.
The loss function $V_{1}^{D}(T)$ given by

$$
\begin{equation*}
V_{1}^{D}(T)=\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{r_{D}^{-2 T}-\beta^{T}}{1-\beta r_{D}^{2}} \tag{156}
\end{equation*}
$$

has similar properties as the corresponding function $V_{1}(T)$ under the policy regime commitment:

$$
\begin{align*}
V_{1}^{D}(0) & =0 \tag{157}\\
\lim _{T \rightarrow \infty} V_{1}^{D}(T) & = \begin{cases}0 & \text { if } \beta<1 \\
\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{1}{r_{D}^{2}-1}>0 & \text { if } \beta=1\end{cases} \tag{158}
\end{align*}
$$

The first derivative with respect to T

$$
\begin{equation*}
\frac{d V_{1}^{D}(T)}{d T}=\frac{\alpha_{1} \alpha_{2}\left[\alpha_{2}+\alpha_{1} \kappa^{2}\right]}{\left[\alpha_{2}(1-\beta \varphi)+\alpha_{1} \kappa^{2}\right]^{2}} \frac{1}{1-\beta r_{D}^{2}}\left[-2\left(\ln r_{D}\right) r_{D}^{-2 T}-(\ln \beta) \beta^{T}\right] \tag{159}
\end{equation*}
$$

is positive at time $T=0$, since $1-\beta r_{D}^{2}<0$ and $-2 \ln r_{D}-\ln \beta<0$ due to $r_{D}>1 \geq \beta$.

In case $\beta<1$ the development of $V_{1}^{D}(T)$ is hump-shaped with the maximum value at time T_{d}^{*} which is the solution of the equation

$$
\begin{equation*}
2\left(\ln r_{D}\right) r_{D}^{-2 T}+(\ln \beta) \beta^{T}=0 \tag{160}
\end{equation*}
$$

Equation (160) is equivalent to

$$
\begin{equation*}
-\frac{2 \ln r_{D}}{\ln \beta}=\left(\beta r_{D}^{2}\right)^{T} \tag{161}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
T_{d}^{*}=\frac{\ln \left[-\frac{2 \ln r_{D}}{\ln \beta}\right]}{\ln \left(\beta r_{D}^{2}\right)}>0 \tag{162}
\end{equation*}
$$

The total loss function $V_{D}(T)=V_{1}^{D}(T)+V_{2}^{D}(T)$ has a similar development as the corresponding function $V(T)$ under timeless perspective commitment. In the limiting case $\beta=1$ it is overall increasing while for $\beta<1$ it is humpshaped, if the degree of price flexibility is not too large, while it is monotonically decreasing in T if the value of ω is small. For small values of ω the derivative of V_{D} at time $T=0$ is negative, while it is positive if ω is sufficiently large.

Total loss under a simple rule

We can also determine the total loss under an ad hoc Taylor rule

$$
\begin{equation*}
i_{t}=\delta_{\pi} \pi_{t}+\delta_{x} x_{t} \tag{163}
\end{equation*}
$$

with exogenously given coefficients δ_{π} and δ_{x}. It is well-known that under the condition $\delta_{\pi}>1$ and $\delta_{x} \geq 0$ the baseline New Keynesian model satisfies the Blanchard/Kahn (1980) saddlepath condition. The state equations

$$
\begin{equation*}
A\binom{E_{t} x_{t+1}}{E_{t} \pi_{t+1}}=B\binom{x_{t}}{\pi_{t}}+\binom{0}{-1} k_{t} \tag{164}
\end{equation*}
$$

with

$$
A=\left(\begin{array}{cc}
1 & \frac{1}{\sigma} \tag{165}\\
0 & \beta
\end{array}\right), \quad B=\left(\begin{array}{cc}
1+\frac{\delta_{x}}{\sigma} & \frac{\delta_{\pi}}{\sigma} \\
-\kappa & 1
\end{array}\right)
$$

have two unstable eigenvalues belonging to the state matrix $A^{-1} B$. Solving the state equations forward we get with

$$
\begin{equation*}
v_{t}=\binom{x_{t}}{\pi_{t}}, \quad P=B^{-1} A, \quad q=\binom{0}{-1} \tag{166}
\end{equation*}
$$

the solution time paths in case of anticipated cost-push shocks:

- For $t \geq T$

$$
\begin{align*}
v_{t} & =-\left(\sum_{s=0}^{\infty} \varphi^{s} P^{s}\right) B^{-1} q \varphi^{t-T}=-\left[I_{2 \times 2}-\varphi P\right]^{-1} B^{-1} q \varphi^{t-T} \tag{167}\\
& =-[B-\varphi A]^{-1} q \varphi^{t-T}
\end{align*}
$$

