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proposed tests. Practically, a simple selection procedure for the bandwidth parameter in-

volved in each of the proposed tests is established based on the assessment of the power
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1. Introduction

Consider a continuous–time diffusion process of the form

drt = µ(rt)dt+ σ(rt)dBt, (1.1)

where µ(·) and σ(·) > 0 are respectively the univariate drift and volatility functions

of the process, and Bt is the standard Brownian motion. During the last decade or

so, specification of model (1.1) has attracted a lot of attention in both theoretical

studies and practical applications. For example, the practitioner would be interested

in knowing which one of the following popular models is more appropriate for a given

set of interest rate data:

dr = β(α− r)dt+ σδdB for δ = 0, 0.5, 1, (1.2)

dr = β(α− r)dt+ σrρdB for 0 < ρ ≤ 2, (1.3)

dr = r{κ− (σ2 − κα)r}dt+ σr3/2dB, (1.4)

dr = (α−1r
−1 + α0 + α1r + α2r

2)dt+ σr3/2dB. (1.5)

To make such a choice for a given set of interest rate data, one may specify model

(1.1) parametrically to determine whether one of the popular parametric models is

appropriate. In the field of continuous–time model specification, some closely related

studies include Aı̈t-Sahalia (1996a), who proposes a simple methodology for testing

whether the marginal density function of {rt} belongs to a parametric family of density

functions; Corradi and White (1999), who establish an asymptotically normal test for

the diffusion function; Fan and Zhang (2003), who propose a simultaneous test proce-

dure for the specification of both the drift and diffusion functions; Gao and King (2004),

who propose an improved test for a parametric specification of the marginal density

function; Kristensen (2004), in which a semiparametric diffusion model is considered

and tested; Corradi and Swanson (2005), who propose using a bootstrap specification

test; Hong and Li (2005), who establish an asymptotically consistent test for specifying

the transitional density function of {rt} parametrically; Arapis and Gao (2006), who

consider testing for a parametric specification of the drift function; Chen, Gao and

Tang (2008), who develop an empirical likelihood method to establish an adaptive test

for the parametric specification of the transitional density function; and Li (2007), who
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discusses a nonparametric test for the parametric specification of the diffusion function

in a diffusion process.

For the implementation of the proposed tests, existing studies use either a single

bandwidth based on an optimal estimation procedure (Aı̈t-Sahalia 1996a; Corradi and

White 1999; Fan and Zhang 2003; Hong and Li 2005) or a set of suitable bandwidth

values (Horowitz and Spokoiny 2001; Gao and King 2004; Arapis and Gao 2006; Chen

and Gao 2007; Gao 2007; Chen, Gao and Tang 2008). As is well–known, the first choice

is based on an optimal estimation procedure, and therefore may not be optimal for

testing purposes. Our own experience and others (Horowitz and Spokoiny 2001) show

that the second choice can be arbitrary and problematic in practice. This is probably

why in practice Horowitz and Spokoiny (2001) choose an optimal bandwidth based on

the assessment of the power function of their test before constructing a suitable set of

bandwidth values for the implementation of their test.

This paper mainly considers a semiparametric case where µ(·) is already pre–

specified while the form of σ(·) is allowed to be specified nonparametrically. The main

motivation for considering such a class of semiparametric diffusion models is as follows:

(a) most empirical studies suggest using a simple form for the drift function, such as

a polynomial function for interest rate data, while the diffusion function is allowed to

be flexible; (b) when the form of the drift function is unknown but sufficiently smooth,

it may be well–approximated by a parametric form, such as by a suitable polynomial

function; (c) the drift function may be treated as a constant function or even zero when

interest is on studying the stochastic volatility of {rt}; and (d) the precise form of the

diffusion function is very crucial, but it is quite problematic to assume a known form

for the diffusion function due to the fact that the instantaneous volatility is normally

unobservable.

We first establish a simple kernel test L(h) for the specification of the diffusion

function through using a discretized version of such a continuous–time diffusion model,

where h is a bandwidth involved in the kernel test. In order to implement the proposed

test in practice, we propose a new bootstrap simulation procedure to approximate the

1−α quantile, lα, of the distribution of the simple test by a bootstrap simulated critical

value l∗α. In theory, we show that the proposed test not only satisfies P (L(h) > l∗α) =

α+O(
√
h) under the null, but also is asymptotically consistent under the alternative.

3



In practice, we make the best use of the bootstrap to choose a suitable bandwidth such

that the power function of the proposed test is maximized at such a bandwidth while

the size is controlled by α. To the best of our knowledge, the proposed theory and

methodology for the specification of a discretized diffusion model is new. In addition,

our finite–sample studies show that the proposed test has little size distortion and that

it is also quite powerful although the ‘distance’ between the null and the alternative is

made deliberately close.

In summary, the main contribution of this paper is as follows:

(i) It establishes a simple kernel test for specifying the diffusion function paramet-

rically through using a discretized version of the diffusion model. An extension to the

parametric specification of the drift function in a semiparametric diffusion model is

also discussed.

(ii) The implementation of such a test does not require nonparametrically estimating

any higher–order moments of the process. As a result, the main feature of the proposed

test is its implementation with ease in practice.

(iii) The resulting theory and methodology for the discretized version is new and po-

tentially useful to provide solutions to such nonparametric and semiparametric testing

problems in continuous–time financial models without discretization.

The rest of the paper is organised as follows. Section 2 proposes a simple kernel test

and establishes theoretical properties for it. A simulation procedure for implementing

the proposed test is given in Section 3. Section 4 concludes the paper with some

remarks. Mathematical details are relegated to the appendix. Throughout this paper,

we use an = O(bn) to mean that there is some constant −∞ < c∗ 6= 0 < ∞ such that

limn→∞
an

bn
= c∗, and an = o(bn) to represent limn→∞

an

bn
= 0.

2. New specification tests

2.1. Specification of diffusion function

Throughout the first part of this section, we consider a semiparametric diffusion

model of the form

drt = µ(rt, θ)dt+ σ(rt)dBt, (2.1)
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where µ(r, θ) is a known parametric function indexed by a vector of unknown param-

eters, θ ∈ Θ (a parameter space), and σ(r) is an unknown but sufficiently smooth

function. As pointed out in the introductory section, there is sufficient evidence that

the assumption of a parametric form for the drift function is not unreasonable. In

addition, Arapis and Gao (2006) show that when the drift function is unknown non-

parametrically, one may specify the drift function parametrically without knowing the

form of σ(r).

Similarly to most existing studies, we apply the Euler first–order scheme to derive

a discretized version of model (2.1) of the form

rt∆ − r(t−1)∆ = µ(r(t−1)∆, θ)∆ + σ(r(t−1)∆) · (Bt∆ −B(t−1)∆), t = 1, 2, · · · , T, (2.2)

where T is the number of observations, ∆ is the time between successive observa-

tions. In practice, ∆ is small but fixed, as most continuous-time models in finance are

estimated with monthly, weekly, daily, or higher frequency observations.

