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1 Introduction

The purpose of this paper is to solve linear dynamic rational expectations
models with anticipated shocks by using the generalized Schur decomposition
method. We also determine the optimal unrestricted and restricted policy re-
sponses to temporary as well as permanent shocks which both are anticipated
by the public.

Our paper is closely related to the work of Séderlind (1999), who also uses
the generalized Schur decomposition method to solve linear rational expecta-
tions models with optimal policy. Our approach differs in one important respect,
namely the possibility to deal with anticipated shocks. In this case, the occur-
rence of all future shocks is known exactly at the time when the solution of
the model is computed. Thus, our RE model is deterministic. In deterministic
RE models the concept of rational expectations is equivalent to perfect fore-
sight. Soderlind (1999), on the other hand, only considers stochastic models
with white noise shocks which are, by definition, unpredictable. Our method
contains unanticipated shocks as a borderline case and can therefore be seen as
a generalization of the work by Soderlind (1999).

The paper is organized as follows: Section 2 discusses optimal policies in
RE models with anticipated temporary shocks. We first determine the optimal
unrestricted policy under precommitment and calculate the minimal value of
the intertemporal loss function. We then consider optimal simple rules and
show how the Schur decomposition can be used in this case to solve the model.
Section 3 deals with permanent anticipated shocks while section 4 presents a
short discussion of the well known stochastic case with i.i.d. shocks.

2 The Model

In this paper we discuss the following linear expectational difference equations

wt+1 Wt
A =B + Cuy + Dv 1
<Et Ut+1) (Ut) t bt (1)

where w; is an ny x 1 vector of predetermined variables with wg given, v; an
ny X 1 vector of non-predetermined variables, u; an m X 1 vector of policy
instruments and 1441 an r x 1 vector of exogenous shocks. The matrices A and
B are n x n (where n = nj + ngy), while the matrices C' and D are n x m and
n X r respectively. We allow the matrix A to be singular which is the case if
static (intratemporal) equations are included among the dynamic relationships.
The vector w of backward-looking variables can include exogenous variables
following autoregressive processes. E;vi41 denotes rational (model consistent)
expectations of v;y1 formed at time t. Equation (1) could represent a New
Keynesian macroeconomic model with forward-looking expectations where the
economy is being subjected to supply-side and demand-side shocks (see, for
example, Clarida, Gali and Gertler (1999) or Walsh (2003)). We assume that



the shocks are anticipated by the public in advance and take the following form

v | t=T>0
Vt:{y or > (2)

0 for t#T

where 7 = (71, ...,7;)" is a constant non-zero r x 1 vector. It is assumed that at
time ¢ = 0 the public anticipates a shock of the form (2) to take place at some
future date T > 0. A macroeconomic example is the credible announcement
of the OPEC that a temporary increase in the price of crude oil (pp) will take
place at some future date T > 0 where po follows the autoregressive AR(1)
process

pot = Ppot—1+r (0<G<1) (3)

with the one-unit price shock

1 f t=T>0
/’it:{ or > (4)

0 for t#T

Then po would be a predetermined variable w;; while x; would be part of the
general shock vector ;. Since the shocks are anticipated by the public we have
Et vpp1 = 1441. For notational convenience, define the n x 1 vector k; by

b= () 9

Define further an ng x 1 target vector s; by
st = Aky + Buy (6)

where the matrices A and B are ns x n and ns x m respectively. Assume that
the policy maker s welfare loss at time ¢ is given by

1 =
Jy = 92 Eq Z )‘Z{S:erz'WlstnLi + u:€+iW2ut+i} (7)
i=0

where W7 and W are symmetric and non-negative definite and X is a discount
factor with 0 < A < 1. We can rewrite J; as

1 > -
Je =5 B D Nk Wi + 2k Pucys + upy Rugga} (8)
i=0

where W = A’ Wlfl and R = Wy + B'W,B are symmetric and non-negative
definite and P = A'W1 B.



2.1 Optimal Policy with Precommitment

In the following the policy maker s optimal policy rule at time ¢t = 0 is devel-
oped. It is assumed that the policy maker is able to commit to such a rule.
From the Lagrangian

R <
Lo =SB0y N{kWhi + 2k Pu; + u;Ru,
t=0

+ 2p:‘,+i [Bk‘t + Cuy + Dypyq — Ak‘tJrl]} (9)

with the n x 1 multiplier p.11 we get the first-order conditions with respect to
Pit+1, kt and Ut

A Onxm  Onxn kt+1

Onxn 0n><m )\B/ Ut41
Omxn  Omxm —C' Pt+1
B C  Opxn ky D
=AW AP A up | + | Onser | vea1 (10)
P R Oan Pt Omxr