- For $t<T$

$$
\begin{align*}
v_{t} & =-\left(\sum_{s=T-t}^{\infty} \varphi^{s} P^{s}\right) B^{-1} q \varphi^{t-T} \tag{168}\\
& =-\left[I_{2 \times 2}-\varphi P\right]^{-1}(\varphi P)^{T-t} B^{-1} q \varphi^{t-T} \\
& =-\left[I_{2 \times 2}-\varphi P\right]^{-1} P^{T-t} B^{-1} q
\end{align*}
$$

The solution formula for $t<T$ also holds in $t=T$ since

$$
\begin{align*}
v_{T} & =-[B-\varphi A]^{-1} q \tag{169}\\
& =-\left[I_{2 \times 2}-\varphi P\right]^{-1} B^{-1}
\end{align*}
$$

The total loss under the simple Taylor rule ($V_{S T R}$) can be written as

$$
V_{S T R}=\sum_{t=0}^{\infty} \beta^{t} v_{t}^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \tag{170}\\
0 & \alpha_{1}
\end{array}\right) v_{t}=V_{1}^{S T R}+V_{2}^{S T R}
$$

where

$$
V_{1}^{S T R}=\sum_{t=0}^{T-1} \beta^{t} v_{t}^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \tag{171}\\
0 & \alpha_{1}
\end{array}\right) v_{t}
$$

and

$$
V_{2}^{S T R}=\sum_{t=T}^{\infty} \beta^{t} v_{t}^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \tag{172}\\
0 & \alpha_{1}
\end{array}\right) v_{t}
$$

Define

$$
M=(B-\varphi A)^{-1}=\left(\begin{array}{ll}
m_{11} & m_{12} \tag{173}\\
m_{21} & m_{22}
\end{array}\right)
$$

Then

$$
\begin{align*}
V_{2}^{S T R} & =\sum_{t=T}^{\infty} \beta^{t} q^{\prime} M^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \alpha_{1}
\end{array}\right) M q \varphi^{2(t-T)} \tag{174}\\
& =q^{\prime} M^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \alpha_{1}
\end{array}\right) M q \varphi^{-2 T}\left(\sum_{t=T}^{\infty} \beta^{t} \varphi^{2 t}\right) \\
& =\frac{\left(\beta \varphi^{2}\right)^{T}}{1-\beta \varphi^{2}} \varphi^{-2 T} q^{\prime} M^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \alpha_{1}
\end{array}\right) M q \\
& =\frac{\beta^{T}}{1-\beta \varphi^{2}} \operatorname{tr}\left(M^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \alpha_{1}
\end{array}\right) M q q^{\prime}\right)
\end{align*}
$$

where

$$
M^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \tag{175}\\
0 & \alpha_{1}
\end{array}\right) M=\left(\begin{array}{cc}
\alpha_{2} m_{11}^{2}+\alpha_{1} m_{21}^{2} & \alpha_{2} m_{11} m_{12}+\alpha_{1} m_{21} m_{22} \\
\alpha_{2} m_{11} m_{12}+\alpha_{1} m_{21} m_{22} & \alpha_{2} m_{12}^{2}+\alpha_{1} m_{22}^{2}
\end{array}\right)
$$

Since

$$
q q^{\prime}=\left(\begin{array}{ll}
0 & 0 \tag{176}\\
0 & 1
\end{array}\right)
$$

we obtain

$$
\operatorname{tr}\left(M^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \tag{177}\\
0 & \alpha_{1}
\end{array}\right) M q q^{\prime}\right)=\alpha_{2} m_{12}^{2}+\alpha_{1} m_{22}^{2}
$$

The definition of the matrices A and B implies

$$
\begin{align*}
B-\varphi A & =\left(\begin{array}{cc}
1+\frac{\delta_{x}}{\sigma}-\varphi & \frac{\delta_{\pi}}{\sigma}-\frac{\varphi}{\sigma} \\
-\kappa & 1-\varphi \beta
\end{array}\right) \tag{178}\\
\Delta & =|B-\varphi A|=\left(1+\frac{\delta}{\sigma}-\varphi\right)(1-\varphi \beta)+\kappa\left(\frac{\delta_{\pi}}{\sigma}-\frac{\varphi}{\sigma}\right)=\frac{1}{\sigma} b \tag{179}
\end{align*}
$$

where

$$
\begin{align*}
b & =(1-\varphi)(1-\varphi \beta) \sigma+\delta_{x}(1-\varphi \beta)+\kappa\left(\delta_{\pi}-\varphi\right) \tag{180}\\
& >0 \quad \text { if } \delta_{\pi}>1 \text { and } \delta_{x}>0
\end{align*}
$$