Model (2.2) implies that the drift function µ(·) and the diffusion function σ2(·) may

be approximated by

µ(r(t−1)∆, θ) ≈ E

[
rt∆ − r(t−1)∆

∆
|r(t−1)∆

]
and

σ2(r(t−1)∆) ≈ E

[(
rt∆ − r(t−1)∆

)2

∆
|r(t−1)∆

]
(2.3)

as ∆ → 0. Some existing studies, such as Bandi and Phillips 2003, Nicolau 2003,

Arapis and Gao 2006, and Gao 2007, then construct nonparametric estimators of µ(·)
and σ2(·) using (2.3). As a result, such nonparametric estimators of the drift and

diffusion functions can only be consistent when ∆ → 0. Naturally, the condition of

∆ → 0 is certainly needed when tests are constructed based on (2.3) (see Li 2007).

Since the construction of the proposed tests L1T (h) and L2T (h) below is based on

the discretized version (2.2) and one of the functions is always parametrically specified,

the asymptotic biases of the parametric estimators involved in the tests are negligible

and also independent of the choice of ∆. Therefore, our theory and methodology

remains applicable even when ∆ is fixed.

Let Yt =
rt∆−r(t−1)∆

∆
, xt = r(t−1)∆, f(xt, θ) = µ(xt, θ) and g(xt) = ∆−1σ2(xt). Model

(2.2) suggests using a discrete semiparametric autoregressive time series model of the
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form

Yt = f(xt, θ) + εt with εt =
√
g(xt) et, (2.4)

where {et} is a sequence of independent N(0,1) errors and independent of {xs} for all

s ≤ t. So E[et|xt] = E[et] = 0 and var[et|xt] = var[et] = 1. The main interest of this

paper is to test

H01 : P (g(xt) = g(xt, ϑ0)) = 1 versus

H11 : P (g(xt) = g(xt, ϑ1) + C1T ·D1(xt)) = 1 (2.5)

for some ϑ0, ϑ1 ∈ Θ, where both ϑ0 and ϑ1 are chosen such that Assumption A.3(ii)

listed in the Appendix A holds, Θ is a parameter space, C1T is a sequence of real

numbers, and D1(xt) is a smooth and completely nonparametric function. Note that

ϑ0 may be different from the true value, θ0, of θ involved in the drift function.

It should also be pointed out that the probabilities in (2.5) are independent of t

since {xt} is assumed to be strictly stationary. In addition, as assumed in Assumption

A.4 in the Appendix, the choice of C1T includes both global (C1T = C1 not depending

on T ) and local (C1T tending to zero when T goes to ∞) alternatives.

In order to construct our test for H01, we use (2.4) to formulate a regression model

of the form

ε2t = g(xt) + ηt, (2.6)

where the error process ηt = g(xt)(e
2
t − 1) is of the following properties: under H01

E[ηt|xt] = 0 and E[η2
t |xt] = 2g2(xt, ϑ0). (2.7)

In general, for any k ≥ 1 we have under H01

E
[
ηk

t |xt

]
= E

[
(e2t − 1)k

]
gk(xt, ϑ0) ≡ ckg

k(xt, ϑ0), (2.8)

where ck = E
[
(e2t − 1)k

]
is a known value for each k using the fact that et ∼ N(0, 1)

has all known moments. This implies that all higher–order conditional moments of

{ηt} will be specified if the second conditional moment of {ηt} is specified.

Since E[ηt|xt] = 0 under H01, we have

d(η) = E [ηtE (ηt|xt)π(xt)] = E
[(
E2(ηt|xt)

)
π(xt)

]
= 0 , (2.9)
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under H01. This would suggest using a kernel–based sample analogue of (2.9) of the

form

NT (h) =
T∑

t=1

T∑
s=1, 6=t

η̂s pst η̂t, (2.10)

where pst = 1
T
√

h
K

(
xs−xt

h

)
and η̂t =

(
Yt − f(xt, θ̂)

)2

− g(xt, ϑ̂0), in which θ̂ is a
√
T–

consistent estimator of θ and ϑ̂0 is also a
√
T–consistent estimator of ϑ0 under H01.

Similar test statistics for specifying parametric mean functions have been proposed

and studied extensively in Fan and Li (1996), Zheng (1996), Li and Wang (1998), Li

(1999), Fan and Li (2000), Fan and Linton (2003), Arapis and Gao (2006), Gao (2007)

and others.

In view of the definition of η̂t, we may have the following decomposition:

NT (h) =
T∑

t=1

T∑
s=1, 6=t

η̂s pst η̂t =
T∑

t=1

T∑
s=1, 6=t

ηs pst ηt

+
T∑

t=1

T∑
s=1, 6=t

(
f(xs, θ)− f(xs, θ̂)

)2

pst

(
f(xt, θ)− f(xt, θ̂)

)2

+
T∑

t=1

T∑
s=1, 6=t

(
g(xs)− g(xs, ϑ̂0)

)
pst

(
g(xt)− g(xt, ϑ̂0)

)
+oP (NT (h)) , (2.11)

where ηt = g(xt)(e
2
t − 1).

Also, simple calculations imply that for sufficiently large T

var[NT (h)] = σ2
g (1 + o(1)), (2.12)

where σ2
g = 2µ2

2

∫
K2(u)du with µ2 = E[η2

1] = 2E [g2(x1)].

For the implementation of NT (h) in practice, in order to avoid nonparametrically

estimating any unknown quantity we estimate σ2
g under H01 by σ̂2

1T = 2µ̂2
2

∫
K2(u)du

with µ̂2 = 2
T

∑T
t=1 g

2(xt, ϑ̂0).
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We then propose using a normalized version of the form

L1T (h) =

∑T
s=1

∑T
t=1, 6=t η̂s pst η̂t

σ̂1T

=

∑T
t=1

∑T
s=1, 6=t ηs pst ηt

σ0

· σ0

σ̂1T

+

∑T
t=1

∑T
s=1, 6=t

(
f(xs, θ)− f(xs, θ̂)

)2

pst

(
f(xt, θ)− f(xt, θ̂)

)2

σ̂1T

+

∑T
t=1

∑T
s=1, 6=t

(
g(xs)− g(xs, ϑ̂0)

)
pst

(
g(xt)− g(xt, ϑ̂0)

)
σ̂1T

+ oP

(
NT (h)

σ̂1T

)
, (2.13)

where σ2
0 = 2µ2

0

∫
K2(u)du with µ0 = 2 E [g2(x1, ϑ0)] under H01.

Let

LT (h) =

∑T
t=1

∑T
s=1, 6=t ηs pst ηt

σ0

. (2.14)

Lemma A.1 in the Appendix shows that under H01,

lim
T→∞

P (LT (h) ≤ x) = Φ(x) (2.15)

for x ∈ IR, where Φ(x) denotes the cumulative distribution function of the standard

normal random variable.

The following result establishes that L1T (h) is asymptotic normal under H01; its

proof is given in the Appendix.

Theorem 2.1. Suppose that Assumptions A.1–A.3(i)(ii)(iv) listed in the Appendix

hold. Then under H01

lim
T→∞

P (L1T (h) ≤ x) = Φ(x). (2.16)

Theorem 2.1 shows that L1T (h) converges in distribution to N(0, 1) regardless of the

choice of ∆. This is mainly because the marginal density function of {xt : 1 ≤ t ≤ T}
remains the same when {xt : 1 ≤ t ≤ T} is assumed to be strictly stationary. A

detailed discussion is similar to that of Arapis and Gao (2006, p.323).