To solve the system of equations (10) expand the state and costate vector k; and
pr as (wy,v;) and (pl,,, pl;) respectively and reorder the rows of the (2n+m) x 1
vector (kj,uy, p;)’ by placing the predetermined vector p,; after wy. Since vy is
forward-looking with freely chosen initial value vy, the corresponding Lagrange
multiplier p,; is predetermined with initial value p,o = 0. Reorder the columns
of the (2n + m) x (2n 4+ m) matrices in (10) according to the reordering of
(kj,uy, pr) and write the result as

D

w W
F (f“) =G (t> + | Onser | i1 (11)
Vt+1 Ut 0
mXxnr
where
~ Wt
Wy = 12
! (pvt> ( )
and
Ut
?N}t = Ut (13)
Pwt

The n x 1 vector w; contains the 'backward-looking’ variables of (10) while the
(n+m) x 1 vector v, contains the forward-looking’ variables.

Equation (10) implies that the (2n + m) X (2n 4+ m) matrix F' is singular.
To solve equation (11) we apply the generalized Schur decomposition method
[Soderlind (1999), Klein (2000)]. The decomposition of the square matrices F'
and G are given by

F=QsZ, ¢=Q717 (14)



or equivalently
QQFZ=S5 QGZ=T (15)

where ), Z, S and T are square matrices of complex numbers, S and T are
upper triangular and ) and Z are unitary, i.e.

Q- Q=0 Q=Ionimyx@nim=2-2 =2 -2 (16)

where the non-singular matrix @/ is the transpose of @, which denotes the
complex conjugate of Q. 7' is the transpose of the complex conjugate of Z.
The matrices S and T can be arranged in such a way that the block with the
stable generalized eigenvalues (the ith diagonal element of T' divided by the
ith diagonal element of S) comes first. Premultiply both sides of equation (11)
with @) and define auxiliary variables z; and z; by

5)-7 () &

Partition the triangular matrices S and T conformably with Z and T and set

D

0m><r

where Q1 is n x r and Q9 is (n+m) x r. We then obtain the equivalent system

S11 S12) <Zt+1> ( T T12> (gt) <Q1)
i - =)t 19
<O(n+m)><n S22) \Tt+1 Onmyxn  T22) \Zt Q,) vt (19

where the n x n matrix S1; and the (n+m) x (n+m) matrix Thy are invertible
while S is singular. The square matrix 771 may also be singular. The lower
block of equation (19) contains the unstable generalized eigenvalues and must
be solved forward. Since

Brrs = Toy SoaFrysrr — Tog' Qaviysrr (s =0,1,2,...) (20)

the unique stable solution for Z; is given by

o
Fr=—) (T5'92)* Ty Q2 Ei virsnt
s=0
(T3 S) T Qe for 0<t < T (21)
o for t>T

The upper block of (19) contains the stable generalized eigenvalues and can be
solved backward. Since

Zo1 = S Tz + St (Thia®y — S12%i41) + S Q1vesa (22)



the general solution is given by

-1
Z = (ST )T K + Z(SﬁlTll)t_s_lsﬂl(leis — S12%s41 + Q1Vsy1)
s=0

(Sl_llTll)tK + Zi;%)(sl_llTll)tis*lsl_ll(Tmi'S — Slg.f'S_H) for 0 <t< T
(ST K + ST (SR 1) LS (Thads — Sio@iss1)
+(SE' TS Q1 for t>T
(23)

where Z; is defined in (21). The constant K can be determined using the initial
value of the predetermined vector w. Premultiply equation (17) with Z and
partition the matrix Z conformably with Z and . We then obtain

()= 72 (3) »

and therefore

Wo = Z1120 + Z12%0 (25)

with
wo = (W, Oy 1)’ (26)
=K 27)

and
o = —(T5y Sa2) "' T55' Qo (28)

where T > 0 is assumed.! Equation (25) implies
K = Z Mo — Z5 Zioio (29)

provided the inverse Z1_11 exists. A necessary condition is that the dynamic
system (11) has the saddle path property, i.e., that the number of backward-
looking variables (n; +ng = n) coincides with the number of stable generalized
eigenvalues [Soderlind (1999), Klein (2000)]. If Z;; is invertible, equation (24)
implies

O = Zor % + Zandiy = Zon(Z 0y — Z53 Z1ads) 4 Zagdiy = Nivy + 27, (30)
where

N = Zngﬂl, Z = Z22 - 221Z;11212 (31)

Tn the special case T = 0 (unanticipated shocks) we have #o = 0 and 2z = (S;;'T11)'K +
(S'T11)t S Q17 implying 20 = K 4+ S;'Qi7 and K = Z; 0 — S;;' Q17 with wo # 0. By
contrast, the initial value wo can be normalized to zero if T' > 0.