Then

$$
M=(B-\varphi A)^{-1}=\frac{1}{b}\left(\begin{array}{cc}
\sigma(1-\varphi \beta) & -\left(\delta_{\pi}-\varphi\right) \tag{181}\\
\sigma \kappa & \sigma(1-\varphi)+\delta_{x}
\end{array}\right)
$$

so that

$$
\begin{equation*}
m_{12}=-\frac{1}{b}\left(\delta_{\pi}-\varphi\right), \quad m_{22}=\frac{1}{b}\left[\sigma(1-\varphi)+\delta_{x}\right] \tag{182}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{2}^{S T R}=\frac{\beta^{T}}{1-\beta \varphi^{2}} \frac{1}{b^{2}}\left[\alpha_{2}\left(\delta_{\pi}-\varphi\right)^{2}+\alpha_{1}\left(\sigma(1-\varphi)+\delta_{x}\right)^{2}\right] \tag{183}
\end{equation*}
$$

The loss function $V_{2}^{S T R}=V_{2}^{S T R}(T)$ hat the same properties as the corresponding function under discretion $\left(V_{2}^{D}(T)\right)$.

To calculate the loss $V_{1}^{S T R}$ set

$$
\begin{equation*}
Q=\left[I_{2 \times 2}-\varphi P\right]^{-1} \quad\left(\text { where } P=B^{-1} A\right) \tag{184}
\end{equation*}
$$

and

$$
\begin{equation*}
\tilde{q}=B^{-1} q \tag{185}
\end{equation*}
$$

Then

$$
\begin{equation*}
v_{t}=-Q P^{T-t} \tilde{q} \quad \text { for } \quad t \leq T \tag{186}
\end{equation*}
$$

and

$$
\begin{align*}
V_{1}^{S T R} & =\tilde{q}^{\prime}\left(\sum_{t=0}^{T-1} \beta^{t}\left(P^{T-t}\right)^{\prime} Q^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \alpha_{1}
\end{array}\right) Q P^{T-t}\right) \tilde{q} \tag{187}\\
& =\tilde{q}^{\prime}\left(\sum_{k=1}^{T} \beta^{T-k}\left(P^{k}\right)^{\prime} Q^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \alpha_{1}
\end{array}\right) Q P^{k}\right) \tilde{q} \\
& =\beta^{T} \tilde{q}^{\prime} \tilde{W} \tilde{q}=\beta^{T} \operatorname{tr}\left(\tilde{W} \tilde{q} \tilde{q}^{\prime}\right)
\end{align*}
$$

where

$$
\begin{align*}
\tilde{q} \tilde{q}^{\prime} & =B^{-1} q q^{\prime}\left(B^{-1}\right)^{\prime}=B^{-1}\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(B^{-1}\right)^{\prime} \tag{188}\\
& =\frac{1}{\left(\sigma+\delta_{x}+\kappa \delta_{\pi}\right)^{2}}\left(\begin{array}{cc}
\delta_{\pi}^{2} & -\delta_{\pi}\left(\sigma+\delta_{x}\right) \\
-\delta_{\pi}\left(\sigma+\delta_{x}\right) & \left(\sigma+\delta_{x}\right)^{2}
\end{array}\right)
\end{align*}
$$

and

$$
\tilde{W}=\sum_{k=1}^{T} \beta^{-k}\left(P^{k}\right)^{\prime} Q^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \tag{189}\\
0 & \alpha_{1}
\end{array}\right) Q P^{k}
$$

\tilde{W} satisfies the following matrix equation: Let

$$
\tilde{D}=Q^{\prime}\left(\begin{array}{cc}
\alpha_{2} & 0 \tag{190}\\
0 & \alpha_{1}
\end{array}\right) Q
$$

Then the definition of \tilde{W} implies

$$
\begin{align*}
\tilde{W} & =\beta^{-1} P^{\prime} \tilde{D} P+\sum_{k=2}^{T} \beta^{-k}\left(P^{k}\right)^{\prime} \tilde{D} P^{k} \tag{191}\\
& =\beta^{-1} P^{\prime} \tilde{D} P+\sum_{k=1}^{T-1} \beta^{-(k+1)}\left(P^{k+1}\right)^{\prime} \tilde{D} P^{k+1} \\
& =\beta^{-1} P^{\prime} \tilde{D} P+\beta^{-1} P^{\prime}\left(\sum_{k=1}^{T-1} \beta^{-k}\left(P^{k}\right)^{\prime} \tilde{D} P^{k}\right) P \\
& =\beta^{-1} P^{\prime} \tilde{D} P+\beta^{-1} P^{\prime}\left(\sum_{k=1}^{T} \beta^{-k}\left(P^{k}\right)^{\prime} \tilde{D} P^{k}\right) P-\beta^{-1} P^{\prime} \beta^{-T}\left(P^{T}\right)^{\prime} \tilde{D} P^{T} P \\
& =\beta^{-1} P^{\prime} \tilde{D} P-\beta^{-(T+1)}\left(P^{T+1}\right)^{\prime} \tilde{D} P^{T+1}+\beta^{-1} P^{\prime} \tilde{W} P
\end{align*}
$$

or in compact representation

$$
\begin{equation*}
\tilde{W}=\tilde{H}+\beta^{-1} P^{\prime} \tilde{W} P \tag{192}
\end{equation*}
$$

where

$$
\begin{equation*}
\tilde{H}=\beta^{-1} P^{\prime} \tilde{D} P-\beta^{-(T+1)}\left(P^{T+1}\right)^{\prime} \tilde{D} P^{T+1} \tag{193}
\end{equation*}
$$