As shown in the Appendix, Assumption A.1(iii) that limT→∞ h = 0 and limT→∞ Th =

∞ imposes the minimal conditions on h such that the asymptotic normality is the lim-

iting distribution of the proposed test under H01. To the best of our knowledge, such
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minimal conditions on h have only been assumed by Zheng (1996), and Li and Wang

(1998) when the authors consider testing for a parametric specification for the condi-

tional mean of a nonparametric regression model with independent observations.

As pointed out in the literature, such asymptotically normal tests may not be very

useful in practice, in particular when the size of the data is not sufficiently large. Thus,

the conventional α–level asymptotic critical value, lacv, of the standard normality may

not be useful in applications. This paper proposes to approximate the lacv by a Monte

Carlo simulated critical value.

Simulation Procedure: Let l1cv be the 1 − α quantile of the exact finite–sample

distribution of L1T (h). Since l1cv may be unknown in practice, we suggest approximat-

ing l1cv by either a non–random approximate α–level critical value, l1α, or a stochastic

approximate α–level critical value, l∗1α, using the following simulation procedure:

1. For each t = 1, 2, . . . , T , generate Y ∗t = f(xt, θ̂) +

√
g(xt, ϑ̂0) e

∗
t , where the

original sample XT = (x1, · · · , xT ) acts in the resampling as a fixed design, {e∗t}
is independent of {xt} and sampled identically distributed from N(0, 1). Use the

data set {(xt, Y
∗
t ) : t = 1, 2, . . . , T} to re-estimate (θ, ϑ0). Let (θ̂∗, ϑ̂∗0) denote the

pair of the resulting estimates.

2. Define L∗1T (h) to be the version of L1T (h) with (xt, Yt) and (θ̂, ϑ̂0) being replaced

by (xt, Y
∗
t ) and (θ̂∗, ϑ̂∗0) in the calculation. Let l1α be the 1 − α quantile of the

distribution of L∗1T (h).

3. Repeat the above steps M times and then obtain the empirical distribution

of L∗1T (h). The bootstrap distribution of L∗1T (h) given WT = {(xt, Yt) : 1 ≤
t ≤ T} is defined by P ∗ (L∗1T (h) ≤ x) = P (L∗1T (h) ≤ x|WT ). Let l∗1α satisfy

P ∗ (L∗1T (h) ≥ l∗1α) = α and then estimate l1α by l∗1α.

It should be pointed out that both l1α and l∗1α may be functions of h. We then have

the following theorem; its proof is given in the Appendix.

Theorem 2.2. (i) Suppose that Assumptions A.1–A.3 hold. Then under H01 the

following equation

sup
x∈R1

|P ∗(L∗1T (h) ≤ x)− P (L1T (h) ≤ x)| = O
(√

h
)

(2.17)
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holds in probability with respect to the joint distribution of WT .

(ii) Suppose that Assumptions A.1–A.3 hold. Then under H01

P (L1T (h) > l∗1α) = α+O
(√

h
)
. (2.18)

(iii) Assume that Assumptions A.1–A.4 hold. Then under H11

lim
T→∞

P (L1T (h) > l∗1α) = 1. (2.19)

For some corresponding test statistics in the time series case (Li and Wang 1998;

Fan and Linton 2003), asymptotic results weaker than (2.17)–(2.19) have already been

established. In Section 3 below, we will show how to assess the finite–sample properties

of (2.18) and (2.19).

For each h we define the following size and power functions

ST (h) = P (L1T (h) > l1α|H01 holds) and PT (h) = P (L1T (h) > l1α|H11 holds) . (2.20)

Correspondingly, we define (S∗T (h), P ∗T (h)) with l1α replaced by l∗1α.

To establish further results, we need to introduce the following notation:

ρ(h) = Cπ Π(K)
√
h, (2.21)

where Cπ =
R

π3(x)dx“√R
π2(x)dx

”3 and Π(K) =
√

2K(3)(0)

3
“√R

K2(u)du
”3 , in which K(3)(·) is the three–time

convolution of K(·) with itself.

We now establish the following theoretical results; their proofs are given in the

Appendix below.

Theorem 2.3. (i) Suppose that Assumptions A.1–A.4 hold. Then

ST (h) = 1− Φ(l1α − s(h))− ρ(h) (1− (l1α − s(h))2) φ(l1α − s(h)) + o
(√

h
)
, (2.22)

S∗T (h) = 1− Φ(l∗1α − s(h))− ρ(h) (1− (l∗1α − s(h))2) φ(l∗1α − s(h)) + o
(√

h
)

(2.23)

hold in probability with respect to the joint distribution of WT , where φ(·) is the proba-

bility density function of N(0, 1), and s(h) = C0(g)
√
h with

C0(g) =
T

∫ (
g(x, ϑ̂)− g(x, ϑ0)

)2

π2(x)dx

σ0

.
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(ii) Suppose that Assumptions A.1–A.4 hold. Then the following equations hold in

probability with respect to the joint distribution of WT :

PT (h) = 1− Φ(l1α − r(h))− ρ(h) (1− (l1α − r(h))2) φ(l1α − r(h)) + o
(√

h
)
,(2.24)

P ∗T (h) = 1− Φ(l∗1α − r(h))− ρ(h) (1− (l∗1α − r(h))2) φ(l∗1α − r(h)) + o
(√

h
)

(2.25)

under H11, where r(h) =
√
h

(
C1(g) +D1π TC2

1T

)
, in which

C1(g) =
T

∫ (
g(x, ϑ̂)− g(x, ϑ1)

)2

π2(x)dx

σ0

and D1π =

∫
D2

1(x)π
2(x)dx

σ0

. (2.26)

As pointed out above, both l1α and l∗1α may be functions of h. Theorem 2.4

below gives asymptotically explicit expressions for noth l1α and l∗1α. Let ψ(α) =

Cπ Π(K) (z2
α − 1) with zα being the 1 − α quantile of the standard normal distri-

bution. The proof of Theorem 2.4 is given in the Appendix.

Theorem 2.4. Assume that the conditions of Theorem 2.3(i) hold. Then for T

sufficiently large

l1α = l1α(h) ≈ zα + ψ(α)
√
h in probability, (2.27)

l∗1α = l∗1α(h) ≈ zα + ψ(α)
√
h in probability. (2.28)

Theorem 2.4 shows that there is an asymptotic correction, ψ(α)
√
h, to the normal

quantile zα. Section 3 below shows that the size of L1T (h) associated with l1α is more

stable than that of L1T (h) based on zα.

We now choose an optimal bandwidth ĥ1test such that for some small cmin > 0

ĥ1test = arg max
h∈H1T

PT (h) with H1T = {h : α− cmin < ST (h) < α + cmin}. (2.29)

Similarly to Chapter 3 of Gao (2007), it may be shown that the leading term of

ĥ1test may be approximated by

ĥ1test =
(
Ĉπ Π(K)

)− 1
2

(
D̂1π T C2

1T

)− 3
2

(1 + oP (1)), (2.30)

where Ĉπ =
1
T

PT
t=1 bπ2(xt)„q

1
T

PT
t=1 bπ(xt)

«3 and D̂1π =
PT

t=1
bD2

1(xt)bπ(xt)
T bσ1T

with D̂1(xt) =
PT

s=1 K
“

xt−xsbhcv

”
(bε2s−g(xs,bϑ0))

C1T
PT

u=1 K
“

xt−xubhcv

”
and π̂(x) = 1

Tbhcv

∑T
t=1K

(
x−xtbhcv

)
being a density estimator, in which ε̂t = Yt − f(xt, θ̂)

and ĥcv = 1.06 T−
1
5 ·

√
1

T−1

∑T
t=1(xt − x̄)2 with x̄ = 1

T

∑T
t=1 xt.
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In Section 3 below, we will show how to practically implement ĥ1test.