Write equation (30) as

vy Ni1 Nio w, ?1
ug | = | No1 Noao (p t) + | Z2 | T (32)
DPwt N31 Ns2 Y Zs
Assume the invertibility of the no X ny matrix Nis. Then the optimal policy
rule under commitment can be written as

uy = Noywy + Nogput + Zo
= Nojw; + Noo Nt (v — Nyjwy — Z0Ey) + ZoZy
= NoaNpy'v + (Nar — NooNp3' Nuy)wy + (Zy — NooNyy' Z1) (33)
where Z; is given by (21). For t < T wu; depends on the auxiliary variable Z;

while for ¢ > T wu; is only a linear function of the predetermined state variables
wy and p,; where p,; can be substituted by the original state variables v, and w;.

Minimal Value of the Loss Function
To determine the minimal value of the loss function J; at time ¢ = 0 we express
J¢ as function of @ and 0. The loss function (8) can be written as

1 k 1 ZOO o
Jr = 92 Z A (K ) H <Ut:> T2 N (Wi Vi ) H | v | (34)
i—0 i=0 Ut+i

where the (n +m) x (n 4+ m) matrix H is given by

= <g ;) (35)

with H = H'. Define the ny x n matrix Dy and the (ngy 4+m) x (n+m) matrix
Dy by
-ﬁl — (ITL1><TL1)OTL1><TL2) (36)

and

Dy = (I(n2+m)>< (n2+m)» 0(n2+m)><n1) (37)
respectively. Then

P
v
(Z) =Dy | u | =Dy (39)
P
and
Y - (@
v| =D (v> (40)



with
E _ < Dl 0n1 Xin—i—m))
0(n2+m)><n Dy

:< In1><n1 OanTLQ Onlx(ng—l—m) 0n1><n1 ) (41)
O¢

na+m)xni 0(n+m)><n2 I(ng—l—m)x(ng—f—m) 0(n2+m)><n1

which is an (n+m) x (2n+m) matrix. The loss function J; can now be rewritten
as

Z )\Z wt+2)vt+z D HD <l’5t+l) = Jt(l) + Jt( ) (42)
t+1
where
O T 1 .
2 denA t+i
Jt - Z )\ /wt+za /Ut+Z)D HD (vt+z> (43)
and

zx ittt DD (514 (44)

Utti
We want to calculate Jt@) at first. Since

O = Ny (N =ZnZy") for t>T (45)

we get for t > T
(Qf’t> — Ny (46)

where

(2)

is a (2n 4+ m) x n matrix. J,;* can be the rewritten as

Z N ;N'D'HD Ny g = Z Ny H 4 (48)

with
H*=N'D'HDN (49)

H* is a symmetric n x n matrix. From (23) and (24) we obtain for ¢t > T

-1
Wy = Zng = Zu (S5 Ti) K + > (S Tin) 7 S (Thadts — S1aFet1)
5=0
+ (S5 1) =S @17 (50)



which can be written as
W = ZuMUTK (6> 1) (51)
with
M = S; 'y, (52)

(which is not invertible in general),

T—-1
R' = MTK + Sl_llQlﬁ + Z MTisilsl_ll(Tmi'S — Slg.f'S_H) (53)
s=0
and
~ —1 T—1—sp—1 —
Ty = —(T22 S22) T22 Qv for 0<s<T (54)

Inserting (51) in (48) we obtain
Jt(Q) — %(Mtk)/)\T (Z )\iT(ZHMiT)/H*(ZHMiT)> MK
=T

1 . 1 %
= 3N eVren = A trace(V o)) o
where
Yt = M'K (56)

and V* is the (convergent) geometric sum of matrices

V= Z)\iiT(leMiiT)/H*(leMiiT) (57)
=T

V*is n x n and satisfies the Lyapunov equation [Currie and Levine (1993)]
e . . .
V= Z{lH*le + Z )\sz(leszT)/H*(ZHszT)
i=T+1

o
=T
=7 H*Zy1 + A\M'V*M (58)

To solve for V*, we use the matrix identities [Rudebusch and Svensson (1999),
Klein (2000)]

vec(A + B) = vec(A) + vec(B) (59)
and

vec(ABC) = [C" ® A] vec(B) (60)



where vec(A) denotes the vector of stacked column vectors of the matrix A, and
® denotes the Kronecker product of matrices. We then obtain the equation

vec(V*) — AM' @ M| vec(V*) = vec(Z1, H* Z11) (61)

with the solution

vee(V*) = [Lxn — AM' @ M'| "t vec(Z{ H* Z11) (62)
where
veo(Zy H* Z11) = [Z}, ® Z},] vec(H*) (63)
with
vec(H*) = [(DN) @ (DN)'| vec(H) (64)