To solve for \tilde{W} use the vectorization of a matrix and the Kronecker product of matrices. Since

$$
\begin{equation*}
\operatorname{vec}\left(\beta^{-1} P^{\prime} \tilde{W} P\right)=\left[\beta^{-1} P^{\prime} \otimes P^{\prime}\right] \operatorname{vec} \tilde{W} \tag{194}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\operatorname{vec} \tilde{W}-\left[\beta^{-1} P^{\prime} \otimes P^{\prime}\right] \operatorname{vec} \tilde{W}=\operatorname{vec} \tilde{H} \tag{195}
\end{equation*}
$$

with the solution

$$
\begin{equation*}
\operatorname{vec} \tilde{W}=\left[I_{4 \times 4}-\beta^{-1} P^{\prime} \otimes P^{\prime}\right]^{-1} \operatorname{vec} \tilde{H} \tag{196}
\end{equation*}
$$

where

$$
\begin{align*}
\operatorname{vec} \tilde{H} & =\operatorname{vec}\left(\beta^{-1} P^{\prime} \tilde{D} P\right)-\operatorname{vec}\left(\beta^{-(T+1)}\left(P^{T+1}\right)^{\prime} \tilde{D} P^{T+1}\right) \tag{197}\\
& =\left(\left[\beta^{-1} P^{\prime} \otimes P^{\prime}\right]-\left[\beta^{-(T+1)}\left(P^{T+1}\right)^{\prime} \otimes\left(P^{T+1}\right)^{\prime}\right]\right) \operatorname{vec} \tilde{D}
\end{align*}
$$

and

$$
\begin{align*}
\operatorname{vec} \tilde{D} & =Q^{\prime} \otimes Q^{\prime} \operatorname{vec}\left(\begin{array}{cc}
\alpha_{2} & 0 \\
0 & \alpha_{1}
\end{array}\right) \tag{198}\\
& =\left(\left[I_{2 \times 2}-\varphi P\right]^{-1}\right)^{\prime} \otimes\left(\left[I_{2 \times 2}-\varphi P\right]^{-1}\right)^{\prime}\left(\begin{array}{c}
\alpha_{2} \\
0 \\
0 \\
\alpha_{1}
\end{array}\right)
\end{align*}
$$

Note that vec \tilde{D} equals vec $\left(\begin{array}{cc}\alpha_{2} & 0 \\ 0 & \alpha_{1}\end{array}\right)$ in the special case $\varphi=0$. The development of $V_{1}^{S T R}$ as function in T is analogous to the loss function $V_{1}^{D}(T)$. Therefore, the total loss function $V^{S T R}(T)=V_{1}^{S T R}(T)+V_{2}^{S T R}(T)$ has the same properties as the total loss under discretion.

[^0]: ${ }^{\ddagger}$ Corresponding author: Phone: $++49-431-880-1449$, Fax: $++49-431-880-2228$, E-mail: wohltmann@economics.uni-kiel.de
 ${ }^{\S}$ E-mail: winkler@economics.uni-kiel.de

[^1]: ${ }^{1}$ See, e.g., Walsh (2003) for a derivation of the NKPC under Calvo pricing.
 ${ }^{2}$ Schmitt-Grohé and Uribe (2007) study the impacts of anticipated cost shocks on the passthrough to prices.

[^2]: ${ }^{3}$ We could think about this cost-push shock as an exogenous rise in wage mark-ups (see, for example, Galí (2008)).

[^3]: ${ }^{4}$ This result also holds in the special case $\varphi=0$, i.e. if the shock exhibits no serial correlation. It is well-known that even in this case the optimal precommitment policy introduces inertia in the impulse response functions.

[^4]: ${ }^{5}$ This result holds under the optimal timeless perspective precommitment policy. Under the policy regime discretion we have (cf. (138))

 $$
 \left.\pi_{0}\right|_{T=0}=\left.\pi_{T}\right|_{T>0}=\frac{\alpha_{2}}{\alpha_{2}+\alpha_{1} \kappa^{2}-\alpha_{2} \beta \varphi}
 $$