2.2. Specification of drift function

Throughout the second part of this section, we consider a semiparametric diffusion

model of the form

drt = µ(rt)dt+ σ(rt, ϑ)dBt, (2.31)

where σ(r, ϑ) is a positive parametric function indexed by a vector of unknown pa-

rameters, ϑ ∈ Θ (a parameter space), and µ(r) is an unknown but sufficiently smooth

function. As pointed out in existing studies, such as Kristensen (2004), there is some

evidence that the assumption of a parametric form for the diffusion function is not

unreasonable in such cases where the diffusion function is already pre–specified, the

main interest is for example to specify whether the drift function should be linear

or quadratic. More recently, Arapis and Gao (2006) discuss how to specify the drift

function parametrically while the diffusion function is allowed to be unknown nonpara-

metrically.

As for model (2.2), we suggest approximating model (2.31) by a semiparametric

autoregressive model of the form

Yt = f(xt) +
√
g(xt, ϑ) et, (2.32)

where f(xt) = µ(xt), g(xt, ϑ) = ∆−1σ2(xt, ϑ), and {et} is a sequence of independent

Normal errors with E[et|xt] = E[et] = 0 and var[et|xt] = var[et] = 1. Our interest is

then to test

H02 : P {f(xt) = f(xt, θ0)} = 1 versus

H12 : P {f(xt) = f(xt, θ1) + C2T ·D2(xt)} = 1 (2.33)

for some θ0, θ1 ∈ Θ, where Θ is a parameter space, C2T is a sequence of real numbers,

and D2(x) is a smooth and completely nonparametric function. Note that θ0 may be

different from the true value, ϑ0, of ϑ involved in the diffusion function.

Analogously to the construction of L1T (h), we propose using a normalized version

of the form

L2T (h) =

∑T
s=1

∑T
t=1, 6=t pstε̂sε̂t

σ̂2T

, (2.34)
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where ε̂t = Yt − f(xt, θ̂0) with θ̂0 being a
√
T–consistent estimator of θ0, and σ̂2

2T =

2ν̂2
2

∫
K2(u)du with ν̂2 = 1

T

∑T
t=1 g(xt, ϑ̂), in which ϑ̂ is a

√
T–consistent estimator of

ϑ. Since the diffusion function is pre–specified parametrically, we need not involve any

nonparametric estimator in σ̂2
2T .

Similarly to Theorems 2.1–2.4, we may establish the corresponding results for

L2T (h). The corresponding ĥ2test is given as follows:

ĥ2test =
(
Ĉπ Π(K)

)− 1
2

(
D̂2π T C2

2T

)− 3
2

(1 + oP (1)), (2.35)

where D̂2π =
PT

t=1
bD2

2(xt)bπ(xt)
T bσ2T

, in which D̂2(xt) =
PT

s=1 K
“

xt−xsbhcv

”
(Ys−f(xs,bθ0))

C2T
PT

u=1 K
“

xt−xubhcv

” .

As the details are very analogous, we do not wish to repeat them. Instead, we will

focus on the implementation of L2T (h) in Section 3.2 below. Since neither L1T (h) nor

L2T (h) involve any additional nonparametric estimation, our finite–sample studies in

Section 3 show that it is practically easy to implement the proposed tests. In addition,

they both have good small and medium–sample properties with respect to the size and

power functions.

3. An example of implementation

Throughout our finite–sample study, we consider testing both the drift and the

diffusion functions parametrically for the following model:

drt = β0(α0 − rt)dt+ σ0r
ρ0
t dBt, t ≥ 0, (3.1)

where α0, β0, σ0 and ρ0 are initial parameter values. For the diffusion specification,

the initial parameter values estimated from the daily Eurodollar interest rates (June

1, 1973 to February 25, 1995) plotted in Part A of Figure 1, are taken from Hong and

Li (2005). For the drift specification, the initial parameter values estimated from the

monthly recorded Fed funds (January 1963 to December 1998) plotted in Part B of

Figure 1, are taken from Aı̈t–Sahalia (1999). The parameter estimates based on the

maximum likelihood method are given in Table 1.

In the first part of our finite–sample study, we approximate the semiparametric

continuous–time diffusion model drt = β(α − rt)dt + σ(rt)dBt by a semiparametric

13
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Figure 1: Part A: Eurodollar interest rates. Part B: Federal fund rates.

Parameters Eurodollar Fed rate

α0 0.064 0.084

β0 0.62 0.087

σ0 1.48 0.779

ρ0 1.35 1.48

Table 1: Initial parameters θ0 for model (3.1)

time series model of the form

Yt = β(α− xt) +
√
g(xt) et with g(xt) = ∆−1σ2(xt), (3.2)

14



where Yt =
rt∆−r(t−1)∆

∆
, xt = r(t−1)∆, σ(·) > 0 is unknown nonparametrically, and

et =
Bt∆−B(t−1)∆√

∆
∼ N (0, 1). Since our finite–sample studies suggest that the resulting

size and power values vary little according to the choice of ∆, our finite–sample studies

are based on the choice of ∆ = 1. We chooseK(x) = 1√
2π
e−

x2

2 throughout this example.

We are interested in testing

H01 : σ(r) = σ(r, ϑ0) = σ0r
ρ0 versus H11 : σ(r) = σ(r, ϑ0) = σ0r

ρ0 + C1T (3.3)

for some ϑ0 = (σ0, ρ0) ∈ Θ and C1T =
√
T−1loglog(T ).

In the second part of our finite–sample study, we approximate the semiparametric

continuous–time diffusion model drt = µ(rt)dt+ σ(rt, ϑ)dBt by a semiparametric time

series model of the form

Yt = µ(xt) +
√
g(xt, ϑ) et with g(xt, ϑ) = ∆−1σ2(xt, ϑ). (3.4)

We are also interested in testing

H02 : µ(r) = β0(α0 − r) versus H12 : µ(r) = β0(α0 − r) + C2T (3.5)

for some θ0 = (α0, β0) ∈ Θ and C2T =
√
T−1loglog(T ).

Because of the choice of C1T and C2T , we can easily compute ĥ1test in (2.30) and

ĥ2test in (2.35). In order to compare the size and power properties of LiT (h) (i = 1, 2)

with the most relevant alternatives, we introduce the following simplified notation: for

i = 1, 2,

αi0 = P
(
LiT

(
ĥitest

)
> l∗iα

(
ĥitest

)
|H0i holds

)
,

βi0 = P
(
LiT

(
ĥitest

)
> l∗iα

(
ĥitest

)
|H1i holds

)
,

αi1 = P
(
LiT

(
ĥcv

)
> l∗iα

(
ĥcv

)
|H0i holds

)
,

βi1 = P
(
LiT

(
ĥcv

)
> l∗iα

(
ĥcv

)
|H1i holds

)
,

αi2 = P
(
LiT

(
ĥcv

)
> zα|H0i holds

)
,

βi2 = P
(
LiT

(
ĥcv

)
> zα|H1i holds

)
, (3.6)

where ĥcv = 1.06 T−
1
5 ·

√
1

T−1

∑T
t=1(xt − x̄)2 with x̄ = 1

T

∑T
t=1 xt.