For t = 0 we get
2) 1 T * N o 1 T * 1o 1!
Jy = 5)\ trace(V*popy) = 5)\ trace(V*KK') (65)

The next step is the calculation of the finite sum Jt(l) for t = 0. Since

©)-2()
we obtain

T-1
g = % SN (@), ) D'H ( > Z)\‘ (2, &) ZDHDZ( > (67)

1=0

where Z; and Z; are defined in (23) and (54) respectively.
The optimal unrestricted policy under commitment yields a loss given by

Jo=JM + 7% (68)
where
JéQ) 5 )\T trace(V*popp) = %)\T trace(V*KK') (69)
In the special case T'= 0 (unanticipated shocks) we have
Jo=JP = %f(’v*f( (70)
where

K=K + ST = Z o — St Q1T + ST = Ztae (T1)

Then

1 : 1 1
Jo = 5@62;11 V*Z Mg = 5%‘/% =3 trace(V o)) (72)



where

o w wowy 0
ani = (10 ) (whopto) = (oo pron) @

Onoxny  Ongxng
and V = Zl_ll/V*Zl_l1 satisfies the matrix equation
V=2z"VZy = B+ 22 MV Mz}
= H* + M2 ' M Z 27 WV 23 Zu M Z5 = H + AU'VT (74)
with
I=2yMZzZ5;" (M= S;3'Th) (75)

2.2 Optimal Simple Rule

The policy maker could alternatively commit to a suboptimal simple rule of the
form

U = Ak?t + L Et kt+1 (76)

where the constant matrices A and ¥ are m xn. Assuming rational expectations
and exogenous shocks of the form (2) which are anticipated in ¢ = 0 we get the
dynamic system

A Onxm kt—i—l _ B C k‘t D
<\I’ Omxm) <ut+1> B (_A Im><m> (ut> * (Omxr> v (77)

The generalized Schur decomposition yields the system of equations

W1\ Wy D
E <6t+1) =G <®t) * <0m><r) Fetl (78)

where w = w is an ny x 1 vector, 0 = (v/,')" is an (ny+m) x 1 vector and where
the square matrices F' and G are (n + m) x (n + m) with the decomposition

OFZ =5, QGZ=T (79)
Q, Z, S and T are (n +m) x (n 4+ m) matrices. Since
w\ _ [(Zun Zi2)\ (%
(5)-( %) 6) e
the matrices Z11, Z12, Z21 and Zag are now ny X ny, ny X (ng+m), (ne+m) xny

and (ng + m) x (n2 + m) respectively. The auxiliary variables Z and & satisfy
the system of equations

S 512) <5t+1) < Tn T12> (Et) <Q1)
Pii1) ) 81
<0(n2+m)x”1 S22/ \Tt41 Ontmyxn,  122) \Zt Q) (81)

10



where S11 and T3; are ny X ny matrices, Sgo and The are (ng2 +m) X (ng +m)
and Sp2 and Thy are ny X (ng + m). The matrices Q1 and Q2 are ny x r and
(ng +m) x r respectively with

(g;> =@ <ofw) (82)

The solution of (81) is given by (21) and (23). For t > T we get
’l~)t = N’lI)t = Nwt (83)

where N = Zy Z;;" is now an (ng +m) x n; matrix.
The loss function (42) simplifies to

iy ~ Wi
Jt = 5 ; )\Z(w£+i7 ’U;+Z')H (6t+; (84)
since Dy = Iy, xn,, Dy = Itny4m)x (na+m) and therefore D= Ltntm) s (nm) (cf.
(41)). J; can be partitioned via (42). Jt(z) can be written as (48) with

H* = N'HN (85)

and

N= (I”E\Xf’“) (86)

The value of the loss function Jy for given matrices A and W is given by Jy =
Jél) + J, (2), where Jél) and JéQ) are defined in (67) and (69) respectively. The
minimization of Jy with respect to the coefficients of the matrices A and V¥ yields
an optimal simple rule of the form (76). The loss under such a policy rule is
greater than the loss under the unrestricted optimal policy under commitment.