At the significance level of α = 1%, 5% or α = 10% with z0.01 = 2.33 at α = 1%,

z0.05 = 1.645 at α = 5% and z0.10 = 1.28 at α = 10%, for each individual case of

15



T = 400, 500 or 600, we apply the Simulation Procedure to obtain the corresponding

simulated critical value for each of l∗iα for i = 1, 2. We choose N = 250 in the Simulation

Procedure and use M = 500 replications to compute the size and power values for

each version. The corresponding results for the size and power are summarized in the

following tables. Tables 3.1–3.3 give the results for the diffusion specification while

Tables 3.4–3.6 provide the corresponding results for the drift specification.

Table 3.1. Simulated size and power values at the 1% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α10 α11 α12 β10 β11 β12

400 0.017 0.013 0.024 0.405 0.011 0.024

500 0.007 0.007 0.019 0.361 0.011 0.025

600 0.014 0.012 0.026 0.334 0.014 0.025

Table 3.2. Simulated size and power values at the 5% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α10 α11 α12 β10 β11 β12

400 0.039 0.053 0.056 0.515 0.060 0.064

500 0.034 0.044 0.046 0.491 0.057 0.059

600 0.047 0.042 0.047 0.492 0.047 0.052

Table 3.3. Simulated size and power values at the 10% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α10 α11 α12 β10 β11 β12

400 0.066 0.100 0.087 0.516 0.107 0.095

500 0.071 0.096 0.082 0.497 0.113 0.095

600 0.090 0.089 0.073 0.508 0.097 0.090
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Table 3.4. Simulated size and power values at the 1% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α20 α21 α22 β20 β21 β22

400 0.014 0.011 0.026 0.134 0.012 0.029

500 0.011 0.016 0.030 0.156 0.015 0.030

600 0.011 0.010 0.024 0.140 0.018 0.034

Table 3.5. Simulated size and power values at the 5% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α20 α21 α22 β20 β21 β22

400 0.053 0.055 0.071 0.230 0.053 0.066

500 0.063 0.056 0.068 0.246 0.054 0.066

600 0.044 0.048 0.062 0.231 0.057 0.075

Table 3.6. Simulated size and power values at the 10% significance level

Sample Size Null Hypothesis Is True Null Hypothesis Is False

n α20 α21 α22 β20 β21 β22

400 0.103 0.112 0.110 0.303 0.096 0.093

500 0.104 0.107 0.105 0.307 0.099 0.098

600 0.096 0.104 0.103 0.291 0.101 0.100

For the parametric specification of the diffusion function, Tables 3.1–3.3 show that

the test L1T

(
ĥ1test

)
has little size distortion compared with L1T

(
ĥ1cv

)
, as the size

values in column 4 of Tables 3.1–3.3 show that the use of an asymptotic critical

value may contribute to the size distortion. Moreover, columns 5–7 of Tables 3.1–

3.3 show that L1T

(
ĥ1test

)
has some reasonable power values although the ‘distance’
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between the null and the alternative has been made deliberately close at the rate of√
T−1 loglog(T ) = 0.0604 for T = 500 or 0.0556 for T = 600. In addition, L1T (ĥ1test)

is much more powerful than L1T (ĥ1cv), whose power values are comparable with the

corresponding size values. This is mainly because limT→∞ T

√
ĥcv C

2
1T = 0 implies

limT→∞ PT (h) = α when choosing C1T =
√
T−1loglog(T ) and ĥcv proportional to T−

1
5 .

For the parametric specification of the drift function, similar conclusions can be made.

There are some differences noticed. The main difference is that for each individual

case the size is more settled than that for the diffusion case on the one hand, but on

the other hand the power is smaller than the corresponding version for each individual

case in the diffusion specification. This shows that there is a kind of trade–off between

the size and the power of a test.

4. Conclusion

In this paper, we establish a new kernel test for the specification of the diffusion

function in continuous–time financial models and then propose combining a power–

based selection criterion into the implementation of the proposed test in practice. As

pointed out briefly in Section 2, the proposed test may also be extended to specify

the higher–order moments of the diffusion process. In addition, as can be seen from

the discussion in Section 2, we may apply the proposed test for specifying certain

continuous–time stochastic volatility models. Such topics are left for future research.
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Appendix A

This appendix lists the necessary assumptions for the establishment and the proofs

of the main results given in Section 2.

A.1. Assumptions
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Assumption A.1. (i) Assume that the discrete sequence {rt : t = 1, 2 · · · } is strictly

stationary and α-mixing with mixing coefficient α(t) ≤ Cαα
t defined by

α(t) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ Ωs
1, B ∈ Ω∞s+t} (A.1)

for all s, t ≥ 1, where 0 < Cα < ∞ and 0 < α < 1 are constants, and {Ωj
i} denotes a

sequence of σ–fields generated by {rt : i ≤ t ≤ j}. Let ΩT = ΩT
0 be the σ–field generated

by {rt : 0 ≤ t ≤ T}. Let πτ1,τ2,··· ,τl
(·) be the joint probability density of (x1+τ1 , . . . , x1+τl

)

(1 ≤ l ≤ 4). Assume that πτ1,τ2,··· ,τl
(·) for all 1 ≤ l ≤ 4 do exist and are continuous.

(ii) Assume that the univariate kernel function K(·) is a symmetric and bounded prob-

ability density function. In addition, we assume the existence of K(3)(·), the three–time

convolution of K(·) with itself. In addition,
∫
K2(u)du > 0.

(iii) The bandwidth h satisfies both limT→∞ h = 0 and limT→∞ Th = ∞.

Assumption A.2. (i) The drift and the diffusion functions are three–times differentiable

in x ∈ R+ = (0,∞). In addition, there exists some constant 0 < d0 <∞ such that P (σ(r1) >

0) = 1 and E
[
σ16+δ0(r1)

]
≤ d0 for some δ0 > 0. In addition, E

[
σi(x1, ϑ0)

]
> 0 for i = 2, 4.

(ii) The integral of µ(v, θ) = 1
σ2(v,ϑ0)

exp
(
−

∫ v̄
v 2 µ(x,θ)

σ2(x,ϑ0)
dx

)
converges at both boundaries

of R+, where v̄ is fixed in R+.

(iii) The integral of s(v, θ) = exp
(∫ v̄

v 2 µ(x,θ)
σ2(x,ϑ0)

dx
)

diverges at both boundaries of R+.

(iv) The marginal density π(·) is strictly positive on R+, and the initial random variable

r0 is distributed as π(·).

Assumption A.3. (i) There exist some absolute constants ε1 > 0 and 0 < A1L <∞ such

that

lim
T→∞

P
(√

T ||θ̂ − θ|| > A1L

)
< ε1.

(ii) Let H0 be true. Then ϑ0 ∈ Θ and limT→∞ P
(√

T ||ϑ̂0 − ϑ0|| > B1L

)
< ε2 for any

ε2 > 0 and some B1L > 0.

Let H0 be false. Then there is a ϑ1 ∈ Θ such that limT→∞ P
(√

T ||ϑ̂0 − ϑ1|| > B2L

)
< ε2

for any ε2 > 0 and some B2L > 0.

(iii) There exist some absolute constants ε3 > 0, ε4 > 0, and 0 < B3L, B4L <∞ such that

both

lim
T→∞

P
(√

T ||ϑ̂∗0 − ϑ̂0|| > B3L|ΩT

)
< ε3 and lim

T→∞
P

(√
T ||θ̂∗ − θ̂|| > B4L|ΩT

)
< ε4

hold in probability, where ϑ̂∗0 and θ̂∗ are as defined in the Simulation Procedure above Theorem

2.1.
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(iv) Let f(x, θ) and g(x, ϑ) be twice differentiable with respect to θ and ϑ, respectively. In

addition, the following quantities are assumed to be finite:

C1(g) = E

[(∣∣∣∣∣∣∣∣∂g(x1, ϑ)
∂ϑ

|ϑ=ϑ0

∣∣∣∣∣∣∣∣)2
]

and C̃1(f) = E

[(∣∣∣∣∣∣∣∣∂f(x1, θ)
∂θ

∣∣∣∣∣∣∣∣)4
]
,

where f(x, θ) = µ(x, θ), g(x, ϑ) = ∆−1 σ2(x, ϑ) and || · ||2 denotes the Euclidean norm.

Assumption A.4. Let limT→∞ T
√
h C2

1T = ∞. Assume that D1(x) is an unknown and

continuous function such that 0 < C1(D) = E
[
D2

1(x1)
]
<∞.

Remark A.1. Assumption A.1(i) is quite natural in this kind of problem. Note that

instead of assuming that the continuous–time process {rt : t ≥ 0} is strictly stationary as

in Li (2007), Assumption A.1(i) assumes only that the discrete sequence {rt : t = 1, 2, · · · }
is strictly stationary. Similar conditions have been used in Aı̈t-Sahalia (1996a) and Hong

and Li (2005). This is mainly because we need not require ∆ → 0 as T → ∞ to establish

our asymptotic distributions. Assumption A.1(ii) is to ensure the existence of quantities

associated with K(·). As pointed out in Section 2, Assumption A.1(iii) imposes the minimal

conditions on h such that the asymptotic normality is the limiting distribution of the proposed

test.

Assumption A.2 corresponds to Assumptions A1 and A2 of Aı̈t-Sahalia (1996a) to ensure

both the existence and uniqueness of a solution of the diffusion process. Assumption A.2(i)

requires the existence of the moments of σ(r1). This holds in many cases including the case

where the marginal density function π(r) of {rt} has compact support. When the marginal

density has no compact support, but it satisfies limr→∞ rmπ(r) = 0 for certain m > 0.

Obviously, both the Gaussian and χ2 processes are covered.

Assumption A.3 is for some technical proofs and derivations. Many well–known paramet-

ric functions and estimators do satisfy Assumption A.3. In addition, Assumption A.3(i)–(iii)

is similar to some existing conditions, such as Assumption 2 of Horowitz and Spokoiny (2001).

Assumption A.4 imposes some mild conditions to ensure that both classes of global and local

alternatives are included.

A.2. Technical lemma for the proof of Theorem 2.1

In order to prove Theorem 2.1, we need to establish the following lemma.

Lemma A.1. Suppose that Assumptions A.1–A.3(i)(ii) listed in the Appendix hold. Then

for x ∈ R1 = (−∞,∞)

lim
T→∞

P (LT (h) ≤ x) = Φ(x). (A.2)
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Proof: Recall from (2.14) that under H01

LT (h) =

∑T
t=1

∑T
s=1, 6=t ηs(ϑ0) pst ηt(ϑ0)

σ0

=

∑T
t=1

∑T
s=1, 6=t σ

2(xs, ϑ0)(e2s − 1) pst (e2t − 1)σ2(xt, ϑ0)
σ∗

, (A.3)

where ηt(ϑ0) = g(xt, ϑ0)(e2t − 1) and σ∗ = 2E
[
σ4(x1, ϑ0)

] √∫
K2(u)du.

Since LT (h) is a quadratic form of weakly dependent time series independent of ∆, we

are able to employ Lemma A.1 of Gao and King (2004) to show that LT (h) is asymptotically

normal. The detail is similar to the proof of Theorem 2.1 of Gao and King (2004).

A.3. Proof of Theorem 2.1

In view of the decomposition of L1T (h) in (2.13), using Assumptions A.1–A.3(i)(ii)(iv)

and then Lemma A.1, the proof of Theorem 2.1 follows immediately.

A.4. Technical lemmas for the proof of Theorem 2.2

Similar to the decomposition of L1T (h) in (2.13), regardless of under H01 or H11, we have

L1T (h) =

∑T
s=1

∑T
t=1, 6=t pstη̂sη̂t

σ̂1T
=

∑T
t=1

∑T
s=1, 6=t ηs pst ηt

σ0
· σ0

σ̂1T

+

∑T
t=1

∑T
s=1, 6=t

(
f(xs, θ)− f(xs, θ̂)

)2
pst

(
f(xt, θ)− f(xt, θ̂)

)2

σ0
· σ0

σ̂1T

+

∑T
t=1

∑T
s=1, 6=t

(
g(xs)− g(xs, ϑ̂0)

)
pst

(
g(xt)− g(xt, ϑ̂0)

)
σ0

· σ0

σ̂1T
+ oP

(
NT (h)
σ̂1T

)
≡ (LT (h) + FT (h) +QT (h)) · σ0

σ̂1T
+RT (h), (A.4)

where σ2
0 = 2µ2

0

∫
K2(u)du is as defined in Section 2,

LT (h) =

∑T
t=1

∑T
s=1, 6=t ηs pst ηt

σ0
=

∑T
t=1

∑T
s=1, 6=t(e

2
s − 1) g(xs)pstg(xt) (e2t − 1)

σ0
,

FT (h) =

∑T
t=1

∑T
s=1, 6=t

(
f(xs, θ)− f(xs, θ̂)

)2
pst

(
f(xt, θ)− f(xt, θ̂)

)2

σ0
,

QT (h) =

∑T
t=1

∑T
s=1, 6=t

(
g(xs)− g(xs, ϑ̂0)

)
pst

(
g(xt)− g(xt, ϑ̂0)

)
σ0

,

and RT (h) = L1T (h)− (LT (h) + FT (h) +QT (h)) · σ0bσ1T
is the remainder term.

In order to prove Theorem 2.2, we need to introduce the following lemmas.
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Lemma A.2. (i) Suppose that Assumptions A.1–A.3(i)(ii)(iv) hold. Then under H01

RT (h) = oP (1) and FT (h) = oP (QT (h)) . (A.5)

(ii) Suppose that Assumptions A.1–A.4 hold. Then under H11

RT (h) = oP (QT (h)) and FT (h) = oP (QT (h)) . (A.6)

Proof: We only prove the first part of (A.5) under H01. The proof of the second part of

(A.5) and Its proof of (A.6) under H11 both follow similarly using Assumption A.4(ii).