3 Anticipated Permanent Shocks

Up to now we have discussed the solution method in case of anticipated tempo-
rary shocks. Let us now discuss the the case of anticipated permanent shocks
which take the following form:

7 fi 0<t<T
vy — {1/0 or < (87)

1 (7& 70) for t>T
Such a shock could be a permanent increase in the price of crude oil taking
place at time t = T which the public anticipates at time ¢ = 0. The Schur

decomposition (19) can again be used to solve the dynamic system in case of
permanent anticipated shocks. The steady state system of (19) is given by

St Si2\ [z Ty T2\ (Z Q1) —
(O(n+m)xn S22> (9”) (O(n+m)xn T22> ($> " <Q2> . (88)

11



where

_ Zg for 0<t<T
=20 T T (89)
Z1 for t>T
and
~ J& for 0<t<T
A (90)
1 for t>T
The dynamics of the Schur decomposition can be written in the form
Ty = T2_215223~5t+1 - T2_21Q2Vt+1 (91)
Zo1 = S Tz + St (Thia®y — S12%i41) + S Q1visa (92)
Since
lim (7" S29)™ = 0 (93)
n—oo
we get
lim &; = 71 (94)
t—o0
Equation (94) already holds for t > T, i.e.,
T =1 fort >T (95)

which follows from the general solution formula (21): For ¢ > T we have
Virs+1 = V1 and therefore

By = — ( Z(T2—21522)5T2—21Q2)v1 (96)
s=0
Let A be the geometric sum of matrices
A = Z 221822 251Q2 (97)
5=0

We then obtain the matrix equation

o0
A= —T5'Qa = (T35 522) T5,' Qa
s=1
[oe)
= —T5'Q2— > (T5 S22) M T5,' Qs
s=0

o
- _T22 Q2 — T22 S522) Z T22 522) T22 Q2
S:

= —T5,' Q2 + (T3 S2)A (98)

12



with the solution

A= —(I —Tp'S0) 'Ty'Q = (Saa — Ta2) ' Qo (99)
Equation (96) now implies

By =AU = (Sa2 — To2) 'Qomy =71 (t>1T) (100)

where the formula for Z; directly follows from the lower block of the steady
state system (88) or from equation (91).

The solution formula for Z; over the anticipation phase 0 < t < T can be
either derived by backward iteration or from the general solution (21). Equation
(91) implies for t =T — 1

Fr 1 = Thy Soot1 — Ty Qol (101)
and for t =T — 2
B9 = Toy Soviir 1 — Thy Q2
= (T S22)"T1 — (T35 522) Ty Qa1 — Ty QoW (102)
For t =T — 3 we get
Fr—g = Toy' Sondir—2 — Toy' Qa0

= (Tyy' S92)%%1 — (T, S22)° Ty Qa1 — (Tiy' S20) Ty Qa0 — Ty Q2T
(103)

and fort =T —n

n

Ty = (Toy' S92)"T1 — (Toy' Sa2)" 1Ty Qo) — Z(T{glsm)n_jT{ngﬁo

=2
(104)
We therefore obtain for 0 <t < T
B = (Tyy' S22)" %1 — (Tyy' S22) " 115, Qo
T—t .
- Z(T2_21522)T_t_]T2_21Q270 (105)
=2
where
T = (Sog — To2) Qo = —(I — Ty Sa0) 115" Qo4 (106)

*Note that Z;L:2(T251522)”_'7T251Q270 = (I — M) (I - M" " "T5' Q200 where M = Ty,' Sao
and n > 2.

13



An equivalent representation of the solution formula for Z; over the interval
0 <t < T follows from (21):

(o]
Z T22 S22) T22 Q2Viyst1

T—t—2
=- (T, S92)° Ty, Qamg
s=0
o
= > (T3 892)°Ty'Qpn (0t <T) (107)
s=T—t—1
where
T—t-2 T—t ‘
- (55" 922)° T3y Qavig = — Z(T{ngQz)T_t_]T{ngzfo
5=0 j=2
= (I = T3 S22) 7 (I = (Tp' S22) "~ 1) T Qa0
(108)
and

o0
Z T22 S22) T22 Qo1 = —(I — T2721522)71(T2721522)T7t71T2721Q271
s=T—t—1
(109)

The show that the right-hand side of (109) equals the sum of the first two
expressions on the r.h.s. of (105), rewrite this sum as follows:

(T35 Sa0) "% — (T3 So) T T35 Qo
— (T S22)T 1T — Ty Sa0) ™ + (T S2)” 1 Ty Qo1
—(Tay' Sa2)" 17Ty Saa (I — Ty Sa2) ™1 + 1] T55' Qo
(T35} 89) T~ [T S (I — Ty S) !
+( T22 Sa2)(I — T221522) 1]T251Q271
—( 221522) - 1[ 221522 + (- T251S22)} (I - T251522)_1T251Q271
—(Ty3" S22) " 17T = Ty Sa2) ' 155" Qo (110)

(110) is equivalent to (109) if and only if

(T35 So02) " 1M I = T55" Sa2) ™! = (I = Ty' Sa2) 71 (T35 S2) "1 & (110)
(I — T35 S2) (T55" So2) 71 = (T3 Sa2) T 171 (I — T35 S22) & (112)
(Tos' Saa)T 1 = (T55" Sa2) T 7" = (T3 S22) 171 = (T3 Sa2) ™! (113)

It is obvious that equation (113) holds so that the solution formula (107) is
equivalent to (105).
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Consider now the first subsystem of the Schur decomposition, equation (92).