Observe that under H01 one of the terms involved in RT (h) is

R1T (h) =
2

∑T
t=1

∑T
s=1, 6=t

(
g(xs, ϑ0)− g(xs, ϑ̂0)

)
pstηt(ϑ0)

σ0
· σ0

σ̂1T
= R10(h) ·

σ0

σ̂1T
, (A.7)

where R10(h) =
2

PT
t=1

PT
s=1,6=t(g(xs,ϑ0)−g(xs,bϑ0))pstηt(ϑ0)

σ0
.

A Taylor expansion for g(xs, ϑ̂) at ϑ0 implies

g(xs, ϑ̂0)− g(xs, ϑ0) =
∂g(xs, ϑ)

∂ϑ
|ϑ=ϑ0 ◦

(
ϑ̂0 − ϑ0

)
+ oP

(
ϑ̂0 − ϑ0

)
, (A.8)

where the symbol “◦” defines the product of two vectors of a = (a1, · · · , an) and b =

(b1, · · · , bn) by a ◦ b =
∑n

i=1 aibi.

In view of (A.7) and (A.8), using Assumption A.3, in order to show that (A.5) is true for

R10(h), it suffices to show that for any sufficiently small ψ > 0

E

 T∑
s=1

T∑
t=1, 6=s

bs(ϑ0)astηt(ϑ0)

2

<∞, (A.9)

where {ast} is as defined before, and bs(ϑ0) = ∂g(xs,ϑ)
∂ϑ |ϑ=ϑ0◦1 =

∑d
i=1

∂g(xs,ϑ)
∂ϑi

|ϑi=ϑi0
, in which

1 = (1, · · · , 1) is a d–dimensional vector of unit elements, and {ϑi} is the i–th component of

the vector ϑ.

Equation (A.9) follows from

E

[
T∑

t=2

t−1∑
s=1

bs(ϑ0)astηt(ϑ0)

]2

=
T∑

t=2

t−1∑
s=1

E [bs(ϑ0)astηt(ϑ0)]
2 (A.10)

=
1

T 2hσ2
0

T∑
t=2

t−1∑
s=1

E

[
K2

(
xs − xt

h

)
b2s(ϑ0)

]

= (1 + o(1)) C0(K) E

[∣∣∣∣∣∣∣∣∂g(x1, ϑ)
∂ϑ

|ϑ=ϑ0

∣∣∣∣∣∣∣∣2
]
<∞
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using Assumption A.3, where C0(K) = σ−2
0

∫
K2(u)du.

Similarly, we may show that the first part of equation (A.5) holds for the other terms of

RT (h). Therefore, we complete an outline of the proof of Lemma A.2.

In order to establish a useful lemma, we need to introduce the following notation: Let

g(xs) = ∆−1σ2(xs) be as defined before, b(xs) = g(xs)√
σ0

, zs = (e2s − 1),

ast = a(xs, xt) = b(xs)
1

T
√
h
K

(
xs − xt

h

)
b(xt) and LT (h) =

T∑
t=1

T∑
s=1, 6=t

zs a(xs, xt) zt.

We now have the following lemma.

Lemma A.3. Suppose that the conditions of Theorem 2.2(i) hold. Then for any h

sup
x∈R1

∣∣P (LT (h) ≤ x)− Φ(x) + ρ(h) (x2 − 1)φ(x)
∣∣ = O (h) , (A.11)

where φ(x) denotes the probability density function of N(0, 1).

Proof: In view of the form of LT (h), we may follow the proof of Lemma A.1 of Gao and

Gijbels (2005). Using the fact that {xs} and {et} are independent for all s ≤ t. we may deal

with the conditional probability P (LT (h) ≤ x|XT ) and then use the dominated convergence

theorem to deduce (A.11) unconditionally.

Recall LT (h) =
PT

t=1

PT
s=1,6=t ηs pst ηt

σg
and let L∗T (h) =

PT
t=1

PT
s=1,6=t η∗s pst η∗t

σ0
, where η∗s =

g(xs)
(
e∗2s − 1

)
.

Similarly, we define L∗T (h), F ∗T (h), Q∗T (h) and R∗T (h) as the corresponding versions of

LT (h), FT (h), QT (h) and RT (h) involved in (A.4) with (xt, Yt) and (θ̂, ϑ̂0) being replaced by

(xt, Y
∗
t ) and (θ̂∗, ϑ̂∗0) respectively.

Lemma A.4. Suppose that the conditions of Theorem 2.2(i) hold. Then the following

sup
x∈R1

∣∣P ∗ (L∗T (h) ≤ x)− Φ(x) + ρ(h) (x2 − 1)φ(x)
∣∣ = OP (h) (A.12)

holds in probability.

Proof: Since the proof follows similarly from that of Lemma A.3 using some conditioning

arguments given WT , we do not wish to repeat the details.

Lemma A.5. (i) Suppose that the conditions of Theorem 2.2(ii) hold. Then under H01

E [QT (h)] = O
(√

h
)

and E [FT (h)] = o
(√

h
)
. (A.13)
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(ii) Suppose that the conditions of Theorem 2.2(ii) hold. Then under H01

E∗ [Q∗T (h)] = OP

(√
h
)

and E∗ [F ∗T (h)] = oP

(√
h
)

(A.14)

in probability with respect to the joint distribution of WT , where E∗[·] = E[·|WT ].

(iii) Suppose that the conditions of Theorem 2.2(i) hold. Then under H01

E [QT (h)]− E∗ [Q∗T (h)] = OP

(√
h
)

and E [FT (h)]− E∗ [F ∗T (h)] = oP

(√
h
)

(A.15)

in probability with respect to the joint distribution of WT .

Proof: As the proofs of (i)–(iii) are quite similar, we need only to prove the first part of

(iii). In view of (A.4), we have

QT (h) =

∑T
t=1

∑T
s=1, 6=t

(
g(xs)− g(xs, ϑ̂0)

)
pst

(
g(xt)− g(xt, ϑ̂0)

)
σ0

,

Q∗T (h) =

∑T
t=1

∑T
s=1, 6=t

(
g(xs)− g(xs, ϑ̂

∗
0)

)
pst

(
g(xt)− g(xt, ϑ̂

∗
0)

)
σ0

. (A.16)

Ignoring the higher–order terms, it can be shown that the leading term of Q∗T (h)−QT (h)

is represented approximately by

Q∗T (h)−QT (h) ≈

∑T
t=1

∑T
s=1, 6=t

(
g(xs, ϑ̂0)− g(xs, ϑ̂

∗
0)

)
pst

(
g(xt, ϑ̂0)− g(xt, ϑ̂

∗
0)

)
σg

. (A.17)

Using (A.17), Assumption A.3(iii)(iv) and the fact that

E[pst] =
1

T
√
h
E

[
K

(
xs − xt

h

)]
=

√
h

T

∫
K(u)du =

√
h

T
, (A.18)

we can deduce that

E[QT (h)]− E∗[Q∗T (h)] = OP

(√
h
)
, (A.19)

which completes an outline of the proof.