The general solution is given by (23) with the constant K defined in (29). For
t <'T we have

t—1

Zo=(SH'T)' K + ) (S5 Ti) 'Sy (Thadis — Sia¥si1)
s=0
t—1
+ 3 (S ) T S Q1 (0<t<T) (114)
s=0
where
t—1 t—1
Z(SﬁlTn)t_s_lSﬂlQﬁo = (Z(sanlﬂlg) SH Q1T
s=0 k=0
= (I =85! T) "' = (S Tin)") S @imo - (115)
For t > T we get
T-1
4= (Sy'Tn)' K+ (S Tu)' 1Sy Thai
s=0
t—1 T2
+ 3 (SH ) T TS T — Y (ST ) T T S S e
s=T s=0
t—1 T—2
_ (SilTll)t—s—15ﬂ1312jl + Z(SﬂlTll)t—s—lsﬂlleo
s=T—1 s=0
t—1
+ (S Tn)' 1S Qi (t>T) (116)
s=T-1
Let M = S}, T11. Then?
t—1 t—T—1
S ML TR = ( 3 Mk> S1T1o%
s=T k=0
= (I — M)il (I — MtiT)Sl_llTlggl (117)
t—1 t—T
Z Mt_S_ISﬂlslzfl = ( Z Mk) SﬁlTlgfl
s=T—-1 k=0
= (I — M)il (I — MtiTJrl)Sl_llTlggl (118)
3Note that
n—1
S MF =T -M)"HI-M")
k=0

n—1 n—1 m—1
SNoMt =Y M-S MP =1 - M) (M - MT)
k=m k=0 k=0

15



T2 =1

> MTESH Qg = ( > Mk>511Q170
=0 k=t—T+1

=t—T+
= (I — M) (M= — MY S Qi (119)
t—1
> MU Q= (T - M)TH(I - MUY S um (120)

s=T—-1

Inserting (117) to (120) in (116) yields for t > T

T—-1
f=ME+Y MU Tod, + (I - M)~ (1 - M™T) S5 T1o7,
s=0
T—2
=Y ML S i — (T — M)THI — MY S S10d
s=0
+ (I = M) H(MTH - MY S 1T
+ (I = M) - MY S Qi (t>T) (121)

Since M = Sl_llTn is a stable matrix, i.e.,

lim M* =0 (122)

t—o0
Z; converges towards its steady state value
El = (I — M)7181—11T12§1 — (I — M)ilsﬂlslgil + (I — M)ilsl_lllel
= (I — M)7'SH (T2 — S12)T1 + Q171)
= (S11 — T11) ' ((The — S12)T1 + Q171) (123)
The formula for Z; also results from the steady state system (88) and the

dynamic equation (92).
Combining (121) and (123) yields for ¢t > T

T-1 T—-2
5 — 2, = M'K M e e, — Y MG L
2t — 21 = + 11 L12%5 11 P12Ts+1
s=0 s=0

— (I = M) "M TS a7
+ (I = M)~ (M - MY ST o
+ (I — M) M (S10d — Q171) (124)

Note that similar to (111) we have

(I —M)*M=T = M=T(1 — M)~? (125)
(125) is equivalent to
(S Tn) (I = S5 T) = (I = Sy Tan) (S T) 7 &
(SilTll)t—T o (S;llTll)t—H_T _ (SilTH)t—T o (SilTll)H_l_T (126)

16



For t > T we therefore get

-z =M"TK (127)
where
T—1 T—2
K=MK+ M 'S Tgis — Y MT 718 Siadiein
s=0 s=0
— (I = M) S Thady + (M — M) (I — M)~ S Q17
+ M(I — M)*lsﬁl(SuEl — lel) (128)

In order to determine the minimal value of the loss function J, replace in
(42) v, and w; by v, and w; respectively, where

O A =
and
&t:{@—io for 0<t<T (150)
w; —wy, for t>T
with
W= Z11%+ Z12% (131)
and
V= Zo1Z + ZooT (132)
Then Jo = J{" + J§? where
gV = Z N3, #)Z2' D'HDZ <x> (133)
with
Z=%-7%, P=F-1I (134)
and
J(()2) = %)\T trace(V*KK') (135)

with V* defined by (58) and K given by (128).
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4 The Stochastic Case

Assume now that v is an r x 1 vector of white noise disturbances inde-
pendently distributed with covariance matrix ¥,, = E(vv;). The i.i.d shocks
are, by definition, unpredictable (T = 0) and occur at time ¢ = 0. Since
E¢(v441) = Orx1, equation (11) implies

F-E () =a (Y (136)
Ut+1 Ut

The Schur decomposition yields the system of equations

S Si2 5t+1> (Tn T12) <5t>
E, (- = - 137
< 0 S22> ‘ <$t+1 0 T) \T: (137)
Wy Zn Zig)\ (%
) = ~ 138
<'Ut> (221 ZQ2> ($t> (138)

and ; = 0 for all ¢ > T' = 0. Partition the matrices A and B in equation (1)
conformably with w; and v, i.e.

A11 A12 Bll B12
A= ., B= 139
<A21 A22) (B21 B22) ( )

Equation (1) then implies

where

Anwipr + A By v = Briwy + Biovg + Crug + Dive (140)
and

A Eqwipr + A2 Er v = Briwe + Biavg + Cruyg (141)

C = <g;> ., D= <g;) (142)

From (140) and (141) we get

where

A (w1 — By wey1) = Divi (143)
so that
W41 — Et W41 = A1_11D1Vt+1 (144)

holds (provided Al_l1 exists). The corresponding equation for the costate vector
Py is given by [Backus and Driffill (1986)]

Put+1 — Bt Putr1 = Onyxa (145)
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Equations (137) and (138) and the definition of w; = (w}, pl,)" then imply

Ay Dy Vt+1>
0n2><1
(146)

- - - - - 1 -
Wep1 — By Wip1 = Z11(Z1 — Bt Ze1) = Z11 (B — Sy T %) = <

and therefore

. g s o1 (Af' D1y s, o1 (ARD
G = (S0 T+ 2y < 110 ' t+1> = (S Tz + 2y < 011 1) Vi+1
no X1 no X1
(147)
The solution of the VAR(1) process (147) has the general form
— ATLD
4= (Sy'Tn)' K+ (S5'Ti) 'z ( 11 1) Vet (148)

0
s—0 ng Xr

where

~ —1 ~ _ w
K =3 = Z5 o = 73! (On OXl> (149)
2

Since Eg v541 = 0 the expected time path of Z; is given by
Eo % = (9,,'T1)" Z;, o (150)

Premultiply (147) with Z;; and use w; = Z112; to obtain the VAR(1) process

Wyp1 = Dy + <‘%i§il) Vi1 (151)
where
T =Z1(S'Th) 25! (152)
Then
t—1 _
Wy =Thig + y T <féif 1) Vst (153)

s=0

and the expected future path of w; is given by

—1
Eg w; = Iy = I (All D1> v (154)

0n2><7“

The solution of the forward-looking vector o; follows from
O = Ini = Zon Zy iy = Ny (N = Za1 Z17Y) (155)

by inserting the solution time path of wy.
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To determine the minimal value of the loss function Jy set

A7'D
Et41 = ( 11 1> Vit (156)

OTL2 Xr
According to (34), (42), (48) and (153) we then obtain

Wy
Jo = —EO E N(wh,vb, ul)H [ v

Ui
= _EOZ,\Z (w;, %) D'HD (q})

=3 EO Z Mol N'D'HD N,

1
= 5 o Z N H*

i—1
- - Z)\Z{ (Tg ) H* (D) + 2 Eo (Tag) H* ( Zrl legi)
s=0
i—1 . i—1 .
+ Eo ( Z FZ_S_1€S+1),H* ( Z Fz—s—lserl) }
s=0 s=0
1
= 50 Z)\TZ'H )@y
1=0
1 & i—1 i1
, S , S
+3 Z)\Z Eo (Y T leen) H (D T egn) (157)
=0 s=0 s=0
where we have used
EO Es+1 = 0 (158)
Set
V=> Ar'HT (159)
i=0
Then V satisfies the matrix equation (cf. (74))
V =H*+ X'V (160)
and
1, - 1 1
- ,
5%(; NV HT) by = SVt =  trace(Vidoi)) (161)
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To calculate the last expression in (157) note that

i—1 i—1
EO ( Z Fifsflgs_i_l)’H* ( Z Fifsflgs_’_l)
s=0 s=0

=Eo(T" ey + T 2eg + ... + 0% H* (T ey + T %eg + ... + T0%;)
= Eo(T" ey H* (T ey) + Eo(T" 2e0) H* (T 2e9) + ... + Eo(I;)' H* (T'%;)
=Eoe/(T"H* T + I'H*T + ... + I Y T2 4 TV H T g,
i—1
=Eoej (Y D e g (162)
s=0

since Eg(glej) = 0 for ¢ # j and the covariance matrix
EO((‘:Z‘E;) = EO(Ejff;-) = 255 (163)

is independent of ¢ and j. We then obtain

1 o) ' i—1 ' i—1 ‘
5 Z A\ EO ( Z F17871€s+1),H* ( Z szsflserl)
=0 s=0 s=0
1Z e’} i—1
=3 SN B (Yo rims e
=0 s=0