Lemma A.6. Suppose that the conditions of Theorem 2.2(iii) hold. Then under H11

lim
T→∞

E [QT (h)] = ∞ and lim
T→∞

E [FT (h)]
E [QT (h)]

= 0. (A.20)
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Proof: In view of the definitions of and QT (h) and FT (h), we need only to show the first

part of (A.20). Observe that for ϑ1 defined in the second part of Assumption A.3(ii),

QT (h) =

∑T
t=1

∑T
s=1, 6=t

(
g(xs)− g(xs, ϑ̂0)

)
pst

(
g(xt)− g(xt, ϑ̂0)

)
σ0

=

∑T
t=1

∑T
s=1, 6=t (g(xs)− g(xs, ϑ1)) pst (g(xt)− g(xt, ϑ1))

σ0

+

∑T
t=1

∑T
s=1, 6=t

(
g(xs, ϑ1)− g(xs, ϑ̂0)

)
pst

(
g(xt, ϑ1)− g(xt, ϑ̂0)

)
σ0

+ oP (QT (h)) . (A.21)

In view of (A.21), using the second part of Assumption A.3(ii), in order to prove (A.20)

it suffices to show that for T →∞ and h→ 0,

E

 T∑
t=1

T∑
s=1, 6=t

(g(xs)− g(xs, ϑ1)) pst (g(xt)− g(xt, ϑ1))

 →∞. (A.22)

Simple calculations imply that as T →∞ and h→ 0

E

 T∑
t=1

T∑
s=1, 6=t

(g(xs)− g(xs, ϑ1)) pst (g(xt)− g(xt, ϑ1))

 = C2
1TE

 T∑
t=1

T∑
s=1, 6=t

D1(xs)pstD1(xt)



= (1 + o(1)) C2
1T

√
hT

∫
K(u)du

∫
D2

1(v)π(v)dv

= (1 + o(1)) TC2
1T

√
h

∫
D2

1(v)π(v)dv →∞ (A.23)

using Assumption A.4.

A.5. Proof of Theorem 2.2

A.5.1. Proof of Theorem 2.2(i): Recall from (A.4) that

L1T (h) = (LT (h) + FT (h) +QT (h)) · σ0

σ̂1T
+RT (h), (A.24)

L∗1T (h) = (L∗T (h) + F ∗T (h) +Q∗T (h)) · σ0

σ̂∗1T

+R∗T (h). (A.25)

In view of Assumption A.3, Lemmas A.5 and A.6, we may ignore any terms with orders

higher than
√
h and then consider the following approximations:

L1T (h) = LT (h) + E [QT (h)] + oP (
√
h) and

L∗1T (h) = L∗T (h) + E∗ [Q∗T (h)] + oP (
√
h). (A.26)
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Let q(h) = E[QT (h)] and q∗(h) = E∗ [Q∗T (h)]. We then apply Lemmas A.3 and A.4 to

obtain that

P (L1T (h) ≤ x) = P
(
LT (h) ≤ x− q(h) + oP (

√
h))

)
= Φ(x− q(h))− ρ(h) ((x− q(h))2 − 1) φ(x− q(h))

+ o(
√
h) and (A.27)

P ∗ (L∗1T (h) ≤ x) = P ∗
(
L∗T (h) ≤ x− q∗(h) + oP (

√
h))

)
= Φ(x− q∗(h))− ρ(h) ((x− q∗(h))2 − 1) φ(x− q∗(h))

+ oP (
√
h) (A.28)

hold uniformly over x ∈ R1.

Theorem 2.2(i) follows consequently from (A.15) and (A.27).

A.5.2. Proof of Theorem 2.2(ii): In view of the definition that P ∗ (L∗1T (h) ≥ l∗1α) = α

and the conclusion from Theorem 2.2(i) that

P (L1T (h) ≥ l∗1α)− P ∗ (L∗1T (h) ≥ l∗1α) = OP (
√
h), (A.29)

the proof of P (L1T (h) ≥ l∗1α) = α + O(
√
h) follows unconditionally from the dominated

convergence theorem.

A.5.2. Proof of Theorem 2.2(iii): Since Theorem 2.2(i) implies that l∗1α − l1α converges

to 0 in probability, in order to prove Theorem 2.2(iii), it suffices to show that under H11

lim
T→∞

P (L1T (h) ≥ l1α) = 1, (A.30)

which follows from

P (L1T (h) ≥ lα) = P
(
LT (h) ≥ α− q(h) + oP (

√
h))

)
= 1− Φ(l1α − q(h)) + ρ(h) ((l1α − q(h))2 − 1) φ(l1α − q(h))

+ o(
√
h) → 1 (A.31)

using (A.27), the fact that q(h) →∞ as T →∞ under H11 implied from Lemma A.6.

Alternatively, the proof of Theorem 2.2(iii) may be completed using Theorem 2.1 and

Lemma A.6.
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A.6. Proof of Theorem 2.3: Observe that

ST (h) = P (L1T (h) ≥ l1α|H0) = P (LT (h) ≥ l1α −QT (h) + oP (QT (h))|H01)

= 1− P (LT (h) ≤ l1α −QT (h) + oP (QT (h))|H01) , (A.32)

S∗T (h) = P (L1T (h) ≥ l∗1α|H0) = P (LT (h) ≥ l∗1α −QT (h) + oP (QT (h))|H01)

= 1− P (LT (h) ≤ l∗1α −QT (h) + oP (QT (h))|H01) , (A.33)

PT (h) = P (L1T (h) ≥ l1α|H1) = P (LT (h) ≥ l1α −QT (h) + oP (QT (h))|H11)

= 1− P (LT (h) ≤ l1α −QT (h) + oP (QT (h))|H11) , (A.34)

P ∗T (h) = P (L1T (h) ≥ l∗1α|H11) = P (LT (h) ≥ l∗1α −QT (h) + oP (QT (h))|H11)

= 1− P (LT (h) ≤ l∗1α −QT (h) + oP (QT (h))|H11) . (A.35)

Using Assumptions A.3(iii)(iv) and A.4, in view of (A.16) and (A.21), a Taylor expansion

of g(·, ϑ) at ϑ0 implies that for sufficiently large T

QT (h) = C0(g)
√
h (1 + oP (1)) under H01 and (A.36)

QT (h) =
√
h

(
C1(g) +D1π T C2

1T

)
(1 + oP (1)) under H11 (A.37)

hold in probability, where C1(g) and D1π are as defined in Theorem 2.3.

The proof of Theorem 2.3 then follows from Lemmas A.5–A.6 and (A.32)–(A.37).

A.7. Proof of Theorem 2.4: Define FT,h(x) and F ∗T,h(x) as the exact finite–sample

distributions of L1T (h) and L∗1T (h), respectively. Using existing results (Serfling 1980; Hall

1992) and Theorem 2.3(i) imply

l1α − zα =
Φ(zα)− FT,h(lα)

φ(zα)
+ oP (|l1α − zα|)

=
1

φ(zα)

(
(z2

α − 1) φ(zα) ψ(α)
√
h
)

+ oP (|l1α − zα|)

= ψ(α)
√
h+ oP (|l1α − zα|) ,

l∗1α − zα =
Φ(zα)− F ∗T,h(l∗1α)

φ(zα)
+ oP (|l∗1α − zα|)

=
1

φ(zα)

(
(z2

α − 1) φ(zα) ψ(α)
√
h
)

+ oP (|l∗1α − zα|)

= ψ(α)
√
h+ oP (|l∗1α − zα|) , (A.38)

where ψ(α) is as defined above Theorem 2.4. The proof is now finished.
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