1o . A | | |
— 5 Z )\Z EO 6; (FOIH*FO + F/H*F + o + FZ_Q/H*FZ_2 + I‘Z—llH*I—‘Z_l)ei
=0

1
= SAEo e TV H'T %,
1
+ 5 Eoch (TYH* T +- T H*T)ey

1
+ A By (P BT + T'H'T 4+ T H'T?) e +

1
+ 5" Eger, (CYH T + H*T + TP H* T + ..+ TV H T e,
+..

1 *
= iAtrace(H Yee)

1
+ 5,\2 trace ((H* + I"H'T)..)

1
+ 5,\3 trace ((H* + I"H*T + T? H*T?)3..) +

1
+ 5)\" trace ((H* + T"H'T + TYH*T? + ... + F"fl/H*I‘"fl)Eea) +...
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1
:§AMm£«H*+AH*+A%F+.”+A”4H*+”)2%)
1
-%§AUME«}FT#F4mVFT#F—%n.+AWJFT#FK+”)E%)
1
+—§Atraaa«A2rW}{#F24-A3FW}{#F24-”.4-A”—1FW}{fF24-.H)2€g

o
+...+ %)\trace <(Z)\T”’H*F")Eea> + ...

zlmmm(@——ﬂmul—rHT+ X et e
2 D) ) P
b X pgpern )z >
1_)\ ee
_ 1 trace( Z)\T’H F >
21
LA ace(vL) (164)
21—

with V' defined in (160). The optimal value of the loss function Jy in the
stochastic case (with 7' = 0) is then given by

Jo = 1tmce(VzZ)OzZ)E)) - LA trace(VXe.) (165)
2 21—\

Note that (165) is a generalization of (72) where we have assumed that the
shock in ¢ = 0 is deterministic (¥.. = 0). The formula (165) holds for a
discount factor A with 0 < A < 1.* The right-hand side of (165) is not defined
in the special case A = 1. If the discount factor A approaches unity we must
scale the intertemporal loss function Jy by the factor (1 — \) [Rudebusch and
Svensson (1999)]. Equation (165) then implies

1 1
(I=X)Jy = 5(1 — \) trace(Vwowy) + 5)\ trace(V3..) (166)

The scaled intertemporal loss function (1—\).Jy converges if A approaches unity.
(166) implies

1
/{iml(l —AN)Jo = 3 trace(VX..) (167)
Note that in case T'= 0 and A = 1 the r.h.s. of (167) equals the r.h.s of (72)
if wow(, = ... In this special case the stochastic and deterministic case are
equivalent. If the off-diagonal elements of W; and Wy in the loss function (7)
are equal to zero, then the limit value of (1 — \).Jy can be expressed as

1
3 _ = —E(L 1
)1\1_)1111(1 A)Jo 5 (L¢) (168)

“In the deterministic case, where Y. = 0, (165) also holds for A = 1.
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where E(L;) is the unconditional mean of the period loss function

;o (W 0 St . 2 S 2
Lo=Guud g0y, ) () = Do wiiast Y wiizug, (169)
=1 =1
Then
n3 m
E(Lt) = Z Wi, 1 Var Sit + Z Wi;,2 Var Ut (170)
=1 =1

The period loss function can also be written as
L = Y/HY, (171)

where Y/ = (kj,u;) and H defined in (35). Then the unconditional period loss
also fulfills

E(L;) = E(Y/HY};) = trace(HZyy) (172)

where Yy is the unconditional covariance matrix of the vector Y.

5 Summary

In this paper, we present a method to solve linear dynamic rational expecta-
tions models with anticipated shocks and optimal policy by using the general-
ized Schur decomposition method. We determine the optimal unrestricted and
restricted policy responses to anticipated temporary and permanent shocks. In
particular, our method can be applied to analyze optimal monetary policy in
New Keynesian dynamic general equilibrium models. Our approach allows also
the evaluation of the widely discussed case of unpredictable shocks and can
therefore be seen as a generalization of the methods summarized by Soderlind
(1999).
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